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Abstract: In recent years, discriminative correlation filter (DCF)-based trackers have made consid-
erable progress and drawn widespread attention in the unmanned aerial vehicle (UAV) tracking
community. Most existing trackers collect historical information, e.g., training samples, previous
filters, and response maps, to promote their discrimination and robustness. Under UAV-specific track-
ing challenges, e.g., fast motion and view change, variations of both the target and its environment in
the new frame are unpredictable. Interfered by future unknown environments, trackers that trained
with historical information may be confused by the new context, resulting in tracking failure. In this
paper, we propose a novel future-aware correlation filter tracker, i.e., FACF. The proposed method
aims at effectively utilizing context information in the new frame for better discriminative and robust
abilities, which consists of two stages: future state awareness and future context awareness. In the
former stage, an effective time series forecast method is employed to reason a coarse position of
the target, which is the reference for obtaining a context patch in the new frame. In the latter stage,
we firstly obtain the single context patch with an efficient target-aware method. Then, we train a
filter with the future context information in order to perform robust tracking. Extensive experimen-
tal results obtained from three UAV benchmarks, i.e., UAV123_10fps, DTB70, and UAVTrack112,
demonstrate the effectiveness and robustness of the proposed tracker. Our tracker has comparable
performance with other state-of-the-art trackers while running at ∼49 FPS on a single CPU.

Keywords: visual tracking; unmanned aerial vehicle; discriminative correlation filter; future awareness;
context learning; time series forecast

1. Introduction

Visual object tracking is a popular but challenging task in the domain of multime-
dia and computer vision. Given a video sequence, the task is to precisely estimate the
position of the target of interest. With the popularity of unmanned aerial vehicles (UAVs),
visual tracking applied for UAV platforms has attracted extensive attention, e.g., public
security [1], disaster investigation [2], and remote sensor mounting [3]. Although this
technique has acquired impressive progress, its performance is unsatisfactory when the
target undergoes UAV-specific tracking challenges, such as viewpoint change, fast motion,
and low resolution.

There are two main streams in visual tracking community: DCF-based trackers [4–7] and
Siamese-based trackers [8]. Although Siamese-based trackers achieved impressive tracking
performance using a GPU or GPUs, the complex calculation of the deep network inevitably
brings large energy loss to the mobile platform such as UAVs. DCF-based trackers [9,10] is
one of the most suitable choices for source-limited UAV platforms because of their balanced
accuracy and speed as well as low cost. However, using synthesized training samples [11]
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for training inevitably impedes the discriminative power of the filter, that is, boundary
effects. In the literature, in order to solve this problem, many attempts have been conducted
to enhance filter discrimination for the target and its environment, such as fixed or adaptive
spatial regularization [12–15] and context learning [16–18]. For context learning, these
methods [16–18] suppress the response of context patch in multiple directions to zero, thus
achieving effective performance improvement. Nevertheless, multiple context patches
may introduce irrelevant background noise, resulting in a suboptimal filter. Moreover, the
feature extraction of these patches, especially when using deep features [18], hinders the
real-time ability of trackers with context learning.

Moreover, traditional DCF-based trackers model the filter by virtue of historical infor-
mation, e.g., accumulated training samples [4,11–15], previously generated filters [5,19,20],
or response maps [21–23]. Although DCF-based trackers benefit from prevenient clues,
this paradigm may fail to deal well with complex and changeable UAV tracking challenges,
such as fast motion and viewpoint change. In these cases, both the volatile environment
and the target appearance changes bring about severe uncertainties. It has been proved that
the information in the future frame [20] has played a vital role in improving adaptability
of the tracker. In [20], the object observation in the next frame is predicted by exploring
spatial-temporal similarities of the target change in consecutive frames. Then, it is inte-
grated with historical samples to form a more robust object model. However, this similarity
assumption is not always valid for UAV object tracking because of the complex changeable
nature of UAV tracking scenarios.

With respect to the above concerns, we propose a two-stage correlation filter tracker
that can efficiently exploit the contextual information of the upcoming frame. The achieve-
ment of this purpose depends on two irreversible future-aware stages, i.e., future state
awareness and future context awareness. The former stage is for predicting the spatial
location change of the target in the upcoming frame, and the latter is for suppressing
distractions caused by future complex background while enhancing filter discriminative
power. In the first stage, when a new frame is coming, the simple yet effective single
exponential smoothing forecast method [24] is used to predict a coarse target position.
In the latter stage, we employ an efficient mask generation method to segment a single
context patch based on the coarse position. Then, the segmented contextual information
is incorporated into the training phase for discrimination improvement. Lastly, the more
powerful filter rectifies the prediction error of the first stage. We perform comprehensive
experiments on three challenging UAV benchmarks, i.e., DTB70 [25], UAV123_10fps [26],
and UAVTrack112 [27]. The results confirm that the proposed tracker has superiority in
terms of accuracy and speed compared with 29 other state-of-the-art trackers. Figure 1
shows the overall performance of all trackers on DTB70 [25] benchmark. Clearly, our
tracker has comparable performance against other trackers while maintaining real-time
speed on a single CPU, which demonstrates that the FACF tracker is suitable for real-time
UAV applications.

The main contributions are summarized as follows:

• A coarse-to-fine DCF-based tracking framework is proposed to exploit the context
information hidden in the frame that is to be detected;

• Single exponential smoothing forecast is used to provide a coarse position, which is
the reference for acquiring a context patch;

• We obtain a single future-aware context patch through an efficient target-aware mask
generation method without additional feature extraction;

• Experimental results on three UAV benchmarks verify the advancement of the proposed
tracker. Our tracker can maintain real-time speed in real-world tracking scenarios.

The remainder of this paper is organized as follows: Section 2 generalizes the most
relevant works; Sections 3 introduces the baseline tracker; Section 4 details the proposed
method; Section 5 exhibits extensive and comprehensive experiments; and Section 6 pro-
vides a brief summary of this work.
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Figure 1. Overall performance based on area under curve (AUC) and distance precision (DP) between
the proposed FACF tracker and 29 other state-of-the-art trackers on DTB70 [25] benchmark. AUC
and DP are two metrics for evaluating tracking accuracy for which its detailed explanation is in
Section 5. The legend provides detailed speed values of each tracker. The superscript ∗ represents
the GPU-based tracker.

2. Related Works

In this section, we briefly discuss the most related trackers, including DCF-based
trackers, trackers with context learning, trackers with future information, and trackers
for UAVs.

2.1. DCF-Based Trackers

DCF-based trackers formulate the tracking task as a ridge regression problem, with
the view of training a filter to distinguish the target from the background. The use of
a cyclic matrix and calculation in the Fourier domain simplifies the filter optimization
process. Recently, many methods were proposed for improving tracking accuracy from
different aspects. These methods include kernel tricks [11], scale estimation [6,28,29],
mitigation of boundary effects [12–15], solutions for temporal degradation [5,19], training-
set management [7,30], more powerful feature representation [7,11,31–33], and consequent
feature de-redundancy [19,34,35]. In general, these above methods collect historical known
information to predict future unknown target states. Future information is not considered
to be utilized for raising the robustness and adaptability of the tracker.

2.2. Trackers with Context Learning

In the literature, context learning is one of the most efficacious strategies for discrimi-
nating the enhancement of the filter. Mueller et al. [16] proposed a novel context-aware
DCF-based tracker (CACF). They used multiple regularization terms to repress the response
of context patches in four directions around the target. Later, different trackers [17,18,36]
equipped with context learning all received significant performance improvement. In de-
tail, Fu et al. [17] selected more reasonable surrounding samples according to the position
and scale of the tracked object. Based on CACF [16], Yan et al. [36] cropped four context
patches on the basis of the location of distractors response generated in the last frame. To
repress context noise more adequately, Li et al. [18] considered the context samples located
at the four corners. Moreover, to avoid frame-by-frame learning, they proposed a periodic
key frame selection method for context learning and used temporal regularization to retain
the discrimination for background interference. These methods mentioned above are all
limited to heavy feature extraction of context samples, especially when using deep features.
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In addition, it is easy for these methods to introduce background noise outside of the search
region. Different from the methods mentioned above, our work produces a context-aware
mask to segment a single pixel-level context sample, which can drastically increase speed
and evade unrelated interference while boosting performance remarkably.

2.3. Trackers with Future Informarion

Most trackers [12–18,21–23,34,36,37] based on the DCF framework update the target
appearance model with a fixed online learning rate through historical observations. Then,
the filter trained with the appearance model is used for predicting the target state in the
upcoming frame. By mining temporal-spatial similarities in consecutive video sequences,
Zhang et al. [20] predicted a target observation of the next frame and incorporated it into
the target model with a large learning rate. It can improve the adaptation of the model to
target appearance variations, thus promoting tracking performance. This method implies
that the change rate of the target appearance is constant. However, it is not always valid, as
there often exists fast motion and viewpoint change in most UAV tracking cases. Different
from the similarity assumption [20] for obtaining future information, we predicted a coarse
position based on single exponential smoothing forecast. Based on this position, a true
context patch sample in the next frame is efficiently segmented for context learning.

2.4. Trackers for UAVs

DCF-based trackers [10] are gradually becoming the most pervasive tracking paradigm
in the UAV tracking community due to their high efficiency. In the real-world UAV object
tracking process, low resolution, fast object motion, and viewpoint change pose extreme
challenges. With respect to these issues, a large number of works are proposed for better
tracking performance. They can mainly be divided into following strategies: spatial
attention mechanism, adaptive regression label, and temporal consistency. Concretely, in
contrast to the fixed spatial attention in [12], later works [23,38] proposed a dynamic spatial
attention mechanism using target salient information or response variations. Different
from traditional predefined label, References [39,40] generate an adaptive regression label
to repress the distractors. On the other hand, References [21,41] keep temporal consistency
at the responselevel, which largely improves positioning accuracy. With the exception of
the above works, there also exists work [42] that focuses on adaptive templates and model
updates by using cellular automata and high confidence assessment. Recently, some light-
weight Siamese-based trackers [27,43,44] are designed for UAV object tracking, such as
SiamAPN++ [27] and MultiRPN-DIDNet [44]. All the above-mentioned works ignore the
threat posed by the rapid context changes in real-world UAV tracking. By incorporating the
future contextual information into filter learning, the proposed tracker with handcrafted
features is more discriminative to the scene changes of UAV object tracking.

3. Revisit BACF

In this section, we review the BACF [13] tracker, which is the baseline in this work. To
mitigate the problem of boundary effects, background-aware correlation filter (BACF) [13]
enlarges the search region and introduces a binary matrix B ∈ RM×N(M�N) to crop more
complete negative samples, which largely improves tracking performance. In this work, we
select the BACF tracker as the baseline. Given the vectorized desired response y ∈ RN×1

and the vectorized training samples of each channel xd ∈ RN×1, the filter w in the current
frame f can be obtained by minimizing the following objective:

ε(w f ) =
1
2

∥∥∥∥∥ D

∑
d=1

Bxd
f ~ wd

f − y

∥∥∥∥∥
2

2

+
λ

2

D

∑
d=1

∥∥∥wd
f

∥∥∥2

2
, (1)

where λ is the filter regularization parameter, and D is the total number of channels. ~
represents the correlation operator.
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Unfortunately, a large number of real negative samples inevitably introduce back-
ground noise, which results in insufficient discrimination of the tracker, especially when
distractors appear in the future frame.

4. Proposed Approach

In this section, we first carefully analyze the existing problems. Then, we introduce
the proposed method, including two stages: future state awareness and future context
awareness. Lastly, the complete tracking procedure is detailed.

4.1. Problem Formulation

In the tracking process of DCF-based trackers, the filter learned in the current frame is
used to localize the object in the upcoming frame. Variations of the tracked object and its
surroundings in the new frame are unforeseeable. The interference of surroundings, along
with the boundary effects, may result in tracking drift. Many trackers [16–18,36] exploit
current context patches surrounding the tracked object to enhance the discrimination power.
However, this strategy cannot ensure robustness when facing unpredictable background
variations in the new frame.

Usually, DCF-based trackers use a padding object patch, which contains certain
context information, and its corresponding Gaussian label for filter training. It is expected
that the response within the target region is a Gaussian shape while the response in the
background region tends to zero. For trackers [16,18] with context learning, they obtain
context information by cropping several context patches around the target and then exploits
context regularization terms to restrain the response of context patches to zero. As shown
in the top figure in Figure 2, context patches (blue dotted box) are the same size as the
object patch (yellow dotted box). Therefore, these context patches may include the target
of interest, which is contradictory to the regression term. Moreover, this strategy brings
heavy calculation burden and redundancy. On the one hand, context patches need to be
cropped and to extract features separately. On the other hand, context patches contain a
large percentage of the overlap region, which is not efficient.

m 1- m

Object Patch Context PatchObject Bounding Box

Figure 2. Different strategies of obtaining context patch. Top: traditional method. Bottom: our
efficient method.

With respect to these concerns, we tried to utilize context information in the upcoming
frame for filter training, which aims to cope with unpredictable background variations. In
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addition, designing an efficient method to obtain the context patch is another goal of this
work. Inspired from two-stage detectors [45,46], we propose a coarse-to-fine search strategy
to improve localization precision. The pipeline of the proposed tracker is shown in Figure 3.
Specifically, preliminary prediction of the object location is performed to precisely segment
contextual pixels in the new frame. Then, the future-aware filter trained with future context
information corrects the prediction bias in order to obtain the final prediction.
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Figure 3. Tracking process of the proposed FACF tracker, which consists of two stages: future state awareness and future
context awareness. Future state awareness: when a new frame is upcoming, we used the single exponential smoothing
forecast to obtain a coarse target position. Future context awareness: we extract feature maps of the predicted region with
the coarse position. Next, the feature maps are multiplied by the context mask to obtain the feature of the single context
patch, which is then fed into filter training phase. Finally, the outputted filter performs target localization on the feature
maps of the predicted region.

4.2. Stage One: Future State Awareness

From another perspective, the task of visual tracking is to predict target displacement
in subsequent sequences. Normally, the motion state of the target within a certain time
interval is approximately unchanged. Based on this assumption, we use a simple and effec-
tive time series forecasting method, i.e., single exponential smoothing forecast (SESF) [24],
to roughly estimate the displacement of the target in the new frame. Let us assume that
the true displacement vector (estimated by the filter) ∆t

f = [∆xt
f , ∆yt

f ] of the f -th frame is

given, the predicted displacement (estimated by SESF) ∆p
f+1 in the ( f + 1)-th frame can be

obtained by following formula:



Remote Sens. 2021, 13, 4111 7 of 21

∆p
f+1 = α∆t

f + (1− α)∆p
f , (2)

where ∆p
f is the predicted displacement vector in the f -th frame. [∆x, ∆y] represents the

displacement deviation in the x and y direction. α is the smoothing index. So far, we can
obtain the initial prediction Pp

f+1 of the target position in the next frame:

Pp
f+1 = Pt

f + ∆p
f+1, (3)

where Pt
f denotes the estimated position by the filter in the f -th frame. As shown in Figure 4,

we provide some examples to verify the effectiveness of single exponential smoothing
forecast for the initial prediction. We compare the center location error (CLE) of the initial
and final prediction by the SESF module and our filter, respectively. In some cases, the
initial prediction is more accurate than the final prediction.
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Figure 4. Center location error (CLE) comparison of the single exponential smoothing forecast
method (SESF) and the proposed tracker (FASF) on three challenging seqeuences. From top to bottom
are (a) Car5 from DTB70 [25], (b) wakeboard7 from UAV123_10fps [26], and (c) air conditioning box1
from UAVTrack112 [27].

Next, the methods for using future context information and obtaining the final position
Pt

f+1 on the basis of the result of single exponential smoothing forecasts will be discussed.

4.3. Stage Two: Future Context Awareness
4.3.1. Fast Context Acquisition

Usually, previous context learning methods [16–18] are limited to tedious feature
extraction of context patches in multiple directions, which also increase the computation
complexity of filter training. Moreover, context information outside of the search region
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may introduce unnecessary information into the model. Furthermore, previous methods
use the current context information for discrimination enhancement, which cannot deal
with the unpredictable changes in the new frame, such as the appearance of similar targets
or sudden viewpoint change.

While most trackers [14,47] strive to improve focus on the target through mask gen-
eration methods, we take an alternative approach. As shown in the bottom figure of
Figures 2 and 3, when a new frame is coming, we first obtain the coarse object patch with
initial prediction Pp

f . Then, we use an efficient and effective mask generation method [47]
to acquire the mask m of the target. Finally, the context-aware mask (1−m) is used to
segment a single context patch based on the coarse object patch. In practice, we directly
segment the features of the context patch after obtaining the features of the predicted patch
for efficiency. The coarse object patch is regarded as the new search region to correlate with
the filter. Then, we can acquire the final prediction.

4.3.2. Filter Training

Based on BACF [13], we incorporate future context information in the pixel-level into
the training phase. The objective function of the proposed tracker is expressed as follows:

ε(w f ) =
1
2

∥∥∥∥∥ D

∑
d=1

Bxd
f ~ wd

f − y

∥∥∥∥∥
2

2

+
λ

2

D

∑
d=1

∥∥∥wd
f

∥∥∥2

2

+
γ

2

∥∥∥∥∥ D

∑
d=1

Bxd
c, f+1 ~ wd

f

∥∥∥∥∥
2

2

,

(4)

where xc, f+1 = xp
f+1 � (1−m) represents the surrounding context of the sought object

in the upcoming frame ( f + 1), and � is the dot product operator. γ is the context
regularization parameter.

Denoting auxiliary variable hd = BTwd ∈ RN×1, Equation (4) can be rewritten
as follows.

ε(w f , h f ) =
1
2

∥∥∥∥∥ D

∑
d=1

xd
f ~ hd

f − y

∥∥∥∥∥
2

2

+
λ

2

D

∑
d=1

∥∥∥wd
f

∥∥∥2

2

+
γ

2

∥∥∥∥∥ D

∑
d=1

xd
c, f+1 ~ hd

f

∥∥∥∥∥
2

2

.

(5)

After converting Equation (5) to the Fourier domain, the augmented Largrangian form
of Equation (5) is expressed as follows:

ε(w f , ĥ f , ζ̂ f ) =
1
2

∥∥∥∥∥ D

∑
d=1

x̂d
f � ĥd

f − ŷ

∥∥∥∥∥
2

2

+
λ

2

D

∑
d=1

∥∥∥wd
f

∥∥∥2

2

+
γ

2

∥∥∥∥∥ D

∑
c=1

x̂d
c, f+1 � ĥd

f

∥∥∥∥∥
2

2

+
D

∑
d=1

(ĥd
f −
√

NFBTwd
f )

Tζ̂d
f

+
µ

2

D

∑
d=1

∥∥∥ĥd
f −
√

NFBTwd
f

∥∥∥2

2
,

(6)

where ˆ is the Discrete Fourier Transformation (DFT). ζ̂ f = [ζ̂1T
f , ζ̂2T

f , . . . , ζ̂DT
f ] ∈ RND×1

and µ are the Largrangian vector and a penalty factor, respectively.
Then, the ADMM [48] algorithm is adopted to optimize Equation (6) by alternately

solving the following three subproblems. Each subproblem has its own closed-form solution.
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Subproblem w:

w∗f =
λ

2

D

∑
d=1

∥∥∥wd
f

∥∥∥2

2
+

D

∑
d=1

(ĥd
f −
√

NFBTwd
f )

Tζ̂d
f

+
µ

2

D

∑
d=1

∥∥∥ĥd
f −
√

NFBTwd
f

∥∥∥2

2
.

(7)

The solution of Equation (7) can be solved in the following spatial domain:

w∗f =
ζ f + µh f

λ/N + µ
, (8)

where ζ f and h f can be obtained, respectively, by the inverse Fourier Transform, i.e.,
ζ f =

1√
N

BFTζ̂ f and h f =
1√
N

BFTĥ f .

Subproblem ĥ f :

ĥ∗f =
1
2

∥∥∥∥∥ D

∑
d=1

x̂d
f � ĥd

f − ŷ

∥∥∥∥∥
2

2

+
γ

2

∥∥∥∥∥ D

∑
c=1

x̂d
c, f+1 � ĥd

f

∥∥∥∥∥
2

2

+
D

∑
d=1

(ĥd
f −
√

NFBTwd
f )

Tζ̂d
f +

µ

2

D

∑
d=1

∥∥∥ĥd
f −
√

NFBTwd
f

∥∥∥2

2
.

(9)

Since Equation (9) has element-wise dot product operation, we try to process the pixels
on same location in order to decrease its nigh computational complexity. Equation (9) can
be reformulated as follows.

ĥ f (n)∗ =
1
2

∥∥∥x̂ f (n)Tĥ f (n)− ŷ(n)
∥∥∥2

2
+

γ

2

∥∥∥x̂c, f+1(n)Tĥ f (n)
∥∥∥2

2

+ (ĥ f (n)−w f (n))Tζ̂ f (n) +
µ

2

∥∥∥ĥ f (n)−w f (n))
∥∥∥2

2
.

(10)

Take the derivative of Equation (10) with respect to ĥ f (n) and set the result equal to
zero, we can obtain the following.

ĥ f (n)∗ =
(

x̂ f (n)x̂ f (n)T + γx̂c, f+1(n)x̂c, f+1(n)T + µNID

)−1

(
x̂ f (n)ŷ(n)−Nζ̂ f + µNŵ f (n)

)
.

(11)

In Equation (11), there exist matrix inversion, which is computationally heavy. With
the assumption that x̂ f (n)x̂ f (n)T + γx̂c, f+1(n)x̂c, f+1(n)T = ∑1

a=0 Sax̂a(n)Tx̂a(n) (where
S0 = 1 and S1 = γ, x̂0(n) = x̂ f (n) and x̂1(n) = x̂c, f+1(n)), the Sherman–Morrison [49]
formula can be applied to accelerate computation. For convenience, we denote that
b = µN + ∑1

a=0 Sax̂a(n)Tx̂a(n), ŝp(n) = ∑1
a=0 Sax̂a(n)Tx̂ f (n). Then, Equation (11) can be

converted into the following.

ĥ f (n)∗ =
1

µN

(
x̂ f (n)ŷ(n)−Nζ̂ f + µNŵ f (n)

)
− ∑1

a=0 Sax̂a(n)
µb(

1
N

ŝp(n)ŷ(n)−
1

∑
a=0

x̂a(n)Tζ̂(n) + µ
1

∑
a=0

x̂a(n)Tŵ f (n)

)
.

(12)

The Lagrangian parameter ζ̂ is described as follows:

ζ̂(i+1) = ζ̂(i) + µ(ĥ(i) − ŵ(i)), (13)
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where (i) and (i + 1) represent the (i)-th and (i + 1)-th iteration, respectively. The penalty
fator µ is updated as µ(i+1) = min(µmax, δµ(i)).

4.3.3. Object Detection

The final object position can be estimated through the peak of the generated response
map R. Given the predicted patch x̂p

f+1 and the trained filter ĥ f , the response map in frame
f + 1 can be obtained by the following:

R f+1 = F−1

(
D

∑
d=1

x̂p,d
f+1 � ĥd

f

)
, (14)

where F−1 represents the inverse Fourier Transform (IFT). The biggest difference between
our tracker and all previous trackers is that it contains future context information, resulting
in more robustness relative to uncertain environment change.

4.3.4. Model Update

The object appearance model is updated by using linear weighted combination frame-
by-frame:

x̂M
f = (1− β)x̂M

f−1 + βx̂o
f , (15)

where x̂M represents the object models, and x̂o
f is the training sample of the current frame.

β is the online learning rate.

4.4. Tracking Procedure

In this work, we train the scale filter [6] to estimate the scale variation. The complete
tracking procedure of our tracker is shown in Algorithm 1.

Algorithm 1: FACF Tracker
Input: A video sequence with F frames.

The position P1 and scale S1 of the target in the
first frame I1.

Output: The position Pf and scale S f of the target in subsequent frames I f , f > 1.
1 for frame f = 1 to end do
2 if f > 1 then
3 Stage I: Future state awareness
4 Obtain the initial position Pp

f using Equations (2) and (3).
5 Stage II: Future context awareness
6 Training phase:
7 Extract feature xp

f of the search patch with position Pp
f and scale S f−1 and

then obtain the context feature xc, f .
8 Learn the filter ĥ f using the context information of the upcoming frame

with Equation (12).
9 Detection phase:

10 Generate the response map R f with xp
f and ĥ f using Equation (14).

11 Obtain the final object position Pt
f (Pf ) via the response map R f and

estimate the scale S f .
12 Return Pf and S f .
13 end
14 Update object appearance model xM

f using Equation (15).
15 end
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5. Experiments

In this section, we perform extensive and comprehensive experiments on three chal-
lenging UAV benchmarks. First, we introduce the detailed experimental settings, including
parameters, benchmarks, metrics, and platform. Next, we compare our tracker with
29 other state-of-the-art trackers with handcrafted or deep features. Then, we verify the
rationality of the parameters and the effectiveness of each component. Afterward, different
context learning strategies are analyzed. The last subsection provides some failure cases of
the proposed tracker.

5.1. Implementation Details
5.1.1. Parameters

Our tracker uses Hog, CN, and Grayscale features for object representation. We use
two ADMM iterations to train the filter. The learning rate β of the model update is set to
0.019, and the context regularization parameter is chosen as γ = 0.009. The smoothing
index α is set to 0.88. During the entire experiment, the parameters of the proposed tracker
remain unchanged. The other trackers used for comparison retain their initial parameter
setting. The code of our tracker is available at https://github.com/FreeZhang96/FACF,
accessed on 10 September 2021.

5.1.2. Benchmarks

Experiments are conducted on three well-known UAV benchmarks involving DTB70 [25],
UAV123_10fps [26], and the recent built UAVTrack112 [27]. These benchmarks have
305 video sequences in total, which are captured on UAV platforms.

5.1.3. Metrics

We use the one pass evaluation (OPE) norm to test all trackers. Evaluations of tracking
accuracy are based on IoU and CLE. IoU (the Intersection Over Union) refers to the
intersection of the bounding boxes between the prediction and groundtruth. CLE (Center
Location Error) denotes the location error (pixels) between the predicted center location
and the true location. When IoU or CLE exceeds a given threshold, the tracking results
are deemed successful. If we set different thresholds (IoU ∈ [0, 1] and CLE ∈ [0, 50]), we
can obtain the success plots and precision plots. The area under the curve (success plots)
is denoted as AUC. DP (Distance Precision) represents the score in precision plots when
CLE = 20 pixels. FPS (Frame Per Second) is used for speed measurement of each tracker.

5.1.4. Platform

All experiments are carried out using Matlab2019b. The experimental platform is a
PC with an Intel(R) Core(TM) i7-9750H CPU (2.60 GHz), 32 GB RAM, and a single RTX
2060 GPU.

5.2. Performance Comparison
5.2.1. Comparison With Handcrafted-Based Trackers

In this part, we comprehensively compare our tracker with other 16 state-of-the-
art handcrafted trackers, i.e., STRCF [5], SAMF [28], KCF [11], DSST [6], ECO_HC [7],
Staple [50], KCC [29], SAMF_CA [16], ARCF [21], AutoTrack [23], SRDCF [12], MCCT_H [37],
CSRDCF [14], BACF [13], Staple_CA [16], and SRDCFdecon [30].

Overall Evaluation. Precision and success plots of our tracker and other trackers on
all three benchmarks are presented in Figure 5.

DTB70 [25] benchmark contains 50 video sequences with 12 attributes. Our tracker
has the best AUC and DP scores, namely 0.496 and 0.727, respectively. The AUC and DP
scores surpass the second excellent tracker AutoTrack [23] 1.8% and 1.1%, respectively.

UAV123_10fps [26] is a large benchmark composed of 123 challenging UAV video
sequences. We report the precision and success plots in Figure 5a. The proposed tracker
FACF outperforms other trackers in terms of AUC and DP scores.

https://github.com/FreeZhang96/FACF
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Figure 5. Overall performance comparison of the proposed FACF tracker and other 16 state-of-the-art handcrafted feature-
based trackers on (a) DTB70 [25], (b) UAV123_10fps [26], and (c) UAVTrack112 [27]. First row: precision plots. Second row:
success plots.

UAVTrack112 [27] is a recent newly built benchmark that is collected by DJI Mavic
Air2. This benchmark contains 112 sequences with 13 attributes. From the plots in Figure 5c,
our tracker performs the best with the AUC and DP scores of 0.478 and 0.709, respectively.

Table 1 presents the average AUC, DP, and speed comparison between our tracker
and other handcrafted-based trackers on three benchmarks. In terms of AUC and DP,
our tracker FACF performs best (0.486 and 0.707), followed by AutoTrack [23] (0.473 and
0.694) and ARCF [21] (0.467 and 0.677). The average speed of our FACF tracker can reach
48.816 FPS, which is sufficient for real-time applications.

Attribute-oriented Evaluation. To verify the performance of the proposed tracker
in UAV-specific scenarios, this part provides extensive attribute-based analysis following
attribute categorization in [10]. The new attributes for all benchmarks include VC (camera
motion and viewpoint change), FM (fast motion), LR (low resolution), OCC (partial oc-
clusion and full occlusion), and IV (illumination variation). Following the new attributes,
we take the average AUC/DP score of all attributes (in all benchmarks) belonging to a
new attribute as the final score. For example, as for the DP score of VC, five scores of all
related attributes (camera motion and viewpoint change in both of UAV123_10fps [26] and
UAVTrack112 [27] and fast camera motion in DTB70 [25]) are averaged in order to obtain
the desired result. Table 2 exhibits the average performance of 17 different trackers under
these specific attributes. Our tracker achieves the best AUC and DP scores under the VC,
FM, and LR attributes.
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Table 1. Average performance of all trackers on benchmarks DTB70 [25], UAV123@10fps [26], and UAVTrack112 [27]. Red, green, and blue represent the top three trackers in terms of DP,
AUC, and FPS, respectively.

Tracker FACF AutoTrack ARCF STRCF MCCT-H KCC CSRDCF BACF ECO-HC Staple_CA SAMF_CA Staple SRDCFdecon KCF SRDCF SAMF DSST

Venue - ’20CVPR ’19ICCV ’18CVPR ’18CVPR ’18AAAI ’17CVPR ’17ICCV ’17CVPR ’17CVPR ’17CVPR ’16CVPR ’16CVPR ’15TPAMI ’15ICCV ’14ECCV ’14BMVC
DP 0.707 0.694 0.677 0.579 0.611 0.514 0.657 0.591 0.648 0.579 0.531 0.465 0.550 0.432 0.561 0.503 0.495

AUC 0.486 0.473 0.467 0.441 0.425 0.348 0.448 0.408 0.461 0.399 0.349 0.331 0.391 0.270 0.398 0.0.333 0.318
FPS 48.816 50.263 24.690 25.057 51.743 36.620 11.207 47.710 62.163 44.807 9.220 57.207 6.290 533.250 12.007 10.260 87.777
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Table 2. AUC and DP scores of all trackers under UAV special attributes, including VC, FM, LR, OCC, and IV. Red, green,
and blue denote the top three results.

Tracker

Metric DP AUC

VC FM LR OCC IV VC FM LR OCC IV
FACF 0.707 0.583 0.643 0.580 0.585 0.464 0.382 0.374 0.388 0.390
AutoTrack [23] 0.681 0.549 0.594 0.581 0.573 0.451 0.366 0.349 0.386 0.374
ARCF [21] 0.662 0.555 0.617 0.600 0.593 0.439 0.372 0.366 0.398 0.409
STRCF [5] 0.612 0.480 0.524 0.546 0.470 0.401 0.315 0.300 0.355 0.314
MCCT-H [37] 0.540 0.400 0.472 0.529 0.406 0.355 0.262 0.252 0.332 0.267
KCC [29] 0.494 0.417 0.466 0.496 0.459 0.322 0.271 0.253 0.311 0.295
DSST [6] 0.503 0.396 0.475 0.439 0.429 0.310 0.247 0.249 0.273 0.262
CSRDCF [14] 0.633 0.510 0.607 0.586 0.531 0.411 0.345 0.324 0.371 0.331
BACF [13] 0.625 0.507 0.562 0.527 0.513 0.415 0.336 0.317 0.345 0.348
ECO-HC [7] 0.615 0.505 0.527 0.547 0.559 0.416 0.346 0.294 0.358 0.354
Staple_CA [16] 0.503 0.377 0.425 0.512 0.434 0.332 0.243 0.228 0.327 0.269
SAMF_CA [16] 0.542 0.458 0.505 0.516 0.442 0.360 0.307 0.283 0.331 0.304
Staple [50] 0.447 0.373 0.426 0.430 0.421 0.310 0.263 0.243 0.288 0.283
SRDCFdecon [30] 0.578 0.469 0.542 0.530 0.502 0.384 0.313 0.303 0.342 0.316
KCF [11] 0.376 0.310 0.380 0.363 0.353 0.251 0.227 0.262 0.242 0.240
SRDCF [12] 0.480 0.397 0.385 0.451 0.361 0.322 0.264 0.199 0.286 0.241
SAMF [28] 0.538 0.456 0.499 0.528 0.458 0.340 0.303 0.263 0.334 0.287

Figure 6 provides some detailed success plots of representative attribute-based analy-
sis on different benchmarks. In terms of camera motion, fast motion, and low resolution,
our tracker is in a leading position, surpassing the second place by a large margin. As
shown in Figure 7, we compared the tracking results of the proposed tracker with five other
state-of-the-art on 10 challenging video sequences. These compared trackers are STRCF [5],
BACF [13], ECO_HC [7], AutoTrack [23], and ARCF [21]. In these UAV-specific scenarios
(including VC, LR, and FM), the proposed tracker can achieve robust tracking while other
trackers fail.

5.2.2. Comparison with Deep-based Trackers

Thirteen state-of-the-art deep-based trackers, i.e., LUDT [51], LUDT+ [51], fECO [52],
fDeepSTRCF [52], TADT [53], CoKCF [54], UDT [55], CF2 [56], UDT+ [55], ECO [7], Deep-
STRCF [5], and KAOT [18], are used for comparison. The overall performance of all trackers
on DTB70 benchmarks is shown in Table 3. Our tracker has comparable performance with
respect to other deep-based trackers. In particular, the AUC and DP scores (0.496 and 0.727)
of the proposed tracker rank third and second, respectively. Meanwhile, our tracker FACF
can achieve real-time speed, depending on a single CPU, while other deep-based trackers
use GPU for acceleration.

5.3. Parameter Analysis and Ablation Study
5.3.1. The Impact of Key Parameter

To investigate the impact of key parameters for performance, we perform extensive
experiments on DTB70 [25], UAV123_10fps [26], and UAVTrack112 [27] benchmarks. As
shown in Figures 8 and 9, we only provide the results of the most important parameters,
i.e., the smoothing index α and context regularization parameter γ.
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Figure 6. Attribute-based analysis of the proposed tracker and the other 16 state-of-the-art handcrafted feature-based
trackers on DTB70 [25], UAV123_10fps [26] , and UAVTrack112 [27].
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Figure 7. Visualization of the tracking results between the proposed tracker and 5 other state-of-the-art trackers on 10
challenging sequences. From left to right and from top to bottom are Car2, ChasingDrones, Gull1, and Snowboard-
ing from DTB70 [25]; car13, uav3, and wakeboard from UAV123_10fps [26]; and courier1, electric box,and uav1 from
UAVTrack112 [27].
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Table 3. Performance comparision of the proposed tracker and 13 other deep-based trackers on
DTB70 [25] benchmark. Red, green, and blue represent the top three trackers in terms of DP, AUC
and FPS, respectively. The superscript ∗means GPU spped.

Tracker Venue Type DP AUC FPS

FACF - Hog+CN+Grayscale 0.727 0.496 51.412
KAOT [18] ’21TMM Deep+Hog+CN 0.712 0.482 *14.045
LUDT+ [51] ’21IJCV End-to-end 0.668 0.460 *43.592
LUDT [51] ’21IJCV End-to-end 0.572 0.402 *57.638
fDeepSTRCF [52] ’20TIP Deep+Hog+CN 0.667 0.458 *14.800
fECO [52] ’20TIP Deep+Hog+CN 0.668 0.454 *21.085
TADT [53] ’19CVPR End-to-end 0.693 0.464 *35.314
UDT+ [55] ’19CVPR End-to-end 0.658 0.462 *40.135
UDT [55] ’19CVPR End-to-end 0.602 0.422 *55.621
DeepSTRCF [5] ’18CVPR Deep+Hog+CN 0.734 0.506 *5.816
MCCT [37] ’18CVPR Deep+Hog+CN 0.725 0.484 *8.622
ECO [7] ’17CVPR Deep+Hog 0.722 0.502 *10.589
CoKCF [54] ’17PR Deep 0.599 0.378 *16.132
CF2 [56] ’15ICCV End-to-end 0.616 0.415 *13.962
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Figure 8. Average performance on three benchmarks when the smooth index α varies from 0 to 1.
Top: the curve of AUC score. Bottom: the curve of DP score.
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Figure 9. Average performance on three benchmarks when the context regularization parameter γ

varies from 0 to 0.02. Top: the curve of AUC score. Bottom: the curve of DP score.

Smoothing index α. The smoothing index α ∈ [0, 1] controls the importance of the true
displacement in the current frame for prediction. As for the tracking task, the displacement
of the tracked object in a short time is approximate. Therefore, the value of the smoothing
index is absolutely close to one. In Figure 8, we provide the average AUC and DP scores
when α varies from 0 to 1. When the smoothing index reaches α = 0.88 (red dotted line in
Figure 8), our tracker achieves the best performance in terms of AUC and DP. The result
confirms our analysis, and we select α = 0.88.

Context regularization parameter γ. Figure 9 shows the average AUC and DP scores
on all three benchmarks when the value of context regularization parameter varies from 0
to 0.02 with a step of 0.001. The red dotted line denotes the performance when γ = 0. As γ
increases, AUC and DP reach the maximum value when γ = 0.009. Therefore, this work
selects γ = 0.009.

5.3.2. The Vality of Component

To verify the effectiveness of each component, we develop four trackers equipped with
different components. The average performance of different trackers on three benchmarks
is shown in Figure 10. FACF-FCA denotes the FACF tracker disabled with future context
awareness (FCA). FACF-FSA stands for the FACF tracker without future state awareness
(FSA). FACF-(FSA+FCA) represents the BACF tracker with Hog, CN, and Grayscale fea-
tures (baseline tracker). Clearly, both FSA and FCA modules can improve the tracking
performance. The FSA module is beneficial for obtaining the future context patch as well
as for improving tracking accuracy. Only when based on FSA can FCA contribute to more
accurate tracking.
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Figure 10. Ablation analysis of the proposed FACF tracker on three benchmarks.

5.4. The Strategy for Context Learning

In this part, different context learning methods based on the current or upcoming
frame are compared on DTB70 [25] benchmark. We denote the context learning methods of
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FACF and CACF as FCA and CA, respectively. FACF+CA means the FACF-FCA tracker
with the context learning method in CACF [16]. BACF+CA and BACF+FCA are the baseline
trackers (with Hog, CN, and Grayscales) that are using the context learning strategy in
CACF [16] and FCA in our tracker, respectively. For these trackers, we finetuned the context
regularization parameter to obtain the best performance on DTB70 [25] benchmarks (0.01
for FACF+CA, 0.008 for BACF+CA, and 0.001 for BACF+FCA). The results displayed in
Table 4 indicate that the context learning strategy proposed in this paper is superior to that
in CACF [16]. The fast context segmentation can not only avoid the context patch from
containing the target but also effectively reduce computational complexity.

Table 4. Performance with different context learning strategies on DTB70 [25] benchmark.

Tracker DP AUC FPS

FACF 0.727 0.496 51.412
FACF + CA 0.687 0.481 21.578
BACF + FCA 0.701 0.484 46.007
BACF + CA 0.679 0.477 19.427

5.5. Failure Cases

Figure 11 visualizes three representative and challenging sequences from three bench-
marks that the proposed method fails to track. In the sequence Animal3, there are similar
targets around the alpaca to be tracked. Although our tracker uses context learning to
repress interference, their similar appearance still confuses the proposed tracker. In the
sequence uav1_3, the UAV moves so fast and irregularly that the SESF module cannot
work well, resulting in tracking failure. In the sequence sand truck, the sand truck is under
a low illumination condition. When the target enters a dark environment, the proposed
tracker cannot localize it. Table 2 also confirms that the performance of our tracker is not
state of the art under the attribute of illumination variation.

# 001 # 002 # 003

# 001 # 010 # 021

# 001 # 050 # 077

FACF Ground truth

Figure 11. Some representative tracking failure cases of the proposed FACF tracker. From
top to bottom: Animal3, uav1_3, and sand truck from DTB70 [25], UAV123_10fps [26], and
UAVTrack112 [27], respectively.

6. Conclusions

In this work, in order to enhance filter discriminative power in future unknown
environments, we proposed a novel future-aware correlation filter tracker, namely FACF.
By virtue of an effective time series forecast method, we obtained the predicted patch with
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the coarse target position, which is beneficial for localizing the target more precisely and
for obtaining the predicted patch. Then, a context-aware mask is produced through an
efficient target-aware method. Afterward, we obtain a single context patch at the pixel-
level by the element-wise dot product between the context-aware mask and the feature
maps of the predicted patch. Finally, feature maps of the context patch are utilized for
improving discriminative ability. Extensive experiments on three UAV benchmarks verify
the superiority of the FACF tracker against other state-of-the-art handcrafted-based and
deep-based trackers.

The proposed future-aware strategy aims at dealing with unpredicted surrounding
changes by learning the future context rather than the current context. The fast context
acquisition avoids additional feature extraction as well as unrelated background noise. In
general, our method guarantees the robustness, accuracy, and efficiency, which is promising
for UAV real-time application. We think the proposed context learning method can be
extended to other trackers for more robust UAV tracking. In future work, we will explore
more accurate and efficient strategies to exploit future information in order to boost tracking
performance without sacrificing speed drastically.
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