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Abstract: In terrestrial ecosystems, leaves are aggregated into different spatial structures and their
spatial distribution is non-random. Clumping index (CI) is a key canopy structural parameter,
characterizing the extent to which leaf deviates from the random distribution. To assess leaf clumping
effects on global terrestrial ET, we used a global leaf area index (LAI) map and the latest version of
global CI product derived from MODIS BRDF data as well as the Boreal Ecosystem Productivity
Simulator (BEPS) to estimate global terrestrial ET. The results show that global terrestrial ET in 2015
was 511.9 ± 70.1 mm yr−1 for Case I, where the true LAI and CI are used. Compared to this baseline
case, (1) global terrestrial ET is overestimated by 4.7% for Case II where true LAI is used ignoring
clumping; (2) global terrestrial ET is underestimated by 13.0% for Case III where effective LAI is
used ignoring clumping. Among all plant functional types (PFTs), evergreen needleleaf forests were
most affected by foliage clumping for ET estimation in Case II, because they are most clumped with
the lowest CI. Deciduous broadleaf forests are affected by leaf clumping most in Case III because
they have both high LAI and low CI compared to other PFTs. The leaf clumping effects on ET
estimation in both Case II and Case III is robust to the errors in major input parameters. Thus,
it is necessary to consider clumping effects in the simulation of global terrestrial ET, which has
considerable implications for global water cycle research.

Keywords: canopy structural parameters; canopy radiation transfer; two-leaf model; evapotranspiration;
clumping index; leaf area index

1. Introduction

Evapotranspiration (ET) of terrestrial ecosystems consists of water lost to the atmo-
sphere from plant leaves via transpiration and that lost from the soil, wet vegetation
surfaces, and water bodies, through evaporation [1]. ET is the second-largest component
of the global terrestrial water cycle since it returns over 60% of terrestrial precipitation to
the atmosphere [2,3], and the accompanying latent heat fluxes occupy > 50% of the solar
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radiation received by the land surface [4]. ET is also coupled with vegetation photosyn-
thesis through canopy stomatal conductance [1,5]. These linkages among water, energy,
and carbon cycle make ET a crucial parameter in short-term numerical weather forecasts
as well as long-term climate projections. Thus, it is important to estimate terrestrial ET
accurately for advancing our understanding of the Earth’s climate system.

Global terrestrial ET was firstly simulated with the land surface model, of which ET
simulation was coupled with the carbon processes [6]. Various estimates of the magni-
tude of global terrestrial ET in different units have been reported: (1) 524.9 mm yr−1

(58.4 × 103 km3 yr−1) [7]; (2) 272.0–441.5 mm yr−1 [8]; (3) 604 mm yr−1 [9]; and
(4) 564.4 mm yr−1 (62.8 × 103 km3 yr−1) [10]. These estimates differ considerably due
to different datasets and different methods used for the estimation of global terrestrial ET.
Luo et al. [11] compared ET simulations of nine flux tower sites using different leaf-to-
canopy upscaling schemes with the same data inputs. They found that the big-leaf scheme
underestimated ET across all sites and this underestimation was more significant at the
sites with higher leaf area index (LAI) values. It indicated that methods of canopy-scale ET
simulation would be a major source of uncertainties in global ET simulation.

Based on the pioneering works of Penman [12] and Monteith [13], ET can be calculated
by the widely used Penman-Monteith (PM) equation [13]. Although the PM equation has a
solid physical foundation, its application to large scales still has several challenges, one
of which is the upscaling methodology for canopy ET estimation [14]. The big-leaf model
treating the canopy as a big leaf over the soil is a widely used leaf-to-canopy upscaling
methodology for ET estimation [13,15,16] and it has several limitations. One is that many
parameters of the big-leaf model can only be determined by tuning the model using eddy
covariance (EC) flux measurements and do not represent any measurable biochemical
or biophysical variables [17]. Another shortcoming of the big-leaf model is the effects of
ignoring micrometeorological gradients and intermittent turbulence on the estimation of
EC fluxes [17]. The big-leaf model would cause biases in the simulation of canopy gross
primary productivity (GPP) and ET [11,18,19].

The two-leaf model, which divides the canopy into sunlit and shaded components
has been proved to perform better in estimating canopy GPP and ET than the big-leaf
model [11,18,19]. Sunlit-shaded leaf separation needs an accurate description of canopy
structure using two canopy structural parameters [14]. One is LAI which is defined as half
of the total surface area of green leaves per unit ground surface area [20]. The other one is
CI, which quantifies the extent to which leaves deviate from the random distribution [21,22].
There are four reasons why CI is required for ET simulation: (1) CI is required for deriving
true LAI from effective LAI (Le) that can be measured directly using ground-based optical
instruments (i.e., LAI-2200) or derived from satellite sensors; (2) CI is needed in the two-leaf
model for calculating sunlit and shaded LAI; (3) CI is used in the calculation of canopy gap
fraction for accurately simulating radiation transfer inside the canopy [18,22,23]; and (4) CI
is also used in estimating the rate of intercepted rain or snow by the canopy [24]. Chen et al.
(2016) assessed the impacts of leaf clumping on ET estimation at eight forest flux tower
sites using the BEPS model and found that the annual ET could be underestimated by
11.5% on average if Le was used ignoring leaf clumping. Also, under the same modeling
scheme, the bias of ET estimation was larger in a more clumped canopy [14]. Moreover,
the knowledge of experimental LAI is crucial in ecohydraulic research [25,26].

Recently, a new global daily CI product with 500 m spatial resolution has been pro-
duced based on MODIS BRDF data for 2001–2017 [27]. This CI product considers the
variations in solar zenith angles, and it could be used for evaluating leaf clumping effects
on global ET estimation with the fine resolution of the global CI maps. The aims of this
study are (1) to assess leaf clumping effects on estimating global terrestrial ET; (2) to as-
sess leaf clumping effects on the calculation of key biophysical parameters controlling ET
simulation, and; (3) to evaluate the robustness of leaf clumping effects with errors in key
model parameters.
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2. Modeling Methodology

The BEPS model was used for simulating global terrestrial ET in this research. Al-
though it was a process-based ecosystem model initially developed for estimating the
carbon fluxes and ET over the terrestrial ecosystems in Canada [28–31], it has been applied
over ecosystems in East Asia [32], China [33], and over global terrestrial ecosystems [23].
BEPS uses the sunlit-shaded leaf separation method for simulating canopy GPP and
ET [18,31] and it was proved that this two-leaf model can remove the uncertainties prop-
agated from the artificial leaf-to-canopy upscaling using the big-leaf and two-big-leaf
models [11]. The biases in estimated GPP and ET using the two-leaf model are not affected
by LAI while the biases in big-leaf and two-big-leaf models increase with LAI [11] (Table 1).

Table 1. Physiological and canopy structural parameters are used in the BEPS model for various PFTs.

Parameters a ENF b DNF b DBF b EBF b MFb Grass Crop Shrub Others References

V25
cmax0(µmol m−2s−1) 48.2 ± 5.7 44.6 ± 2.7 72.7 ± 14.7 53.6 ± 14.7 60.5 ± 10.2 88.7 ± 20.9 82.7 ± 15.2 57.4 ± 31.0 90.0 ± 89.5 [23,34]

N0 (g m−2) 4.45 2.45 2.45 2.97 3.5 2.38 2.38 2.70 2.38 [23]
χn (m2g−1) 0.33 0.56 0.59 0.48 0.47 0.60 0.60 0.57 0.60 [23]

m 8 8 8 8 8 4 4 8 8 [23]
g0 (mol m−2s−1) 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 [23]

β 0.976 0.966 0.966 0.962 0.966 0.952 0.961 0.978 0.966 [35]
RASMth 0.6 0.6 0.885 0.575 0.6 0.495 0.6 0.6 0.6 [36]

a −0.03 −0.03 −0.03 −0.03 −0.03 −0.04 −0.03 −0.03 −0.03 [36]
LAI 3.60 ± 2.14 3.43 ± 1.96 3.61 ± 2.01 3.98 ± 2.25 4.39 ± 2.01 1.64 ± 1.36 2.27 ± 1.60 1.71 ± 1.33 1.87 ± 1.64 [37]

LAIu 0.03 1.04 0.96 0.03 0.96 0.01 0.01 0.01 0.01 [38]
CI 0.58 ± 0.10 0.60 ± 0.11 0.60 ± 0.11 0.58 ± 0.12 0.57 ± 0.11 0.66 ± 0.14 0.68 ± 0.13 0.65 ± 0.14 0.65 ± 0.14 [39]

a Vcmax0 is leaf maximum carboxylation rate at the top of the canopy at 25 ◦C; N0 is leaf nitrogen content at the top of canopy; χn is the slope
of Vcmax variation with leaf nitrogen content; m and g0 are the slope and intercept in the BWB equation. β is the simple numerical index of
rooting distribution based on the asymptotic equation p(z) = 1 − βz, where p(z) is the proportion of roots from the surface to the depth (z).
RASMth is the threshold of relatively available soil moisture. a is the fitted slope in the equation of accumulated soil water deficit (ASWD)
adjusted Vcmax ratio (Appendix A). The peak LAI during the growing season and the annual mean clumping index are given as the mean and
standard deviation for each PFT. b ENF: evergreen needleleaf forests; DNF: deciduous needleleaf forests; DBF: deciduous broadleaf forests;
EBF: evergreen broadleaf forests; MF: mixed forests.

2.1. ET Modeling

The Penman-Monteith equation was used in BEPS to calculate ET (in m s−1) [14,31]:

ET =

∆(Rn − G) + ρacp(es − ea)ga

∆ + γ
(

1 + ga
gs

)
/λv (1)

where Rn represents net radiation (W m−2) by the surface of interest and G represents
conductive heat flux (W m−2) away from the surface. es is the saturated water vapor
pressure (kPa) at the surface. ea represents the actual water vapor pressure (kPa) above the
surface. ga represents the aerodynamic conductance (m s−1) from evaporating surface to a
reference height. γ represents the psychometric constant (≈0.066 kPa ◦C−1). λv represents
the latent heat of vaporization. ρa is the air density. cp represents the specific heat of the air.
gs represents the surface conductance to water vapor (m s−1). ∆ represents the change of
saturated water vapor pressure with air temperature and it is calculated as [40]:

∆ =
2503.16e

17.27Ta
Ta+237.3

(Ta + 237.3)2 (2)

where Ta represents air temperature (◦C).
In BEPS, ET is the sum of nine components and it is calculated as:

ET = To + Tu + Eo + Eu + So + Su + Es + Eg + Sg (3)

where To and Tu are transpiration rates of overstory and understory dry canopies, respec-
tively. Eo and Eu are evaporation from intercepted liquid water in overstory and understory
canopies. So and Su is sublimation rates of intercepted snow by overstory and understory
canopies, respectively. Es is soil evaporation rate. Eg is the evaporation rate of ponded
water on the ground and Sg is the sublimation rate of the snow on the ground.
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In BEPS, leaf transpiration is coupled with leaf photosynthesis rate through stom-
atal conductance, which is estimated based on the Ball-Woodrow-Berry (BWB) stomatal
conductance model [41]:

gsw = m
Ahs

Cs
+ g0 (4)

where gsw is stomatal conductance to water vapor (mol m−2 s−1). hs is relative humidity
(RH) at the leaf surface. Cs represents CO2 concentration (µmol mol−1) at the leaf surface.
m is a slope (dimensionless) and g0 is a small intercept term (mol m−2 s−1). The m values are
highly variable among plant functional types (PFTs) [42]. We choose the most frequently
used values in this study (Table 1). The values of g0 are usually very low and treated
invariant for all PFTs (Table 1).

Leaf net photosynthesis rate (A in µmol m−2 s−1) is calculated as [18]:

A = min(Wc, Wd)− Rd (5)

where Rd is leaf dark respiration (µmol m−2 s−1); Wc and Wj are Rubisco-limited and
light-limited gross photosynthesis rates (µmol m−2 s−1), respectively. They are calculated
as [43]:

Wc = Vcmax
Ci − Γ
Ci + K

(6)

Wj = J
Ci − Γ

4.5Ci + 10.5Γ
(7)

where Vcmax is leaf maximum carboxylation rate (µmol m−2 s−1); J is the electron transport
rate (µmol m−2 s−1); Ci is the intercellular CO2 concentration; Γ is the CO2 compensation
point without dark respiration; K is a function of enzyme kinetics. The values of leaf
maximum rate of carboxylation at top of canopy normalized to 25 ◦C (V25

cmax0) for various
PFTs are taken from He et al. [34], who produced global Vcmax maps (2007–2017) based on
GOME-2 SIF observation [44]. The default V25

cmax0 is used for the others [23], which is not
available in He et al. [34].

The surface resistance to the soil evaporation (rsoil) was calculated as [45]:

rsoil = e8.206−4.255× θ1
θs (8)

where θ1 and θs are soil water content (m3 m−3) and porosity (m3 m−3) of the 1st soil layer.

2.2. The Two-Leaf Model for ET Modeling

BEPS follows the sunlit-shaded two-leaf scheme in simulating canopy-scale GPP and
ET [18,31]. In BEPS, the vegetation canopy is stratified into two layers as the overstory
canopy and the understory canopy. Both are divided into sunlit and shaded portions be-
cause the greatest difference in leaf irradiance exists between sunlit and shaded leaves [18].
The method of calculating sunlit and shaded LAI [46] was improved to incorporate the leaf
clumping effect on the canopy radiation transfer [18]:

LAIo_sun = 2cosθ(1 − e−0.5ΩLAIo/cosθ) (9)

LAIo_sh = LAIo − LAIo_sun (10)

LAIu_sun = 2cosθ(1 − e−0.5Ω(LAIo+LAIu)/cosθ)− LAIo_sun (11)

LAIu_sh = LAIu − LAIu_sun (12)

where LAIo_sh and LAIo_sun are overstory shaded and sunlit LAI, respectively. LAIu_sh and
LAIu_sun are understory shaded and sunlit LAI, respectively. θ is solar zenith angle.

Canopy ET was calculated as the sum of sunlit and shaded components as:

ETo = ETo_sunLAIo_sun + ETo_shLAIo_sh (13)

ETu = ETu_sunLAIu_sun + ETu_shLAIu_sh (14)
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where ETo_sun and ETo_sh are ET from a representative sunlit and a representative shaded
leaf in the overstory canopy, respectively. ETu_sun and ETu_sh are ET from a representative
sunlit and a representative shaded leaf in the understory canopy, respectively.

3. Input Data
3.1. Meteorological Data

The gridded meteorology data include downward solar radiation, two-meter Ta, RH,
rainfall (Figure 1), and ten-meter wind speed, and they are downloaded from the ERA-
Interim Archive at the European Centre for Medium-Range Weather Forecasts (ECMWF).
The data assimilation system used for producing ERA-Interim was based on a 2006 release
of the Integrated Forecast System (Cy31r2). This data assimilation system includes a
4-dimensional variational analysis (4D-Var) with a 12-hour analysis window [47]. The
data assimilation performance has been closely monitored during the production of ERA-
Interim [47]. The spatial resolution of this dataset is approximately 80 km (~1◦). For hourly
simulation at a 1◦ resolution, the cubic spline interpolation method in Matlab was applied
to interpolate ERA-interim meteorology data from three hourly to one hourly.

Figure 1. Global distribution of meteorological variables in 2015: (a) mean hourly air temperature in ◦C; (b) mean hourly
downward solar radiation in W m−2; (c) annual total precipitation in mm yr−1; (d) mean hourly relative humidity. Global
means of air temperature, downward solar radiation, precipitation, and relative humidity for 2015 were 4.1 ◦C, 76.3 W m−2,
303 mm yr−1, and 25.8%, respectively.

3.2. Land Cover Map

Global land cover (LC) map in 2013 at 500 m resolution from the Global Land Cover
by National Mapping Organizations (GLCNMO) (https://globalmaps.github.io/glcnm-
o.html, accessed on 3 July 2021) is used in this study. There are 19 LC types based on the
Land Cover Classification System (LCCS) [48] (Figure 2). For global ET simulation, the
detailed LC types were lumped into nine PFTs. Specifically, EBF, DBF, ENF, DNF, MF, and
shrub are kept as they are. Herbaceous is labeled as grass. Cropland, paddy field, and
Cropland/Other Vegetation Mosaic were labeled as crop. Other LC types in Figure 1 were

https://globalmaps.github.io/glcnm-o.html
https://globalmaps.github.io/glcnm-o.html
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labeled as others. For each 1◦ modeling pixel, the areal fraction of each PFT was calculated
to upscale from 500 m to 1◦ resolution [49].

Figure 2. The global land cover map in 2013 at 500 m resolution. (1) EBF: Broadleaf Evergreen Forest; (2) DBF: Broadleaf
Deciduous Forest; (3) ENF: Needleleaf Evergreen Forest; (4) DNF: Needleleaf Deciduous Forest; (5) MF: Mixed Forest; (6) TO:
Tree Open; (7) Shr: Shrub; (8) Herb: Herbaceous; (9) HSTS: Herbaceous with Sparse Tree/Shrub; (10) SV: Sparse vegetation;
(11) Cro: Cropland; (12) PF: Paddy field; (13) COVM: Cropland and Other Vegetation Mosaic; (14) Man: Mangrove; (15) Wet:
Wetland; (16) BAC: Bare area, consolidated (gravel and rock); (17) BAU: Bare area, unconsolidated (sand); (18) Urb: Urban;
(19) SI: Snow or Ice; (20) WB: Water bodies.

In this study, the BEPS model was run at 1◦ resolution for ET simulation. Thus, the
GLCNMO global land cover map at 500 m resolution is good enough for this study. The
latest GLCNMO land cover map available online is the Version 3 data which was produced
from the MODIS data in 2013. This is the reason why we used the GLCNMO2013 land
cover map. There is only two years’ difference between 2015 and 2013 and the changes
of land cover types should be minor within two years. Thus, we assumed that this global
land cover map in 2013 could still be used for our ET simulation in 2015.

3.3. Global LAI Product

The global LAI product in 2015 used in this study was retrieved from the GLOBMAP
LAI Version 3 dataset, which includes consistent long-term (1981–2019) global LAI maps
at 8 km resolution [37]. The global LAI maps in 2015 were derived from 8-day synthesis
MODIS land surface reflectance products (MOD09A1 C6) and the angular information.
The red, near-infrared (NIR), and shortwave-infrared (SWIR) reflectance were used for LAI
derivation based on the GLOBCARBON LAI algorithm. The cloud pixels of MOD09A1
C6 data were identified by an algorithm of cloud detection [50], and the cloud pixels were
filled using the approach of locally adjusted cubic spline capping [51]. The leaf clumping
effects had been considered for each pixel with a global CI map at 500 m resolution [52].
This global LAI product had been validated using field measurements of 28 sites and
45 LAI maps of fine resolution over 29 sites which covered major global PFTs [37]. A global
LAI map on 4–11 July 2015, is shown as an example in Figure 3.
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Figure 3. A global LAI map on 4–11 July 2015 at 8 km resolution is an example.

For ET modeling at the one-degree resolution, the global LAI maps at 8 km resolution
were aggregated to derive the mean LAI value for each PFT in each one-degree grid. In
this approach, each PFT within the one-degree grid is considered, and the LAI related to
each specific PFT is averaged from all the fine resolution pixels. This allowed separate ET
estimation for each PFT in each one-degree grid. The ET value of each one-degree grid was
then calculated as the sum of ET for all PFTs weighted by their areal fractions [49].

3.4. Global Clumping Index Map

CI is a key canopy structural parameter quantifying the level of leaf clumping in
vegetation canopy. Chen et al. (2005) firstly proposed the Normalized Difference between
Hotspot and Darkspot (NDHD), which is an improved angular index for deriving the
global CI map with multi-angular remote sensing data at 6 km resolution [53]. In this study,
we used a global CI product (hereafter CAS-CI) at 500 m resolution in 2015, which was
derived from the MODIS BRDF product [27]. This is currently the finest global CI map
of which temporal resolution is 8-day (Figure 4). This global CI map has been validated
with in-situ observations of CI at thirty-three sites [27]. This global CI map series was
aggregated to derive the mean CI value for each PFT in each 1◦ grid and it was the basis
for the assessment of the impacts of leaf clumping on global ET simulation.

3.5. Soil Texture Data

The soil texture type for each one-degree pixel was determined by the sand, silt, and
clay fractions. The soil texture data were downloaded from the Harmonized World Soil
Database (HWSD) (http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-
database/HTML/HWSD_Data.html?sb=4, accessed on 3 July 2021). The spatial resolution
of the original HWSD dataset is 0.00833 degrees (~1 km) and they were resampled into
grids of 0.004167◦ (~500 m) to match the spatial resolution of the global LC map. The soil
texture type of each grid cell was determined by the USDA soil texture triangle and the
sand, silt, and clay fractions.

For global ET simulation at 1◦ resolution, the soil texture map at 500 m resolution was
aggregated to obtain the dominant soil texture types for the 9 PFTs (Section 3.2). The soil
texture types were used to determine the soil hydrological and thermal parameter values
such as saturated hydraulic conductivity, porosity, field capacity, wilting point, and soil

http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/HWSD_Data.html?sb=4
http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/HWSD_Data.html?sb=4
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thermal conductivity, which would influence the estimation of soil evaporation through
the ground surface temperature and soil moisture.

Figure 4. A global CI map on 4–11 July 2015 derived from MODIS BRDF data at 500 m resolution as an example.

4. Simulation Cases and Model Validation

For the purpose of investigating leaf clumping effects on the estimated global ter-
restrial ET, three cases of model simulations were conducted. For Case I, both of the true
LAI and CI retrieved from remote sensing data were used. This Case was believed to be
unbiased. For Case II, the true LAI was used but clumping was ignored (CI = 1). This
case would cause the overestimation of sunlit LAI and the underestimation of shaded LAI
compared to Case I. For Case III, the effective LAI (Le) calculated as the product of remote
sensing true LAI (GLOBMAP LAI) and remote sensing CAS-CI was used and clumping
was ignored. In this case, the sunlit LAI is not biased but the shaded LAI is underestimated
compared to Case I. The BEPS simulated soil moisture (SM) from Case I was used to drive
the other case simulations for removing the effects of simulated SM on simulated ET among
different cases.

The BEPS model simulated ET has been validated extensively with the eddy-covariance
(EC) measured ET for C3 and C4 crops in the Western Lake Erie Basin, the USA [54], bo-
real and temperate forest ecosystems in North America [11,14,55], forest, grassland and
cropland in China [56–58]. In these studies, the BEPS model simulated half-hourly ET was
compared with the EC measured ET and the R2 is in the range of 0.43 to 0.86 and the RMSE
ranging from 0.02 to 0.08 mm hr−1. The Penman-Monteith equation used to estimate ET
and the two-leaf model used to upscale ET from leaf-level to canopy scale have been proved
to perform better than their alternatives [11,59]. Thus, the global terrestrial ET simulated
by the BEPS model in this study should be reasonable as long as the uncertainties from the
input dataset could be well-constrained.

5. Results
5.1. Simulations of Global Terrestrial ET

Using the various land cover, meteorology, and soil inputs, a global annual ET map
for 2015 is produced at one-degree resolution for each of the three cases, based on the
hourly BEPS simulation. The global ET map of Case I is considered as representing the
reality (Figure 5). The highest ET appeared in the tropics while low ET appeared in the
northern high latitudes, high-altitude mountains, and arid regions (i.e., Australia, central
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Asia, the western US, and the Sahel). The mean ET variations with latitude are also shown
in Figure 4. The highest ET (933.4 ± 472.5 mm yr−1) occurs at the latitude of 1◦N and
ET gradually decreases with the increase of latitude to the North or the South (Figure 5).
The variation of annual ET with latitude is large due to strong latitudinal variations in
meteorological conditions, vegetation types, and densities.

Figure 5. Global ET map of Case I in 2015 simulated by the BEPS model.

The ET averaged over the global land surface is 511.9 ± 70.1 mm yr−1, where the
uncertainty ± 70.1 mm yr−1 is the sum of the uncertainty (±26.7 mm yr−1) resulting
from the input vegetation data as well as model parameters, and the standard deviation
(±43.4 mm yr−1, Figure 8) of the annual global ET during 2013 to 2016 resulting from
meteorological variations. The uncertainty from meteorological variations is calculated
using the same model parameters and the same LAI and CI input dataset in 2015 but actual
hourly meteorological data from 2013 to 2016. The uncertainty resulting from the input
vegetation data and model parameters is approximated by the range of global terrestrial
ET variation caused by LAI uncertainty of 20% (see Table 2) [23].

Table 2. Sensitivities of global terrestrial ET (mm yr−1) to errors in key parameters such as LAI, Ω, V25
cmax0, and RASMth.

Case I a Case II Case III Case II–Case I b Case III–Case I b

Baseline c 511.9 535.9 445.6 24.0 (4.7%) −66.3 (−13.0%)
1.2*LAI 541.6 (5.8%) 565.0 473.9 23.4 (4.3%) −67.7 (−12.5%)
0.8*LAI 476.6 (−6.9%) 501.1 413.3 24.6 (5.2%) −63.3 (−13.3%)
1.2*Ω 521.6 (1.9%) 535.9 476.4 14.3 (2.7%) −45.3 (−8.7%)
0.8*Ω 499.1 (−2.5%) 535.9 409.9 36.8 (7.4%) −89.2 (−17.9%)

1.2*V25
cmax0 525.2 (2.6%) 551.6 458.7 26.4 (5.0%) −66.5 (−12.7%)

0.8*V25
cmax0 494.5 (−3.4%) 515.9 429.1 21.4 (4.3%) −65.4 (−13.2%)

1.2*RASMth 503.7 (−1.6%) 526.0 437.5 22.3 (4.4%) −66.2 (−13.1%)
0.8*RASMth 522.6 (2.1%) 548.5 456.1 25.9 (5.0%) −66.6 (−12.7%)

a The percent in the parentheses of the 2nd column represents RD to the baseline ET. b The percent in the parentheses of the last two
columns represents RD to ET of Case I. c The baseline is the ideal Case shown in Figure 7.



Remote Sens. 2021, 13, 4075 10 of 24

5.2. Spatial Patterns of Leaf Clumping Effects on ET Estimation

Compared to Case I, leaf clumping effects on global terrestrial ET simulation are
assessed. The spatial patterns of bias errors for ET estimates among cases have consis-
tent signs, either positive (Figure 6) or negative (Figure 7), indicating that the clumping
effects are spatially consistent, despite considerable differences in other variables such as
meteorology, plants, and soils. It means that leaf clumping effects are vital for the two
cases. The largest biases due to neglecting leaf clumping exist in the tropical and the boreal
forests (Figures 6 and 7) where high clumping is detected from the MODIS BRDF product
(Figure 4). Figure 6 demonstrates that the ET values are overestimated globally if true LAI
is used ignoring clumping. The reason is that overstory sunlit LAI is overestimated in
Case II. Leaf clumping leads to more light penetration into the canopy and a decrease in
overstory sunlit LAI. If ignoring clumping, overstory sunlit LAI would be positively biased
while overstory shaded LAI would be negatively biased. Because ET of sunlit leaves is
larger than that of shaded leaves per unit leaf area, the total ET is positively biased for
Case II.

Figure 6. The spatial distribution of bias errors in global terrestrial ET estimates for Case II.

Figure 7 demonstrates the converse effects of leaf clumping globally for Case III. It can
be found that the detailed spatial distributions of the leaf clumping effects are relatively
different in Figures 6 and 7. In Case II (Figure 6), the high clumping effects on ET do not
appear where LAI is large. The reason is that the relative change in overstory shaded LAI
with CI is larger at lower LAI values while the absolute value of overstory shaded LAI
varies little with LAI (Equations (9) and (10)). In Case III (Figure 7), the high clumping
effects appear in areas with high LAI. This is because the overstory shaded LAI would be
more negatively biased with larger LAI values when the CI is the same.
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Figure 7. The spatial distribution of bias errors in global terrestrial ET estimates for Case III.

5.3. Leaf Clumping Effects on ET Estimation and Its Components for Various PFTs

Based on Case I, leaf clumping effects on estimations of global terrestrial ET as well as
its components have been assessed for various PFTs (Figure 8). The discrepancy of ET is
18.3 mm yr−1 (4.7%) between Case II and Case I and −48.3 mm yr−1 (−13.0%) between
Case III and Case I (Figure 8). ET of Case II is always larger than those of Case I for all PFTs
(Figure 8). Evergreen needleleaf forests (ENF) have the largest relative differences (RD)
between Case II and Case I because they are most clumped with the lowest CI on average
(Figure 8).

In contrary to Case II, ET is underestimated for all PFTs in Case III. The reason is that
the effective LAI of a highly clumped canopy is much smaller than its true LAI. Deciduous
broadleaf forests (DBF) have the largest RD between Case III and Case I because DBF
has both high LAI and low CI compared to other PFTs (Figure 8). If effective LAI is used
ignoring clumping, shaded LAI is much smaller in Case III than that in Case I, especially
for high LAI and low CI, while the sunlit LAI is unchanged (Equation (9)). Thus, the ET of
shaded leaves in Case III is lower than those in Case I so that the total ET is underestimated
for Case III.

ET of Case III is underestimated considerably due to the large fractions of shaded To
in ET. The fractions of shaded To to total ET are 23.2%, 17.0%, 17.3%, 18.7%, 20.1%, 4.1%,
9.4%, 4.4% and 8.3% to ET for ENF, DNF, DBF, EBF, MF, grass, crop, shrubs and others.
The discrepancy in ET between Case III and Case I is more than that between Case II and
Case I because ET is more biased due to the underestimation of shaded LAI in Case III
than that caused by the overestimation of sunlit LAI in Case II. This is consistent with what
Chen et al. [14] found by assessing leaf clumping effect on ET estimates over eight forest
sites in North America.
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Figure 8. BEPS simulated ET of the various PFTs (a); the relative differences (RD) of Case II and Case III were both compared
to Case I (b). CI and LAI of various PFTs (c). Case I: the true LAI and CI are used; Case II: the true LAI is used while
clumping is ignored; Case III: effective LAI is used ignoring clumping. ENF: evergreen needleleaf forests; DNF: deciduous
needleleaf forests; DBF: deciduous broadleaf forests; EBF: evergreen broadleaf forests; MF: mixed forests.

Leaf clumping effects on ET components of the various PFTs were further investigated
in Figure 9. Overstory sunlit transpiration (To_sun) values of Case II are always higher
than those of Case I (Figure 9a) because overstory sunlit LAI is overestimated in Case II.
Overstory shaded transpiration (To_sha) values of Case II are all close to those of Case I
(Figure 9a). This is because the overestimation of leaf-level To_sha is offset by the under-
estimation of overstory shaded LAI in Case II. To_sun values of Case III are almost the
same as those of Case I (Figure 9a) because both leaf-level To_sun and overstory sunlit LAI
are unchanged in Case III. To_sha values of Case III are always lower than those of Case I
(Figure 9b) because the underestimation of overstory shaded LAI is more significant than
the overestimation of leaf-level To_sha in Case III. Eo values of Case II are always higher
than those of Case I while Eo values of Case III are always lower than those of Case I
(Figure 9c). Tu values of Case II and Case III are both lower than those of Case I for most of
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the PFTs (Figure 9d). Eu and ES values of Case II and Case III are both lower than those of
Case I for all the PFTS (Figure 9e,f).

Figure 9. Leaf clumping effects on ET components of the various PFTs. (a) To_sun: overstory sunlit transpiration; (b) To_sha:
overstory shaded transpiration; (c) Eo: evaporation from intercepted liquid water in overstory canopy; (d) Tu: understory
transpiration; (e) Eu: evaporation from intercepted liquid water in understory canopy; (f) ES: soil evaporation. Case I: the
true LAI and CI are used; Case II: the true LAI is used while clumping is ignored; Case III: effective LAI is used ignoring
clumping. Gra: grass; Cro: crop; Shr: shrub; Oth: others.

5.4. Leaf Clumping Effects on the Calculation of Key Biophysical Parameters Controlling
Transpiration Simulations

In this section, we explored leaf clumping effects on the calculation of key biophysical
parameters controlling transpiration (T) estimation, which is the major component of ET,
such as leaf-level absorbed photosynthetic photon flux density (PPFD), net radiation (Rn),
stomatal conductance to water vapor (gsw) and LAI. The leaf clumping effects on the
calculation of these biophysical parameters were investigated for sunlit and shaded leaves
in the overstory and understory canopies, respectively (Figures 10 and 11).

If true LAI is used in transpiration estimation and clumping is ignored, leaf-level
absorbed PPFD, Rn, gsw, and T of the representative sunlit leaf in the overstory canopy
would be negatively biased (Figure 10a,b,d,e). In contrast, leaf-level absorbed PPFD, Rn,
gsw, and T of the shaded leaf in the overstory canopy would be positively biased when
true LAI is used in transpiration calculation and clumping is ignored (Figure 10a,b,d,e).
For instance, in a typical conifer forest, where LAI is 4.0 and Ω is 0.5, downward short-
wave radiation above the canopy is 500 W m−2 and relative humidity is 80%, leaf-level
absorbed PPFD, Rn, gsw, and T of the representative sunlit leaf in the overstory canopy
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would be 663.7 µmol m−2s−1, 234.3 W m−2, 4.15 mm s−1 and 0.0391 g H2O m−2 s−1 when
clumping is considered (Figure 9). However, they will be 641.0 µmol m−2s−1, 229.8 W m−2,
4.12 mm s−1, and 0.0384 g H2O m−2 s−1 when clumping is ignored (Figure 9). Thus, the
relative errors (RE) in the estimations of leaf-level absorbed PPFD, Rn, gsw, and T for the
representative sunlit leaf in the overstory canopy are −3.4%, −1.9%, −0.6%, and −1.8%
when clumping is ignored. In this case, leaf-level absorbed PPFD, Rn, gsw and T of the rep-
resentative shaded leaf in the overstory canopy would be 75.8 µmol m−2s−1, 24.3 W m−2,
1.76 mm s−1 and 0.0053 g H2O m−2 s−1 when clumping is considered (Figure 10). However,
they will be 91.9 µmol m−2s−1, 27.9 W m−2, 1.98 mm s−1, and 0.0061 g H2O m−2 s−1 when
clumping is ignored (Figure 10). Thus, the relative errors in the estimations of leaf-level
absorbed PPFD, Rn, gsw, and T for the representative shaded leaf in the overstory canopy
are 21.2%, 14.7%, 12.8%, and 15.1% when clumping is ignored. The positive biases in these
variables for the shaded leaf in the overstory are much higher than the negative biases for
the sunlit leaf in the overstory.

In this case, leaf-level absorbed PPFD, Rn, gsw, and T for understory sunlit and shaded
leaves would be negatively biased when true LAI is used in transpiration estimation and
clumping is ignored (Figure 10). Meanwhile, understory sunlit LAI would be negatively
biased while understory shaded LAI would be positively biased when true LAI is used in
transpiration calculation and clumping is ignored (Figure 10). In this case, canopy-scale
understory sunlit and shaded T would be both negatively biased (Figure 10f).

Figure 10. Variations of (a) PPFD, (b) Rn, (d) gsw, (e) the leaf-level transpiration rate (T) for a representative sunlit and a
representative shaded leaf in the overstory and understory canopies; (c) LAI and (f) canopy-scale transpiration rates (T) for
overstory and understory canopies with Ω, when true LAI is used ignoring clumping (Case II). Overstory and understory
LAI are set as 4.0 and 0.4, respectively, which are common in a typical conifer forest. θ = 45◦. Ta = 15 ◦C. Overstory canopy
temperature = 14 ◦C. Understory canopy temperature = 12 ◦C. Ground temperature = 12 ◦C. Relative humidity = 80%. Wind
speed is set as 6.0 m s−1. Downward shortwave radiation above the canopy is set as 500 W m−2. The albedo of overstory
and understory leaves in visible- and near-infrared bands are set as 0.035 and 0.23, respectively. The red open and filled
diamonds represent the overstory sunlit and shaded components, respectively; the blue open and filled circles represent the
understory sunlit and shaded components, respectively; the crosses represent the total of the four components.
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Figure 11. Variations of (a) PPFD, (b) Rn, (d) gsw, and (e) T for a sunlit and a shaded leaf in the overstory and understory
canopies; (c) LAI and (f) canopy-level T for overstory and understory canopies with Ω, when the effective LAI for the
overstory and understory canopies are set as a constant of 2.0 and 0.2, respectively, which are common in a typical conifer
forest (Case III). The values of the environmental variables are the same as those in Figure 8. The red open and filled
diamonds represent the overstory sunlit and shaded components, respectively; the blue open and filled circles represent the
understory sunlit and shaded components, respectively; the crosses represent the total of the four components.

For the same Le, the overstory or understory shaded LAI as well as total LAI increased
with the decrease of Ω (more clumped) while overstory or understory sunlit LAI were
invariant (Figure 11c). When Le is used in estimating T ignoring clumping, leaf-level ab-
sorbed PPFD, Rn, gsw, and T of the overstory representative sunlit leaf were invariant while
those of the overstory representative shaded leaf were overestimated (Figure 11). Canopy-
level overstory sunlit T was invariant while the shaded T and total T were negatively
biased when effective LAI is used ignoring clumping (Figure 11f).

Using the same example as mentioned above, effective LAI for the overstory and un-
derstory canopies are set as a constant of 2.0 and 0.2, respectively. If Ω is 0.5, absorbed PPFD,
Rn, gsw and T for the overstory representative shaded leaf at θ = 45◦ is 75.8 µmol m−2s−1,
24.3 W m−2, 1.76 mm s−1 and 0.0053 g H2O m−2 s−1, respectively, when clumping is
considered, while they are 155.7 µmol m−2s−1, 42.5 W m−2, 2.64 mm s−1 and 0.0089 g
H2O m−2 s−1, if clumping is ignored (Figure 11). The RE in the estimation of PPFD, Rn, gs,w,
and T when clumping is ignored will be 105.3%, 74.8%, 50.0%, and 67.9%, for the overstory
representative shaded leaf. Meanwhile, the sunlit LAI in overstory and understory are
unchanged and the shaded LAI in overstory and understory were negatively biased by
68.2% and 56.3% (Ω = 0.5). Total LAI was underestimated by 50.0% if Ω is 0.5 (Figure 11c).
Accordingly, T of the overstory sunlit canopy would be unchanged while that of the shaded
counterpart was underestimated by 46.8% (Figure 11f). On the other hand, T of understory
sunlit canopy would be underestimated by 11.1% while that of the shaded counterpart was
underestimated by 33.3%. The total canopy-level transpiration rate was underestimated by
13.6% in this Case (Figure 11f).

6. Discussion
6.1. Estimations of Global Terrestrial ET

The multiyear average of annual global terrestrial ET (511.9 ± 43.4 mm yr−1) from
2013 to 2016 simulated by the BEPS model in this study is within the range (453.7 ± 5.2
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to 697.3 ± 10.4 mm yr−1) of those estimated by four remote sensings (RS) based physical
models, two machine learning methods (i.e., model tree ensemble and random forest), and
14 land surface models (LSM) (Figure 12) [1]. For the model tree ensemble (MTE) method,
eddy covariance (EC) measured ET was integrated with satellite remote sensing and surface
meteorological data to estimate global terrestrial ET monthly from 1982 to 2008 at 0.5◦

spatial resolution [60]. For the random forest (RF) algorithm, a set of independent regression
trees was generated by randomly selecting training samples automatically [61]. The RF
global terrestrial ET product has a temporal resolution of half-hourly for the period of
2001–2014 at 0.5 spatial resolution [62]. The 14 LSM modeled ET products were from Trends
and Drivers of the Regional Scale Sources and Sinks of Carbon Dioxide (TRENDY) project,
including CABLE, CLASS-CTEM, CLM45, DLEM, ISAM, JSBACH, JULES, LPJ-GUESS,
LPJ-wsl, LPX-BERN, O-CN, ORCHIDEE, ORCHIDEE-MICT and VISIT [1]. The global
terrestrial ET results from the S3 simulation of TRENDY v6 with changing CO2, climate,
and land use for the period of 1982–2011 were used for comparison in this study. The
interannual variability of global terrestrial ET from 1982 to 2011 is small (<13.0 mm yr−1) [1].
Thus, the magnitude of global terrestrial ET simulated by the BEPS model in this study is
reasonable although its period is different from that in Pan et al. [1].

Figure 12. Average annual ET simulated by four remote sensings (RS) based physical models, two
machine-learning algorithms, and 14 land surface models (LSM) during 2001 to 2011 and the BEPS
model during 2013 to 2016 in this study.

6.2. Sensitivities of ET to Errors in Key Parameters of the BEPS Model

Uncertainties in the global ET estimation resulting from errors in key model parame-
ters might be as large as the impacts of leaf clumping mentioned above. To investigate the
robustness of our results on the impacts of leaf clumping on global ET estimation, sensitivity
analysis was conducted for four key parameters such as LAI, Ω, Vcmax, and the threshold
of relatively available soil moisture under which soil water stress occurs (RASMth). If LAI
is uniformly increased or reduced by 20% (assessed LAI error), ET is increased by 6.0%
or reduced by 7.0% (Table 2). Nevertheless, the relative differences (RD) between Case II
and Case I and between Case III and Case I are affected slightly (less than 0.5%) by the
variations in LAI. This indicated that all cases are influenced by the LAI changes in the



Remote Sens. 2021, 13, 4075 17 of 24

same direction. Similar to LAI, if V25
cmax0 is increased or reduced by 20% in the BEPS model,

global terrestrial ET would be increased or decreased in similar magnitudes (around 3.0%),
but RD between the cases representing leaf clumping effects changed very little (<0.5%).
When RASMth is increased or reduced by 20%, global terrestrial ET is decreased by 1.6%
or increased by 2.1%, but the RD between the cases changed very little (<0.5%). Generally,
if other parameters in the BEPS model (i.e., N0 and m in Table 1) are modified, the three
cases would be moved in the same direction, and the leaf clumping effects quantified as
the RD in global terrestrial ET between the cases would not be considerably influenced by
these changes. These sensitivity tests support the justification of the spatially consistent
leaf clumping effects (Figures 6 and 7).

In line with expectations, if Ω is increased or reduced by 20%, the RD among the cases
would be changed substantially (Table 2). In the initial evaluation with field measurements,
the average bias error of the CAS-CI product was around 0.01 (~2%) and nearly all CAS-CI
values were located within ±0.1 of the field observations [27]. Therefore, the 20% variation
is generous for most PFTs. The variation range has been made large for covering the high
uncertainty in CI estimation of tropical forests [23]. Although leaf clumping is decreased
by 20% (Ω is increased), there is still a 2.7% difference between Case II and Case I, 7.4%
difference between Case III and Case I, indicating that leaf clumping effects should not be
neglected even though substantial uncertainties still exist in Ω measurements.

6.3. Implications and Uncertainties of This Study

For ET estimation, both LAI and Ω are required for describing complex canopy
architecture. Both LAI and Ω can be acquired from remote sensing. Nevertheless, there are
still uncertainties in the values of the two parameters. By now, several global LAI products
with moderate resolution (250 m to 7 km) are available based on different algorithms [63].
Depending on field measurements and models used in the algorithm, some LAI products
are close to Le [64,65] while some are close to true LAI [7,37,66]. If field-measured LAI is
based on allometric equations or acquired from destructive sampling, the LAI would be
close to true LAI. If optical instruments (i.e., LAI-2200 or DHP) are used to measure LAI
without the clumping correction, the LAI is effective LAI [23]. Some remote sensing LAI
products (i.e., GA-TIP and JRC-TIP) were produced based on data assimilation retrieval
from albedo without the clumping collection, and thus they are effective LAI instead of the
true LAI [63]. Clumping correction is needed for these LAI products before they are used
for global ET simulation.

Although the GLOBMAP LAI product used in this study has incorporated the leaf
clumping effects, there are still biases in the global CI map used for the GLOBMAP LAI
production due to using the RossThick-LiSparse Reciprocal (RTLSR) model with a constant
θ of 0◦ [37,52]. CI of slight to middle clumped canopies was underestimated while they
were overestimated for sparsely vegetated areas by this BRDF and SZA configuration [39].
The CAS-CI product performed better than the CI product produced by He et al. [52], and
it has a lower bias when validated with ground measurements. However, the CAS-CI
product does not perform well over very sparse crop sites due to the substantial impacts of
exposed soil, which impair the derivation of CI from remote sensing data using the NDHD
method [27,39]. Moreover, the NDHD method has a disadvantage of underestimating the
true CI for tropical forests as satellite sensors are majorly detecting the thick overstory
canopy, which would keep off the understory canopy [67]. The influences of frequent
clouds would also impair the CI retrievals over tropical areas [27].

There are only a few CI validations for extremely sparse and dense vegetation con-
ditions [27]. Thus, in the spatial patterns of leaf clumping effects on ET, the largest un-
certainties would exist in these areas. More field observations are required for further
evaluation of the CI estimation over these land cover types. Shrubs and other vegetation
types would also have large uncertainties as these PFTs have not been extensively validated
in the BEPS model.
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7. Conclusions

The significance of leaf clumping to global terrestrial ET simulation is revealed from
its influences on sunlit and shaded LAI stratification, on the calculation of true LAI from
effective LAI, and estimations of leaf-level irradiance. This is the first time that foliage
clumping effects on ET estimation are assessed globally. The following main conclusions
are drawn from this study:

1. Even though accurate global LAI data is used, neglecting leaf clumping will overesti-
mate global terrestrial ET by about 4.7%. The reason is that leaf clumping reduces
sunlit LAI while increases shaded LAI, resulting in an overall reduction in ET.

2. If Le is used, neglecting leaf clumping will underestimate global terrestrial ET by
13.0%. The reason is that Le is lower than true LAI for a clumped canopy. If Le
instead of true LAI is used in ET simulation ignoring leaf clumping impacts, shaded
LAI would be substantially negatively biased while sunlit LAI is invariant, causing
negative bias in ET.

3. Although the accuracy of global terrestrial ET simulation still needs improvements,
leaf clumping impacts quantified by the RDs between the model simulation cases
considering or ignoring clumping are still robust since errors of key model parameters
will move in the same directions for all cases.

This study highlights the importance of considering leaf clumping in estimating
global terrestrial ET, which would be helpful to improve the quality of global terrestrial
ET products derived from various land surface models. Both LAI and CI are needed for
accurately estimating sunlit and shaded LAI as well as ET by the two-leaf model. This
two-leaf separately ET estimation is important because stomatal conductance controlling
transpiration is coupled with photosynthesis at leaf-level, of which sunlit and shaded
leaves are controlled by different biochemical processes.

For better serving the global water research, the remote sensing community should
produce more accurate global CI products based on data from new satellite sensors. Physi-
cal retrieval methods should also be explored to produce high-resolution global CI products.
Finally, more field measurements are also needed for the validation of global CI products,
especially in tropical regions.
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Appendix A. Methods of Estimating Net Radiation for Canopies and the Ground

Net radiation (Rn) of a sunlit leaf and a shaded leaf in the overstory and understory
canopies are key parameters in calculating ET of a single sunlit or a single shaded leaf
in the overstory and understory canopies. In BEPS, they are calculated separately as
Chen et al. [14]:
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R∗
sun_o = S∗

dir_o + S∗
di f _1 + L∗

sun_o (A1)

R∗
sh_o = S∗

di f _2 + L∗
sh_o (A2)

R∗
sun_u = S∗

dir_u + S∗
di f _3 + L∗

sun_u (A3)

R∗
sh_u = S∗

di f _4 + L∗
sh_u (A4)

where S and L represent shortwave and longwave radiation, respectively. The superscript
asterisk represents the Rn constituent. The subscripts ‘sun’ and ‘sh’ represent the single
sunlit leaf and the single shaded leaf, respectively and the subscripts ‘o’ and ‘u’ represent
overstory and understory, respectively. The subscripts ‘dir’ and ‘dif’ represent direct and
diffuse constituents. S∗

di f _1 and S∗
di f _2 represent the net shortwave diffuse radiation on the

sunlit and shaded representative leaves of the overstory canopy, respectively. S∗
di f _3 and

S∗
di f _4 represent the net shortwave diffuse radiation on the sunlit and shaded single leaves

of the understory, respectively. Methods of calculating shortwave irradiances are taken
from Chen et al. (1999). The diffuse (Sdi f ) and direct (Sdir) components of the incoming
global solar radiation are calculated as:

Sdi f

Sg
=

{
0.943 + 0.734r − 4.9r2 + 1.796r3 + 2.058r4 r < 0.8
0.13 r ≥ 0.8

(A5)

Sdir = Sg − Sdi f (A6)

where Sg is the global solar radiation (W m−2) and r is calculated as:

r =
Sg

S0cosθ
(A7)

where S0 is the solar constant (1367 W m−2).
The direct part of net shortwave irradiance of a sunlit leaf in the overstory and

understory canopies and the direct part of net shortwave irradiance of the ground are
estimated, respectively, as:

S∗
dir_o = (1 − αo)Sdircosα/cosθ (A8)

S∗
dir_u = (1 − αu)Sdircosα/cosθ (A9)

S∗
dir_g =

(
1 − αg

)
Sdire−0.5Ω(LAIo+LAIu)/cosθ (A10)

where αo, αu and αg are overstory, understory, and the ground albedo, respectively. α is the
mean leaf-sun angle.

Net shortwave diffuse irradiance on a sunlit leaf in the overstory is estimated as:

S∗
di f _1 = (1 − αo)(

Sdi f − Sdi f ,under1

LAIo_sun
+ Co_sun) (A11)

where Sdi f ,under1 is the shortwave diffuse radiation under the upper layers of leaves (mostly
sunlit) in the overstory canopy. Co_sun is from multiple scattering of direct radiation over
the overstory sunlit leaves and it is calculated as:

Co_sun = 0.07Sdir[1.1 − 0.1LAIo_sun]e−cosθ (A12)

Sdi f ,under1 is calculated as:
Sdi f ,under1 = Sdi f Po_sun (A13)

where Po_sun = e−0.5LAIo_sun/cosθ1 and θ1 is a representative zenith angle for diffuse radiation
transmission through the upper layers of leaves (mostly sunlit) in the overstory canopy
and slightly dependent on overstory sunlit LAI:

cosθ1 = 0.537 + 0.025LAIo_sun (A14)

The net shortwave diffuse irradiance on a shaded leaf in the overstory is estimated as:

S∗
di f _2 = (1 − αo)(

Sdi f − Sdi f ,under2

LAIo
+ Co_sh) (A15)
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where Co_sh is from multiple scattering of direct radiation over the overstory shaded leaves
and it is calculated as:

Co_sh = 0.07ΩSdir[1.1 − 0.1LAIo]e−cosθ (A16)

Sdi f ,under2 is shortwave diffuse radiation under the overstory canopy and it is calcu-
lated as:

Sdi f ,under2 = Sdi f Po (A17)

where Po = e−0.5ΩLAIo/cosθo and θo is a representative zenith angle for diffuse radiation
transmission through the overstory canopy and slightly dependent on overstory LAI:

cosθo = 0.537 + 0.025ΩLAIo (A18)

The net shortwave diffuse irradiance on a sunlit leaf in the understory is estimated as:

S∗
di f _3 = (1 − αu)(

Sdi f ,under2 − Sdi f ,under3

LAIusun

+ Cu_sun) (A19)

where Cu_sun is from multiple scattering of direct radiation over the understory sunlit
leaves and it is calculated as:

Cu_sun = 0.07Sdir[1.1 − 0.1(LAIo + LAIu_sun)]e−cosθ (A20)

Sdi f ,under3 is the shortwave diffuse radiation under the upper layers of leaves (mostly
sunlit) in the understory canopy and it can be calculated as:

Sdi f ,under3 = Sdi f ,under2Pu_sun (A21)

where Pu_sun = e−0.5LAIu_sun/cosθ3 and θ3 is a representative zenith angle for diffuse radiation
transmission through the upper layers of leaves (mostly sunlit) in the understory canopy
and slightly dependent on understory sunlit LAI:

cosθ3 = 0.537 + 0.025ΩLAIu_sun (A22)

The net shortwave diffuse irradiance on a shaded leaf in the understory is estimated as:

S∗
di f _4 = (1 − αu)(

Sdi f ,under2 − Sdi f ,under4

LAIu
+ Cu_sh) (A23)

where Cu_sh is from multiple scattering of direct radiation over the understory shaded
leaves and it is calculated as:

Cu_sh = 0.07ΩSdir[1.1 − 0.1(LAIo + LAIu)]e−cosθ (A24)

Sdi f ,under4 is the shortwave diffuse radiation reaching to the ground and it can be
calculated as:

Sdi f ,under4 = Sdi f P (A25)

where P = e−0.5Ω(LAIo+LAIu)/cosθ and θ is a representative zenith angle for diffuse radiation
transmission through the whole plant canopy and slightly dependent on the sum of
overstory and understory LAI:

cosθ = 0.537 + 0.025Ω(LAIo + LAIu) (A26)

The diffuse part of net shortwave irradiance on the ground surface is estimated as:

S∗
di f _g =

(
1 − αg

)
Sdi f ,under4 (A27)

Net radiation of the ground is estimated as:

R∗
g = S∗

g + L∗
g (A28)

where the net shortwave irradiance of the ground (S∗
g) is the sum of direct and diffuse parts:

S∗
g = S∗

dir_g + S∗
di f _g (A29)

The net longwave irradiance for a sunlit leaf in the overstory (L∗
sun_o) is calculated as:
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L∗
sun_o = εo

(1−Po_sun)
LAIo_sun

[εaσT4
a + εoσT4

o_sh(1 − Po_sh)

+εuσT4
u_sun(1 − Pu_sun)Po_sh

+εuσT4
u_sh(1 − Pu_sh)Pu_sunPo_sh + εgσT4

g PuPo_sh]

−2εoσT4
o_sun

(1−Po_sun)
LAIo_sun

(A30)

where εa, εo, εu, and εg are emissivities of the atmosphere, overstory, understory, and the
ground, respectively. Po_sh = e−0.5ΩLAIo_sh/cosθ2 and Pu_sh = e−0.5ΩLAIu_sh/cosθ4 . θ2 and θ4
are representative zenith angles for diffuse radiation transmission through the lower layers
of leaves (mostly shaded) in the overstory and understory canopies, respectively, and they
can be calculated as:

cosθ2 = 0.537 + 0.025ΩLAIo_sh (A31)

cosθ4 = 0.537 + 0.025ΩLAIu_sh (A32)
The net longwave irradiance for a shaded leaf in the overstory (L∗

sh_o) is calculated as:

L∗
sh_o = εo

(1−Po_sh)
LAIo_sh

[εaσT4
a Po_sun + εoσT4

o_sun(1 − Po_sun)

+εuσT4
u_sun(1 − Pu_sun) + εuσT4

u_sh(1 − Pu_sh)Pu_sun

+εgσT4
g Pu]− 2εoσT4

o_sh
(1−Po_sh)

LAIo_sh

(A33)

where Pu = e−0.5ΩLAIu/cosθu and θu is a representative zenith angle for diffuse radiation
transmission through the understory canopy and slightly dependent on understory LAI:

cosθu = 0.537 + 0.025ΩLAIu (A34)

The net longwave irradiance of a sunlit (L∗
sun_u) leaf and a shaded (L∗

sh_u) leaf in the
understory are calculated as:

L∗
sun_u = εu

(1−Pu_sun)
LAIu_sun

[εaσT4
a Po + εoσT4

o_sun(1 − Po_sun)Po_sh

+εoσT4
o_sh(1 − Po_sh) + εuσT4

u_sh(1 − Pu_sh) + εgσT4
g Pu_sh]

−2εuσT4
u_sun

(1−Pu_sun)
LAIu_sun

(A35)

L∗
sh_u = εu

(1−Pu_sh)
LAIu_sh

[εaσT4
a PoPu_sun + εoσT4

o_sun(1 − Po_sun)Po_shPu_sun

+εoσT4
o_sh(1 − Po_sh)Pu_sun + εuσT4

u_sun(1 − Pu_sun)

+εgσT4
g ]− 2εuσT4

u_sh
(1−Pu_sh)

LAIu_sh

(A36)

The net longwave radiation for the ground surface (L∗
g) is calculated as:

L∗
g = εg[εaσT4

a PoPu + εoσT4
o (1 − Po)Pu + εuσT4

u(1 − Pu)]− εgσT4
g (A37)
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