
remote sensing  

Article

Immunized Token-Based Approach for Autonomous
Deployment of Multiple Mobile Robots in Burnt Area

Sulemana Nantogma , Weizhi Ran, Pengfei Liu, Zhang Yu and Yang Xu *

����������
�������

Citation: Nantogma, S.; Ran, W.; Liu,

P.; Yu, Z.; Xu, Y. Immunized

Token-Based Approach for

Autonomous Deployment of Multiple

Mobile Robots in Burnt Area. Remote

Sens. 2021, 13, 4135. https://

doi.org/10.3390/rs13204135

Academic Editors: Eldar Kurbanov

and Alexander Alekseev

Received: 29 July 2021

Accepted: 7 October 2021

Published: 15 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Computer Science and Engineering, University of Electronic Science and Technology of China,
Chengdu 611731, China; nantogmas@std.uestc.edu.cn (S.N.); imrwz0710@std.uestc.edu.cn (W.R.);
liupengfei@uestc.edu.cn (P.L); zhangyu1209@std.uestc.edu.cn (Z.Y.)
* Correspondence: xuyang@uestc.edu.cn

Abstract: Collaborative exploration, sensing and communication in previously unknown environ-
ments with high network latency, such as outer space, battlefields and disaster hit areas are promising
in multi-agent applications. When disasters such as large fires or natural disasters occur, previously
established networks might be destroyed or incapacitated. In these cases, multiple autonomous
mobile robots (AMR) or autonomous unmanned ground vehicles carrying wireless devices and/or
thermal sensors can be deployed to create an end-to-end communication and sensing coverage to
support rescue efforts or access the severity of damage. However, a fundamental problem is how to
rapidly deploy these mobile agents in such complex and dynamic environments. The uncertainties
introduced by the operational environment and wide range of scheduling problem have made solving
them as a whole challenging. In this paper, we present an efficient decentralized approach for practi-
cal mobile agents deployment in unknown, burnt or disaster hit areas. Specifically, we propose an
approach that combines methods from Artificial Immune System (AIS) with special token messages
passing for a team of interconnected AMR to decide who, when and how to act during deployment
process. A distributed scheme is adopted, where each AMR makes its movement decisions based
on its local observation and a special token it receives from its neighbors. Empirical evidence of
robustness and effectiveness of the proposed approach is demonstrated through simulation.

Keywords: immune algorithm; autonomous robots; multi-agent systems; robots deployment; sen-
sor networks

1. Introduction

Multi-agent systems consisting of autonomous mobile robots have gained significant
attention in various strategic real-world applications such as reconnaissance and surveil-
lance [1–4], search and rescue operations [5,6], etc. This is as a result of progress made
in the development of autonomous systems technology. Among their many applications,
rapid deployment in high network latency areas is a key functionally that is attracting
attention from researchers and industry players. In order to complete certain missions,
multi-agent systems consisting of autonomous systems need to spread out from an initial
drop off point in unknown areas to achieve some fixed configurations such as forming
a temporal ad hoc network or provide a complete map of the environment. We use the
term deployment to describe this phase. The study on AMR deployment and mobility
problems is an important research field, which is significant for both military and civilian
applications. In hazardous areas such as fire burnt areas, toxic urban regions, disaster hit
areas, or remote planets and battlefields, human operations sometimes become impossible
or dangerous. Hence, unmanned systems can be deployed in those challenging areas
to replace or facilitate human work such as gathering information in search and rescue,
provide communication support or perform target tracking and surveillance. In these
regards, AMR provides greater practicality and shows robust performance in recent stud-
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ies. The fundamental problem is an approach of how to rapidly perform the deployment
optimally in these environments.

The tremendous potential offered by AMR for possible applications such as these,
stem from the fact that using multi-AMR in general can lead to increased flexibility
and redundancy, resulting in an overall increase in reliability. Moreover, multi-AMR
working as a team can perform an exploration, mapping and localization, surveillance
task or any other group mission more effectively and efficiently compared to a single
agent [7,8]. Besides covering wider area, the deployment of a multi-AMR systems in
general, would provide greater benefits regarding area-coverage, mission duration and
optimized task sharing and execution between participating agents. For complex tasks that
would often require a certain level of cooperation, each system within the team might need
to have a compatible messaging interface to enable the exchange of messages with other
teammates and/or with command centers within its communication range. The resulting
network of the team can be used to facilitate the task performance of the team within the
environment [9,10].

This paper analyzes the characteristics and requirements of deploying AMR or un-
manned vehicles to provide remote sensing, mapping and coverage of burnt areas and
proposes a network deployment and adjustment algorithm that can facilitate operations in
various situations such as during fire outbreaks and post fire management. For instance,
when disasters such as large fires occur, previously established networks might be de-
stroyed or incapacitated. In scenarios such as these, autonomous systems carrying wireless
devices can be deployed to create an end-to-end communication network to support res-
cue efforts or access the severity of damage. The networks deployed in these situations
can guide human firefighters and responders to potential targets for rescue and to areas
that require attention while warning them of dangerous areas along the way. In these
application settings, the robots team or mobile agents might be deployed from a single
or multiple accessible drop of points to coordinate detection of environmental informa-
tion by spreading out as much as possible to traverse and detect the given area in order
to collect enough information to assist the execution of tasks while keeping connected.
State-of-the-art approaches of deployment of mobile agents for communication support or
area exploration and mapping often employ one of three different management strategies
to manage and control such systems including centralized, decentralized or distributed
strategies [11]. In the centralized approach, each entity or robot communicates with every
other entity in the systems, and the decision-making process of the entire team or swarm is
centralized or executed by a single decision maker. In a distributed approach, each entity in
the task environment communicates its information and coordinates its actions with others,
while in the decentralized approaches, agents rely only on the available local information.
In this case, the exchange of information may not be required among the different entities
and coordination between entities may be achieved through shared global variable(s).

Based on these strategies, some deployment approaches such as Voronoi-inspired
algorithms [12,13] assume that the global information of the unexplored area can be
previously obtained by humans, thus potential locations for deployment can be calculated.
During the deployment, robots already have knowledge about the pre-calculated locations
they should go to. For other approaches, such as the virtual-force [14] based algorithm, the
capability of gaining real-time information and knowledge is assumed, therefore the AMR
team can interact with low network latency and perform actions in a synchronized way.
However, those assumptions are sometimes infeasible in unexplored areas. For example,
in some areas, such as disaster hit areas, outer space, battlefields, etc., humans may only
have access to limited information. In an area after an earthquake or fire burnt areas, where
the roads and buildings are damaged and destroyed, the structure may be significantly
changed. Thus, a pre-calculated approach maybe be rendered ineffective or useless. In
disaster hit areas or remote planets, where the network latency is unpredictable, robots will
take an extremely long time to communicate. Thus, an accurate synchronization cannot be
achieved by the team and real-time information cannot be updated instantly.
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In this paper, we present a decentralized deployment strategy for robot teams taking
into account the above issues. The main idea underlies that, the multiple AMR team
deployment problem is a multi-agent coordination problem. Through coordination, the
asynchronous robots are coupled and they can decide how to cooperatively complete their
mission. In order to reduce the communication cost in a large scale team, a decentralized
approach is proposed. This proposed approach has three advantages. Firstly, this approach
does not require any previously known information about the deploying area, in other
words, robots only need to gain the knowledge about the environment when they are
situated in the environment. Secondly, decentralized approach does not need a powerful
system to achieve global observation, information or states of the whole team, as each
mobile robot only has local observation. Thirdly, an AMR team applying a decentralized
approach needs only to communicate with physically local neighbors through message
exchange, resulting in simple protocols and cheap communication resource consumption
among the AMR team.

On the other hand, the technological advancement in land, aerial and marine robotics
as purpose-built systems are making the use of multi-agent teams to support various oper-
ations and missions by deploying several mobile agents for area coverage and temporal
communication networks formation in recent years possible. This is attributed to the fact
that multi-agent teams can outperform a single agent for the same task while enabling
flexibility, reduced operational cost and efficiency. Multi-agent teams can be used in a
variety of complex missions and operations such as: surveillance and communication in un-
known and dynamic environments (i.e., disaster hit areas, remote planets), environmental
monitoring (i.e., deployment and monitoring in remote planet, forests, and disaster areas)
and operations in law enforcement missions such as border patrols, etc. Several approaches
have been proposed in the literature to tackle the mobile robots/sensor deployment for
operations support and optimal area coverage and mapping using a team of mobile agents.
These have resulted in various solutions ranging from machine learning to bio-inspired
approaches. Our approach is inspired by the working mechanism of the biological immune
system to perform deployment and coverage using tokens by deciding who, when and how
to act during deployment process to ensure robust connectivity and coverage of the team.

The artificial immune system (AIS) is a typical multi-agent and decentralized informa-
tion processing system inspired by the working mechanisms exhibited by the biological
immune system [15,16], which is adaptive. The advantages of high parallelism, distributed
operation, strong adaptability, and self-organization exhibited by the biological immune
system has inspired various theories and models that represent the different aspects pro-
posed under the artificial immune system, such as the immune network [17] and danger
theory [18], and several applications have been demonstrated based on these theories [19].

The immune network theory is a critical theory of the artificial immune system that
exhibits characteristics of adaptiveness of the immune system. The immune network
theory proposed by Jerne [17] suggests that the immune system is capable of achieving
immunological memory by the presence of a mutually reinforcing network of B-Cells that
produces an interaction mechanism between network cells. Jerne’s theory stipulates that
this network would be self-regulating through stimulatory and suppressive interaction.
This interaction is as a result of the idiotope of one antibody being recognized by the
paratope of another antibody with or without the presence of an antigen that possesses
an epitope. The recognized antibody is suppressed while the recognizer antibody is
simulated. In the robotics domain, a computational model of Jerne’s idiotypic network
theory has been proposed in [16] as a means of inducing adaptive behavior mediation
and has demonstrated some encouraging results. In these idiotypic networks, competence
modules are mapped to both environmental stimuli (antigens) and to each other, leading
to the formation of a dynamic chain of stimulation and suppression that influence their
concentration levels globally.

On the other hand, the concept of danger theory [18] stipulates that, in other to
properly contain attacks, the immune system responds to harmful and dangerous events
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that causes damage to cells. This danger signals from the damaged cells forms a danger
zone that attracts the attention of the concerned immune cells. The attracted cells get
stimulated and undergo clonal expansion to contain the attack. Consequently, the danger
theory assumes that the immune system is activated by danger signals that are emitted by
damaged cells, i.e., cells affected by foreign agents or with mechanical damage.

Comparatively, the multi-agent deployment coordination control is similar in char-
acteristics with those in the biological immune system since both require coordination
and adaptive control of agent’s behaviors in a dynamic or unknown environment. In our
approach, we combined immune-based methods with token-based approach to find an
appropriate amount of suppression and simulation of behaviors to response to situations
during agents deployment, in addition to adapting the internal mechanism of each agent
so that agents are adaptive to situations in the environment. The robots decisions for
providing efficient mobility support are achieved with an intersection of token messages
exchange, immune network theory and danger theory. We show that, deployment problem
can be solved through multi-agent decentralized coordination, implementing coupling of
asynchronous robots. The proposed approach enables individual agents of the team to
consider theirs situational information and tokens from other agents to improve movement
decisions such as the direction and distances to moved. In addition, as the communication
cost of the large-scale agent team is expensive, if token message can be passed optimally,
it can reach the destination with minimum distance and the overall communication cost
of for agents’ coordination can be minimized. The concept of danger theory and immune
network is used to minimize the overall communication cost by determining an adaptive
token generation and passing in the the agent team.

The remainder of this paper is organized as follows: In Section 2, we discussed
the background of decentralized coordination and related deployment approaches from
the literature. Section 3 introduces the problem description and scenario. In Section 4,
we provide our decentralized coordination approach for deployment where the model-
ing of the deployment problem and our decentralized algorithm is proposed. Next, in
Section 5, the empirical analysis to evaluate the performance of the proposed algorithm is
presented through experiments. Finally, Sections 6 and 7 discuss and summarizes the main
contributions of this work.

2. Related Work

Mobile systems deployment and coverage maximization approaches have been widely
studied in the literature for different application scenarios. In the study of improving the
efficiency and connectivity in mobile wireless sensors and robotics networks, a relevant
functional requirement is to maximize the coverage while maintaining connectivity with
other nodes of the network and/or with a base station in the region of interest by employing
proper deployment of sensors. By adopting a centralized approach, energy efficient deploy-
ment algorithms based on multi-objective immune algorithm were presented in [20,21].
In the first approach, the authors present an immune-based node deployment algorithm
that takes into consideration mobility and coverage cost. While in their second approach,
voronoi diagram was introduced to complement the immune-based approach by using
it to adjust sensing nodes. However, despite considering energy efficiency, mobility and
redundant coverage, this approaches is centralized and might suffer from usual problems
of centralized approaches. In [22], a distributed movement assisted sensor deployment
algorithm is presented to enhance area coverage in a distributed mobile sensor network.
The Edge Based Centroid algorithm adopted in their work moves sensor nodes towards the
centroid of the local Voronoi polygon from the initial deployment position. A dispersion
movement algorithm for multi-robot systems that uses the number of communication links
of each individual robot for movement control is proposed in [23]. Reference [24] presents
a holistic connectivity controller (HCC) to regulate and restore inter-agent connections dur-
ing the dispersion of the mobile network. In [25], a dispersion algorithm based on wireless
signal intensities is proposed. The signal intensities are modeled by employing a sampling
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technique, which takes into consideration both the distance and relative orientations of the
wireless sensor. Similar approaches that use the strength of the robots’ radio signals and
the gradient descent algorithm to achieve a swarm dispersion are presented in [26,27].

Further more, authors in [28] studied the coverage of specific zones of interest that
can change dynamically over time by using a swarm of flying robots. The mobility of
the flying devices is achieved through particle swarm optimization and virtual forces
algorithm. In this approach, flying robots only require the local information from the
neighbors to update their velocity and trajectory. A collaborative complete coverage and
path planning approach for single robot and multi-robot systems where the coverage from
a robot movement is maximized by a a novel cost function and goal selection function to
facilitate collaborative exploration for a multi-robot system is proposed in [29]. The pro-
posed method is able to optimize the overall coverage efficiency by considering local gains
from individual robots and the global gain by the goal selection function. A decentralized
deployment process for wireless mobile sensor networks focused on deployment efficiency,
connectivity maintenance and network reparation is discussed in [30]. In [31], a novel
distributed algorithm for deploying multiple robots in an unknown two-dimensional (2D)
area to achieve complete blanket coverage is presented. A redeployment scheme based an
artificial immune systems for wireless mobile sensor nodes initially deployed randomly
is proposed in [32]. The authors employ artificial immune systems inspired approach
to calculate the appropriate positions for sensors to redeploy. A comprehensive review
of various evolutionary algorithms employed for deploying sensor nodes at optimized
positions in wireless sensor networks is presented [33].

In this paper, we treat the mobile robot deployment problem as multi-agent coor-
dination problem and approach it from a perspective which differ from previous work.
Our coordination approach implements the coupling of the asynchronous agents, address-
ing three problems of the previous work. The first problem of some previous studies is that
deployed robots focus on their own observations and knowledge to make decision and
then act (e.g., calculate neighbor’s and obstacle’s locations and orientations then choose
a position to move). However, some trivial but essential information for the teams is
ignored. For example, if one robot observes that it is situated in a location that is blocked by
obstacles, then its best choice is to inform other vehicles about this fact, and thus prevent
other agents unnecessarily accessing this corner, rather than just leave this corner itself.
That information can be obtained and shared through coordination and the whole team
will get more useful information for deployment, and thus helps the team make more
efficient and useful decisions.

Another problem is the connectivity loss problem, this is because robots have no
extra information about others’ potential actions. When robots start to execute a moving
action, they have no idea of the consequent configuration of the network. In a connected
network, for example, even if only two neighboring robots move simultaneously, the
resulting connected network may lead to two separated components. However, those two
robots may not notice the fact because they still maintain the connection with some other
robots. Another example in simultaneous moving strategy is that if robots observe that
there is no connected neighbor, it may try to move back to the previous location to find
neighbors. However, due to the location changes of other vehicles, it might be difficult
to find a neighbor. Through coordination, robots can get information from other robots,
which provides knowledge (local network topology, others’ neighbor lists, etc.) for making
more sensible decisions. For example, based on this information, robots can decide to
choose the suitable robots to move or a suitable distance and direction to move in order
to eliminate the possibility of connectivity loss. Similarly, during the movement of some
robots, other robots can decide to stay in the current locations to wait for the feedback of the
moving robots, thus even when an agent observes the connectivity loss, it can relocate to
the previous locations to connect with those staying robots to prevent the connectivity loss.

An individual robot also may not be able predict the utility brought to the whole
team after some actions, leading to energy waste because those actions actually bring no
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utility improvement to the whole team. This is because of their limited local observation.
In a swarm-inspired algorithm for deployment, for example, obviously the utility can be
significantly improved by the location changes of the boundary robots, but in existing
approaches such as [14], the boundary robots and inner robots are based on the same rules
to move. After several periods of the location adjustment, some inner robots’ locations
remain approximately unchanged, but they have consumed some resources trembling
between the original location. By coordinating, it is practical for the robot team to decide
and act more feasibly, such as which robots is more appropriate to move, or where and
how to move in order to increase the team’s utility.

3. Multi-Robot Network Deployment Problem

At the initial step, there is a team A = {a1, a2, a3..., an} of mobile agents, placed
at initial drop off point in an unexplored or surveillance region ∪, do be dispersed to
cover a task area such as burnt region, outer space, or battlefields. ∪ may contain a set
E = {e1, e2, e3..., en} of different entities or no go areas. The first kind of entity is areas
where agent should not move into (e.g., burning area, collapsed structures, holes in the
roads), which is called risked or dangerous areas. Agents are not willing to enter those
areas as they may lead to unpredictable damage to agents. The second kind of entity are
obstacles which agents cannot pass through (e.g., buildings, stones). Certain entities will
have some impacts on robots. For example, a metallic wall situated between two robots will
weaken the wireless signal strength. If a robot enters a trap region, it may be damaged and
no longer be useful or movable. The goal of the team is to gradually adjust their locations
through moving, and finally achieve some fixed configuration. An ad hoc network will be
formed by the team, which can be utilized or provide support for other operations. We use
the term deployment to describe this adjustment phase of the team.

After the multi-robot team finishes deployment and finally forms an ad hoc network
or a surveillance map, the performance of the system can be evaluated based on three
factors. The first factor is the energy consumption EnergyCost of the team. Energy is
used to move, communicate, sense and afterwards apply. If a robot spends too much
energy for deployment, then it will not have sufficient energy for later application or
actual task execution. The second factor is the time consumption, TimeCost. Time is
often essential in some emergent cases, such as search and rescue in large disasters. The
third factor that needs to be taken into account is the quality of the final ad hoc network
Q, which can be evaluated by two key factors. The first being the total coverage of the
ad hoc network, where the coverage is defined as the joint areas covered by the whole
team. In supporting rescue teams and firefighters, for example, the robots’ goal will be to
maximize the coverage area in order to increase the probability to detect victims or identify
danger to first responders. Another factor is the connectivity of the network. Basically, we
require the deployed systems must be connected, if there are several components, some
pairs of the agents might loose connection. In a communication system for example, this
lost of connection might splits the whole network into many separate parts. Thus, leading
to disastrous outcomes (e.g., the communication system is no longer serviceable). We also
need network’s robustness to evaluate connectivity, as the network with bad robustness
will lead to expensive communication energy consumption. For example, if one network
is formed like a straight line then the communication cost is undesirable high. However,
there is always a trade-off between coverage and connectivity.

The goal of the deployed systems is to maximize communication or sensing coverage
while maintaining connectivity within limited communication and movement energy.
Every robot hopes to keep connection with at least mc agents for robustness. So, we define
team’s weighted utility function and the evaluating terms for utility function as shown in
Equation (1);

Utility = α ∗ Cov− β ∗ connloss − γ ∗ Rloss (1)
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Rloss =
n

∑
i=1

max(mc − |N(ai)|, 0) (2)

Cov = ∪Cov is defined as the joint communication coverage of the whole robot team,
a robot ai’s communication coverage is a circle with center in position of ai and radius rc.
On the other hand, connloss = Ncomp − 1, represents the connectivity loss penalty while the
Ncomp is the numbers of component of the formed ad hoc network. For example, if there is
only a component then the penalty is zero (0). Rloss is sum of the robustness loss penalty
of all the robots while the robustness penalty for a robot ai is described as the difference
between mc and its neighbor’s size N(ai) as shown in Equation (2). If its neighbor’s size is
greater then mc, then the robustness penalty is zero. Here, mc is a robustness factor defined
as the minimum number of neighbors robot ai should keep connection with. Based on our
problem definition, we set α to 1, and γ to a factor ∈ [0, 1] according to the specific scenario.
We set β to v (such that γ < v > α) because the aim is to obtain a connected network.

4. Multi-Robot Deployment Control Approach

The proposed deployment approach presented in this section is derived from the
working mechanism of the biological immune system. The approach employs tokens and
danger signals that trigger movement response from agents in the team. Figure 1 shows
a simplified block diagram of the software system of the deployment control approach.
The proposed algorithm is implemented on the coordination control and navigation module.
With the absence or access to GPS, robots can only perform local localization by sending
hello messages out and estimate its neighbor size and relative locations based on the
responses it get in return. This mechanism is a key requirement that can facilitate robots’
deployment when services are incapacitated during disasters. Next, we present the details
of our modeling and algorithmic execution in our approach.

Figure 1. Simplified block diagram of the software system of the deployment control approach.
The proposed algorithm is implemented on the coordination control and navigation module.

4.1. AIS Based Agent and Team Model

In this work, mobile agents or robots have computational, communication, and detec-
tion capabilities. We model a robot as B-Cell agent. An agent contains body and embedded
controller, where the embedded controller has computational capability such as calculation,
information processing and object recognition. Body includes sensor (receptors) and effec-
tor (B-cell operations), for communication, detection and movement. Sensor equipment are
used for communicating and detecting. For example, robots may be equipped with wireless
communication device to detect other robots within its communication range by sending
’hello’ messages and evaluating the responses. Furthermore, robots can be installed with
isotropic radial sensors to detect surrounding environments. Effector consists of devices
for movement and communication. For example, effector may contain message receiving
and delivering devices to exchange messages with other robots in the team. In the immune
system, an action of a B-cell may involve a change in shape of its receptors. However, in
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this paper, an agent‘s action include changing location by choosing appropriate direction
and distance, generating or forwarding a token. At each time step, agents update their
local information through their sensors in addition to any received information through
other agents that determines their goal. In this model, robots response to danger signals by
performing an adjustment or send tokens. Antigens are obstacles or other robots’ informa-
tion in the environment. In these case, the characteristics or information vector of these
entities can be seen as epitopes of antigens. While state and information of the individual
B-cell agents becomes the paratopes. We describe agents’ capabilities as septuple form:

〈BID, rc, thsignal , rd, dirset, combattery, movebattery〉.

where rc and rd are communication and sensory neighborhood of B-cell agents, thsignal
is a signal affinity threshold, a value of signal strength describing the communication
capability. A robot can communicate with another robot if and only if the distance between
the two robots is less than rc and signal strength λ is greater than a threshold thsignal . Here,
we base on a COST Hata model to calculate signal strength λ. Agents can also gain the
approximate signal strengths and orientations of others. When λ is too high or too low,
then the affected robot becomes distressed triggering a danger signal that generates a token
to initiate an adjustment process. We use BID to identify different agents. While dirset
is a set of directions to describe agents’ orientation ability, in other words, the precision
of orientation an agent can obtain is similar to shape changing of the B-cell. We add
two constraints, combattery and movebattery, to agents to limit the battery consumption for
communication and movement, which corresponds to the death rate of B-cells in Jerne’s
network. To simplify the model, we do not consider the speed capability of vehicles, but
this is a straightforward extension.

The agent team forms an ad hoc network which is equivalent to the immune network
(Jerne’s network) of the AIS. The immune network is a network of B-cells agents, A, that
can simulate and suppress each other. Hence, for ai, aj ∈ A, ai and aj are considered
neighbors if they have stimulatory and suppressive effects on each other. Neighbors are
pair of agents which can send and receive message from each other.

Similar to danger theory that assumes that the immune system is activated by dangers
signals that are emitted by damaged cells, we also abstract these signals as tokens and
distressed situations that trigger a response mechanism from the Jerne’s network of B-Cells’
agents. A danger signal establishes a danger zone based on rc and thsignal determines the
activation of B-cells agents’ within the zone (communication neighborhood). In this model,
tokens received from distress agents or self-generated tokens in the network are sent and
received through the wireless link between agents. We assume each token is an information
vector Ω = 〈T, P, λA f f , L〉, where T indicates the type of token (role or information token),
which in the work determines coordination type, P records the information of agents
who have received the token, λA f f is an affinity threshold that corresponds to the control
information for resource and role for the type of token which is not required for information
tokens, while L is a decay rate of a signal corresponding to the time length a token is
allowed to exist in the network. During the deployment process, the dynamics of the
Jerne’s network of agents due to location changes will cause a corresponding topology
structure change of the ad hoc network formed by the agents.

4.2. Deployment Algorithm Design

In this proposed decentralized adaptive deployment approach, to control the robots,
we design two kinds of behaviors based on the model presented above. These behaviors are
based on the type of tokens sent/received to control teams’ adjustment. These include; self-
adjust tokens, Ωsel f and boundary tokens, Ωboundary. They are both role tokens implying
two types of role for self local adjustment and local boundary adjustment, respectively.
When a token is received by an agent in the team, agents who received the signal decide
whether to act according to the information encapsulated in the signal. This approach
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allows efficient and low-cost coordination, without gaining the global knowledge of the
team. The proposed adaptive deployment is achieved in two phases.

4.2.1. Phase I

This phase involves the generation and sending of danger signals in a form of tokens
for activation of appropriate robots to perform adjustments or dissemination of information.
Specifically, we define a function DiffuseSignal(λ, S, O) to determine whether a token (danger
signal) should be emanated and sent by agent a across its neighbors. Danger signals are
modeled as information vector or tokens [34] as shown in Section 4.1 where each token is
an information vector. The tokens’ type is determine by the observation 0, signal intensity,
λ, received from neighbors, and state S of the agent. The lifespan of a token wane at each
hop across the robot/agent that emanated it. Agents are capable of gaining the approximate
signal strengths and orientations of others through observation and use it together with its
own situation to determine the type of signal/token to send out. Heuristically, agents at the
boundary will mostly diffuse/send self-adjust signals/tokens while agents within high dense
regions will generate boundary tokens to trigger adjustment of agents on the boundary of the
network. On the other hand when a robot is trapped in a hole and unable to escape it diffuse
a danger signal to all neighbors (i.e., an information token is send to neighbors). On the other
hand, when the signal intensity λ is too high or low, an appropriate role token is sent out. The
process of execution of Phase I is shown in Algorithm 1.

τf = Fv =
1

N(a)
∗

N(a)

∑
i=1

~la −~li
~la −~li ∗ (~la −~li)2

∗ ε (3)

where, la represents the relative location of robot a, whose activation is being determined, li
is the positions of other robots, ai. While ~la −~li is the orientation from a to ai and ε ∈ [0, 1]
is a factor that indicates if obstacles are located in the direction Fv.

Bact = (τf + ε ∗ τf j
)− (τf j

+ ρ ∗ τf ) (4)

A received token results in two behaviors if the type of token is a role token. These
include; self-adjust behavior and boundary behavior. The self-adjust behavior is a behavior
that an agent exhibits when it receives a token classified as self-adjust token, Ωsel f . The
Ωsel f is a type of token that asks robots in the Jerne’s network who receive the token to
adjust their position according to their own knowledge and information encapsulated
in the information vector of the token. In this type of token, λA f f describes the affinity
threshold to activate or stimulate the robot to generate appropriate move actions. When
agent ai receives Ωsel f , it first calculates its activation value with respect to its neighbor set,
N(aj), based on the intensity of its virtual force. The virtual force can be calculated using
Equation (3).

The activation of the agent is therefore calculated using Equation (4). In this equation,
the first term is the stimulation effect of the current agent, the second represents the
suppressive effects of its neighbors. Where τf and τf j

are the affinity of the current agent
with respect to its neighbors N(aj) states and vice versa, respectively, ε and ρ are both
scaling factors. If Bact is greater than λA f f , the agent is activated to change its location,
otherwise the agent forwards the token. However, before executing the moving action,
an agent must choose a direction from dirset and decide a certain distance d to move
straightly taking into consideration other information tokens it has received. This process
corresponds to the antibodies production of the B-cells. When detecting the orientations of
entities and signal of other agents, agents will obtain the direction in dirset.

On the other hand, the boundary behavior is executed based on a received boundary
token Ωboundary. This behavior is exhibited by an agent who observes that its situation is
on the boundary of the whole team. When agent ai receives Ωboundary, it first calculates its
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activation level with respect to its neighbor agents set, N(aj), by observing the orientations
of all the neighbors and calculates the respective relative angles. The activation function
for the boundary signal is calculated using a modified version of Equation (4).

Bact = (ψ + ε ∗ ψj)− ψj + ρ ∗ ψ) (5)

where ψ = max(θi − θi+1) and θi is the relative angle between agent heading and neighbor
i direction and ψj is the vice versa. Similarly, if Bact is greater than λA f f , the agent is
activated to change its location by performing boundary oriented movement. Here, λA f f

is set between 5π
6 and 5π

2 .

Algorithm 1 Algorithmic execution of phase I of the proposed approach executing on each agent.

1 st ← ∅ { initialize agent’s state variable } ;
2 ot ← ∅ {initialize agent’s observation variable } ;
3 while True do
4 st ← S {get current state of robot } ;
5 ot ← O {get current observation of robot } ;
6 A f fN(a) ← ∅ {the set of current neighbors (N(a)) affinity } ;
7 ths ← λ {get current signal strength and signal intensity from neighbors } ;
8 Di f f useSignal(ths, st, ot) {Send information or role token based on state, observation and signal strength };
9 if received sel f adjust Ωsel f token then

10 Ωsel f .L← Ωsel f .L− decay f actor ;
11 Determine the affinity τf based on neighbours position using Equation (3) ;
12 Compute the activation Bact value of the agent using Equation (4) ;
13 if Bact ≥ λA f f then
14 Execute Phase I I ;
15 else
16 for x ∈ N(a) do
17 Determine the affinity (τf )

x of value for x ;
18 if x ∈ Ωsel f .P then
19 Set (τf )

x to 0;
20 Append (τf )

x to A f fN(a);
21 end
22 Set maximum neighbor affinity maxa f f ← argmax(A f fN(a)random(A f fN(a))) ;
23 Compute new value of Ωsel f .λA f f using maxa f f ;
24 Forward Token to neighbor with maxa f f ;
25 end
26 if received boundary adjust Ωboundary token then
27 Ωboundary.L← Ωboundary.L− decay f actor;
28 Determine the stimulation and suppression of agent by computing ψ (affinity) and ψj ;
29 Compute the activation Bact value of the agent using Equation (5) ;
30 if Bact ≥ λA f f then
31 Execute Phase I I;
32 else
33 Execute line 15 to 25;
34 end
35 end

4.2.2. Phase II

In this phase, the process of agents taking adjusting actions and selecting the corre-
sponding antibodies according the binding affinity after agents are activated in phased
I is described. Base on the immune network concepts, antibodies produced by B-cells in
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response to foreign antigens induce an anti-idiotypic antibodies that proceed to regulate
further production of anti-idiotypic antibodies keeping the immune system in balance.
Here, the binding affinity is determined by the interactions between the produced antibod-
ies (selected moving distance and direction) and the agents environment. The execution
of phase I may leads to the activation of h agents who meet the activation threshold to
change their locations based on their situation. This adjustment is executed in h rounds
determined by L. An agent is qualified to perform movement according to the value of
Bact, i.e., agents with Bact that is higher than the threshold set on the token information
vector perform the necessary adjustment.

To execute movement behavior, an agent must decide the distance and directions that
maximize the utility function in Equation (1).

Aba f f (a) =
ϕ

mc
∗ (F

′
v − F

′
v) (6)

Bact(a) = ($ ∗
J

∑
j=1

(F
′
v(a) + F

′
v(j))−daj + Aba f f (a)− ka+) ∗ Γ (7)

Algorithm 2 Algorithmic Execution of phase II of the proposed approach.

1 nb1 ← N(a) {get the set neighbors for this agent};
2 nb2 ← ∅ {current set of two hops neighbors};
3 quali f iedAbs ← ∅ {current candidate distance-direction pairs};
4 for x ∈ nb1 do
5 nb2 ← nb2 ∪ (N(x)− a) {append neighbors of x} ;
6 end
7 AbRep ← generateSolutionPairs() {Get all possible distances and directions pairs} ;
8 for dir, dis ∈ AbRep do
9 p = computeNewLoc(dir, dis) { get the new relative location based on dir and dis};

10 Compute the connectivity lost risk (affinity) Aba f f using Equation (6);
11 if Aba f f < threshold then
12 quali f iedAbs ← (dir, dis) {add to candidate solution} ;
13 end
14 if quali f iedAbs == ∅ then
15 dis = rd ;
16 dir = ChooseClosestFromDir(Fv) {choose dir from dirSet which is closest to Fv} ;
17 quali f iedAbs ← (dir, dis) {add to candidate solution} ;
18 for disdir ∈ quali f iedAbs do
19 Compute the activation level of disdir using Equation (7) ;
20 end
21 Choose disdir from quali f iedAbs having the maximum activation value;
22 Execute the solution and get the local network update;

During adjustment action, agents have to ensure connectivity after its adjustment.
Hence, when the agent first selects or generates candidate antibodies (direction and dis-
tance) as the candidate antibodies, the agent checks whether there is connectivity loss
risk using Equation (6). Antibodies with less connectivity loss undergo stimulation
and suppression to select action and direction with maximum activation taking into
account combattery and movebattery of the agent base on Equation (7). In this equation,
$ = (combattery ∗ movebattery)

−1, F
′
v and F

′
v are the virtual forces with respect to one and

two-hops neighbors of the current agent with respect to a newly computed position by
the agent, ka is the degradation rate of a solution and Γ is scaling factor. In addition, in
Equation (6), mc is a heuristic value used to define a minimum set of agents that the moving
agent must keep in connection with when executing a movement action. Adjustment



Remote Sens. 2021, 13, 4135 12 of 18

decisions that maximize the utility function are cloned and distributed to neighbor agents.
By so doing, agents are capable of sharing knowledge and adapting to environment and
situation mapping from others. The process for phase II is described in Algorithm 2.

5. Experiments and Results

In this section, we first present the simulation setup along with the most important
simulation settings. Next, we describe a centralized token based approach and other
approaches that have been used in our comparative analysis.

In order to illustrate the performance of the proposed approach, we design a java
based simulation environment to simulate a mobile network of robots to test deployment
models in sparse and dense environments. In the framework of the simulation, the AMR
team is deployed in a bounded rectangular area containing an unknown number and
type of obstacles. The environment is meshed by user-designed equal sized square cells
that are at least large enough to contain a robot so as to avoid collisions. The robots
move in discrete time intervals of a second modeled according to the maximum speed of
the robots. In each iteration, a robot’s travel distance at its maximum allowed speed is
assumed to always be smaller than its obstacle sensor range. Some obstacles are assumed
to weaken the communication signal strength between robots, i.e., they shorten the original
communication range. At each iteration, each robot can analyze the environment with its
sensor(s) and detect obstacles around it. To present a realistic experiment, simple rules-
based collision avoidance is implemented on each robot agent for collision avoidance. We
compare the performance of our approach with some deployment algorithms, which are
RD [31] and CBS [35] approaches in addition to the heuristic approaches designed for
comparison.

5.1. Experiment Setup

Each robot is configured with communication range rc and operational coverage
(e.g., sensor) rd range of 200 m and 100 m, respectively. The size of the area of interest is
defined as a rectangular shape consisting of tall rise buildings with no moving obstacles
except the robots composing the team. In this work, we simulate two types obstacles.
Obstacles such as buildings and walls are simulated as static obstacles that can be avoided
by mobile agents. We also simulate traps that robots can run/fall into that will cause a
robot to be immobile or degrade its performance. For example, holes on the ground, which
robots must not fall into, or flames, which can damage vehicles. In addition, we set the
signal strength of the robots’ wireless connection by taking into account the attenuation of
signal free propagation and the attenuation of obstacles, and use the COST Hata model
to calculate robots’ signal strength. The affinity threshold λA f f is set to 5π

6 . The speed of
a robot is arbitrarily set at 5 m/s. The maximum distance a robot can decide to move is
30 m. Base on this value, the robot can choose a distance from the set movedis = 〈10, 20, 30〉.
We further define nine choices including eight moving directions and staying in place that a
robot can choose from, i.e., dirSet = 〈 NORTH, NORTHEAST, EAST, SOUTHEAST, SOUTH,
SOUTHWEST, WEST, NORTHWEST, STAY 〉. For a robot not to be considered isolated,
the connectivity number of neighbors of the robot is set to mc = 3 during the simulation.
A simulation lasts for 250 s and with update frequency of 5 ms. Figure 2 shows an example
initial setup of a deployment scenario.
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Figure 2. Example of initial setup with 10 robots at a drop-off point to be deployed in the task
environment.

5.2. Results and Analysis

To properly evaluate the performance of the approach, we adopt two scenarios (region
with obstacles and region without obstacles) for 50 robots, which is enough to cover the
task region. In both scenarios (Scene 1 and Scene 2), respectively, we simulate two initial
deployment strategies where agents are deployed from a single location or multiple loca-
tions (ThreePoints). Figure 4 shows robots’ dynamic deployment process in a region with
obstacles with single point initialization of robots. Here, the yellow circles show commu-
nication range, dark blue represents static objects and trap/ditches areas are represented
by the other shapes. Figure 3a,b show the coverage rate of Scene 1 and 2, respectively, of
the task region. As can be seen from the two graphs, the coverage rate in an obstacle free
region is higher compared to the region with obstacles. Furthermore, the convergence rate
for multiple location deployment is faster compared to deployment from a single location.
It can be seen from Figure 4 that, as the simulation progresses, the coverage increases while
the entire robot team remains connected in a single network. Figure 3 depicts the coverage
rate of the task area during simulation, where the coverage is defined as the joint areas
covered by the whole robot team.

(a) (b)
Figure 3. The average coverage rate during simulation time. (a) Deployment in obstacle free region. (b) Deployment in
obstacle rich region.
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(a) t = 0 s (b) t = 50 s

(c) t = 100 s (d) t = 150 s

Figure 4. Dynamic Deployment process of robots. (a) shows the initial state, (b) after 30 s, (c) just around a minute, and
(d) after 90 s.

Next, among the important performance metrics is the cost and robustness of the final
ad hoc network of the team. These can partially be measure by the connectivity constraints
and traveled distances of the agent team after the deployment has completed. Figure 5a
shows the number of agents satisfying the connectivity constraints of 3 neighbors during
deployment. While Figure 5b depicts the moving distances of all agents during deployment.
In Figure 5a, it can be realized that the presence of obstacles affects agents’ ability to satisfy
the connectivity requirement until the final configuration is realized. Similarly, agents’
moving distance turns to increase more with the presents of obstacles.

(a) (b)
Figure 5. The total moving distance of all agents and number of agents satisfying connectivity constraint. (a) Number of
agents satisfying degree constraint. (b) Moving distance of agent team.
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Most of recent approaches consider deployment with specific distribution without
considering robots failure, traps and information sharing. Hence, to provide a somewhat
balanced comparison, we also consider the coverage and network connectivity for compar-
ison with the other approaches. Figure 6a shows the performance of different algorithms
with minimum of 3 neighbors during deployment. On the other hand, Figure 6b depicts
the coverage performances of the three algorithms. As can be seen from the graphs, our
approach does much better in satisfying the constraint of at least 3 neighbors while still
providing good coverage.

Furthermore, we provide centralized and random heuristic algorithms to compare
with our decentralized algorithm. In the centralized approach, in each round, the central-
ized agent will gather the global information of all agents, then randomly choose an agent
with high virtual force (such as, top 10%) to adjust their location and an agent situated on
the boundary to carry out boundary adjustment. The control process is implemented by
sending tokens. The agents who receive the token will never send tokens to others, but
send feedback to the centralized agent. The random approach employs a similar mecha-
nism, but instead sends move commands to randomly selected agents. In both heuristic
approaches, when an agent receives a move command, it selects a random direction closer
to a direction of the virtual force and distance of its detection range to move. Table 1 shows
the performance comparisons of these approaches.

(a) (b)
Figure 6. Performance of different algorithms on coverage and connectivity constraint satisfaction. (a) Connectivity
constraint satisfaction of different algorithms. (b) Coverage rate of different algorithms.

Table 1. Performance comparison with heuristic algorithms.

Time in Seconds t = 40 t = 80 t = 120 t = 160 t = 200 t = 240

Random
Effective robots 50 50 50 46 39 35
Effective Coverage 0.10 0.30 0.41 0.48 0.59 0.70
Total Distance 1174.13 2324.73 3045.68 3996.47 5264.24 6206.98

Centralized
Effective robots 50 50 50 45 44 43
Effective Coverage 0.17 0.43 0.67 0.76 0.84 0.88
Total Distance 1451.32 2961.25 3923.34 4965.11 5809.69 6559.34

Our Approach
Effective robots 50 50 48 47 47 47
Effective Coverage 0.20 0.50 0.77 0.90 0.94 0.96
Total Distance 1741.86 3436.26 4735.13 5687.22 6242.31 6711.38

6. Discussion

The fundamental problem of mobile agents deployment for coverage with connectivity
constraints is how to establish decentralized coordination among the multiple agents team
and how to control their movement and behavior to achieve a desired configuration.
This becomes more challenging with the absence of GPS for positions and navigation.
With the absence or access to GPS, robots can only perform local localization by sending
hello messages out and estimate their neighbor size and relative locations based on the
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responses they get in return. This mechanism is a key requirement that can facilitate robots
deployment when services are incapacitated during disasters.

The approach presented in this paper enabled the successful deployment of mobile
robots to achieve maximum coverage while meeting a connectivity constraints. While the
approach presented in this work achieved similar coverage with the approach presented
in [35] and better coverage than the one presented in [31], our approach outperforms both
in terms of the connectivity constraints satisfaction of the mobile robots during and after
the final configuration is achieved.

Comparing the centralized and random approach with the approach presented in this
work, the two algorithms have more robot losses, less coverage and less moving distance.
The less moving distance achieved by both heuristic centralized and random approaches
can be attributed to the significant number of ineffective robots. Total moving distance
and connectivity of robots during deployment is affected by the complexity and difficulty
level of the environments. Generally, the cumulative distance of the system increases with
higher complexity and uncertainty levels of the operating environment. This distance
determines the amount energy consumed by the robots during deployments. Furthermore,
about 10% to 15% more robots fail to satisfy the connectivity constraints in the obstacle
rich environments as compared to deployment in obstacle free environments. Ultimately,
there is no significant difference in the robustness and coverage as more robots meet the
connectivity constraints of the final configuration in both settings.

While the requirement of the decentralized approach is for robots to exchange infor-
mation, which may increase the amount of message exchange and energy consumption,
the information exchange is essential for efficient deployment and reduce robots loss as
shown in Table 1. By sending out information tokens, our approach was able to reduce
number of ineffective robots and achieve higher effective coverage.

7. Conclusions

This work presents a decentralized robots deployment framework for coverage in
unknown and dynamic environments such as disaster hit areas and remote planets that
combines the working mechanism of the biological immune system and token-based
approach for coordination to decide who, when and how to act during the deployment
process to ensure robust connectivity and coverage of the team. The robots‘ decisions for
providing efficient mobility support are realized with an intersection of immune network
theory and danger theory, which can be classified as a decentralized adaptive technique.
The proposed approach enables individual agents of the team to consider their local
information and tokens from other agents to improve movement decisions such as the
direction and distances to move based on observed states. We conduct several simulations
to evaluate the performance of the proposed approach. The results of simulation show that
the approach can achieve a high coverage ratio while satisfying a connectivity constraint
that guarantees robustness compared with other approaches with more effective robots. In
comparison with the two heuristic approaches, the other two algorithms have more robot
losses and less coverage, but less moving distance.
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