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Abstract: Recent studies have shown that the high-resolution satellite Landsat-8 has the capability
to retrieve aerosol optical depth (AOD) over urban areas at a 30 m spatial resolution. However, its
long revisiting time and narrow swath limit the coverage and frequency of the high resolution AOD
observations. With the increasing number of Earth observation satellites launched in recent years,
combining the observations of multiple satellites can provide higher temporal-spatial coverage. In
this study, a fusing retrieval algorithm is developed to retrieve high-resolution (30 m) aerosols over
urban areas from Landsat-8 and Sentinel-2 A/B satellite measurements. The new fusing algorithm
was tested and evaluated over Beijing city and its surrounding area in China. The validation results
show that the retrieved AODs show a high level of agreement with the local urban ground-based
Aerosol Robotic Network (AERONET) AOD measurements, with an overall high coefficient of
determination (R2) of 0.905 and small root mean square error (RMSE) of 0.119. Compared with the
operational AOD products processed by the Landsat-8 Surface Reflectance Code (LaSRC-AOD),
Sentinel Radiative Transfer Atmospheric Correction code (SEN2COR-AOD), and MODIS Collection
6 AOD (MOD04) products, the AOD retrieved from the new fusing algorithm based on the Landsat-8
and Sentinel-2 A/B observations exhibits an overall higher accuracy and better performance in
spatial continuity over the complex urban area. Moreover, the temporal resolution of the high spatial
resolution AOD observations was greatly improved (from 16/10/10 days to about two to four days
over globe land in theory under cloud-free conditions) and the daily spatial coverage was increased
by two to three times compared to the coverage gained using a single sensor.

Keywords: Landsat-8; Sentinel-2; aerosol optical depth; high resolution; urban

1. Introduction

Atmospheric aerosols play an important role in global and regional climate change
and radiation budget through their direct and indirect radiative effects [1,2] and can
also seriously affect human health by spreading harmful substances, especially in urban
areas [3]. Aerosol optical depth (AOD) is defined as the integrated extinction caused by
aerosols through a vertical column of unit area in the atmosphere, which is often used to
indirectly indicate the degree of air pollution [4,5]. Satellite remote sensing technology is an
effective method for providing spatially continuous measurements of AOD with a higher
accuracy from the local to global scales, and it is very important for monitoring dynamic
changes in air pollution at large scales. High resolution AOD observations can provide
indispensable information about the detailed pattern of aerosol loading, particularly in
urban areas where aerosol distributions have a high spatial heterogeneity. However, it
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is difficult to retrieve AOD from satellite measurements with a high temporal-spatial
resolution in urban areas.

Retrieving AOD using satellite remote sensing is an ill-posed problem because there
is a great deal of unknown information and few available observations [6]. In the past
40 years [7], several advanced methods have been developed to improve the accuracy
and spatial resolution of AOD retrieval with satellite measurement over certain types of
land surface. For example, the Dark Target (DT) algorithm [8–10] was developed for dark
surface areas (e.g., densely vegetated areas, wet soil areas, and ocean areas); the Deep Blue
(DB) algorithm [11–13] and structure function algorithm [14] were designed for bright sur-
face areas (e.g., urban areas, bare areas, and desert areas); the Multi-Angle Implementation
of Atmospheric Correction (MAIAC) algorithm [6,15,16], Minimum Reflectance Technique
(MRT) algorithm [17], and the Simplified Aerosol Retrieval Algorithm (SARA) [18–20]
was developed in order to improve the spatial resolution of satellite remote sensing mea-
surements. Based on the above method, the current satellite based AOD products are
generally available at a kilometer-scale resolution. Examples of these include the Moderate
Resolution Imaging Spectrometer (MODIS) AOD products with 10 km [11], 3 km [21,22],
1 km [6,23], and 500 m [18,24,25] resolutions; the Visible Infrared Imaging Radiometer Suite
(VIIRS) at a 6 km resolution [26]; and the Advanced Himawari Imagers (AHI) [27,28] at a
5 km resolution.

Coarse resolution AOD products have been widely used for analyzing the air quality,
radiative forcing, and climate effects at the global or country scales, but they are unsuitable
for urban areas due to their large spatial heterogeneity. In a previous study on this topic,
Lin et al. [29] developed a novel AOD retrieval algorithm from Landsat-8 observations with
an extra fine spatial resolution of 30 m. The algorithm estimated the land surface reflectance
(LSR) using three schemes in certain land types and assumed four aerosol types based
on the seasonal change to improve the accuracy of the retrieval. Though the study was
able to successfully retrieve the AOD from Landsat-8, the 16-day revisit cycles and narrow
swaths used for the Landsat-8 satellite limited the temporal resolution and coverage of the
high resolution AOD observations, meaning that this satellite was unsuitable for analyzing
dynamic changes in air pollution. The recently launched Sentinel-2 A/B MSI sensors have
similar spectral bands and spatial resolutions to those of the Landsat-8 OLI sensor, which
was proven to have the ability to retrieve AOD at a fine resolution [30,31]. In addition,
combining the Landsat-8 and Sentinel-2 satellites can provide more frequent cloudless
observation data [32,33].

In this paper, we develop a new fusing AOD retrieval algorithm for use over urban
areas combining observations from the Landsat-8 and Sentinel-2 A/B satellites. The
uniformity and complementarity of the different sensors are considered and the cloud
mask, aerosol type assumption, and surface reflectance determination are improved in the
algorithm. The study area and data used in this research are described in Section 2. The
method is presented in Section 3. The accuracy evaluation and analysis of the temporal
spatial distribution of the fusing AOD retrieval algorithm are discussed in Section 4.
Section 5 provides our conclusion.

2. Study Region and Data Description
2.1. Study Region

Beijing was selected as the study region due to its relatively high AOD loading,
complex land surface types, and variability of aerosol component sources. As the capital
of China, Beijing is one of the most economically developed cities and is located in the
northeast of the country (115.7–117.4◦ E, 39.4–41.6◦ N). It has a total area of 16,410 km2 and
a resident population of more than 21 million. As a large and fast-developing city, Beijing
and its surrounding research areas have been experiencing periods of severe air pollution
in recent years. Its land-use types include large urban built-up areas, mountains with
extensive vegetation coverage, inland waterbodies, and farmland, as shown in Figure 1.
The dust from the northwest in the spring, coal burning in the winter, and daily emissions
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from local and surrounding areas contribute to the complex and varied aerosol types in
the area [34]. In addition, there are four ground-based AOD monitoring stations that
(Figure 1) have been carefully maintained for a long time, which is an important factor in
our research.
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view No. GS (2016) 1603 supervised by the Ministry of Natural Resources of the People’s Republic
of China).

2.2. Data Sources
2.2.1. Landsat-8 and Sentinel-2 Data

Since its first launch in 1972, the Landsat series satellites have provided nearly 50 years
of high-resolution satellite imagery for the world. The Landsat-8 (L8) satellite that was
launched in February 2013 carries the advanced multispectral Operational Land Imager
(OLI) sensor with a small field of view angle of 15◦, a swath cover of 185 × 185 km, a
16-day revisit cycle, and an equatorial crossing time of 10:00 a.m. ± 15 min [35].

The Sentinel-2 mission has two satellites named Sentinel-2A (S2A) and Sentinel-2B
(S2B) that were launched in June 2015 and March 2017, respectively. Each of the satellites
carried the same Multi-Spectral Instrument (MSI) with a field of view angle of 20.6◦, a
scene size of 290 × 290 km, a 10-day revisit cycle, and an equatorial crossing time of
10:30 a.m. ± 15 min. Combining the two MSI sensors will increase the revisit cycle to
five-days under cloud-free conditions [36].

The Landsat-8 OLI sensor has nine spectral bands, including eight bands from deep
blue to mid-infrared with a 30 m resolution and one pan band with a 15 m resolution. The
MSI sensor has thirteen spectral bands, including three visible bands and one near-infrared
(NIR) band with a 10 m spatial resolution, four red edge bands and two short wave infrared
(SWIR) bands with a 20 m spatial resolution, and two short wave vapor bands and one
deep blue band with a 60 m spatial resolution. The Landsat-8 OLI and Sentinel-2 MSI
sensors have six similar bands in the visible, NIR, and SWIR ranges; a detailed comparison
of those bands is provided in Table 1. In addition, both sensors are equipped with a 12-bit
multispectral sensor, providing infrequent band saturation, a high signal to noise ratio,
q high dynamic range, and a higher orbit radiometric calibration accuracy [37,38], which is
beneficial for AOD retrieval over urban areas due to its higher surface reflectance.
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Table 1. Detailed parameter comparison of the OLI and MSI spatial bands.

Sentinel-2A/B MSI Landsat-8 OLI

Band Resolution
(m)

WaveLength
Range (nm) Band Resolution

(m)
Wavelength
Range (nm)

B2(Blue) 10 458–523 B2 30 452–512
B3(Green) 10 543–578 B3 30 533–590
B4(Red) 10 650–680 B4 30 636–673

B8A(NIR) 10 855–875 B5 30 851–879
B11(SWIR1) 20 1565–1655 B6 30 1566–1651
B12(SWIR2) 20 2100–2280 B7 30 2107–2294

Considering both retrieval accuracy and the number of valid observations, the Landsat-
8 OLI L1TP images (path: 123, row: 32) (https://earthexplorer.usgs.gov/, accessed on
10 September 2021) and Sentinel-2A/B MSI L1C images (Tiles: 50TMK) (https://scihub.
copernicus.eu/dhus, accessed on 10 September 2021) with a cloud cover lower than 50%
during the period 2017–2020 were used for AOD retrieval. Finally, 83 Landsat-8 images
and 122 Sentinel-2 images were selected for testing our new algorithm.

2.2.2. Globe Land Use Cover Change Dataset

Land Use Cover Change (LUCC) products are fundamental for environmental moni-
toring, land management, biomass estimation, and global change research. One of their
most important applications is monitoring dynamic changes in land use cover type using
several LUCC products obtained from different periods. Zhang et al. [39] used multi-
temporal Landsat images, high-quality training data, and a machine learning algorithm
to produce the LUCC products in the years 2015 and 2020 with a 30m resolution over the
globe land. The LUCC datasets include 22 land cover types with a higher accuracy of
84.33%, such as impervious land, bare land, forest, grassland, shrub land, wetland, and
water areas. Further detailed information is documented by Zhang et al. [39] and the
LUCC datasets can be downloaded from https://zenodo.org/record/3986872 (accessed
on 10 September 2021) for LUCC-2015 and https://zenodo.org/record/4280923 (accessed
on 10 September 2021) for LUCC-2020.

2.2.3. AERONET Data

AERONET is a ground-based remote sensing aerosol monitoring network with more
than 1500 sites around the world. It measures the direct solar and diffuse sky radiation
brightness passively to calculate the microphysical, optical and radiation properties of
atmospheric aerosols [40,41], as well as the characteristics of aerosol optical depth, turbidity,
water vapor, ozone, and other components. The AERONET AOD measurements are
considered to be accurate for comparisons against satellite-based AOD retrievals due to
their high temporal resolution and accuracy (low uncertainty of ±0.02). In this study,
observations from four ground-based AERONET sites (Figure 1) were used to estimate the
aerosol type and validate the accuracy of satellite-based AOD retrievals. These sites are
Beijing, Beijing_CAMS, Beijing_RADI, and Beijing_PKU (the name is the same as that of
the AERONET sites).

Considering the data available at different processing levels, the dataset of AERONET
Version 3.0 Level 1.5 (cloud-screened and quality controlled) was selected as the truth
by which to validate the satellite-based AODs, while the INV_L1.5_Daily_V3 data were
selected as assumptions of the aerosol types.

3. Methodology

The core idea of satellite-based aerosol retrieval is to distinguish the aerosol reflectance
from satellite measured reflectance, which includes contributions from aerosols, the land
surface, and molecules. Molecule reflectance has significant impacts on the visible band,
which is a function of sun-view geometry and elevation and can be easily calculated [42].

https://earthexplorer.usgs.gov/
https://scihub.copernicus.eu/dhus
https://scihub.copernicus.eu/dhus
https://zenodo.org/record/3986872
https://zenodo.org/record/4280923


Remote Sens. 2021, 13, 4140 5 of 20

The key factors influencing the accuracy of the retrieval of AOD from satellite measure-
ments is the accuracy of the estimation of the surface reflectance and the assumption
of aerosol types [29,43]. Moreover, considering the different spectral response functions
and misalignment of the registration between the two satellites, data pre-processing is
conducted to combine both products through pixel registration, re-projection, band adjust-
ment, and cloud masking. The overall flowchart of the fusing aerosol retrieval algorithm
used for the L8 and S2 images is illustrated in Figure 2; the green-filled boxes indicate the
new or improved steps of the fusing algorithm compared with those used in the previous
study [29], and we will mainly focus on the detail of these steps in the following.
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Figure 2. Overview of the fusing AOD retrieval algorithm for the Landsat-8 and Sentinel-2 images.

3.1. Date Pre-Processing
3.1.1. Atmospheric Correction with LaSRC

Official atmospheric correction surface reflectance products exist for both sensors. The
Sentinel-2 LSR products were processed by the Sentinel Radiative Transfer Atmospheric
Correction (SEN2COR) code, while the Landsat-8 LSR products were processed by the
Landsat-8 Surface Reflectance Code (LaSRC). The SEN2COR code designed for Sentinel-2
MSI images by the European Space Agency uses the DT algorithm to estimate the AOD
on dark vegetation or soil pixels, while the use of a constant calculated according to a
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user-defined visibility on bright pixels would cause an unpredictable error in urban areas,
where most surfaces are bright [44]. On the other hand, the LaSRC algorithm designed
for the Landsat-8 OLI images by USGS assumes two ratios between the red to blue band
and red to deep blue band, which are computed based on 10 years of MODIS and MISR
observations, and uses the difference between the two ratios to retrieve the AOD [45]. This
process is more suitable for urban areas and was recently extended for Sentinel-2/MSI
images [31,33,46]. The comprehensive validation of the Landsat-8 and Sentinel-2 LSR
products with different atmospheric correction codes was undertaken by the Atmospheric
Correction Inter-Comparison Exercise [47]; the result shows that the Landsat-8 and Sentinel-
2 LSR products processed using the LaSRC code have an overall higher accuracy than the
SEN2COR code over urban areas. Therefore, for both the Landsat-8 OLI and Sentinel-2
MSI sensors, the recently released version 3.5.5 of the LaSRC was used to implement the
atmospheric correction in this study.

3.1.2. Cloud and Related Mask

In the vicinity of clouds, satellite retrieved AOD may be unreliable since the three-
dimensional radiation effect of clouds enhance the amount of light entering the satellite sensor,
and also some small cloud droplets may mix with the aerosols near clouds. The Sentinel-2 L2A
cloud mask product generated by the SEN2COR is not particularly reliable [48]. On the other
hand, the Landsat-8 L1TP cloud mask product generated by the Fmask3.3 algorithm [49]
has shown good performance but still has some issues. Compared with the Fmask3.3, the
Fmask4.3 algorithm that was released recently (https://github.com/gersl/fmask, accessed
on 10 September 2021) represents an improvement from Fmask3.3 and proved to be more
effective and accurate in cloud detection for use with Landsat-8 images, as well as being
supportable for Sentinel-2 images [50,51]. In this paper, the Fmask4.3 algorithm is used to
detect clear sky, clouds, cloud shadows, inland water bodies, ice, and snow pixels for both
sensors. The parameter of the dilated number of pixels for clouds is set to 35 (about 1050 m
for a 30 m resolution) in order to reduce the influence of cloud adjacent pollution [52]. Only
pixels that are marked as clear are used for AOD retrieval.

3.1.3. Pixel Registration and Re-Projection

Although the Landsat-8 (L1TP) and Sentinel-2A/B (L1C) images were both taken using
Universal Transverse Mercator (UTM) projection, they are not well registered [53], since
different ground control points schemes and digital elevation models are used. The
misalignment relative to Landsat-8 and Sentinel-2 can be up to the tens of meters [54]
in some extreme cases, which is unacceptable for using a combination of two data from
two satellites to monitor surface changes. In this study, Sentinel-2 images for visible
bands (band 2 and band 4) with a 10 m resolution were firstly resampled to 30 m using
cubic convolution interpolation and the SWIR band (band 12) with a 20 m resolution
was resampled to 30 m using bilinear interpolation. Then, the Automated Registration
and Orth rectification Package (AROP, Gao, Masek, & Wolfe, 2009) was used to register
all Landsat-8 and Sentinel-2 images to a common UTM projection with the same spatial
extent as that used in the Sentinel-2 tiling system. The MSI image that was obtained
on 31 August 2019 with the lowest cloud coverage of 1% was selected as the reference
image. This processing reduces the error of registration among Sentinel-2 and Landsat-8
images within 0.3 pixels for a 30 m resolution, which is acceptable for the long-term series
monitoring of the variation in the vegetation cover, artificial features, and other regions
with complex cover types [33].

3.1.4. Spectral Bandpass Adjustment

The spectral response functions for MSI between Sentinel-2A and Sentinel-2B were
considered to have an excellent heterogeneity and did not require bandpass adjustment.
However, the equivalent spectral bands of the OLI and MSI sensors were not the same. In
order to obtain uniform reflectance, the band adjustment transformation functions between

https://github.com/gersl/fmask
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OLI and MSI proposed by Zhang et al. [46] were adopted in this study. The MSI spectral
bands for blue and red were used as a reference and the corresponding OLI spectral bands
were adjusted based on the band transformation functions shown in Equations (1) and (2):

ρOLI
blue = 0.9570 × ρMSI

blue + 0.0003 (1)

ρOLI
red = 0.9533 × ρMSI

red + 0.0041 (2)

where ρMSI
blue and ρMSI

red are the LSR in the blue and red bands for the Sentinel-2 MSI sensor,
ρOLI

blue and ρOLI
red are the adjusted LSR in the blue and red bands for the Landsat-8 OLI sensor.

3.2. Surface Reflectance Estimation

High quality surface reflectance estimation is a key factor for aerosol retrieval over
urban areas with complex structures and bright surfaces. Benefitting from the high spatial
resolution of Landsat-8 and Sentinel-2, the complex urban surface can be divided into
several reliable types based on the change in land cover characteristics. Similar to the
previous study [29], we divided the urban surface into three specific types, and estimated
the LSR in each type with different methods based on their surface characteristics, including
densely vegetated areas (DVA), barely non-vegetated areas (BVA), and sparsely vegetated
areas (SVA). Moreover, another kind of land type that changes rapidly and irreversibly in
urban areas is also important; we named these land use cover change areas (LCA). Based on
the increased number of effective observations gained through the fusion of the Landsat-8
and Sentinel-2 satellites, we further improved the LSR determination algorithms. Due to
space constraints, we mainly focused on the fusing algorithm below. The details of the
surface type selection are described in the previous study [29].

Considering that the Landsat-8 OLI and Sentinel-2 MSI have different spectral re-
sponse functions, the empirical relationships derived by Wei et al. [55] and Müller et al. [30]
for Landsat-8 OLI and Sentinel-2 MSI were used to estimate the LSR of the visible bands
from the TOA reflectance of the SWIR band in DVA, respectively. The formulae are given
as Equations (3) and (4):

ρOLI
blue = 0.260 × ρOLI

swir + 0.004, ρOLI
red = 0.531 × ρOLI

swir − 0.002 (3)

ρMSI
blue = 0.25 × ρMSI

swir , ρMSI
red = 0.50 × ρMSI

swir (4)

where ρOLI
swir and ρMSI

swir correspond to the TOA reflectance at the SWIR band, the ρOLI
blue,

ρOLI
red , ρMSI

blue , and ρMSI
red represent the estimated LSR at the blue and red bands for OLI and

MSI, respectively.
Secondly, over the BVA, due to the similar solar and view geometry of Landsat-8 and

Sentinel-2 (Figure A1), the fusing bandpass adjustment time series LSR and solar-view
geometry for both sensors in the blue and red bands were substituted into the RossThick-
LiSparse (RTLS) model to build a robust bi-directional reflectance distribution function
(BRDF), which is similar to the MODIS BRDF algorithm [11,56]. One example of the use of
the procedure for the spectral bandpass adjustment of the LSR generated from Landsat-8
and Sentinel-2 over AERONET Beijing sites is provided in Figure 3. It is apparent that
the LSR in the red band (Figure 3b) is higher than that the blue band (Figure 3a) and
the corresponding LSR anisotropy is much larger, which is consistent with the expected
characteristics of the BVA surface. Note that the constructed BRDF parameters we retrieved
only fitted the satellites with a small view angle.
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Figure 3. Example of constructing LSR from a BVA pixel over AERONET Beijing site as a function of solar and view
geometry using LaSRC surface reflectance at (a) 0.47 and (b) 0.66 µm. The red curve is the polynomial fit through the
black symbols.

Thirdly, over the SVA, the spectral bandpass adjustment LSR for Landsat-8 and
Sentinel-2 in each month for the blue and red bands was used to construct the monthly-
based LSR database. Due to the increase in the number of effective observations gained
from fusing the Landsat-8 and Sentinel-2 satellites, the brightest 50% and darkest 20% for
each common pixel in the monthly-based LSR database were discarded to reduce the influ-
ence of clouds, shadows, and surface contamination. Then, the remaining 30% of the LSR
in each band was averaged to represent the LSR of the pixel for each month Equation (5).

MLSRm
i,j = mean(LSRm

a (i, j), LSRm
a+1(i, j), LSRm

a+2(i, j), . . . , LSRm
b (i, j)) (5)

where MLSR represents the calculated LSR database; LSRa, LSRb represent the darkest
20% to 50% of the bandpass adjustment time series LSR in a certain month (m); and i, j
correspond to the row and column in the image cube.

Note that the final LSR used for the OLI sensor in the blue and red band in these areas
should be rectified based on Equations (1) and (2), as described in Section 3.1.4. Figure 4
shows an example of the trend of the LSR in the monthly scale from a mixed pixel with trees
and buildings. This indicates that the LSR shows small changes in each month but varies
greatly over different months. In addition, the LSR is significantly negatively correlated
with NDVI. Figure A2 shows the surface reflectance constructed with our method for
January, April, July and October over the study areas.

Finally, except for the above surface types, there is still one special surface type that
needs to be considered. In recent years, China has experienced rapid urbanization, and the
urban land space has rapidly expanded to the surrounding areas, leading to inevitable land-
use change, especially in fast-growing cities. We named these pixels land use cover change
type, which cannot be well estimated by the aforementioned three methods. Previous
studies show that most of the land-use change is from other types of land to artificial
land [57]. We assumed that this change is irreversible in the short term. Therefore, we
used the global land-use cover data for 2015 and 2020 (detailed information is provided in
Section 2.2.2) to monitor the spatial changes in this kind of land surface, as the dynamic
changes in LCA can easily be realized with a high accuracy. In these areas, we did not
perform the retrieval of AOD because of the lack of an effective LSR assessment algorithm,
except for the pixels with NDVI > 0.55. Instead, the AODs in these areas were completed
by spatial interpolation from the surrounding AOD.
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In general, Figure A3 describes the spatial distribution of the above four types over
the study area on 27 June 2017. The results show that the pixels of BVA are mainly
scattered throughout the central urban areas, the DVA pixels are distributed throughout
the mountainous areas, the SVA pixels are distributed over farmland, and the pixels of the
LCA are sporadically distributed. The proportions of pixels for DVA, LCA, SVA, and LCA
are 51.94%, 7.15%, 32.22%, and 6.58%, respectively.

3.3. Aerosol Retrieval

In this paper, the Second Simulation of a Satellite Signal in the Solar Spectrum vector
code (6SV) Version 2.1 (https://salsa.umd.edu/6spage.html, accessed on 10 September 2021)
was used to pre-construct the lookup tables (LUT) to improve the efficiency of the AOD
retrieval on a seasonal basis for the blue and red bands of the Landsat-8 OLI, Sentinel-2A
MSI, and Sentinel-2B MSI sensors according to their own spectral response functions and
the modified aerosol types [29], respectively. Then, the estimated LSR, solar and view
angels, and the relative azimuth angle were used as the pre-known inputs in the pre-
constructed LUTs, and the AOD was retrieved by changing the AOD to obtain the closure
between the simulated and observed TOA reflectance.

4. Results and Discussion
4.1. Accuracy Evaluation of Satellite-Based AOD Retrievals
4.1.1. Validation with AERONET AOD Measurements

The AERONET AOD measurements at 550 nm were calculated based on the Ångström
exponent algorithm and used to validate the satellite AOD retrievals. The space and time
for the AERONET AOD and satellite AOD retrievals were matched based on the principle
of averaging AODs over a 5 × 5 window with at least 20% effective pixels around the
AERONET site location for retrieved AOD; the averaged AERONET AODs within ±15 min
of the satellite overpass times were compared [55]. Finally, 81 and 197 AOD pairs were
matched for Landsat-8 and Sentinel-2A/B, respectively.

As displayed in Figure 5, the Landsat-8 and Sentinel-2 AOD retrievals (named as L8
AOD and S2 AOD) exhibited an overall high-level of agreement with the AERONET AOD,
with an R2 of 0.905. The L8 AOD retrievals (Figure 5b) achieved a high agreement with
the AERONET AODs with an R2 of 0.935, RMSE of 0.097, and MAE of 0.079. In addition,
70.37% of the retrieved AODs were within the expected error (EE) line and the results
were higher than those found in a previous study [29] (R2 of 0.920 and RMSE of 0.111 for
Landsat-8 only), probably due to the higher accuracy of LSR (we will have to determine
this with more observations). The S2 AOD retrievals (Figure 5c) also show a high level of
agreement with the AERONET AODs, with an R2 of 0.899 and RMSE of 0.121, accounting
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for 67.01% of the AODs within the EE line. The retrieval accuracy of the S2 AOD was
lower than L8 AOD, probably due to the error of the cloud mask produced by the Fmask4.3
algorithm for S2, where some mistakes were reported over the bright area or during thick
aerosol loading conditions due to the lack of thermal data.
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To validate the efficiency and stability of our method for each surface type, the 
AERONET sites were divided into several types based on the strategy described in Sec-
tion 3.2. Finally, the Beijing and Beijing-PKU sites were located in BVA, the Beijing-RADI 
and Beijing-CAMS sites were located in SVA, and no AERONET site was located in the 
other two types in the study area. Figure 6 shows that the overall AOD retrieval over 
BVA (Figure 6d) is higher than that over SVA (Figure 6a) for the combined S2 and L8 
AOD retrievals, suggesting that consideration of the surface anisotropy will increase the 
AOD retrieval accuracy. Compared with the L8 AOD (Figure 6b,e), the retrieval accuracy 
of S2 AOD over BVA (Figure 6f) represents larger increase than that over SVA (Figure 6c); 
this is probably because the larger satellite view angle means that it will be more easily 
influenced by surface anisotropy. 

Figure 5. The validation of the AOD retrievals for (a) all three sensors, (b) Landsat-8, and (c) Sentinel-2 A/B. The solid black
lines are a 1:1 line, the solid red lines are regression lines, and the dotted black lines are expected error (EE) lines, defined as
±(0.05 + 0.2 × AODsunphotometer).

To validate the efficiency and stability of our method for each surface type, the
AERONET sites were divided into several types based on the strategy described in
Section 3.2. Finally, the Beijing and Beijing-PKU sites were located in BVA, the Beijing-
RADI and Beijing-CAMS sites were located in SVA, and no AERONET site was located
in the other two types in the study area. Figure 6 shows that the overall AOD retrieval
over BVA (Figure 6d) is higher than that over SVA (Figure 6a) for the combined S2 and L8
AOD retrievals, suggesting that consideration of the surface anisotropy will increase the
AOD retrieval accuracy. Compared with the L8 AOD (Figure 6b,e), the retrieval accuracy
of S2 AOD over BVA (Figure 6f) represents larger increase than that over SVA (Figure 6c);
this is probably because the larger satellite view angle means that it will be more easily
influenced by surface anisotropy.
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4.1.2. Comparison with LaSRC AOD, SEN2COR AOD and MOD04_L2 AOD Products

The long time series of MODIS AOD products (M*D04) with a relatively coarse spatial
resolution in 10 km (M*D04_L2) are often used as a benchmark to compare with other
satellites AOD retrievals. In this study, the MOD04_L2 AOD products for MODIS C6.1
Terra (https://ladsweb.modaps.eosdis.nasa.gov, accessed on 10 September 2021) were
used for comparison considering its similar overpass time with Landsat-8 and Sentinel-2.
Only the quality assessment (QA) marked as three in the MOD04_L2 merged DT&DB
products were used to ensure the data quality.

The LaSRC code operationally used to generate the Landsat surface reflectance prod-
ucts by the USGS has retrieved the AOD for each pixel as intermediate data in the process
of atmosphere correction. The LaSRC code and auxiliary data used by USGS are available
at https://edclpdsftp.cr.usgs.gov/downloads, accessed on 10 September 2021. In this
study, the LaSRC V3.5.5 code was used [31] to output the Landsat-8 AOD values (named
as LaSRC AOD) at a 30 m resolution.

Sentinel-2A has official AOD products produced by the SEN2COR code with
the resolution of 60 m, 20 m, and 10 m; they can be downloaded from the website
(https://scihub.copernicus.eu/dhus/, accessed on 10 September 2021) or produced of-
fline using the SEN2COR code. The SEN2COR code was developed to produce the
Sentinel-2 LIC data to L2A data, and the code is publicly available at http://step.esa.
int/main/third-party-plugins-2/sen2cor/ (accessed on 10 September 2021). In this work,
the SEN2COR V2.8 was used to achieve Sentinel-2A AOD (named as SEN2COR AOD) at
a 10 m resolution, and the average of 15 × 15 cloudless pixels around the location of the
AERONET sites were chosen for comparison.

Figure 7 shows that a total of 103 collections for L8 & S2 AODs (Figure 7a) and MOD04
DB&DT AODs (Figure 7d), 81 collections for L2 AODs (Figure 7b) and LaSRC AODs
(Figure 7e), and 197 collections for S2 AODs (Figure 7c) and SEN2COR AODs (Figure 7f)
were validated with AERONET AODs in the study period. The result shows that the
MOD04 DB&DT AOD collections that are common with the retrieved L8 and S2 AODs
show a high-level of consistency with the AERONET AODs with R2 of 0.705, yet 41.75% of
the AODs were over the EE lines with a larger RMSE of 0.185, meaning that the MOD04
DB&DT AODs resulted in a large overestimation of the AOD loadings over urban areas.
The LaSRC AODs showed a better performance with AERONET AODs (R2 = 0.915) and
69.14% of the AOD were within the EE line. The SEN2COR AODs show a significant
underestimation, with an R2 of 0.614 and a slope of 0.207, meaning that the SEN2COR
algorithm is unsuitable for AOD retrieval over urban areas with bright surfaces.

Compared with the MOD04 DB&DT AOD retrieval algorithm, fusing retrieved AODs
has a higher correlation with AERONET AODs, with an overall higher R2 of 0.886, a smaller
RMSE of 0.097, and 67.96% of the AOD retrievals falling within the EE line. Compared
with SEN2COR AODs, the S2 AODs showed significant improvement with a higher R2 of
0.899, a smaller MAE of 0.097, a stronger slope of 0.954, and 67.01% of the AOD retrievals
falling within the EE. These comparison results indicate that the fusing AOD retrieval
algorithm we developed has the best performance compared with the current operation
AOD products over the study area.

4.1.3. Comparison between Landsat-8 and Sentinel-2 AOD Retrievals

Landsat-8 and Sentinel-2 have a similar overpass time (approximately 02:53 for
Landsat-8 and 03:08 for Sentinel-2A/B in UTC over study areas). Due to the different
repeat cycle time for each satellite, it will cross the same area at approximately the same
time every 80 days; in other words, there are about 4.5 times in one year where the satellites
will overpass the same area on the same day. In this study, the day of 4 December 2018
(Landsat-8 and Sentinel-2B have the same overpass time) was selected to validate the
consistency of the AOD retrievals for the two satellites. As shown in Figure 8, the L8 AOD
and S2 AOD were in great agreement, with an R2 of 0.82 and small RMSE of 0.06, proving
that the AOD retrievals of the two sensors had a good consistency.

https://ladsweb.modaps.eosdis.nasa.gov
https://edclpdsftp.cr.usgs.gov/downloads
https://scihub.copernicus.eu/dhus/
http://step.esa.int/main/third-party-plugins-2/sen2cor/
http://step.esa.int/main/third-party-plugins-2/sen2cor/
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4.2. Temporal-Spatial Resolution of Combined Landsat-8 and Sentinel-2 Observation

AOD retrievals with a high temporal and spatial resolution have important practical
significance for dynamic monitoring and for analyzing the air pollution in urban areas. A
single satellite with a higher spatial resolution means a lower revisit cycle and smaller land
coverage. In this paper, the orbit swath data for Landsat-8 and Sentinel-2 over 80 days (the
lowest common multiple of 16, 10, and 10) are used to determine the percentage of mean
potential revisit cycle and globe land coverage for Landsat-8, Sentinel-2A, Sentinel-2B and
their configurations.

Figure 9 shows the revisit cycle for Landsat-8 (Figure 9a), Sentinel-2A (Figure 9b),
Sentinel-2A and Sentinel-2B (Figure 9c), and all three sensors (Figure 9d). Overall, the
larger the latitude, the shorter the revisit cycle for each sensor; Sentinel-2 has a shorter
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revisit cycle than Landsat-8. Combining all three sensors can increase the mean revisit
cycle to 3.7 days at the equator, to as little as 2.2 days at 55◦ latitude, and to 2.3 days over
the globe land.
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Due to the similar swath overpass times used, combining the three sensors can signifi-
cantly improve the spatial coverage over the land. The top of Figure 10 shows the swath
coverage of globe land for each sensor on 1 January 2020, while the bottom of the figure
illustrates the percentage of potential for each sensor and its configurations. The result
shows the swath coverage of Landsat-8 is 9.07–10.49% (mean 9.74%) and 14.05–15.65 (mean
15.1% for each sensor) for Sentinel-2 each day. The combination of all three sensors has
a theoretical coverage of 31.56–40.21% (mean 36.06%), which is three times as much as
Landsat-8 and twice as much as a single Sentinel-2 sensor.

In fact, approximately 67% of the globe surface is covered with cloud [58] and the
number of real cloudless observations in terms of frequency and coverage is far lower than
the theoretical value. Figure A4 shows the AOD retrievals from the Landsat-8 and Sentinel-
2 images achieved using our method from four AERONET sites in the study period. It
appears that the mean percentage of Sentinel-2 cloudless observations is ~137% higher
than that of Landsat-8 for each year, benefitting from the shorter revisit cycle and larger
swath coverage, which is consistent with our theoretical analysis. Moreover, Sentinel-2
satellites have observed more air pollution events with an AOD higher than 1.0, proving
that combining the three sensors has the potential to allow the monitoring of dynamic
changes in air pollution.
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4.3. Spatial Distribution of AOD Retrievals

High spatial resolution is another advantage of the new retrieval algorithm. Here,
we selected two typical days (i.e., 4 March 2017 for Landsat-8 OLI and 27 June 2017 for
Sentinel-2A MSI, respectively) with a higher AOD loading and less cloud coverage as
examples to compare the spatial distribution of the 30 m spatial resolution AOD retrieved
by the new algorithm with the current operation AOD products from MODIS observations.
These include MCD19A2 AOD at a 1 km resolution and MOD04_L2 DB & DT AOD at a
10 km resolution.

Figure 11 shows the spatial distribution of the AOD retrievals with different resolu-
tions. Figure 11a,e show the degree of air pollution over color composite images. The
retrieved AOD at a 30 m resolution for Landsat-8 and Sentinel-2 (Figure 11b,f) shows
obviously higher values in the urban center in the southeast and lower values in the moun-
tainous areas located in the northwest of the study area and far from the urban center. The
AOD has a very large spatial heterogeneity in urban areas that can hardly be observed from
the 10 km resolution AOD (Figure 11d,h). The AOD with a 1 km resolution (Figure 11c,g,
MCD19A2 AOD) shows a better performance in the study areas than the MOD04_L2 AOD,
but it was still hardly able to capture the spatial heterogeneity in a small region of less than
one square kilometer. The results indicate that the fusing AOD retrieval algorithm is able
to achieve continuous and high spatial resolution AOD over the study areas, especially in
the centers of urban areas, which have bright surfaces. More importantly, according to the
above comparison of the AOD products, with the increase in spatial resolution, the spatial
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heterogeneity of the AOD in the central urban areas also gradually increase, indicating that
obtaining high spatial resolution AOD has great significance for the study of air pollution
at a fine scale over urban areas.
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5. Conclusions

The Landsat-8 and Sentinel-2 satellites are able to retrieve AOD with a high accuracy
at a fine spatial resolution of 30 m, but with a lower temporal resolution and swath
coverage. There are averages of 22 Landsat-8 overpasses and 73 Sentinel-2 (Sentinel-2A and
Sentinel-2B) overpasses over the study areas each year, respectively. However, combining
Landsat-8 and Sentinel-2 allows a mean theoretical revisit period of about 2.3 days and
increases the mean coverage to 36% in each day over the globe land, which is of great
significance for monitoring and analyzing the air pollutants in urban areas.

In this paper, a fusing aerosol retrieval algorithm was proposed from Landsat-8 and
Sentinel-2 remote sensing observations over urban areas. The Landsat-8 and Sentinel-2
AOD retrievals were validated and compared against AERONET AOD, LaSRC AOD and
MOD04 DB&DT AOD. The experimental results indicate that the combined high-resolution
AOD retrievals with a 30 m spatial resolution could provide spatial continuity, a high
temporal resolution, and detailed AOD distribution information over the study area. The
fusing AOD retrieval algorithm for Landsat-8 and Sentinel-2 images all show a high level
of agreement with AERONET AOD (R2 of 0.935 and 0.899), a small RMSE of 0.097 and
0.121, and a higher accuracy of 70.37% and 67.01% for the AODs falling within the EE
line. The AOD retrievals had the highest accuracy compared with the operational AOD
products. The results indicated that the fusing AOD retrieval algorithm performs well and
is robust over urban areas with complex surface types and a higher AOD loading.

However, although the fusing AOD retrieval algorithm achieved an overall good
accuracy, there are still have some uncertainties that need to be researched further. First,
the cloud mask algorithm we used for the Sentinel-2 images still has some known mistakes
that may cause significant errors, especially in urban areas with bright surfaces and on days
with thick AOD loading. Secondly, additional extensive validation needs to be performed
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to ensure the reliability of the fusing algorithm. Therefore, we will focus on validating our
algorithm on a global scale and discuss its applicability in our future work.
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Figure A1. Polar plot illustrating the solar and view geometry of Landsat-8 (red) and Sentinel-2 
(blue) data in the study period. The radial straight lines show azimuth spaced every 30° and the 
circles show zenith spaced every 20°. 

 

Figure A2. Monthly LSR determination in (a) January, (b) April, (b) July, and (d) October over 
study areas. 

Figure A1. Polar plot illustrating the solar and view geometry of Landsat-8 (red) and Sentinel-2
(blue) data in the study period. The radial straight lines show azimuth spaced every 30◦ and the
circles show zenith spaced every 20◦.
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