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Abstract: With the adversarial attack of convolutional neural networks (CNNs), we are able to
generate adversarial patches to make an aircraft undetectable by object detectors instead of covering
the aircraft with large camouflage nets. However, aircraft in remote sensing images (RSIs) have the
problem of large variations in scale, which can easily cause size mismatches between an adversarial
patch and an aircraft. A small adversarial patch has no attack effect on large aircraft, and a large
adversarial patch will completely cover small aircraft so that it is impossible to judge whether the
adversarial patch has an attack effect. Therefore, we propose the adversarial attack method Patch-
Noobj for the problem of large-scale variation in aircraft in RSIs. Patch-Noobj adaptively scales
the width and height of the adversarial patch according to the size of the attacked aircraft and
generates a universal adversarial patch that can attack aircraft of different sizes. In the experiment,
we use the YOLOv3 detector to verify the effectiveness of Patch-Noobj on multiple datasets. The
experimental results demonstrate that our universal adversarial patches are well adapted to aircraft of
different sizes on multiple datasets and effectively reduce the Average Precision (AP) of the YOLOv3
detector on the DOTA, NWPU VHR-10, and RSOD datasets by 48.2%, 23.9%, and 20.2%, respectively.
Moreover, the universal adversarial patch generated on one dataset is also effective in attacking
aircraft on the remaining two datasets, while the adversarial patch generated on YOLOv3 is also
effective in attacking YOLOv5 and Faster R-CNN, which demonstrates the attack transferability of
the adversarial patch.

Keywords: adversarial patch; adversarial example; object detector; remote sensing image (RSI)
object detection

1. Introduction

Among the objects in RSIs, an aircraft is considered a typical civil and military object.
It has a wide range of types and scale variations and has an important role in transporta-
tion, air surveillance, etc. In recent years, object detection algorithms based on CNNs
have achieved remarkable success in tasks, such as aircraft detection [1–5]. Adversarial
attacks on object detectors have also received extensive attention [6–11]. Adversarial patch
attacks on object detectors (unlike traditional camouflage that evades detection of object
detectors by placing camouflage nets to cover important objects) are being explored to
achieve concealment of important objects, such as aircraft (simple production method and
low production cost), by deceiving object detectors and guiding them to make incorrect
decisions [12–14].

Currently, research on adversarial patch attacks in terms of object detectors is mainly
conducted on natural images [12–15]. These attack methods usually generate a fixed-size
adversarial patch to attack an object detector. Compared with natural images, objects in
RSIs encounter problems, such as complex backgrounds, a wide variety of types, and large-
scale variations. In RSIs, the same category of objects of different types may have different
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sizes, and the same objects will have different sizes when images are captured with satellites
in different orbits and drones at different altitudes above the ground. However, the current
attack method for generating a fixed-size adversarial patch for natural images disregards
the case of varying object sizes, and such methods are not applicable to RSIs with large
variations in object scales. Therefore, to implement the adversarial patch attack on object
detectors for RSIs, the difficulties posed by varying object sizes for generating adversarial
patches need to be addressed.

In addition to addressing the difficulties posed by the large variation in object scales
for generating adversarial patches, the attack strategy of adversarial patches needs to be
considered, i.e., the adversarial patch whether makes the detector misclassify a specific
object or makes the specific objects disappear from the detector’s view. The attack strategy
affects the setting of the objective function for optimizing the adversarial patch. Consider
the vanishing attack as an example. The adversarial patch obtained by some objective
function’s optimization has a large visual difference from the attacked object, which can
well cause the specific object to evade detection by the object detector. While the adversarial
patch obtained by some objective function’s optimization has a certain visual similarity
with the attacked object, it is possible to detect the object of attacked category in the
adversarial patch [13,15].

In this paper, we focus on attacking object detectors on RSIs, allowing the adversarial
patches to replace the traditional large camouflage nets to disguise the aircraft (make the
aircraft vanish). Based on large variations in object scale and attack strategy, we propose
an adversarial attack method named as Patch-Noobj that generates a universal adversarial
patch to make the aircraft vanish from the view of object detectors. This method randomly
initializes an adversarial patch of fixed size, uses the confidence loss of the bounding box
as the objective function to optimize the adversarial patch, and then reduces the confidence
of the bounding box to zero as much as possible by gradient descent so that the bounding
boxes containing the aircraft are filtered out. To adapt the adversarial patch to the scale
change of the aircraft, we adaptively scale the width and height of the initial adversarial
patch according to the size of the aircraft in the process of generating the adversarial patch.

To evaluate our attack method, we constructed a series of experiments on YOLOv3 [16],
YOLOv5 [17], and Faster R-CNN [18] detectors. The results of the experiments show that
our attack method can effectively prevent object detectors from detecting aircraft. Our
method can reduce the Average Precision (AP) of YOLOv3 in detecting aircraft from 93.1%
to 44.9% on the DOTA dataset [19], and it has a similar attack effect on the NWPU VHR-
10 [20] and RSOD datasets [21]. Moreover, the attack transferability experiments show
that the adversarial patches generated by our method are able to transfer among the three
datasets and the three models of YOLOv3, YOLOv5, and Faster R-CNN. Additionally,
we discovered the relationship between the size of the adversarial patch and the attack
performance by exploring the effect of the size of the adversarial patch on the attack
performance. In addition, with the help of Grad-CAM [22], which is an interpretability
method for image classification tasks, we analyze why the adversarial patch can attack
the object detector. The contribution of this work can be summarized in the following
three points:

1. We propose an adversarial attack method for aircraft detection in RSIs, which hides
the decision features of the aircraft in the object detector and reduces the confidence of
the bounding box in the detector to a lower level than the threshold, thus misleading
the detection results of the detector.

2. Our proposed adversarial attack method has the characteristic of adversarial patch
size adaption, which can adapt to the variation of aircraft scale in RSIs and effectively
attack object detectors.

3. The adversarial patches generated by our proposed attack method have attack trans-
ferability between different datasets and models.
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2. Materials and Methods
2.1. Related Work

The adversarial example phenomenon was first discovered on the image classification
task [23]. Among the current adversarial example attack methods, the most straightforward
attack method is to add a small global perturbation that is imperceptible to humans to
the image, thus deceiving the CNNs into making incorrect predictions [24–27]. The attack
method of adding a global perturbation achieves good attack performance in the digital
space; however, for the physical world, such an attack method is unlikely to be realized
because we cannot add the global adversarial perturbation to the physical world image. We
can only print the adversarial examples generated in the digital space and deploy them to
the physical world [25]. Therefore, to flexibly deploy adversarial examples in the physical
world, some researchers have explored an attack method that generates relatively small
and visible local adversarial patches [28–30]. This method only changes some of the pixels
in the image and enables the placement of an adversarial patch anywhere in the image.

Compared to classifiers, object detectors are more difficult to attack. The recognition
process of object detectors is more complex, and attacks on object detectors require not
only misleading label predictions but also misleading object presence predictions [31].
The current adversarial patch attack methods on object detection tasks are divided into two
main categories according to the shape of the generated adversarial patches: (1) rectangular
adversarial patches and (2) grid-shaped (star-shaped) adversarial patches.

Rectangular Adversarial Patches. This kind of attack method focuses on generating
a fixed size rectangle adversarial patch through an optimization strategy. Liu et al. [12]
specifically designed DPatch for object detectors. This method adds a rectangular adversar-
ial patch to an image so that an object detector is only able to detect the adversarial patch,
thus achieving the goal of preventing the object detector from detecting the real object.
The adversarial patch generated by DPatch can effectively attack YOLO [32] and Faster
R-CNN detectors. However, DPatch does not impose restrictions on the pixel values of the
generated adversarial patches, and there is a possibility that the pixel values exceed the
range of valid pixel values of the images. Lee and Kolter [33] improved DPatch and pro-
posed a new attack method; they force the pixel values to stay within the valid range and
change the update strategy of the adversarial patch. Moreover, they added some rotation,
brightness, and position changes to the patches during their placement. Thys et al. [13]
applied adversarial patch attacks to person detection tasks; they use the maximum value
of the confidence in the bounding box of the object detector as the loss function to optimize
the adversarial patch. In this method, the adversarial patch is not placed in the upper left
corner but is placed directly on the object, which is different from DPatch.

Grid-Shaped (Star-Shaped) Adversarial Patches. Rectangular-shaped adversarial
patches already have good attack performance; however, to improve this attack perfor-
mance, we often need to increase the size of the adversarial patch and number of changed
pixels. Moreover, the rectangular-shaped adversarial patch has a small receptive field and
interferes with a few feature regions [34]. Therefore, to interfere with more features while
reducing the number of changed pixels, some researchers have explored attack methods
to generate grid-shaped (star-shaped) adversarial patches. Shudeng Wu et al. proposed
an attack method named DPAttack [34] that can generate grid-shaped and star-shaped
adversarial patches to effectively attack YOLOv4 [35] and Faster R-CNN detectors [18].
Yusheng Zhao et al. [36] proposed a consensus-based attack method that integrates multiple
detectors, uses voting to select the locations where pixels need to be changed, and generates
a grid-shaped adversarial patch.

Compared with grid-shaped and star-shaped adversarial patches, although rectangular-
shaped adversarial patches change a larger number of pixels and interfere with fewer fea-
ture regions, they can train a universal adversarial patch for a dataset. The attack methods
that generate grid-shaped or star-shaped adversarial patches need to generate a specific
adversarial patch for each image, which greatly affects the utilization efficiency. Therefore,
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in this paper, we choose to design an attack method that generates rectangular-shaped
adversarial patches to attack object detectors on RSIs.

2.2. Method
2.2.1. Patch-Noobj Framework

To adapt the adversarial patch to the scale change of an aircraft and make the aircraft
vanish from the view of an object detector, we propose an attack method named Patch-
Noobj. The framework structure of Patch-Noobj is shown in Figure 1. Patch-Noobj consists
of two parts: a patch applier and a detector. The patch applier is responsible for attaching
the adversarial patches to aircraft of different sizes, while the detector utilizes a complete
object detection process and is responsible for iterative updates of the adversarial patches
via the loss function.

Figure 1. Overview of the framework of Patch-Noobj.

First, before an image is input to the object detector, we define the target-ground truth
of the aircraft that needs to attach the adversarial patch and the untarget-ground truth of
the object that does not need to attach the adversarial patch. The target-ground truth is
used to calculate the scaling of the adversarial patch and construct the mask to determine
where to attach the adversarial patch. The untarget-ground truth is used to calculate the
loss for optimization of the adversarial patch. Both of these ground truths are similar to
the ground truth of the bounding box in object detection, and they all assume the form
[x, y, w, h]. Second, we input the image into the patch applier and randomly initialize a
fixed-size adversarial patch. We calculate the scaling of the adversarial patch, construct a
mask according to the target ground truth and attach the scaled adversarial patch to the
aircraft in the image according to the mask. Last, we input adversarial examples with the
adversarial patches into the detector, calculate the loss between the detector’s output and
the untarget-ground-truth based on the loss function, and iteratively update the adversarial
patch by optimizing the loss.

2.2.2. Patch Applier

Patch Applier is the first component in Patch-Noobj; its task is to attach an adversarial
patch on the objects that need to be attacked. In principle, the attack methods for generating
a locally visible adversarial patch and a globally invisible adversarial perturbation add a
perturbation to a clean image, but they differ in the way that they add the perturbation.
The method of generating an adversarial patch replaces pixels in a local region of the clean
image with the adversarial patch to achieve placement of the adversarial patch, while
the method of generating a global perturbation directly adds pixels of the adversarial
perturbation to the clean image.

In addition, in Patch-Noobj, the patch applier excepts attachment of the adversarial
patch, the most important function of which is to realize the adaptive scaling of the
adversarial patch so that the adversarial patch can adapt to aircraft of different sizes.
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In this section, we focus on how to implement the adversarial patch adaptive scaling
strategy in the patch applier. The placement of the adversarial patch will be described in
Section 2.2.4.

Adaptive Scale. Compared with objects in natural images, the scale of aircraft in
RSIs varies greatly. To adapt to the scale variation of aircraft in RSIs so that aircraft of
different sizes have adversarial patches of different sizes, we adaptively scale the width
and height of the initial adversarial patch according to the size of the attacked aircraft. We
ensure that the scaled adversarial patch does not cover the entire aircraft when scaling the
adversarial patch.

To scale the adversarial patch, first, we define a fixed size adversarial patch, e.g., 30× 30
and 40 × 40. Second, we calculate the scaling ratio according to the size of the aircraft and
size of the adversarial patch and scale the initial adversarial patch according to this ratio.
The scaling ratio of the width and height of the adversarial patch is calculated as shown
in Equations (1) and (2), where α is a scaling factor; w and h are the width and height,
respectively, of the object; and patchw and patchh are the width and height, respectively,
of the adversarial patch.

scalew =

√
(w ∗ 1

4 )
α

patchw
, (1)

scaleh =

√
(h ∗ 1

4 )
α

patchh
. (2)

2.2.3. Detector

The detector is the second component in Patch-Noobj; its task is to perform the complete
object detection process. It calculates the loss based on its own output and ground truth to
update the pixel values of the adversarial patch by backpropagation.

In this section, we discuss the detection process of the currently popular Faster R-CNN
and YOLOv3 detectors, and discuss how to set an optimization goal to iteratively update
the pixel values of the adversarial patch according to the detection process of YOLOv3 so
that the aircraft can evade detection by the object detector.

Faster R-CNN. Faster R-CNN is a two-stage detection algorithm. The first stage is to
propose regions (rectangular regions) by deep fully convolutional network. The second
stage is a Fast R-CNN detector that uses the proposed regions. In the first stage, the Faster
R-CNN uses the deep fully convolutional network for feature extraction, and then the
region proposal network (RPN) obtains a series of rectangular object proposals based
on the feature map of the last convolutional layer. In the second stage, the rectangular
object proposals generated by RPN are input to Fast R-CNN detector for classification and
bounding box regression [18].

YOLOv3. YOLOv3 is a one-stage detection algorithm that reconstructs object detection
as a single regression problem and obtains the object’s bounding box coordinates and
class probabilities in one step. YOLOv3 mainly divides the input image into S ∗ S grids,
and object detection is performed inside these grids [37].

Each grid is responsible for predicting B bounding boxes and the object confidence of
these B bounding boxes. The bounding box (bbox) is used to locate the detected object; it
contains four values: x, y, w, and h. (x, y) represents the coordinates of the center point of
the bbox relative to the boundary of the grid cell. w and h represent the relative width and
height, respectively, of the bbox relative to the whole image. The object confidence indicates
whether the bbox contains the object. If no object exists in the bbox, the object confidence
should be zero; otherwise, the object confidence should be equal to the intersection over
union (IOU) between the predicted bounding box and the ground truth. Each grid cell is
also responsible for predicting the class probability of the category to which the object in
the grid belongs. The class probability indicates the probability that the object belongs to
each category given the presence of the object in the grid cell. When inferencing, YOLOv3
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multiplies the object confidence and class probability as the class confidence of each object
in the bounding box [37].

In summary, we discover that object confidence is in a more important position among
the bounding box, object confidence, and class probability. If the object confidence is low,
even if the bbox correctly locates the object and the class probability correctly classifies the
object, the detected object will still be filtered.

Optimization Goal. The detection process of YOLOv3 reflects whether a bounding
box contains a real target is determined by the object confidence. Therefore, to attack
an object detector and disguise an aircraft, we only need to filter the bounding boxes
containing the aircraft by reducing the object confidence to zero as much as possible.

In the training process of YOLOv3, whether a detector can accurately predict the
object confidence of the bounding box is determined by the optimization of the confidence
loss (Lcon f ). If the Lcon f is optimized by decreasing the object confidence, then the real
existing object in the bounding box will eventually disappear. Lcon f consists of two parts:
the first part is the loss of the bounding box that contains the object, and the second part is
the loss of the bounding box that does not contain the object. Lcon f is calculated as shown
in Equation (3), where I∗ij andĈi are constructed based on the ground truth; I∗ij indicates
whether the jth bounding box predictor of the ith grid is responsible for predicting the
object; and Ĉi indicates whether the i-th grid contains the object.

In summary, to make Lcon f optimize the adversarial patch to reduce the object confi-
dence of the bounding box captaining the aircraft, we can intuitively consider converting
Iobj
ij to Inoobj

ij so that the bounding box predictor that is originally responsible for predicting

the aircraft changes its function to being not responsible for prediction. All the Ĉi that
corresponds to the bounding box predictor that is originally responsible for predicting
the aircraft are changed to zero so that the object confidence approaches zero in the op-
timization process. Both I∗ij and Ĉi are constructed based on the ground truth. Thus,
to implement this above mentioned idea, we need to process the input ground truth, filter
the ground truth of the aircraft (target-ground-truth) and input only the ground truth of
the nonaircraft (untarget-ground-truth) for loss calculation. To ensure that the optimizer
prefers to generate adversarial patches with smooth color transitions in the optimization
process, we calculate the total variation Ltv of the generated adversarial patches, as shown
in Equation (4), where P denotes an adversarial patch. Therefore, in our attack method,
the optimization goal consists of two parts: Lcon f and Ltv, which are combined to form
the total loss function. The total loss function is as shown in Equation (5), where β is
a hyperparameter.

Lcon f = −∑S∗S
i=0 ∑B

j=0 Iobj
ij
[
Ĉi log(Ci) +

(
1− Ĉi

)
log(1− Ci)

]
−

λnoobj ∑S∗S
i=0 ∑B

j=0 Inoobj
ij

[
Ĉi log(Ci) +

(
1− Ĉi

)
log(1− Ci)

] , (3)

Ltv = ∑
i,j

√(
pi,j − pi+1,j

)2
+
(

pi,j − pi,j+1
)2, (4)

Loss = β Ltv +Lcon f . (5)

2.2.4. Attach Patch and Optimize Patch

To achieve the camouflage of the aircraft (let the adversarial patch replace the camou-
flage net), the two most important steps are the placement of the adversarial patch and the
optimization of the adversarial patch. The placement of the adversarial patch involves the
construction of a mask according to the location of the object to locate, and its optimization
involves the use of a gradient descent algorithm to achieve iteratively according to the
loss function.

Assume that x denotes the original image, f (.) denotes the object detector, that m de-
notes a constructed binary mask that is 1 at the placement position of the adversarial patch
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and 0 at the remaining positions, and that p denotes the adversarial patch. The placement
and optimization of the adversarial patch can be represented by Equation (6), where �
denotes the Hadamard product (element product), t denotes the target class to be attacked,
and L denotes the loss function, which is shown in Equation (5).

p∗ = arg minL( f ((1−m)� x + m� p; t)). (6)

3. Results
3.1. Databases and Evaluation Metrics

In this paper, our experiments are conducted on the DOTA [19], NWPU VHR-10 [20],
and RSOD datasets [21]. These three datasets have multi-resolution images, in which the
variance of aircraft sizes is prominent. The DOTA dataset contains 2806 aerial images
from Google Earth and some specific satellites. The size of each image is approximately
4000 × 4000, and each image contains objects of various scales, orientations, and shapes.
The DOTA dataset contains 15 categories of common objects, such as aircraft, ships, sea-
ports, and bridges. The NWPU VHR-10 dataset contains 800 high-resolution satellite
images cropped from the Google Earth and Vaihingen datasets, which contain 10 categories
of common objects, such as aircraft, ships, harbors, and bridges. The RSOD dataset is
a dataset for object detection in RSIs, which has a total of 976 images containing four
categories of objects: aircraft, playground, overpass and oil drum. In our experiments,
because the original images in the DOTA dataset vary in size and are large, which is not
suitable for training the object detector, we cut each original image into multiple images
with a size of 1024 × 1024. For the NWPU VHR-10 and RSOD datasets, we directly apply
the original size images.

To evaluate the effectiveness of our attack method, we use two evaluation meth-
ods: Average Precision (AP) and Recall. Precision and recall are calculated as shown in
Equations (7) and (8). In these two equations, TP denotes the bounding box whose IOU
with ground truth is greater than the threshold. FP denotes two types of bounding boxes,
one is the bounding box whose IOU with ground truth is less than the threshold, and the
other is the redundant bounding box whose IOU with ground truth is greater than the
threshold, but the confidence is not the highest. FN denotes the objects that is not detected,
and it plus TP equals to the number of ground truth. Additionally, to better illustrate the
impact of the attack method on the object detector in terms of Precision and Recall, we use
the PR curve for our analysis. The PR curve can better reflect the relationship between
precision and recall. When the PR curve of an object detector is more convex to the upper
right, the object detector is more effective. Conversely, for the attack method of the object
detector, the greater the PR-curve of the object detector can be made to move to the left after
being attacked, the more effective the attack method. In addition, to analyze why the attack
method is effective, we also perform a visualization analysis with the interpretable method
Grad-CAM [22]. Grad-CAM calculates the importance weights of each channel feature
on the recognition object in the last convolutional layer and then weights and sums the
feature maps of the last convolutional layer according to the calculated importance weights
to obtain a heat map. This heat map is restored to the original image size by upsampling
and fused with the original image. The formula for calculating the importance weight of
Grad-CAM is shown in Equation (9), where Z denotes the number of pixels in the feature
map, yc denotes the score of the c-th category, and Ak

ij denotes the activation value at the
(i, j) position in the c-th feature map.

Precision =
TP

TP + FP
, (7)

Recall =
TP

TP + FN
, (8)

wc
k =

1
Z ∑

i
∑

j

∂yc

∂Ak
ij

. (9)
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3.2. Experiments Details

First, we trained the YOLOv3, YOLOv5, and Faster R-CNN detectors on the DOTA,
NWPU VHR-10, and RSOD datasets. Second, we used Patch-Noobj, OBJ [13], and DPatch [12]
to attack the YOLOv3 detector trained on the three datasets and conducted a comparative
analysis of the attack effects of these three attack methods (refer to Section 3.3). To show
the attack transferability of Patch-Noobj, we constructed dataset-to-dataset, model-to-
model, joint dataset-to-dataset, and model-to-model attack transfer experiments (refer to
Section 3.4). Third, we explored the attack performance of adversarial patches of different
sizes (refer to Section 3.5). Last, we explored why the adversarial patch is able to attack the
object detector with interpretable methods (refer to Section 3.6).

3.3. Patch-Noobj Attack

In this part of the experiment, we use the Patch-Noobj, OBJ [13], and DPatch [12]
attack methods to attack the YOLOv3 object detectors trained on the three datasets and then
compare and evaluate the attack performance of these three attack methods on the three
datasets. In generating the adversarial patches, we separately select the images containing
the aircraft from the training sets of the three datasets, use 1/3 of the data for training a
universal adversarial patch with an initial size of 30 × 30, and compute the evaluation
metrics on the remaining 2/3 of the data to evaluate the attack effectiveness. In addition,
because the OBJ also places an adversarial patch on the object, we also incorporate the
scaling strategy of the adversarial patch to prevent the adversarial patch from covering
the object, while the DPatch places the adversarial patch on the upper left corner of the
image, so no scaling of the adversarial patch is performed. The experimental results are
shown in Table 1, which shows that our method has the best attack effect compared to the
other two methods on the three datasets. In terms of AP, our method reduces the best AP
of the YOLOv3 object detector for aircraft detection on the DOTA (93.1%), NWPU (88.1%),
and RSOD (92.0%) datasets to 44.9%, 64.2%, and 71.8%, which is a reduction of 48.2%,
23.9%, and 20.2%, respectively. Compared with the other two methods, the AP reduced by
our method is 20.5%, 8.5% and 6.5% more than OBJ’s and is 46.5%, 20.9% and 12.1% more
than DPatch’s on three datasets.A similar effect was observed in terms of Recall.

Table 1. Comparison of the attack effect of our method with that of other methods. The evaluation
metrics are AP and Recall.

Datasets Method
AP Recall

Clean Patch Clean Patch

OBJ 0.654 0.728
DOTA DPatch 0.931 0.914 0.978 0.970

Ours 0.449 0.516

NWPU
OBJ 0.727 0.745

DPatch 0.881 0.851 0.882 0.860
Ours 0.642 0.667

OBJ 0.783 0.819
RSOD DPatch 0.920 0.839 0.949 0.881

Ours 0.718 0.745

The experimental results indicate that, for the detector with the same network struc-
ture, the attack effect is different with different datasets and the same attack method,
and the attack effect is different with the same dataset and a different attack method. We
show the visual and attack effects of the adversarial patches generated with different
datasets and different attack methods in Figure 2. Each row in the figure represents one
attack method; from Figure 2a–c, the results of the DOTA, NWPU, and RSOD datasets are
displayed. As shown in Figure 2, our adversarial patches have the best visual and attack
effects for all three datasets. In terms of visual effect, the adversarial patch generated by
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Patch-Noobj is better, and the adversarial patches generated by the other two attack meth-
ods more resemble noise, especially the adversarial patch generated by DPatch. In terms of
the attack effect, all three methods enable the aircraft in the image to evade detection by
the object detector, but Patch-Noobj is more effective and makes more of the aircraft vanish
from the image.

Figure 2. Visual and attack effects of adversarial patches on different datasets. In each subfigure, each row represents the
visual and attack effect of the adversarial patch generated by one attack method.

Moreover, adding an adversarial patch to each image changes some of the pixels in
the image; these altered pixels achieve an attack on the object detector, making the aircraft
disappear from the view of the detector. However, the effects of these altered pixels on
the detection results of other categories of objects while the attacking aircraft is unknown.
Therefore, we further explored the effect of the attack method on the detection results of
other categories of objects.

In the experiments, because images in the RSOD dataset that contain aircraft do not
contain other categories of objects, we only use the DOTA and NWPU datasets in our
analysis. For the DOTA dataset, among the selected images containing aircraft, the number
of objects in some categories is very small, and the objects in these categories have low
AP values in the object detector. Thus, we filtered other categories, except aircraft, again
and selected only categories whose AP was at least 20% on clean images to explore the
effect of the adversarial patch on them. The experimental results are shown in Table 2,
which reveal that DPatch has the least impact on the detection results of other categories
but has a poor attack effect on aircraft because it places the adversarial patch in the upper
left corner of the image and does not cover the objects in the image. Our method places
the adversarial patch on the aircraft but has little impact on the detection results of other
categories. Compared to clean images, the AP of the object detector for detecting other
categories of objects on the DOTA dataset and NWPU dataset was reduced by only 1.4%
and 3.3%, respectively.

Table 2. Effect of the different attack methods on the detection results of other categories of objects.

Datasets Method
Plane (AP) Other Classes (AP)

Clean Patch Clean Patch

OBJ 0.654 0.562
DOTA DPatch 0.931 0.914 0.570 0.565

Ours 0.449 0.556

NWPU
OBJ 0.727 0.883

DPatch 0.881 0.851 0.918 0.896
Ours 0.642 0.885
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3.4. Attack Transferability

To evaluate our attack method more comprehensively, in this experiment, we set
up three scenarios to evaluate the attack transferability: dataset-to-dataset (Scenario A),
model-to-model (Scenario B), and joint dataset-to-dataset and model-to-model (Scenario
C). For scenario A, we choose YOLOv3 as the attacked detector and use the adversarial
patch trained on one dataset to attack the object detectors trained on the other two datasets.
For scenario B, we mainly train the YOLOv3, YOLOv5, and Faster R-CNN detectors
on the same dataset and then use the adversarial patches trained on YOLOv3 to attack
the YOLOv5 and Faster R-CNN detectors. For scenario C, we use the adversarial patch
generated on YOLOv3 detector trained on one dataset to attack the YOLOv5 and Faster
R-CNN detectors trained on the other two datasets.

In the experiments, we use AP as an evaluation metric. The experimental results for
the three scenarios are shown in Tables 3–5. In Table 3, we divide the experimental results
into three groups according to the target dataset. The cases in which the source dataset
and target dataset are the same in each group indicate the attack effect of the adversarial
patch obtained on the target dataset, and the remaining cases indicate that the attack effect
of the adversarial patch obtained on the source dataset transfers to the target dataset.
As shown in Table 3, the adversarial patches generated by our method have strong attack
transferability among the three datasets. When the adversarial patches trained on the
source dataset are transferred to the target dataset, all the transferable adversarial patches
are able to maintain comparable attack effectiveness with the adversarial patches trained
on the target dataset. When the adversarial patches obtained on the NWPU and RSOD
datasets are transferred to the DOTA dataset, the transferable adversarial patches reduce
the AP of the object detectors to detect the aircraft by 30.0% and 34.0%, which is only
18.2% and 14.2% lower than the native adversarial patches obtained on the DOTA dataset.
When the adversarial patches on the DOTA and RSOD datasets are transferred to the
NWPU dataset, the transferable adversarial patches reduce the AP of the object detectors to
detect the aircraft by 14.5% and 23.9%, which is only 9.4% lower and 12.0% lower than the
native adversarial patches obtained on the NWPU dataset. When the adversarial patches
on the DOTA and NWPU datasets are transferred to the RSOD dataset, the transferable
adversarial patches reduce the AP of the object detectors to detect the aircraft by 13.6%
and 15.5%, which is only 6.6% lower and 4.7% lower than the native adversarial patches
obtained on the RSOD dataset. In addition, Table 3 shows that the adversarial patches
obtained on the same source dataset have different attack transferability on different target
datasets. The adversarial patches obtained on the DOTA and NWPU datasets have more
prominent attack transferability on the RSOD dataset, and the adversarial patch obtained
on the RSOD dataset has more prominent attack transferability on the NWPU dataset.
The results of dataset-to-dataset attack transfer experiment illustrate that with the same
model and the same attack object, the adversarial patches trained on one dataset can have
good attack capability on another dataset, and, according to the difference between the
target and source datasets, the adversarial patches trained on the source dataset also have
different attack capability on the target datasets, but the variability in attack capability
is small.
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Table 3. Scenario A: Attack transferability of dataset-to-dataset.

Source Dataset Target Dataset Clean Adversarial Patch Decrease (↓)

DOTA 0.449 0.482 ↓
NWPU DOTA 0.931 0.631 0.300 ↓
RSOD 0.591 0.340 ↓

DOTA 0.736 0.145 ↓
NWPU NWPU 0.881 0.642 0.239 ↓
RSOD 0.762 0.119 ↓

DOTA 0.784 0.136 ↓
NWPU RSOD 0.920 0.765 0.155 ↓
RSOD 0.718 0.202 ↓

As shown in Table 4, which represents the model-to-model scenario, for the same
dataset, the adversarial patch trained on YOLOv3 showed that it can effectively attack the
black-box models YOLOv5 and Faster R-CNN. For the DOTA dataset, the transferable
adversarial patch reduces the AP of these two black-box models for detecting aircraft by
23.5% and 20.5%. For the NWPU dataset, the transferable adversarial patch reduces the AP
of these two black-box models for detecting aircraft by 27.4% and 15.2%. For the RSOD
dataset, the transferable adversarial patch reduces the AP of these two black-box models
for detecting aircraft by 20.4% and 21.4%. In addition, combining the AP reductions for the
three datasets, the adversarial patch obtained on YOLOv3 achieves the largest reduction in
the AP of YOLOv5 for detecting aircraft, which reduces by an average of 23.8% for the three
datasets. This approach reduces the AP of the Faster R-CNN the least, which reduces by
an average of 19.0% for the three datasets. This finding suggests that the more similar the
model structures of the object detectors are, the stronger the adversarial patches generated
based on these models are in terms of the attack transferability between them.

Table 4. Scenario B: Attack transferability of model-to-model.

Datasets Model Clean Adversarial Patch Decrease (↓)

DOTA YOLOv5 0.972 0.737 0.235 ↓
DOTA Faster R-CNN 0.815 0.610 0.205 ↓

NWPU YOLOv5 0.906 0.632 0.274 ↓
NWPU Faster R-CNN 0.709 0.557 0.152 ↓

RSOD YOLOv5 0.928 0.724 0.204 ↓
RSOD Faster R-CNN 0.720 0.506 0.214 ↓

Table 5 represents the scenarios of joint dataset-to-dataset and model-to-model. The ad-
versarial patches generated by our method have good attack transferability between differ-
ent models trained on different datasets. For the situation in which DOTA is the source
dataset, when the adversarial patch trained on YOLOv3 is used to attack the YOLOv5 and
Faster R-CNN detectors trained on the NWPU dataset, it is able to reduce the AP of these
two detectors for detecting aircraft by 22.7% and 14.3%, respectively. For the RSOD dataset,
the adversarial patch trained on YOLOv3 is able to reduce the AP of YOLOv5 and Faster
R-CNN for detecting aircraft by 15.5% and 21.2%. For the situation in which NWPU is
the source dataset, the adversarial patch trained on YOLOV3 is able to reduce the AP of
YOLOv5 and Faster R-CNN for aircraft detection with the DOTA dataset by 12.7% and
13.9%, respectively, and to reduce the AP by 21.7% and 19.9%, respectively, with the RSOD
datasets. For the situation in which RSOD is the source dataset, the adversarial patch
trained on YOLOV3 is able to reduce the AP of YOLOv5 and Faster R-CNN for aircraft
detection on the DOTA dataset by 16.0% and 20.6%, respectively, and to reduce the AP by
24.3% and 15.4%, respectively, with the NWPU datasets. Dividing the experimental results
according to the model structure, the AP reduction also indicates that the more similar the
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model structures of the object detectors are, the stronger the adversarial patches generated
based on these models are in terms of the attack transferability between them.

Table 5. Scenario C: Attack transferability of joint dataset-to-dataset and model-to-model.

Source Dataset Target Dataset Model Clean Adversarial Patch Decrease (↓)

DOTA

NWPU YOLOv5 0.906 0.679 0.227 ↓
Faster R-CNN 0.709 0.566 0.143 ↓

RSOD YOLOv5 0.920 0.765 0.155 ↓
Faster R-CNN 0.720 0.508 0.212 ↓

NWPU

DOTA YOLOv5 0.972 0.845 0.127 ↓
Faster R-CNN 0.815 0.676 0.139 ↓

RSOD YOLOv5 0.920 0.703 0.217 ↓
Faster R-CNN 0.720 0.521 0.199 ↓

RSOD

DOTA YOLOv5 0.972 0.812 0.160 ↓
Faster R-CNN 0.815 0.609 0.206 ↓

NWPU YOLOv5 0.906 0.663 0.243 ↓
Faster R-CNN 0.709 0.555 0.154 ↓

3.5. Attack Performance for Different Size Patches

The size of the adversarial patch affects the attack performance. For a fixed-size
adversarial patch, the larger the size is, the better the attack performance is because it covers
a larger area of the object and interferes more with the features of the object. However,
in this paper, we add an adaptive scaling strategy for the adversarial patch to adapt to
objects of different sizes and cannot determine what size of the initial adversarial patch
has the best attack performance. Therefore, in this part of the experiment, we explore the
impact of different sizes of adversarial patches on the attack performance of our method.

We explored the attack performance of a total of five different sizes of adversarial
patches on the DOTA dataset; the experimental results are shown in Figure 3 and Table 6.
The experimental results show that the overall trend of poor attack performance when the
size of the adversarial patch is small and strong attach performance when the size of the
adversarial patch is large. However, according to the experimental results, the adversarial
patch has the best attack performance when its size reaches 30× 30; the attack performance
is gradually enhanced with an increase in size when the size of the adversarial patch is
smaller than 30 × 30; and the attack performance gradually weakens with an increase
in size increases when the size of the adversarial patch exceeds 30 × 30. These results
show that the case that the larger the size of the adversarial patch is, the better the attack
performance is does not hold for our method. The attack performance will start to weaken
when the size limit of the adversarial patch is exceeded.

Table 6. Attack performance of our adversarial patches of different sizes. The evaluation metrics are
AP and Recall.

Size AP Recall

10 × 10 0.623 0.690
20 × 20 0.548 0.609
30 × 30 0.449 0.516
40 × 40 0.477 0.542
50 × 50 0.490 0.546
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Figure 3. PR curves of our adversarial patches of different sizes compared with clean images (Clean).

In addition, we also visualize adversarial patches of different sizes, as shown in
Figure 4. The visual effect of the adversarial patch gradually improves as the size of
the adversarial patch increases and eventually generates a visually relatively consistent
adversarial patch. The small adversarial patch is visually single in color, which may explain
its poor attack performance. The large adversarial patch is rich in color and can more
effectively interfere with the features of the attacked object, so the attack performance
is better. Combined with this analysis, when the size of the adversarial patch reaches
30 × 30, it has the best attack performance, and, when the size is 40 × 40 and 50 × 50,
the attack performance starts to weaken, which is not much different from the attack
performance of the adversarial patch with size 30 × 30. These results may be attributed
to the notion that the adversarial patch has converged to a fixed shape, but, as the size
increases, the optimization process produces some noise-like pixels in the large adversarial
patch, which causes a decrease in the attack performance. Because the shape is basically the
same as the adversarial patch with size 30 × 30, the attack performance does not produce a
large difference.

(a) 10 × 10 (b) 20 × 20 (c) 30 × 30 (d) 40 × 40 (e) 50 × 50

Figure 4. Visual effect of adversarial patches of different sizes. From left to right, the visualization
results of the adversarial patches of size 10 × 10, 20 × 20 . . . 50 × 50.

3.6. Why Patch-Noobj Works

The experiments in this study suggest that the adversarial patch generated by our
method is effective in attacking the YOLOv3 detector by reducing the object confidence of air-
craft. However, since we do not know how the adversarial patch interferes with the YOLOv3
detector and reduces the object confidence of aircraft, we conduct further investigation.
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We perform a visualization analysis with Grad-CAM, an interpretable algorithm for
image classification tasks. The application scenario of the original Grad CAM visualization
method is an image classification task, while our current task is an object detection task, so
we have improved Grad-CAM to apply it to the object detection task.

In this paper, the main idea of improving Grad CAM is that, for each category of
objects in the input image, we obtain a bounding box with the highest class probability for
this category, backpropagate the class probability of this bounding box and calculate its
gradient to the feature map of the previous convolution layer.We calculate the importance
weight of each feature map and multiply and sum the importance weights with the feature
map to obtain the heat map. We fuse the heat map with the input image to obtain the Grad
CAM visualization image.

We used Grad-CAM to visualize and analyze the feature extraction of the YOLOv3
detector on the normal examples and the adversarial examples with the adversarial patches.
The experimental results, which are shown in Figure 5, indicate that, for the clean images,
the detector focuses on the features on the aircraft during detection with a high degree
of attention. When the adversarial patch is attached to the aircraft, for aircraft that are
successfully attacked, the features on which the detector focuses are either shifted from
the aircraft to other locations or remain on the aircraft, and the degree of attention is
significantly reduced. The experimental results indicate that the adversarial patch is able
to attack the detector because it affects the capture of aircraft features by the detector, thus
causing the detector to lose the aircraft’s contextual information and eventually be deceived.

Figure 5. Grad-CAM visualization results for normal and adversarial examples. Each column in the
figure represents the detection results and Grad-CAM visualization results of a normal example and
its corresponding adversarial example.

4. Discussion and Conclusions

In this paper, we propose an adversarial attack method named Patch-Noobj for ob-
ject detectors, which can hide the decision features of an aircraft in object detectors and
effectively make the aircraft disappear from the view of the object detectors. Patch-Noobj
adds an adaptive scaling strategy for the adversarial patch to adapt to different sizes of
aircraft. The adversarial patches are scaled according to the size of the aircraft so that the
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adversarial patches can attack the object detectors without completely covering the aircraft.
In the experiments, Patch-Noobj can effectively attack object detectors and outperform
other methods with multiple datasets. It reduces the AP of the detector in detecting aircraft
on the DOTA, NWPU VHR-10, and RSOD datasets by 48.2%, 23.9%, and 20.2%, respectively.
There was a little effect on the detection results of other categories when attacking the
aircraft. Moreover, the experimental results show that the adversarial patches generated by
Patch-Noobj have good attack transferability. Through visual analysis, we show why the
adversarial patches are able to attack the object detectors. In addition, our method currently
has some limitations. It only trains the adversarial patch based on a single model, and the
adversarial patch attached by way of constructing a mask does not blend in perfectly with
the object, especially some edge parts.

In future work, we will consider three directions of research based on this paper. First,
to enhance the robustness of the attack method, we will incorporate the idea of ensemble
learning in the generation process of adversarial patches. Second, we will explore generating
adversarial patches of different shapes, such as circles and polygons, instead of just generating
rectangular-shaped adversarial patches. Last, we will explore different ways of attaching
the adversarial patches, such as the perspective transformation method, instead of simply
attaching the adversarial patches by mask.
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