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Abstract: The ever-increasing spectral resolution of hyperspectral images (HSIs) is often obtained at
the cost of a decrease in the signal-to-noise ratio (SNR) of the measurements. The decreased SNR
reduces the reliability of measured features or information extracted from HSIs, thus calling for
effective denoising techniques. This work aims to estimate clean HSIs from observations corrupted
by mixed noise (containing Gaussian noise, impulse noise, and dead-lines/stripes) by exploiting two
main characteristics of hyperspectral data, namely low-rankness in the spectral domain and high
correlation in the spatial domain. We take advantage of the spectral low-rankness of HSIs by repre-
senting spectral vectors in an orthogonal subspace, which is learned from observed images by a new
method. Subspace representation coefficients of HSIs are learned by solving an optimization problem
plugged with an image prior extracted from a neural denoising network. The proposed method is
evaluated on simulated and real HSIs. An exhaustive array of experiments and comparisons with
state-of-the-art denoisers were carried out.

Keywords: hyperspectral image denoising; hyperspectral image restoration; low-rank representation;
plug-and-play; sparse representation

1. Introduction

Hyperspectral cameras measure the radiation arriving at a sensor with high spectral
resolution over a sufficiently broad spectral band such that the acquired spectrum can be
used to uniquely characterize and identify any given material [1]. Hyperspectral imaging
plays an important role in remote sensing and has been used in a wide array of applications,
such as the identification of various minerals in mining and oil industries [2], monitoring
the development and health of crops in agriculture [3], detecting the development of cracks
in pavements in civil engineering [4], and so on.

A hyperspectral image (HSI) is a three-dimensional data cube, where the first two
dimensions represent the spatial domain and the third dimension represents the spectral
domain. In contrast to multispectral imaging, hyperspectral cameras capture electromag-
netic information in hundreds of narrow spectral bands, instead of multiple wide spectral
bands. However, due to the decrease of the width of spectral bands, hyperspectral cameras
receive fewer photons per band and tend to acquire images with a lower signal-to-noise
ratio (SNR). The decreased SNR reduces the reliability of measured features or information
extracted from HSIs [1]. Therefore, hyperspectral image denoising is a fundamental inverse
problem before further applications.

The degradations linked with various mechanisms also result in different types of
noise, such as Gaussian noise, Poissonian noise, impulse noise, dead-lines/stripes, and
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cross-track illumination variation. In this paper, we focus on the discussion of additive and
signal-independent noise (namely, Gaussian noise, impulse noise, and dead-lines/stripes)
and attack hyperspectral mixed noise composed of these additive noises.

The hyperspectral image denoising problem is usually studied by exploiting the
characteristics of HSIs and noise. Some models for clean HSIs (i.e., priors, regularizers,
constraints) have been demonstrated to work well in hyperspectral image denoising
problems [5,6]. For example, the spectral–spatial adaptive hyperspectral total variation
(SSAHTV) denoising method [7] uses a vector total variation (TV) regularization, which
can promote localized step gradients within the image bands and align the “discontinuities”
across the bands. Because of the very high spectral–spatial correlation, an HSI admits a
sparse representation on a given basis or frame [8,9]; e.g., the Fourier basis [10], wavelet
basis [11], Discrete Cosine basis, and data-adaptive basis [8]. For example, a 3D wavelet-
based hyperspectral denoising method was introduced in [11], which took advantage
of a fundamental property of HSIs; i.e., 3D wavelet coefficients of HSIs are sparse or
compressible. The sparsity of coefficients means that the majority of coefficients are zero or
close to zero. The compressibility of coefficients means that its elements have fast-decaying
tails. In the 3D wavelet-based denoising method, the `1 norm, jointly with a quadratic data
fidelity term, is used to promote sparsity on the wavelet coefficients.

The low rankness of HSIs in the spectral domain is also a widely used image prior for
solving the denoising problem [12,13]. By minimizing the rank of the estimated image [14],
one can remove a bulk of the Gaussian noise in observations due to the fact that Gaussian
noise is full-rank. The non-convex rank constraint is usually relaxed by minimizing the
nuclear norm of HSIs, as done in the low-rank matrix recovery (LRMR) method [15]
and in the weighted sum of weighted tensor nuclear norm minimization (WSWTNNM)
method [16]. The low-rank structure of HSIs is also exploited by representing the spectral
vectors of the clean image in an orthogonal subspace in [8,17–20] for Gaussian noise
removal and in [21,22] for mixed noise removal. Subspace representation is an explicit
low-rank representation in the sense that the rank is constrained by the dimension of
subspace.

The self-similarity of HSIs also has been exploited for HSI denoising problems mainly
in two ways: (a) the non-local (generalized) mean: for each patch, seek for its similar
patches in the image and produce a patch estimate based on the found patches [17]; (b)
dictionary learning: express each patch as a sparse representation in a given dictionary,
which may be learned from the data. Patch-based learning is arguably the state-of-the-art
in HSI denoising [8,18].

Recently, deep learning techniques also have been developed for image denoising.
Aiming at single-band images or RGB images, representative networks are feed-forward
denoising convolutional neural networks (DnCNNs) [23], a fast and flexible denoising
convolutional neural network (FFDNet) [24], and a convolutional blind denoising net-
work (CBDNet) [25]. Some neural networks have been conceived for HSI; for example, a
spatial–spectral gradient network (SSGN) [26], a CNN-based HSI denoising method HSI-
DeNet [27], and a novel deep spatio-spectral Bayesian posterior (DSSBP) framework [28].
As the performance of deep learning based denoisers highly depends on the quality and
quantity of training data, a challenge of deep-denoisers is the lack of real HSIs that can be
used as training data or the simulation of pairs of clean–noisy images close to real HSIs.
However, once a network is trained properly, deep-denoisers are much faster than the
traditional machine learning (ML)-based denoisers. One potential solution is to incorporate
deep-denoisers that have been well-trained using vast amounts of RGB images into the HSI
denoising framework. This paper studies this possibility in the sense that we incorporate
the well-known single-band deep denoiser, FFDNet, into a mixed noise removal framework
derived using a traditional ML technique. These fall into the area of research called the
plug-and-play technique [29,30] or regularization by denoising (RED) framework [31].
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1.1. Related Work

The subspace representation of spectral vectors in HSIs has been successfully used to
remove Gaussian noise by regularizing the representation coefficients of HSIs. We refer
to representative work on global and nonlocal low-rank factorizations (GLF) [17], fast
hyperspectral denoising (FastHyDe) [8], and non-local meets global (NGmeet) [18]. The
idea of regularizing the subspace representation coefficients of HSIs underpins state-of-the-
art Gaussian denoisers and has been extended to address mixed noise. The challenge of
this extension lies in the estimation of the subspace.

A spectral subspace can be estimated from an observed HSI by simply carrying out
the singular value decomposition (SVD) of observed image matrix when noise is i.i.d.
Gaussian. When noise is a mixture of Gaussian noise, stripes, and impulse noise, the
spectral subspace is usually estimated jointly with subspace coefficients of the HSI; for
example, in double-factor-regularized low-rank tensor factorization (LRTF-DFR) [21]
and subspace-based nonlocal low-rank and sparse factorization (SNLRSF) [22]. The joint
estimation of the subspace and the corresponding coefficients of the HSI usually produce
poor estimates of the subspace when HSI is affected by severe mixed noise. To sidestep the
joint estimation, one strategy is to estimate the subspace and the corresponding coefficients
of the HSI separately, which motivated us to develop the L1HyMixDe [32] method.

The proposed method in this paper is also based on two approaches: (a) learning sub-
space and coefficients of the HSI separately and (b) regularizing representation coefficients.
However, the new work is distinct from L1HyMixDe in terms of the method of learning the
subspace and the regularization imposed on the subspace representation coefficients. The
main difference in subspace learning is that L1HyMixDe performs median filtering band by
band, exploiting spatial correlation, whereas the new work estimates a coarse image using
Hampel filtering pixel by pixel, exploiting spectral correlation. The Hampel filtering is
more effective in outlier removal procedures. Furthermore, as anomalous target detection
is an important task in hyperspectral imaging, it occurs that both anomalous targets and
sparse noise are sparsely distributed in the spatial domain. If only the spatial information is
considered—e.g., L1HyMixDe performs median filtering band by band, exploiting spatial
correlation—then anomalous targets may be wrongly detected as sparse noise and would
not be represented in the estimated subspace. This motivated us to develop a new method
exploiting spectral information; i.e., spectral signatures of anomalous targets are smooth
while spectral signatures of materials corrupted by sparse noise have unusual jumps in
the value of the pixels. Furthermore, L1HyMixDe regularizes subspace representation
coefficients with a non-local image prior, while this work adopts a more powerful deep
CNN image prior. Compared with using non-local patch-based image priors, the new
method using a deep-learning-based image prior is much faster as long as the deep network
has been well trained. A computational efficient HSI mixed noise removal method is of
importance in practice.

1.2. Contributions

The work aims to estimate a clean HSI from observations corrupted by mixed noise
(containing Gaussian noise, impulse noise, and dead-lines/stripes) by exploiting two main
characteristics of hyperspectral data, namely low-rankness in the spectral domain and high
correlation in the spatial domain. Contributions of this work are summarized as follows:

• Instead of estimating the subspace basis and the corresponding coefficients of HSIs
jointly and iteratively, we decouple the estimation of the subspace basis and the corre-
sponding coefficients. A new subspace learning method, which works independently
from coefficient estimation and is robust to mixed noise, is proposed.

• An image prior extracted from a state-of-the-art neural denoising network, FFDNet,
is seamlessly embedded within our HSI mixed noise removal framework, which is
a successful combination of the traditional machine learning technique and deep
learning technique.
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This paper is organized as follows. Section 2 formally introduces a mixed noise re-
moval method—HySuDeep. Section 3 extends the proposed method to address mixed
noise containing non-i.i.d. Gaussian noise. Sections 4 and 5 show and analyze the experi-
mental results of the proposed method and the comparison methods. Finally, we present a
conclusion of this paper in Section 6.

2. Problem Formulation

Some notations and tensor operations used in this paper and their definitions are
provided in Table 1.

Table 1. Notations And Definitions.

Notation Definition

X ∈ RI1×I2×I3 Three-dimensional tensor (calligraphic letter)
X Matrix (boldface capital letter)
x Vector (boldface lowercase letter)
x Scalar (italic lowercase letter)

Order N Number of dimensions in a tensor
Mode n nth dimension of a tensor

Mode-3 vectors of X I3-dimensional vectors obtained from X by varying the 3rd index while keeping 1st and 2nd indices fixed.
Mode-3 slices of X Matrices obtained from X by varing every index but the 3rd index.

X (:, :, i) ith mode-3 slice of X , a matrix obtained by fixing the mode-3 index of X to be i.
X(3) ∈ RI3×(I1∗I2) Mode-3 unfolding of X . A tensor can be unfolded into a matrix by rearranging its mode-3 vectors, which are the column

vectors of X(3).
X ×3 E Tensor matrix multiplication. The mode-3 product of a tensor X ∈ RI1×I2×I3 by a matrix E ∈ RJn×I3 is a tensor

Y ∈ RI1×I2×Jn , denoted as Y = X ×3 E, which is corresponding to a matrix multiplication, Y(3) = EX(3).

‖X ‖F The definition of Frobenius norm of a matrix is extended to a tensor as follows: ‖X ‖F =
√

∑i1 ,...,iN
|xi1 ,...,iN |2

2.1. Observation Model

Let X ∈ Rr×c×nb denote an underlying clean HSI with r × c pixels and nb bands.
Assuming that noise is additive, we can write an observation model as

Y = X + S + G, (1)

where Y ,S ,G ∈ Rr×c×nb are observed HSI data, sparse noise, and Gaussian noise, respec-
tively. Elements in G are assumed to be i.i.d. Gaussian with zero-mean and variance σ2.
Non-i.i.d. noise is discussed in Section 3.

2.2. Subspace Representation of HSIs

The high correlation in the spectral domain of HSIs implies that spectral vectors (i.e.,
mode-3 vectors) of an HSIX can be well represented in a low-dimensional subspace [1,8,19].
We take a cropped Washington DC Mall image (shown in Figure 1a) as an example. To
analyze the correlation of pixel values in the spectral domain, we obtained the autocor-
relation matrix of its spectral vectors by computing E[X(3)XT

(3)]. From Figure 1b, we can
see that the first 100 bands are highly correlated. Due to the high spectral correlation, the
autocorrelation matrix can be approximated by a low-rank matrix. The low-rankness may
also be inferred in Figure 1c, where the first two singular values (the largest) dominate all
other singular values, which decrease to near-zero rapidly. From Figure 1d,e, we can see
that two spectral vectors of size 191 can be well approximated by vectors in a subspace
with a dimension of 10.
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Figure 1. Subspace representation of spectral vectors in a subset of a Washington DC Mall image.

Based on the subspace representation of spectral vectors, we write

X = Z×3E + Ξ, (2)

with E ∈ Rnb×p (p � nb), Z ∈ Rr×c×p, and Ξ ∈ Rr×c×nb . Matrix E holds an orthogonal
basis for the signal subspace, and the entries of Z are representation coefficients of X
with respect to E. Hereafter, mode-3 slices of Z are termed the eigenimages. Tensor Ξ
represents residuals of a low-dimensional representation of X . When SVD is adopted, most
of the image variation can be compactly represented in a low-dimensional subspace,
and the residual tensor contains a small amount of image energy. Thus, we omit Ξ
when reconstructing the image; that is, X = Z×3E. Figure 2 illustrates the subspace
representation of a hyperspectral image. The observation model (1) can be written as

Y = Z×3E + S + G. (3)

Figure 2. Subspace representation of a hyperspectral image.

The subspace representation of spectral vectors has been demonstrated to be a pow-
erful tool for solving some hyperspectral inverse problems, such as hyperspectral image
super-resolution [33], hyperspectral image segmentation [34], hyperspectral image classifi-
cation [35], and hyperspectral unmixing [36]. In this paper, we propose a hyperspectral
image mixed noise removal method using subspace representation and deep CNN Image
prior (HySuDeep), the flowchart of which is illustrated in Figure 3.
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Figure 3. Flowchart of the proposed mixed noise removal method HySuDeep.

However, for the hyperspectral mixed noise removal problem, the challenge of ex-
ploiting subspace representation lies in the estimation of the subspace from observations
corrupted not only by Gaussian noise but also by sparse noise.

2.3. Subspace Learning against Mixed Noise

When noise in an observed HSI is approximately Gaussian distributed, the subspace
of the underlying clean image can be estimated easily from the noisy image by performing
SVD on the noisy image matrix; that is, {U, Σ, V} = SVD(Y(3)). The estimated subspace is
spanned by k eigenvectors corresponding to the k largest eigenvalues; that is, Ê = [U]:,1:k,
where the subscript (:, 1 : k) means extracting the first k columns from a matrix.

However, when noise is a mixture of Gaussian noise and stripe noise, performing SVD
on a noisy image matrix is not an optimal way to learn the spectral subspace. SVD aims
to find the most important dimensions in the data by finding the directions of maximum
variance, and the addition of i.i.d. Gaussian noise increases the variance of each dimension
uniformly (thus, it does not change the order of singular values and consequently does
not change the estimation of subspace), whereas the addition of stripes increases the
variance of each dimension non-uniformly (thus, it does change the order of singular
values). Experimental analysis is given in Section 4.3.

One of our contributions is to estimate the spectral subspace from observations cor-
rupted by mixed noise and thus propose an efficient denoising method, which does not
need to estimate spectral subspace iteratively.

2.3.1. Outlier Removal Using Hampel Filtering

Since the existence of sparse noise significantly disturbs the identification of signal
subspace, we may estimate a coarse image by removing the sparse noise from observations.
An outlier removal step applying Hampel filtering to spectral vectors of the observed
image is introduced below.

Given a spectral vector of observed HSI, denoted as y = [y1, y2, . . . , ynb ]
T ∈ Rnb , and

a sliding window of length q, we define the point-to-point median and median absolute
deviation (MAD) estimates for the samples in the ith band using

mi = median(yi−q, yi−q+1, yi−q+2, . . . , yi, . . . ,
yi+q−2, yi+q−1, yi+q),

(4)

and
MAD = median(|yi−q −mi|, . . . , |yi+q −mi|), (5)

respectively. The standard deviation (denoted as σi,MAD) is estimated by scaling the local
median absolute deviation (MAD) by a factor of κ = 1/(

√
2erf−1(1/2)) ≈ 1.4826:

σi,MAD = κMAD. (6)
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The Hampel filtering is a variation of the three-sigma rule of statistics, which is robust
against outliers. If a sample yi is such that

|yi −mi| > nσσi,MAD (7)

for a given threshold nσ, then the Hampel filtering declares yi an outlier and replaces it
with mi; that is,

ỹi =

{
mi if |yi −mi| > nσσi,MAD.
yi otherwise.

(8)

Here, we simply set nσ to 3.
The coarse image Ỹ is obtained by applying the Hampel filtering (8) to each spectral

vector of the observed image. We remark that although the Hampel filtering can detect the
positions of impulse noise and stripes well, it may not produce exact spectral estimates
for the polluted pixels. Thus, the goal of performing the Hampel filtering on the observed
image is to obtain a coarse image for subspace learning.

2.3.2. Subspace Identification

Given the coarse image Ỹ (mainly containing Gaussian noise, not sparse noise), the
subspace basis can be directly obtained by performing SVD on Ỹ , as Ỹ mainly contains
Gaussian noise which is independent and identically distributed (i.i.d.). That is, the signal
subspace is approximately spanned by the first p left-singular vectors of Ỹ:

Ê = Ũ(:, 1 : p), (9)

where Ũ ∈ Rnb×nb is an orthogonal matrix and {Ũ, Σ̃, Ṽ} = SVD(Ỹ(3)) with singular
values in Σ̃ ordered by non-increasing magnitude. The dimension of subspace, p, can be
automatically estimated by the HySime method [37].

2.4. Fast Eigenimage Learning
2.4.1. Objective Function

Given the estimate of spectral subspace and the noise assumption (i.e., a mixture of
i.i.d. Gaussian noise and sparse noise), we estimate the unknown variables, Z and S , in (3)
by solving

{Ẑ , Ŝ} ∈ arg min
Z ,S

1
2
||Y − Z×3Ê− S||2F + λ1φ(Z) + λ2||S||1. (10)

The first term on the above optimization problem is derived from the observation
model (3). The third term is a regularizer with respect to matrix S . The `1 norm of S , given
by ‖S‖1 = ∑r

i=1 ∑c
j=1 ∑nb

k=1 |S(i, j, k)|, promotes the sparsity of S . Finally, λ1, λ2 ≥ 0 are
regularization parameters that trade off the importance of the respective regularizers. If
the φ is a convex function, then the optimization (10) is a convex problem.

The second term in the optimization problem (10) is a regularization expressing
prior information tailored to spatially correlated eigenimages [8,17]. We use the plug-and-
play technique [29,30] to assign a prior for eigenimages; rather than investing efforts in
designing new regularization for eigenimages, we can plug an image prior extracted from
an off-the-shelf denoiser conceived for natural images. A deep image prior extracted from
a CNN-based denoising network, FFDnet, is employed, and thus an explicit definition of
the function φ(·) is not given in optimization (10). More detailed analysis with regard to
the deep prior φ(·) can be found in Section 2.4.3.

LetA =concat([Z ,S ], 3) be a r× c× (p+ nb) tensor that concatenates the eigenimages
Z and the sparse noise S along the third dimension. The optimization problem (10) can be
rewritten as

Â ∈ arg minA 1
2‖Y −A×3[Ê, Inb ]‖2

F+
λ1φ(A×3[Ip, 0(p×nb)

]) + λ2‖A×3[0(nb×p), Inb ]‖1,
(11)
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where Ia denotes an identity matrix of size a and 0(a×b) is a zero matrix of size a× b.

2.4.2. Solver

The optimization problem (11) can be solved by the constrained-split augmented La-
grangian shrinkage algorithm (C-SALSA) [38,39]. C-SALSA is an instance of an alternating
direction method of multipliers (ADMM) [40] that was developed to solve the constrained
optimization formulation of regularized image restoration. By using variable splitting, we
can convert the original optimization into a constrained one:

minA,V1,V2,V3
1
2‖Y − V1‖2

F + λ1φ(V2) + λ2‖V3‖1
s.t. V1 = A×3[Ê, Inb ]

V2 = A×3[Ip, 0(p×nb)
]

V3 = A×3[0(nb×p), Inb ].

The augmented Lagrangian function of the above optimization is

L(A,V1,V2,V3,D1,D2,D3) =
1
2‖Y − V1‖2

F + λ1φ(V2) + λ2‖V3‖1
+ µ1

2 ‖V1 −A×3[Ê, Inb ]−D1‖2
F

+ µ2
2 ‖V2 −A×3[Ip, 0(p×nb)

]−D2‖2
F

+ µ3
2 ‖V3 −A×3[0(nb×p), Inb ]−D3‖2

F,
+constant

(12)

where µ1, µ2, µ3 > 0 are C-SALSA penalty parameters.
The application of C-SALSA to (12) leads to Algorithm 1. A MATLAB demo of the pro-

posed HySuDeep method will available at https://github.com/LinaZhuang (accessed on
Nov. 1, 2021).

Algorithm 1 HySuDeep for mixed noise containing i.i.d. Gaussian noise

1: Set k = 0, choose µ1, µ2, µ3 > 0, V1,0, V2,0, D1,0, D2,0.
2: repeat
3: Ak+1 = arg minA

µ1
2 ‖V1,k − A×3[Ê, Inb ] − D1,k‖2

F + µ2
2 ‖V2,k − A×3[Ip, 0(p×nb)

] −
D2,k‖2

F +
µ3
2 ‖V3,k −A×3[0(nb×p), Inb ]−D3,k‖2

F

4: V1,k+1 = arg minV1
1
2‖Y − V1‖2

F +
µ1
2 ‖V1 −Ak+1×3[Ê, Inb ]−D1,k‖2

F

5: V2,k+1 = arg minV2 λ1φ(V2) +
µ2
2 ‖V2 −Ak+1×3[Ip, 0(p×nb)

]−D2,k‖2
F

6: V3,k+1 = arg minV3 λ2‖VT
3 ‖1 +

µ3
2 ‖V3 −Ak+1×3[0(nb×p), Inb ]−D3,k‖2

F

7: D1,k+1 = D1,k − (V1,k+1 −Ak+1×3[Ê, Inb ])

8: D2,k+1 = D2,k − (V2,k+1 −Ak+1×3[Ip, 0(p×nb)
])

9: D3,k+1 = D3,k − (V3,k+1 −Ak+1×3[0(nb×p), Inb ])

10: k→ k + 1
11: until stopping criterion is satisfied.

https://github.com/LinaZhuang
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The optimizations with regard to A and V1 (on lines 3 and 4 of Algorithm 1) are
quadratic problems, whose solutions are given by

Ak+1

=
(

µ1(V1 −D1)×3[Ê, Inb ]
T + µ2(V2 −D2)×3

[Ip, 0p×nb ]
T + µ3(V3 −D3)×3[0(nb×p), Inb ]

T
)
×3(

µ1[Ê, Inb ]
T [Ê, Inb ] + µ2[Ip, 0p×nb ]

T

[Ip, 0p×nb ] + µ3[0(nb×p), Inb ]
T [0(nb×p), Inb ]

)−1

(13)

(for line 3) and

V1,k+1 = (1 + µ1)
−1[Y + µ1(Ak+1×3[Ê, Inb ] +D1,k)

]
. (14)

(for line 4).
Line 6 of Algorithm 1 is a proximity operator of the `1 norm applied to

V ′3,k = Ak+1×3[0(nb×p), Inb ] + D3,k. It can be solved by an element-wise soft-threshold
function; that is,

V3,k+1 = arg min
V3

λ2‖V3‖1 +
µ3

2
‖V3 − V ′3,k‖

2
F

=[thresh(V ′3,k(i, j, k), λ/µ3), i = 1, . . . , r,

j = 1, . . . , c, k = 1, . . . , nb], (15)

and threshold (x, τ) returns the soft thresholding of x (where τ is the threshold value) [41]:

x 7→ max(|x| − τ, 0)
max(|x| − τ, 0) + τ

x.

Line 5 of Algorithm 1 is a proximity operator of φ applied to V ′2,k = Ak+1×3[Ip, 0(p×nb)
] +

D2,k. As the scaled Lagrange multiplier D2,k tends to 0 as the C-SALSA iteration goes on,
V ′2,k tends to be close to Zk+1. Considering that orthogonal projection is a decorrelation
transformation and mode-3 slices of Z tend to be decorrelated, it is reasonable to decouple
φ(·) with respect to the mode-3 slices; that is,

φ(V ′2,k) =
p

∑
i=1

φi

(
V ′2,k(:, :, i)

)
, (16)

where V ′2,k(:, :, i) denotes the ith mode-3 slice. The solution of the subproblem on line 5 can
be decoupled with regard to mode-3 slices of V ′2,k and can be written as

V2,k+1 = Ψλ1φ/µ2(V
′
2,k) =


Ψλ1φ1/µ2

(
V ′2,k(:, :, 1)

)
...

Ψλ1φp/µ2

(
V ′2,k(:, :, p)

)
 (17)

where
Ψλφi (U) = arg min

X

1
2
‖X−U‖2

F + λφi(X) (18)

is the so-called Moreau proximity operator (MPO) [42] of φ or the denoising operator.
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2.4.3. Plug-and-Play Prior, φ(·)
Instead of investing great effort in conceiving a new eigenimage regularization φi(X),

we make use of the plug-and-play (PnP) prior [8,29,30]. The PnP tool is a powerful frame-
work that solves an inverse image problem by directly using an existing regularizer from
a state-of-the-art image denoiser. The PnP framework has been applied to hyperspectral
image fusion, spectral unmixing, hyperspectral image inpainting, and anomaly detection,
and produces surprisingly good image recovery results. Inspired by these successful ap-
plications of PnP, we plug the prior of a deep denoising network, FFDnet [24], into (18),
leading to

V̂2,k(:, :, i)← FFDNet(V ′2,k(:, :, i)), (19)

where FFDNet(·) represents the network and outputs a denoised image. It is worth noting
that other state-of-the-art image denoisers can also be plugged in (18). We choose FFDNet
in this work based on the following considerations: (a) deep-learning-based FFDNet is
much faster than other machine learning-based denoisers as long as it has been well trained
and (b) FFDNet is flexible and able to address images with various noise levels without
retraining the network.

Since the denoiser FFDNet, plugged into the subproblem with regard to V2, is not
a proximity operator, we do not have a theoretical convergence guaranteed for the im-
plemented variant of C-SALSA. However, impressive performances using plugged non-
convex regularizations have been observed in a number of inverse problems [19,43,44].
The numerical convergence of the proposed HySuDeep is analyzed in Section 4.5.

2.5. HSI Recovery

After estimating Ẑ , the denoised image is obtained as follows:

X̂ = Ẑ×3Ê. (20)

3. Model Extension to Non-i.i.d. Gaussian Noise

Gaussian noise in the observation model (1) is assumed to be i.i.d., meaning that
the model is simplified and we can focus on the discussion of the image structure. Let
Cλ = E[ninT

i ] (where ni is a generic column of unfolded mode-3 matrix N(3)) define the
covariance matrix of the spectral noise. We have Cλ = σ2Inb when the noise is i.i.d.

However, we remark that Gaussian noise in real HSIs tends to be non-i.i.d.; that is,
it is pixel-wise independent but band-wise dependent. Before implementing denoising
according to model (1), we need to convert the non-i.i.d. scenario into an i.i.d. scenario by
implementing data whitening:

Ȳ = Y×3

√
C−1

λ , (21)

where
√

Cλ and C−1
λ denote the square root of Cλ and the inverse of Cλ, respectively.

The estimate of the covariance matrix, Cλ, is challenging when noise in observations is
a mixture of Gaussian and sparse noise. If the HSI is only corrupted by Gaussian noise, then
the noise covariance matrix can be estimated by exploiting the spectral correlation of HSI.
The spectrally uncorrelated components extracted from the HSI are considered as Gaussian
noise, whose covariance matrix can be computed easily. This problem has been studied
deeply, and we refer readers to representative works [37,45]. However, when the noise
in the image is a mixture of Gaussian noise and sparse noise, the spectrally uncorrelated
components extracted from the HSI are mixed noise, instead of single Gaussian noise. To
solve this problem, we propose a method to split two kinds of noise and estimate Cλ in
two steps, as listed below:

• Estimate a coarse image, Ỹ , by removing the sparse noise from observation. A outlier
removal step applying Hampel filtering to spectral vectors of the observed image is
given in (8).
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• We apply linear regression to each band of the image Ỹ ; i.e., each band is represented
as a linear combination of the remaining bands [37]. That is,

[ỸT
(3)]:,i = [ỸT

(3)]αi βi + ξ i, (22)

where ỸT
(3) denotes the transpose of the mode-3 unfolding matrix Ỹ(3), the subscript

[·]:,i means extracting the ith column from a matrix, a matrix with the subscript
[·]αi means the matrix including all columns except ith column, βi ∈ Rnb−1 denotes
regression coefficients, and ξ̂ i ∈ Rn denotes regression error.
The regression coefficients βi can be estimated by the least squares method; i.e.,

β̂ = arg min
β
‖[ỸT

(3)]:,i − [ỸT
(3)]αi βi‖2

F. (23)

Given β̂, the regression error, ξ̂ i, is computed by

ξ̂ i = [ỸT
(3)]:,i − [ỸT

(3)]αi β̂i. (24)

The regression errors are taken as a coarse estimate of the Gaussian noise; thus, its
covariance matrix, Cλ = diag([σ2

1 , σ2
2 , . . . , σ2

nb
]), can be estimated by

σ2
i = var(ξ̂ i), (25)

where var(·) is a function computing the variance of the elements of the input vector.

Given the estimate of Cλ, we can convert band-dependent Gaussian noise to i.i.d.
Gaussian noise via (21). Here, we analyze the impact of image conversion on Gaussian
noise. Given the image conversion,

Ȳ = X×3

√
C−1

λ + S×3

√
C−1

λ + G×3

√
C−1

λ , (26)

we can compute the spectral covariance of the Gaussian noise in the converted image as
follows:

C̄λ = E[
√

C−1
λ ni(

√
C−1

λ ni)
T ] =

√
C−1

λ E[ninT
i ]
√

C−1
λ

T

=
√

C−1
λ Cλ

√
C−1

λ

T
= I. (27)

From (27), we can see that after image conversion, the Gaussian noise is i.i.d. and
standard distributed, which meets the noise assumption in model (1); thus, the converted
image, Ȳ , can be denoised as discussed in Section 2. Finally, we reconstruct the clean image
as follows:

X̂ = ̂̄X×3
√

Cλ, (28)

where ̂̄X is the estimated clean version of image Ȳ .
The pseudocode in Algorithm 2 shows how HySuDeep is implemented to reduce

mixed noise for an HSI. Given an HIS of size r (rows) ×c (columns) ×nb (bands) with
subspace dimension p (p� nb), the computational complexity of obtaining a coarse image
Ỹ in line 2 and Cλ in line 3 is O(r ∗ c ∗ nb ∗ q ∗ log q) and O(r ∗ c ∗ n3

b), respectively. The
Gaussian noise-whitening in line 4, its inverse transformation in line 8, and the image
reconstruction step in line 7 have the same computational complexity; that is,O(r× c× n2

b).
The estimation of the spectral subspace in line 5 and eigenimages in line 6, respectively,
cost O(r2 ∗ c2 ∗ nb) and O(r ∗ c ∗ (p + nb)

2 + (p + nb)
3 + p ∗ d). Here, d represents the

computational complexity of denoising an eigenimage using FFDNet. Consequently, the
overall computational complexity of HySuDeep is O(r ∗ c ∗ n3

b + r2 ∗ c2 ∗ nb + p ∗ d).
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Algorithm 2 HySuDeep for mixed noise containing non-i.i.d. Gaussian noise

1: Input a noisy HSI, Y , and parameter λ2.
2: Estimate a coarse image Ỹ via (8).
3: Estimate Cλ from Ỹ via (25).
4: Obtain an whitened image Ȳ using (21).
5: Denoise the whitened image Ȳ using Algorithm 1, and obtain ̂̄X .
6: Compute X̂ = ̂̄X×3

√
Cλ, an estimate of the clean HSI.

4. Experiments with Simulated Images

Experiments were carried out on three simulated datasets to evaluate the performance
of the proposed HySuDeep method compared with six state-of-the-art denoising methods
for HSI mixed noise removal.

4.1. Simulation of Noisy Images and Comparisons
4.1.1. Simulation of Noisy Images

Three public hyperspectral datasets (shown in Figure 4a–c) were employed to simulate
the noisy images. Following the same procedure in [32], we generated noisy HSIs of Pavia
University data (of size 310(rows)× 250(columns)× 87(bands)), a subregion of Washington
DC Mall data (of size 150(rows) × 200(columns) × 191(bands)), and Terrain data (of size
500(rows) × 307(columns) × 166(bands)).

(a) (b) (c)

(d) (e)

Figure 4. HSIs used in the experiments. (a) Pavia University data. (b) Washington DC Mall data. (c)
Terrain data. (d) Hyperion Cuprite. (e) Tiangong-1.

For the first two datasets, we removed bands that were severely corrupted by water
vapor in the atmosphere. To obtain relatively clean images, we projected spectral vectors
of each image onto a subspace spanned by eight principal eigenvectors of each image. The
projection of each image was considered to be a clean image. To simulate noisy HSIs, we
added four kinds of additive noise into images as follows:

Case 1 (Gaussian non-i.i.d. noise): Synthetic data with Gaussian noise. The noise
in ith pixel vector gi ∼ N (0, D2), where D is a diagonal matrix with diagonal elements
sampled from a uniform distribution U(0, 0.01).
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Case 2 (Gaussian noise + stripes): Synthetic data with Gaussian noise (described in
case 1) and oblique stripe noise randomly affecting 30% of the bands and, for each band,
about 10% of the pixels, at random.

Case 3 (Gaussian noise + “Salt and Pepper” noise): Synthetic data with Gaussian
noise (described in case 1) and “Salt and Pepper” noise with a noise density of 0.5%,
meaning approximately 0.5% of elements in X are affected.

Case 4 (Gaussian noise + stripes + “Salt and Pepper” noise): Synthetic data with
Gaussian noise (described in case 1), random oblique stripes (described in case 2) and “Salt
and Pepper” noise (described in case 3).

To evaluate the impact of denoising methods on the hyperspectral unmixing task, we
simulated a clean semi-real HSI based on the publically available Terrain image (Figure 4c)
following generation steps in [36]. A MATLAB demo used to generate a semi-real HSI
is available at https://github.com/LinaZhuang/NMF-QMV_demo.The original Terrain
image has a size of 500(rows) × 307(columns) × 166(bands) and is mainly composed
of soil, tree, grass, and shadow. The number of endmembers is empirically set to 5, as
performed in [36,46,47]. Briefly, a clean Terrain image was synthesized based on a linear
mixing model [1]; i.e., X = A×3M, where M and A are endmembers and abundances,
respectively, estimated from the original Terrain image. Next, we generated a noisy Terrain
HSI by adding the Gaussian noise and oblique stripe noise (as described in case 2)—i.e.,
Y = A×3M + S + G—yielding an MPSNR of 28.90 dB.

4.1.2. Comparisons

To thoroughly evaluate the performance of the proposed method, six state-of-the-art
HSI denoising methods were selected for comparison: the fast hyperspectral denoising
method (FastHyDe) [8], the noise-adjusted iterative low-rank matrix approximation method
(NAIRLMA) [48], the spatio-spectral total variation based method (SSTV) [49], the low-rank
matrix recovery method (LRMR) [15], double-factor-regularized low-rank tensor factoriza-
tion (LRTF-DFR) [21], and the `1-norm based hyperspectral mixed noise denoising method
(L1HyMixDe) [32]. These compared methods were carefully selected. The FastHyDe
served as a benchmark to see whether mixed noise could be simply addressed by Gaussian
denoisers. The NAIRLMA, SSTV, and LRMR are from highly cited papers working on
hyperspectral mixed noise based on low-rank and sparse representations. The LRTF-DFR
and L1HyMixDe methods are subspace representation methods and remove noise by
filtering the subspace coefficients of HSIs. All experiments were implemented in MATLAB
(R2016a) on Windows 10 with an Intel Core i7-7700HQ 2.8-GHz processor and 24 GB RAM.
A MATLAB demo of this work will be available at https://github.com/LinaZhuang for
the sake of reproducibility.

The size of the sliding window in the Hampel filter, q, was fixed to 7. The dimension
of the subspace, p, for FastHyDe, LRTF-DFR, L1HyMixDe, and HySuDeep methods was
estimated by HySime [37] automatically. The other parameters of FastHyDe, NAILRMA,
LRTF-DFR, and L1HyMixDe were set as suggested in their original references. We fine-
tuned the parameters λ and µ in SSTV and parameters r and s in LRMR to obtain the
optimal results.

For quantitative assessment, the peak signal-to-noise ratio (PSNR) index, the struc-
tural similarity (SSIM) index, and the feature similarity (FSIM) index of each band were
calculated. The mean PSNR (MPSNR), mean SSIM (MSSIM), and mean FSIM (MFSIM) of
the proposed and compared methods on Pavia University Data and Washington DC Mall
Data are presented in Table 2, where we have highlighted the best results in bold.

https://github.com/LinaZhuang/NMF-QMV_demo
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Table 2. Performance of the proposed and comparison methods on Pavia University Data and
Washington DC Mall Data.

Cases Indexes Noisy FastHyDe NAILRMA SSTV LRMR LRTF-DFR L1HyMixDe HySuDeep
[8] [48] [49] [15] [21] [32]

Pavia University data

Case 1

MPSNR 34.29 50.50 47.25 45.73 43.72 43.77 47.62 49.08
MSSIM 0.8221 0.9981 0.9949 0.9929 0.9867 0.9906 0.9971 0.9978
MFSIM 0.9272 0.9991 0.9977 0.9966 0.9945 0.9949 0.9986 0.999
Time (s) - 10 185 282 107 141 114 31

Case 2

MPSNR 27.77 40.94 32.33 35.06 33.58 43.43 47.26 48.55
MSSIM 0.7451 0.9087 0.9236 0.9584 0.9176 0.9902 0.9969 0.9975
MFSIM 0.8683 0.9569 0.9519 0.9702 0.9461 0.9948 0.9985 0.9989
Time (s) - 9 182 268 67 141 156 33

Case 3

MPSNR 22.56 39.66 37.03 43.85 43.37 43.72 47.90 48.93
MSSIM 0.6892 0.9781 0.9556 0.9876 0.9858 0.9905 0.9971 0.9977
MFSIM 0.8780 0.9870 0.9799 0.9948 0.9942 0.9948 0.9986 0.999
Time (s) - 9 123 250 87 141 112 32

Case 4

MPSNR 19.29 31.83 28.20 33.59 33.64 43.32 47.43 48.31
MSSIM 0.6258 0.8249 0.8531 0.9463 0.9153 0.9901 0.9968 0.9972
MFSIM 0.8267 0.9103 0.9169 0.9656 0.9455 0.9947 0.9985 0.9987
Time (s) - 10 193 274 89 140 114 38

Washington DC Mall data

Case 1

MPSNR 19.13 42.04 37.22 26.78 27.15 36.96 39.52 41.17
MSSIM 0.7781 0.9985 0.9962 0.9674 0.9710 0.9961 0.9981 0.9983
MFSIM 0.8634 0.9980 0.9931 0.9630 0.9706 0.9959 0.9978 0.999
Time (s) - 6 218 228 55 145 40 29

Case 2

MPSNR 12.52 30.58 20.56 24.08 25.39 34.12 36.65 40.05
MSSIM 0.6851 0.8608 0.8440 0.9512 0.9636 0.9909 0.9946 0.9978
MFSIM 0.7973 0.9368 0.8940 0.9547 0.9663 0.9948 0.9956 0.9987
Time (s) - 5 196 234 37 145 64 29

Case 3

MPSNR 7.29 29.78 24.94 26.70 27.29 36.62 39.90 40.75
MSSIM 0.6421 0.9818 0.9642 0.9667 0.9707 0.9959 0.9982 0.9981
MFSIM 0.8052 0.9849 0.9713 0.9625 0.9706 0.9958 0.9978 0.9988
Time (s) - 5 137 229 40 144 42 30

Case 4

MPSNR 3.84 20.34 15.82 24.03 24.94 34.03 36.81 39.07
MSSIM 0.5676 0.8029 0.7958 0.9506 0.9617 0.9910 0.9947 0.997
MFSIM 0.7508 0.8886 0.8663 0.9544 0.9649 0.9947 0.9956 0.998
Time (s) - 5 178 207 43 144 52 30

4.2. Mixed Noise Removal

We compare the proposed method HySuDeep with FastHyDe [8], NAILRMA [48],
SSTV [49], LRMR [15], LRTF-DFR [21], and L1HyMixDe [32] methods in terms of MPSNR,
MSSIM, and MFSIM (provided in Tables 2 and 4). The band-wise PSNR is depicted in
Figure 5 for quantitative assessment.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Band-wise PSNR values for denoised Pavia University data in the first row and for denoised
Washington DC Mall data in the second row. Subfigures in (a,e), (b,f), (c,g), (d,h) corresponds to case
1, case 2, case 3, and case 4, respectively.

Among the compared methods, only FastHyDe is shown to address pure Gaussian
noise, not mixed noise. We include FastHyDe to evaluate whether mixed noise can be
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reduced by a simple Gaussian denoiser. As shown in Table 2, FastHyDe outperformed
other methods in case 1 (where HSIs are corrupted by only Gaussian noise). However,
when the images were contaminated by mixed noise in Cases 2–4, the results of FastHyDe
show that heavy mixed noise cannot be reduced well by a Gaussian denoiser. The existence
of mixed noise in HSIs calls for effective denoising techniques.

To address mixed noise, an additive term is usually introduced to model sparse noise
so that the entries in the data fidelity term, (Y −X −S), follow Gaussian distributions. The
proposed HySuDeep, NAIRLMA, SSTV, LRMR, and LRTF-DFR methods fall in this line of
research. The critical differences among these methods are the regularizations imposed on
the HSI, X . SSTV minimizes the total variation of the HSI in the spectral–spatial domain.
NAILRMR and LRMR impose spectral low-rankness in spatial patches of the image. LRTF-
DFR and the proposed HySuDeep both enforce the low-rankness of spectral vectors by
subspace representation. To exploit the spatial correlation of eigenimages, LRTF-DFR
minimizes the spatial difference (i.e., total variation) of eigenimages, while HySuDeep uses
a CNN-regularization (i.e., a deep image prior extracted from a CNN network).

The proposed method uniformly yields the best results in Cases 2–4, as shown in
Tables 2 and 4. The main reason is that, compared with SSTV, NAILRMR, LRMR, LRTF-
DFR, and L1HyMixDe methods, our method uses a more efficient spatial regularization
term. Although the CNN regularization works like a black box, we can see its superiority
over TV regularization (used in SSTV and LRTF-DFR) and patch-based regularization (used
in NAILRMA, LRMR, and L1HyMixDe) from Tables 2 and 4. Furthermore, HySuDeep is
similar to the L1HyMixDe method in terms of using subspace representations of spectral
vectors and imposing a regularization on representation coefficients. Tables 2 and 4 show
that HySuDeep achieves better results than L1HyMixDe. The difference is caused by the
accuracy of spectral subspace learning. Compared with L1HyMixDe, HySuDeep elaborates
an outlier removal operator, which improves the estimates of subspace Ê (see discussion in
Section 4.3).

For visual comparison, we display the 37th band of Pavia University data and the
126th band of Washington DC Mall data in Figures 6 and 7, respectively. For case 1
(Gaussian noise), all methods can reduce noise significantly. As shown in Figures 6 and 7,
SSTV and LRMR are able to remove light stripes, but still leave some wide stripes. Heavy
noise still remains in the results of NAILRMA and FastHyDe. LRTF-DFR, L1HyMixDe,
and HySuDeep methods visually yield comparable results in Figures 6 and 7. To show
their differences, we generated and presented the residual images in Figure 8a,b, where we
can see the results of proposed HySuDeep contain less residual compared with LRTF-DFR
and L1HyMixDe.
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Figure 6. Band 37 of Pavia University data before and after denoising in four cases.
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Figure 7. Band 126 of the Washington DC Mall data before and after denoising in four cases.
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(a) Pavia University (b) Washington DC Mall

Figure 8. Differences between the clean images and denoised images in four cases for LRTF-DFR,
L1HyMixDe, and the proposed method. (a) Pavia University data; (b) Washington DC Mall data.

4.3. Subspace Learning against Mixed Noise

One of the contributions of this paper is the introduction of an orthogonal subspace
identification method that is robust to mixed noise. We conducted experiments using
simulated images to compare the proposed subspace learning method with representative
subspace learning methods: namely, SVD, RPCA, L1HyMixDe [32], and HySime [37].
Results are reported in Table 3, where we show two metrics, namely γ1 = ‖X ×3 ÊT ×3
Ê‖2

F/‖X ‖2
F and γ2 = ‖N ×3 ÊT ×3 Ê‖2

F/‖N‖2
F, measuring the relative power of the clean

spectral vectors and noise lying in the estimated subspace, respectively.
In Case 1, two images were corrupted only by Gaussian noise, and values of γ1 for

all methods are higher than 0.9993, implying that all the methods can estimate a subspace
representing image signal very well. Case 3 shows results similar to Case 1; that is, all the
methods achieve relatively high γ1. We conclude that when noise is Gaussian distributed
or a mixture of Gaussian and “Salt and Pepper” noise, signal subspace learning is not
a challenging task and we can simply use SVD. The reason is that Gaussian noise and
“Salt and Pepper” noise are randomly and uniformly distributed in each channel; thus,
the noise increases singular values in the direction of each eigenvector almost uniformly
and does not change the order of the singular values of clean images. The signal subspace
is approximately spanned by p singular vectors of the noisy image corresponding to the
largest p singular values.

However, subspace learning from noisy images in Case 2 and Case 4 is challenging
and we cannot simply use SVD because the stripe noise usually exist in specific channels,
instead of being uniformly distributed in all channels. The stripe noise will significantly
increase the variances of those channels affected by stripe noise. Due to the fact that SVD
tends to learn a subspace representing information in channels with high variances, SVD is
not suitable for Case 2 and Case 4. This inference is consistent with the results in Table
3, where SVD obtains the worst results in terms of γ1 and γ2 in case 2 and case 4. If we
only focus on the table rows highlighted with gray color, the proposed learning method
performs better than others. Among the compared methods, RPCA learns a subspace
representing low-rank signal and excluding sparse noise. However, stripe noise is also
low-rank [50], and RPCA cannot separate an image signal and stripes using only a low-rank
regularization. HySime is conceived based on an assumption of Gaussian noise and is
clearly not suitable for mixed noise. L1HyMixDe performs median filtering band by band,
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exploiting spatial correlation, whereas HySuDeep estimates a coarse image using Hampel
filtering pixel by pixel, exploiting spectral correlation. As shown in gray rows of Table 3,
HySuDeep uniformly provides the best performances.

Table 3. Quantitative comparison of representation ability of subspaces learned by different methods.

SVD RPCA L1HyMixDe HySime HySuDeep
[51] [52] [32] [37]

Pavia University data

Case 1
γ1 0.9994 0.9993 0.9995 1.0000 0.9996
γ2 0.1789 0.1816 0.1753 0.0954 0.1500
γ1 0.9854 0.9868 0.9994 0.9881 0.9996Case 2
γ2 0.2552 0.2526 0.1599 0.2270 0.1314

Case 3 γ1 0.9993 0.9991 0.9995 0.9997 0.9996
γ2 0.1095 0.1102 0.1066 0.0909 0.1019
γ1 0.9855 0.9867 0.9993 0.9869 0.9997Case 4
γ2 0.2355 0.2338 0.1526 0.2109 0.1271

Washington DC Mall data

Case 1
γ1 0.9998 0.9998 0.9998 1.0000 0.9998
γ2 0.0772 0.0775 0.0751 0.0466 0.0630
γ1 0.9826 0.9838 0.9997 0.9878 0.9997Case 2
γ2 0.2738 0.2700 0.0978 0.2426 0.0585

Case 3 γ1 0.9997 0.9997 0.9998 0.9998 0.9998
γ2 0.0483 0.0480 0.0456 0.0406 0.0441
γ1 0.9825 0.9834 0.9997 0.9868 0.9997Case 4
γ2 0.2342 0.2321 0.0883 0.2110 0.0600

Note: γ1 =
‖X×3ÊT×3Ê‖2

F
‖X ‖2

F
and γ2 =

‖N×3ÊT×3Ê‖2
F

‖N‖2
F

.

4.4. Analysis of Regularization Parameters

There are two regularization parameters—namely, λ1 and λ2—in the objective function
of the proposed HySuDeep method. Controlling the trade-off between Gaussian noise
reduction and detail preservation, the parameter λ1 is related to the standard deviation of
Gaussian noise, which can be estimated via (25).

The second parameter λ2 controls the sparsity of estimation of sparse noise S . The
setting of λ2 should depend on the intensity of sparse noise. Figure 9 depicts the denoising
performance of HySuDeep in the Pavia University image and in the Washington DC Mall
image as a function of the value of parameter λ2. When the value of λ2 is set to {1, 3, 5, 7,
9}, denoising results are acceptable in both images. Therefore, we simply set λ2 to 3 in all
experiments in this paper.

Figure 9. Denoising performance of HySuDeep as a function of the regularization parameter λ2. (a)
Pavia University image. (b) Washington DC Mall image.

4.5. Numerical Convergence of the HySuDeep

Since CNN-regularization is incorporated into (10), the proposed HySuDeep cannot
be considered as a convex optimization problem; thus, its theoretical convergence is not
guaranteed. However, its numerical convergence is systematically observed when the
augmented Lagrangian parameters are set to µi = 1 (i = 1, 2, 3). As shown in Figure 10,
the relative change converges to near zero after 15 iterations, implying the convergence of
the proposed method can be numerically guaranteed.
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（a） （b） （c）

Figure 10. Relative change of Z as a function of the iteration number of the HySuDeep method
applied to Pavia University data in (a), Washington DC Mall data in (b), and Terrain image in (c).

4.6. Application in Hyperspectral Unmixing

Hyperspectral denoising is usually implemented as a preprocessing step for sub-
sequent applications. This subsection takes hyperspectral unmixing as an example to
evaluate whether the image denoising step has a positive impact on the performance of
subsequent applications. Spectral unmixing mainly involves two stages: (i) identifying
materials present in the scene (termed endmembers) and (ii) estimating the fraction (or
abundance) of each material in each pixel. The hyperspectral unmixing task was chosen
considering that the endmember extraction step can be very sensitive to sparse noise.

We first performed denoising on the Terrain image using FastHyDe, NAILRMA,
SSTV, LRMR, LRTF-DFR, L1HyMixDe, and HySuDeep. The mean PSNR (MPSNR), mean
SSIM (MSSIM), and mean FSIM (MFSIM) of the proposed and compared methods on
Terrain image are presented in Table 4, where we have highlighted the best results in
bold. Then, we unmixed the spectra of the denoised images by using vertex component
analysis (VCA) [53] to estimate the endmembers and used fully constrained least squares
(FCLS) [54] to estimate the abundances. Two metrics were computed: the normalized
mean square error (NMSE) of endmembers A and abundances S, denoted as NMSEA
and NMSES, respectively. As reported in Table 4, LRMR, LRTF-DFR, L1HyMixDe, and
HySuDeep obtain a lower NMSE of endmembers than the counterpart image without
denoising processing. For images denoised by FastHyDe, NAILRMA, and SSTV, the errors
in the estimates of endmembers directly result in high errors in the estimates of abundances.
Among LRMR, LRTF-DFR, L1HyMixDe, and HySuDeep, the proposed HySuDeep leads to
the lowest NMSE of abundances.

Table 4. Denoising performance of the proposed and comparison methods on the Terrain image
and unmixing performance (in terms of NMSEAM and NMSESA) of “VCA + FCLS” applied to the
denoised images.

Noisy FastHyDe NAILRMA SSTV LRMR LRTF-DFR L1HyMixDe HySuDeep

MPSNR 28.90 48.94 40.72 35.58 39.84 45.84 50.84 51.91
MSSIM 0.7296 0.9933 0.9843 0.9168 0.9831 0.9932 0.9975 0.9987
MFSIM 0.8719 0.9961 0.9882 0.9548 0.9830 0.9953 0.9984 0.9989
Time (s) - 20 587 951 129 572 562 137

NMSEAM 0.10 0.19 0.17 0.20 0.05 0.06 0.03 0.04
NMSESA 0.52 0.48 0.47 0.48 0.46 0.51 0.15 0.09

Note: NMSEAM and NMSESA denote root mean square error of endmembers and abundances, respectively.

5. Experimental Results for Real Images

We evaluate the performance of the proposed method on two real HSI datasets, as
shown in Figure 4d,e.

5.1. Hyperion Cuprite Dataset

The Cuprite HSI was captured at Cuprite, NV, USA, by the Hyperion sensor, which
divides the spectrum from 355 nm to 2577 nm into 242 channels with a spectral resolution
of 10 nm. The spatial resolution of the image is 30 m. A subregion of size 240× 178 pixels
with 177 spectral channels (after removing very low SNR channels) was cropped for the
test. Four bands are shown in Figure 11, where bands 93, 133, and 134 were corrupted
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by severe stripes, and band 156 was affected by a dead-line. The full-resolution images
of Figure 11 will be available at https://github.com/LinaZhuang (accessed on Nov. 1,
2021). All methods (except NAILRMA) are able to remove the dead-line in band 156. For
severe stripes in the other three bands, we can see that FastHyDe, LRMR, L1HyMixDe, and
HySuDeep achieved good restoration results while obvious stripes remained within the
results of other methods.

Noisy

B
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n
d
9
3

FastHyDe NAILRMA SSTV LRMR LRTF-DFR L1HyMixDe Proposed

B
a
n
d
1
3
3

B
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5
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Figure 11. Bands 93, 133, 134, and 156 of the Hyperion Cuprite data before and after denoising.

5.2. Tiangong-1 Dataset

The Tiangong-1 dataset was acquired over an area of Qinghai Province, China in May
2013, by a sensor placed in the Tiangong-1 imager, which has a 75-band push broom scanner
with nominal bandwidths of 23 nm short wave infrared (SWIR), covering from 800 nm to
2500 nm. A subregion image of size 351× 253 pixels was tested. Three bands displaying
strong noise are shown in Figure 12, where band 1 has severe cross-track illumination error,
and bands 36 and 65 contain obvious stripes. The full-resolution images of Figure 12 will
be available at https://github.com/LinaZhuang (accessed on Nov. 1, 2021). Comparing
the images before denoising and after denoising, we can see that FastHyDe, L1HyMixDe,
and HySuDeep can correct the illumination error in band 1. In bands 36 and 65, FastHyDe,
LRMR, L1HyMixDe, and HySuDeep can alleviate stripe noise. If we focus on band 65, our
HySuDeep method obtains the visually best result considering the restoration of the areas
in the red circles.

https://github.com/LinaZhuang
https://github.com/LinaZhuang
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Figure 12. Bands 1, 36, and 65 of the Tiangong-1 data before and after denoising.

6. Conclusions

This paper introduces a hyperspectral mixed noise removal method, HySuDeep, by
exploiting two important characteristics of HSIs. HySuDeep takes advantage of the spectral
low-rankness of HSIs by representing clean spectral vectors in a low-dimensional subspace,
which significantly improves the conditioning of the denoising problem. The spatial
correlation of HSIs is exploited by adding CNN regularization for eigenimages. Although
the network was trained using grayscale images acquired from commercial cameras,
without using remote sensing images, the network still achieves impressive performance
for HSI denoising. The reason is that both kinds of images are natural images, sharing
the same properties, such as local and non-local similarity, and piece-wise smoothness.
Therefore, the image prior learned by the network from grayscale images is also applicable
to HSIs. Experimental results on both simulated and real HSIs show the superiority of the
proposed method for mixed noise in HSIs.

Author Contributions: Conceptualization, L.Z. and X.F. ; methodology, L.Z.; validation, L.Z. and
X.F.; formal analysis, L.Z.; writing—original draft preparation, L.Z.; writing—review and editing,
M.K.N.; visualization, X.F.; supervision, M.K.N. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China under
Grant 42001287. The work of M.K.N. was partially supported by the HKRGC GRF 12300218, 12300519,
17201020, and 17300021.

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bioucas-Dias, J.; Plaza, A.; Dobigeon, N.; Parente, M.; Du, Q.; Gader, P.; Chanussot, J. Hyperspectral Unmixing Overview:

Geometrical, Statistical, and Sparse Regression-Based Approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 354–379,
doi:10.1109/JSTARS.2012.2194696.

2. Ellis, J.M.; Davis, H.H.; Zamudio, J.A. Exploring for onshore oil seeps with hyperspectral imaging. Oil Gas J. 2001, 99, 49–58.
3. Lowe, A.; Harrison, N.; French, A.P. Hyperspectral image analysis techniques for the detection and classification of the early

onset of plant disease and stress. Plant Methods 2017, 13, 1–12.
4. Abdellatif, M.; Peel, H.; Cohn, A.G.; Fuentes, R. Pavement Crack Detection from Hyperspectral Images Using a Novel Asphalt

Crack Index. Remote Sens. 2020, 12, 3084.
5. Chang, Y.; Yan, L.; Fang, H.; Liu, H. Simultaneous destriping and denoising for remote sensing images with unidirectional total

variation and sparse representation. IEEE Geosci. Remote Sens. Lett. 2013, 11, 1051–1055.



Remote Sens. 2021, 13, 4098 22 of 23

6. Xie, Q.; Zhao, Q.; Meng, D.; Xu, Z.; Gu, S.; Zuo, W.; Zhang, L. Multispectral images denoising by intrinsic tensor sparsity
regularization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR): Las Vegas, USA,
2016; pp. 1692–1700.

7. Yuan, Q.; Zhang, L.; Shen, H. Hyperspectral image denoising employing a spectral–spatial adaptive total variation model. IEEE
Trans. Geosci. Remote Sens. 2012, 50, 3660–3677.

8. Zhuang, L.; Bioucas-Dias, J. Fast hyperspectral image denoising and inpainting based on low-rank and sparse representations.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 730–742.

9. Zhao, Y.Q.; Yang, J. Hyperspectral image denoising via sparse representation and low-rank constraint. IEEE Trans. Geosci. Remote
Sens. 2014, 53, 296–308.

10. Jiang, S.; Hao, X. Hybrid Fourier-wavelet image denoising. Electron. Lett. 2007, 43, 1081–1082.
11. Rasti, B.; Sveinsson, J.R.; Ulfarsson, M.O.; Benediktsson, J.A. Hyperspectral image denoising using first order spectral roughness

penalty in wavelet domain. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 7, 2458–2467.
12. Fan, H.; Li, C.; Guo, Y.; Kuang, G.; Ma, J. Spatial-spectral total variation regularized low-rank tensor decomposition for

hyperspectral image denoising. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6196–6213.
13. Chang, Y.; Yan, L.; Zhong, S. Hyper-laplacian regularized unidirectional low-rank tensor recovery for multispectral image

denoising. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR): Hawaii, USA, 2017;
pp. 4260–4268.

14. Xie, T.; Li, S.; Sun, B. Hyperspectral Images Denoising via Nonconvex Regularized Low-Rank and Sparse Matrix Decomposition.
IEEE Trans. Image Process. 2020, 29, 44–56, doi:10.1109/TIP.2019.2926736.

15. Zhang, H.; He, W.; Zhang, L.; Shen, H.; Yuan, Q. Hyperspectral image restoration using low-rank matrix recovery. IEEE Trans.
Geosci. Remote Sens. 2013, 52, 4729–4743.

16. Wang, M.; Wang, Q.; Chanussot, J.; Li, D. Hyperspectral Image Mixed Noise Removal Based on Multidirectional Low-Rank
Modeling and Spatial–Spectral Total Variation. IEEE Trans. Geosci. Remote Sens. 2020, 59, 488–507.

17. Zhuang, L.; Fu, X.; Ng, M.K.; Bioucas-Dias, J.M. Hyperspectral Image Denoising Based on Global and Nonlocal Low-Rank
Factorizations. IEEE Trans. Geosci. Remote. Sens. 2021, doi: 10.1109/TGRS.2020.3046038.

18. He, W.; Yao, Q.; Li, C.; Yokoya, N.; Zhao, Q. Non-Local Meets Global: An Integrated Paradigm for Hyperspectral Denoising. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019; pp. 6868–6877.

19. Zhuang, L.; Gao, L.; Zhang, B.; Fu, X.; Bioucas-Dias, J.M. Hyperspectral image denoising and anomaly detection based on
low-rank and sparse representations. IEEE Trans. Geosci. Remote. Sens. 2020, doi: 10.1109/TGRS.2020.3040221.

20. Lin, J.; Huang, T.Z.; Zhao, X.L.; Jiang, T.X.; Zhuang, L. A Tensor Subspace Representation-Based Method for Hyperspectral Image
Denoising. IEEE Trans. Geosci. Remote. Sens. 2020, 59, 7739–7757, doi:10.1109/TGRS.2020.3032168.

21. Zheng, Y.B.; Huang, T.Z.; Zhao, X.L.; Chen, Y.; He, W. Double-factor-regularized low-rank tensor factorization for mixed noise
removal in hyperspectral image. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8450–8464.

22. Cao, C.; Yu, J.; Zhou, C.; Hu, K.; Xiao, F.; Gao, X. Hyperspectral image denoising via subspace-based nonlocal low-rank and
sparse factorization. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 973–988.

23. Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image
Denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155, doi:10.1109/TIP.2017.2662206.

24. Zhang, K.; Zuo, W.; Zhang, L. FFDNet: Toward a fast and flexible solution for CNN-based image denoising. IEEE Trans. Image
Process. 2018, 27, 4608–4622.

25. Guo, S.; Yan, Z.; Zhang, K.; Zuo, W.; Zhang, L. Toward Convolutional Blind Denoising of Real Photographs. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR): Long Beach, USA, 2019; pp. 1712–1722,
doi:10.1109/CVPR.2019.00181.

26. Zhang, Q.; Yuan, Q.; Li, J.; Liu, X.; Shen, H.; Zhang, L. Hybrid noise removal in hyperspectral imagery with a spatial-spectral
gradient network. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7317–7329.

27. Chang, Y.; Yan, L.; Fang, H.; Zhong, S.; Liao, W. HSI-DeNet: Hyperspectral Image Restoration via Convolutional Neural Network.
IEEE Trans. Geosci. Remote Sens. 2019, 57, 667–682, doi:10.1109/TGRS.2018.2859203.

28. Zhang, Q.; Yuan, Q.; Li, J.; Sun, F.; Zhang, L. Deep spatio-spectral Bayesian posterior for hyperspectral image non-i.i.d. noise
removal. ISPRS J. Photogramm. Remote Sens. 2020, 164, 125–137, doi:10.1016/j.isprsjprs.2020.04.010.

29. Venkatakrishnan, S.V.; Bouman, C.A.; Wohlberg, B. Plug-and-Play priors for model based reconstruction. In Proceedings of the
2013 IEEE Global Conference on Signal and Information Processing, 2013; pp. 945–948, doi:10.1109/GlobalSIP.2013.6737048.

30. Chan, S.H.; Wang, X.; Elgendy, O.A. Plug-and-play ADMM for image restoration: Fixed-point convergence and applications.
IEEE Trans. Comput. Imaging 2016, 3, 84–98.

31. Romano, Y.; Elad, M.; Milanfar, P. The little engine that could: Regularization by denoising (RED). SIAM J. Imaging Sci. 2017,
10, 1804–1844.

32. Zhuang, L.; Ng, M.K. Hyperspectral Mixed Noise Removal By `1-Norm-Based Subspace Representation. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 2020, 13, 1143–1157, doi:10.1109/JSTARS.2020.2979801.

33. Simoes, M.; Bioucas-Dias, J.; Almeida, L.B.; Chanussot, J. A convex formulation for hyperspectral image superresolution via
subspace-based regularization. IEEE Trans. Geosci. Remote Sens. 2014, 53, 3373–3388.



Remote Sens. 2021, 13, 4098 23 of 23

34. Li, J.; Bioucas-Dias, J.M.; Plaza, A. Spectral-Spatial Hyperspectral Image Segmentation Using Subspace Multinomial Logistic
Regression and Markov Random Fields. IEEE Trans. Geosci. Remote Sens. 2012, 50, 809–823, doi:10.1109/TGRS.2011.2162649.

35. Gao, L.; Li, J.; Khodadadzadeh, M.; Plaza, A.; Zhang, B.; He, Z.; Yan, H. Subspace-Based Support Vector Machines for
Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 349–353, doi:10.1109/LGRS.2014.2341044.

36. Zhuang, L.; Lin, C.; Figueiredo, M.A.T.; Bioucas-Dias, J.M. Regularization Parameter Selection in Minimum Volume Hyperspectral
Unmixing. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9858–9877, doi:10.1109/TGRS.2019.2929776.

37. Bioucas-Dias, J.M.; Nascimento, J.M.P. Hyperspectral Subspace Identification. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2435–2445,
doi:10.1109/TGRS.2008.918089.

38. Afonso, M.V.; Bioucas-Dias, J.M.; Figueiredo, M.A. An augmented Lagrangian approach to the constrained optimization
formulation of imaging inverse problems. IEEE Trans. Image Process. 2010, 20, 681–695.

39. Afonso, M.; Bioucas-Dias, J.; Figueiredo, M. Fast image recovery using variable splitting and constrained optimization. IEEE
Trans. Image Process. 2010, 19, 2345–2356.

40. Eckstein, J.; Bertsekas, D.P. On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone
operators. Math. Program. 1992, 55, 293–318.

41. Combettes, P.; Patric, J.C. Proximal splitting methods in signal processing. In Fixed-Point Algorithms for Inverse Problems in Science
and Engineering; Springer: Berlin/Heidelberg, Germany, 2011; pp. 185–212.

42. Figueiredo, M.A.; Bioucas-Dias, J.M. Restoration of Poissonian images using alternating direction optimization. IEEE Trans.
Image Process. 2010, 19, 3133–3145.

43. Teodoro, A.M.; Bioucas-Dias, J.M.; Figueiredo, M.A. A convergent image fusion algorithm using scene-adapted Gaussian-
mixture-based denoising. IEEE Trans. Image Process. 2018, 28, 451–463.

44. Dian, R.; Li, S.; Kang, X. Regularizing hyperspectral and multispectral image fusion by CNN denoiser. IEEE Trans. Neural
Networks Learn. Syst. 2021, 32, 1124–1135.

45. Gao, L.; Du, Q.; Zhang, B.; Yang, W.; Wu, Y. A comparative study on linear regression-based noise estimation for hyperspectral
imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 488–498.

46. Bioucas-Dias, J.M.; Plaza, A.; Camps-Valls, G.; Scheunders, P.; Nasrabadi, N.M.; Chanussot, J. Hyperspectral Remote Sensing
Data Analysis and Future Challenges. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–36, doi:10.1109/MGRS.2013.2244672.

47. Altmann, Y.; Pereyra, M.; Bioucas-Dias, J.M. Collaborative sparse regression using spatially correlated supports-application to
hyperspectral unmixing. IEEE Trans. Image Process. 2015, 24, 5800–5811.

48. He, W.; Zhang, H.; Zhang, L.; Shen, H. Hyperspectral image denoising via noise-adjusted iterative low-rank matrix approximation.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3050–3061.

49. Aggarwal, H.K.; Majumdar, A. Hyperspectral image denoising using spatio-spectral total variation. IEEE Geosci. Remote Sens.
Lett. 2016, 13, 442–446.

50. Chang, Y.; Yan, L.; Wu, T.; Zhong, S. Remote sensing image stripe noise removal: From image decomposition perspective. IEEE
Trans. Geosci. Remote Sens. 2016, 54, 7018–7031.

51. Golub, G.H.; Reinsch, C. Singular value decomposition and least squares solutions. In Linear Algebra; Springer: Berlin/Heidelberg,
Germany, 1971; pp. 134–151.

52. Wright, J.; Ganesh, A.; Rao, S.; Peng, Y.; Ma, Y. Robust principal component analysis: Exact recovery of corrupted low-rank
matrices via convex optimization. Adv. Neural Inf. Process. Syst. 2009, 58, 2080–2088.

53. Nascimento, J.; Dias, J. Vertex component analysis: A fast algorithm to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens.
2005, 43, 898–910.

54. Bioucas-Dias, J.M.; Figueiredo, M. Alternating direction algorithms for constrained sparse regression: Application to hyperspectral
unmixing. In Proceedings of the 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote
Sensing (WHISPERS): Reykjavík, Iceland, 2010; pp: 1-4.


	Introduction
	Related Work
	Contributions

	Problem Formulation
	Observation Model
	Subspace Representation of HSIs
	Subspace Learning against Mixed Noise
	Outlier Removal Using Hampel Filtering
	Subspace Identification

	Fast Eigenimage Learning
	Objective Function
	Solver
	Plug-and-Play Prior, ()

	HSI Recovery

	Model Extension to Non-i.i.d. Gaussian Noise
	Experiments with Simulated Images
	Simulation of Noisy Images and Comparisons
	Simulation of Noisy Images
	Comparisons

	Mixed Noise Removal
	Subspace Learning against Mixed Noise
	Analysis of Regularization Parameters
	Numerical Convergence of the HySuDeep
	Application in Hyperspectral Unmixing

	Experimental Results for Real Images
	Hyperion Cuprite Dataset
	Tiangong-1 Dataset

	Conclusions
	References

