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Abstract: Invasive species are increasingly present in our ecosystems and pose a threat to the health
of forest ecosystems. Practitioners are tasked with locating these invasive species and finding ways
to mitigate their spread and impacts, often through costly field surveys. Meanwhile, researchers
are developing remote sensing products to detect the changes in vegetation health and structure
that are caused by invasive species, which could aid in early detection and monitoring efforts.
Although both groups are working towards similar goals and field data are essential for validating
RS products, these groups often work independently. In this paper, we, a group of researchers
and practitioners, discuss the challenges to bridging the gap between researchers and practitioners
and summarize the literature on this topic. We also draw from our experiences collaborating with
each other to advance detection, monitoring, and management of the Hemlock Woolly Adelgid
(Adelges tsugae; HWA), an invasive forest pest in the eastern U.S. We conclude by (1) highlighting
the synergies and symbiotic mutualism of researcher–practitioner collaborations and (2) providing a
framework for facilitating researcher–practitioner collaborations that advance fundamental science
while maximizing the capacity of RS technologies in monitoring and management of complex drivers
of forest health decline such as invasive species.

Keywords: remote sensing; invasive species; researcher–practitioner gap; hemlock woolly adel-
gid; saltcedar

1. Introduction

The global transport of goods and people has facilitated widespread invasions of
non-native organisms, often with substantial ecological and economic consequences [1–3].
Some of these non-native species have attributes that allow them to proliferate without
the predators, pathogens, competitors, or other mechanisms of population control that
exist in their native range. If these organisms are able to become established and threaten
populations of native species, the organisms are considered “invasive”. Approximately
37% of all invasive species globally were introduced to their new range between 1970 and
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2014 and there is no sign of this trend slowing [4]. The Center of Invasive Species and
Ecosystem Health lists over 300 invasive insects and over 1600 invasive plants across the
United States (U.S.) alone. These invasive species can have severe ecological and economic
consequences. For example, there is evidence that invasive species have been altering the
evolutionary trajectory of native species through competitive exclusion, hybridization,
predation, and sometimes extinction [5]. It is estimated that invasive pests and pathogens
cause billions of dollars in economic damages each year in the U.S. alone from factors
such as timber loss, decline in residential property value, and municipal costs to treat,
remove, or replace trees in parks or on city streets [6,7]. Because of these impacts, invasive
species are of high concern to both research and practitioner communities. Here, we
define researchers as anyone who conducts scientific research as a large part of their
job description and is publishing their results in peer-reviewed scientific journals. By
contrast, we define practitioners as anyone whose primary work objectives are focused
on ecosystem management (e.g., invasive species control and timber harvesting). We
do not distinguish these groups based on who their employer is and both groups may
be employed by academic or government institutions, non-profit organizations, or for-
profit companies. Although both communities place a high priority on identifying new
occurrences of invasive species, researchers and practitioners often do not work together.
This lack of collaboration can result in lost opportunities to take advantage of the synergistic
areas of expertise that researchers (e.g., remote sensing expertise) and practitioners (e.g.,
field surveys, management, and local knowledge) can bring to bear.

Mapping the distribution and impacts of invasive species are critical to advancing
our understanding of their ecological consequences, our management capacity, and our
ability to assess the efficacy of control efforts. In situ field surveys are a commonly used
approach to mapping the distribution of invasive species. While this mapping tactic
can be highly effective for the places visited, it is also costly, time consuming, and labor
intensive. Consequently, relying on field surveys alone is often inefficient and impractical
for assessments of invasive species in remote areas and/or with large spatial extents.
Remote sensing (RS) can help to overcome some of the challenges associated with field
surveys and holds substantial promise as a tool for improving detection and mapping of
invasive species and their impacts on forest ecosystems [8,9]. Oftentimes, the invasive
pests and pathogens of concern in forest ecosystems (e.g., Hemlock Woolly Adelgid (HWA;
Adelges tsugae), Gypsy Moth (Lymantria dispar), and Dutch Elm Disease (Ophiostoma ulmi
and Ophiostoma novo-ulmi)) are too small to be directly detected using satellite imagery,
and instead proxies such as changes in ecosystem health and vegetation phenology are
often used to aid detection [10–13]. Because of the larger size of many trees, spectral
signatures, leaf phenology, or texture can be used to distinguish native vs. invasive tree
species (e.g., invasive Norway maple vs. native oak trees in the northeastern U.S.) [14].
Most studies report using some sort of vegetation index to measure decline in health
associated with invasive pests and pathogens or to look at phenological differences in
seasonality and interannual variations in leaf phenology which can occur as non-native
plant species invade. Some examples include the Normalized Difference Vegetation Index
(NDVI [15]), Moisture Stress Index (MSI [16]), Leaf Area Index (LAI [17]), and Tasseled
Cap Transformation [10].

The methods used to detect invasive species must be adjusted to reflect the lifecy-
cle, habitat requirements, and impacts on native vegetation of the particular species of
concern [18]. There are a wide variety of satellite-based sensors collecting images across
the globe with different spatial, temporal, and spectral resolutions and each sensor has
its strengths and drawbacks. Commercial satellites such as Maxar’s WorldView and the
Planet Labs’ DOVE constellation were first launched in 2007 and 2013, respectively, and
offer high spatial (1–3 m) and temporal (daily return) resolutions but can be costly to obtain.
In contrast, the Moderate Resolution Imaging Spectrometer (MODIS), a U.S. National Aero-
nautics and Space Agency (NASA) satellite with freely available data, has high temporal
resolution collecting images daily since 2000, but at moderate to coarse spatial resolution
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(250 m–1 km). The joint U.S. Geologic Survey (USGS)-NASA Landsat satellites and the Eu-
ropean Space Agency’s (ESA) Sentinel-2 satellites provide relatively high spatial resolution
(10–30 m), but moderate temporal resolution (5–16 days). Landsat-1 was launched in the
early 1970s, with seven subsequent launches having taken place since then. Sentinel-2,
which consists of an identical pair of satellite sensors, was launched in 2015 and 2017. For
some studies, having a longer time series of data can be useful for detecting change over
time, but it is important to consider sensor drift and cross-sensor calibration issues in the
case of a series of similar sensors, such as the Landsat 1-8 series. Other RS technologies
such as Synthetic Aperture Radar (SAR) can overcome the problem of cloud cover—a
common limitation with other RS technologies—and provide information on ecosystem
structural characteristics to aid in invasive species detection and research. For example,
SAR has been used to monitor the invasive species, American bramble (Rubus cuneifolius),
which has become a major threat to native flora in South Africa [19].

By quantifying declines in plant and/or ecosystem health or detecting spatial and
temporal differences in leaf phenology, researchers can use satellite RS imagery in con-
junction with field validation data to model the spatial distribution of the target invasive
species. Ideally, these models would be used to inform practitioners of the possible loca-
tions of targeted invasives to enhance their mapping and management efforts. Although
researchers have for decades been developing RS models for numerous invasive species of
concern including the insects HWA [10,20,21] and Gypsy Moth [22], and shrubs such as
Amur honeysuckle (Lonicera maackii) [23], these products are rarely used by practitioners.
These distribution maps can also help inform how other aspects of environmental change
(e.g., climate change, land cover change, nutrient deposition) could influence the rate of
spread and ecological impacts of invasive species [24]. Integrating data on important
predictive variables including air temperature, forest composition, topography, soil type,
and resource availability can further inform where an invasive species may be or could
spread to. Field data are essential in RS studies to calibrate and validate models but can be
challenging and costly to obtain across the large geographic areas typically impacted by
invasive species. Collaborations between practitioners and researchers can be mutually
beneficial by providing researchers with valuable field data to calibrate and validate models
while providing practitioners with improved species distribution models and maps of
the ecological impacts of invasive species of concern, which will allow efficient use of
scarce resources.

As our climate and landscapes continue to change and globalization intensifies, the
introduction, spread, and impacts of non-native pests and pathogens will undoubtedly
increase. Practitioners and researchers working together to leverage each other’s resources
and expertise can greatly benefit our collective knowledge on invasive species while
increasing the broader utility and application of RS technologies for controlling their
spread. The research community has made great strides in using satellite RS to detect
changes in the health and condition of forest ecosystems related to invasive species [25–27].
However, reproducing RS methods can be challenging, particularly outside of research
communities, and model development can often be limited by the availability of relevant
field data, which is necessary for model parameterization and assessment. Often there is
a mismatch between the objectives of the scientific community, the results they publish,
and the needs of practitioners. For example, Kudzu (Pueraria montana) is a widespread
and common invasive plant species of high concern among practitioners across much of
the eastern U.S., but there are few field- or RS-based quantitative studies of this woody
vine [28]. Working together to ensure that researchers are answering questions that are
relevant to the needs of practitioners while also developing and implementing uniform field
assessment methods so the data can be used to support development and improvement
of RS-based models could help both researchers and practitioners advance their common
goal of monitoring and controlling invasive species and their ecological impacts.

The knowing–doing gap in ecology—the divide between what researchers focus
on and what practitioners need to make informed management decisions—has been
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well documented from both researcher and practitioner perspectives [29,30]. However,
analogous discussions on how this gap could be closed in the field of invasive species
monitoring, specifically using RS, are not as well documented. Here, our team of researchers
and practitioners summarize the peer-reviewed literature on the divide between researchers
(ecology and remote sensing scientists) and ecology practitioners, highlight some of the
challenges and mutual benefits of researcher–practitioner collaborations, and present a new
framework for fostering these collaborations. Using the published literature and our own
experiences collaborating with researchers and practitioners, we provide recommendations
for how these communities can come together. Our aim is to demonstrate how bridging the
divide can advance understanding and monitoring of invasive species using RS tools and
show how cross-disciplinary partnerships could be mutually beneficial to the objectives of
both parties. While our focus is on the topic of invasive species in forest ecosystems, because
these efforts seek to fundamentally characterize different aspects of forest condition, the
approaches to collaboration that we describe are broadly relevant to many topics related to
forest health monitoring.

2. Materials and Methods

We reviewed the scientific literature to summarize the challenges and needs of practi-
tioners and researchers as well as barriers to collaboration. We drew from papers published
between the years 1980 and 2021. Our starting year was selected as this is the earliest period
in time when satellite RS may have been applied to ecological research. We identified pa-
pers in Google Scholar using the search terms “Academic-Practitioner Gap AND Ecology”,
“Knowing-Doing Gap AND Ecology”. “Ecology” was also replaced with “Biology” in some
searches to include invasive species biologists and conservationists. Other search terms in-
cluded “Community Science”, “Civic Science”, and “Citizen Science”, “Open-Source Data
Ecology”, “Invasive Species AND Remote Sensing”, “Remote Sensing AND Saltcedar”,
and “Hemlock Woolly Adelgid AND Remote Sensing”. Variations of search terms were
also included. Criteria for paper selection included relevancy to the topic or field of study.

3. Results

In total, we found 87 papers that met our criteria and 60% were published since
2006. Our literature review indicated that, although research focusing on RS applications
for invasive species mapping is growing, it is often not directly applicable or accessible
by practitioners. This suggests the need to expand on this area, in an effort to build
bridges between research and practice. The literature also revealed the importance of
involving graduate students as one means of bridging the divide between researchers and
practitioners. HWA is a widely distributed invasive forest pest in the eastern U.S. and is of
pressing concern to both researchers and practitioners. Our team has extensive experience
with HWA and we use as a case study to highlight the current challenges of bridging
researcher and practitioner communities. We also use saltcedar as a case study because our
literature review pointed to this species as a key example of the potential utility of RS for
long-term monitoring and restoration efforts by practitioners.

3.1. Remote Sensing Applications to Invasive Species Mapping and Management
3.1.1. Mismatches

Collaborations between practitioners and researchers have great potential for develop-
ing new RS products and novel approaches to invasive species research and monitoring [31].
However, many obstacles still exist. Some of these obstacles are logistical, for example
sharing large databases and workflows can be challenging [32]. Other obstacles stem from
differences in fields of study. Even within scientific communities RS researchers and ecolo-
gists are often in separate departments and use different jargon, spatial scales, tools, and
methods in their work [31]. The gap between RS researchers and practitioners is even wider.
In order to bridge the gap between these communities, collaboration and, in some cases,
compromise, are necessary to realize the full potential of these partnerships. Researchers
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who aim to inform management with their research can facilitate and build long-term
collaborations and networks with practitioners which can help transition research findings
into application. These collaborations are essential in all steps of research, but especially in
developing questions and methods [30,33,34]. Practitioners and researchers monitoring
invasive species and their impacts are simultaneously, but often independently responding
to the threat of invasive species, which can lead to mismatches in data availability and
needs, repetition of effort, and limited integration of RS products.

One study surveyed practitioners to understand what applied and basic research
topics were of highest priority to them and then compared their responses to the topics
covered in recently published field ecology literature [35]. They found that topics such as
early detection, seed banks, dispersals, and lifecycles of invasive species were underrepre-
sented in the literature while topics relating to biocontrol and resource manipulation were
published on more than practitioners indicated they desired knowledge on the topic. RS
studies often address the issue of mapping early outbreaks and even dispersal patterns
in some cases [36]. Practitioners have also expressed a desire for research monitoring
restoration efficacy over multiple years [37] and some RS studies have begun to monitor
restoration across large areas [38–40]. However, practitioner integration of RS models and
products into their work is still limited, pointing to a need for collaborations between
researchers and practitioners.

Effective collaborations operate as a sort of symbiotic mutualism, where each group
contributes their expertise and data that is collected as part of their routine workflow. In
the case of invasive species early detection/monitoring for forested landscapes, field data
is an essential part of RS model development and is needed for calibration, training, and
validation of remotely sensed imagery. Historically, RS model development relied heavily
on field data. However, some studies utilize the highest spatial and temporal resolution
remote sensing data available to circumvent a lack of field data, but this option is not
always possible, often requires expensive RS products, and the lack of field validation
can limit the effectiveness of a model. Meanwhile, practitioner groups regularly collect
field data and work to monitor and learn more about the natural histories and ecological
impacts of invasive species but are eager for more efficient and cost-effective ways to detect
outbreaks. By working together to meet each other’s needs, the separate workflows of
researcher and practitioners can be combined (Figure 1) to prevent redundancy in each
group’s efforts, increase field data availability for RS model development, and make RS
products more relevant and tangible to practitioners and not just research exercises.

3.1.2. Basic Data Needs and Satellite Imagery Obstacles

In order to effectively map and monitor an invasive species, researchers need to have
knowledge of the natural histories (e.g., lifecycle and habitat requirements) of the invasive
species and the ways they impact the ecosystems they invade. Because of differences in
the ecology of invasive species and the ways they impact forest ecosystems, each invasive
species may require different approaches to modeling. Information on the ecology and
natural history of a particular invasive species that is often needed to help develop robust
models could come from practitioners who observe these species and their ecological
impacts in the field. Practitioners often collect data from relatively small spatial extents,
which may increase the likelihood that information gleaned from these data is biased
by nuanced local conditions. However, this too can be beneficial to the development of
remote sensing models because along with data sets from practitioners in other locations
these data broaden the suite of conditions used to inform models. Perhaps one of the
most impactful ways to improve detection of invasive species by both researcher and
practitioner communities is to develop spatially explicit maps of the native species or forest
type impacted by a particular invasive species of concern [41]. These maps would enable
researcher and practitioner field crews to take a more informed and targeted approach to
field surveys and application of RS models. Information on the severity of an invasive
species infestation and its ecological impacts are crucial to inform practitioner response. If
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the infestation intensity is low, practitioners may choose to respond rapidly with treatment
methods. However, if infestation intensity is high, containment rather than eradication
may be the chosen management objective. Including factors that may contribute to the
ecological impacts of infestation can help practitioners prioritize treatment. For example,
hemlock trees infested with HWA are more vulnerable to drought, so stands in dry areas,
such as those on steep and/or south and southwest facing slopes, are likely to be more
severely impacted by HWA than others with wetter soil conditions [42–46].

The data needs of RS researchers often vary as a function of the species of concern and
the research objectives delineated. Most invasive species impacting forest ecosystems lie
below the canopy (e.g., insects, vascular plants, and pathogens), which means that RS is
measuring the impact of the species on different metrics of forest health as an indication of
its presence. For this reason, relying on satellite RS using surface reflectance alone can be
challenging when impacts to the top of the canopy are not immediately evident and/or
the canopy is particularly dense. Microwave RS and SAR can get around some of the
challenges of surface reflectance imagery (e.g., when the impacts of invasives are restricted
to or begin beneath the top of the canopy, cloud cover); however, radar data suffer from
other difficulties, such as lower signal-to-noise ratio and the need for more sophisticated
post-processing approaches [47]. Light detection and ranging (LiDAR) can also be used
to approximate aboveground biomass and monitor changes in forest structure [13]. One
benefit of SAR over LiDAR is that the spatial extent and temporal resolutions of SAR data
are typically more comprehensive than for LiDAR, but can provide a pathway for the more
detailed LiDAR data to be scaled up [48]. Efforts to monitor HWA highlight the need for
such data and how different RS technologies can be used to overcome a variety of barriers.
Research exploring the use of RS for HWA monitoring as well as our recent experiences
working with both researchers and practitioners highlight the need for species composition
data, use of a diversity of satellite sensors, and field data that can be easy to integrate with
RS products.

Case Study: Hemlock Woolly Adelgid

The establishment and spread of HWA have led to a concerning decline of the keystone
species, Eastern Hemlock (Tsuga canadensis), across 19 states in the eastern U.S. HWA was
introduced to the Eastern U.S. from Japan in the early 1900s, likely through the transport of
infested nursery stock. First discovered in Virginia, HWA has since spread from Georgia to
Maine in the east and as far west as Michigan [49]. This poppyseed-sized aphid-like insect
feeds on the sap of the Eastern and Carolina hemlock (Tsuga caroliniana) trees and leads to
gradual decline over multiple years. Defoliation typically advances from the lower canopy
to the top of the canopy [13]. The dense evergreen canopy of hemlock trees creates forests
with deep shade and provides habitat for over 120 vertebrate species and approximately
90 bird species [50,51]. Hemlocks are the most shade-tolerant tree in much of their range
and typically the only conifer capable of perpetuating itself. These trees play a key role
in maintaining streamflow and water cycling [52], and can cool down the streams they
surround, providing favorable conditions for certain fish species like trout [51]. In the
northern U.S., HWA produce two lifecycles each year which overlap in the Spring [53].
In its native range, one of the HWA lifecycles will include a flying stage where the insect
spreads to spruce trees for reproduction. However, in the eastern U.S., these winged insects
do not have a spruce host and therefore do not survive [53–55]. The insects spread by wind,
animals, and crawling between branches. With no natural predators in the eastern U.S.,
the main factor influencing the population of HWA is mainly low winter temperatures
below −20 degrees Celsius, although there are signs of the insect becoming more tolerant
of extreme cold temperatures [56]. Elevation, slope, soil moisture, terrain shape index, and
aspect have been shown to impact the health of infested trees and rate of decline [53].
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Figure 1. Simplified workflow used by RS researchers to map invasive species and their impacts (left) and practitioner’s
workflow to locate and manage invasive species (right). Double sided arrows indicate steps in each group’s workflow
where researcher–practitioner collaboration could effectively advance the objectives of both groups.

Locating HWA can be particularly tricky because of the insect’s small size, limited
mobility, and habit of attaching to the base of hemlock needles. The terrain that hemlocks
occupy is often rugged, steep, and difficult to traverse. Furthermore, in the northern part
of its range where hemlock is most abundant, many stands are in fairly remote locations.
To improve monitoring of the spread of HWA, modeling and RS approaches have been
applied [10,20,21]. However, there is currently no standard protocol for monitoring HWA
from satellite imagery or in the field and, to our knowledge, practitioners typically do
not leverage RS products to assist their monitoring and management efforts. Invasive
species practitioners most often collect simple presence-absence data in preparation for
chemical treatment of a stand, but in some instances the intensity of the infestation might be
quantified to gauge the imminence and magnitude of potential tree mortality. However, the
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spatial scales and protocols used to assess stand health and infestation intensity can vary
among practitioners and their field crews. For example, the New York State Department of
Environmental Conservation field crews collect data on crown health measuring crown
density and crown loss on a six-point scale as well as density of infestation. In contrast,
the New York State Hemlock Initiative (NYSHI) measures canopy decline on a five-point
scale which represents between 20% and 80% canopy loss. Both NYSHI and the Catskill
Regional Invasive Species Partnership (CRISP) measure the density of HWA egg sacs to
determine infestation density. However, NYSHI does so on a five-point scale by looking
at the number of egg sacs on 9 cm of twig terminals and CRISP uses a four-point scale
of infestation density measured by the terminal 5 cm of twigs. By necessity, the sampled
twigs are often lower in the canopy where they are easily accessible by field crews. The
utility of these surveys for RS model development is also highly variable (see discussion
below).

Many widely used protocols lack explicit instructions on the level of survey effort that
should be dedicated to a respective site. As a result, even when the same survey protocol
is used by a large proportion of the practitioner community, the level of survey intensity
and resulting potential for pest detection can be inconsistent. These inconsistencies can
make it challenging for the RS community to integrate field data into model development.
Georeferenced point data of species presence can allow researchers to focus on specific
RS pixels. However, depending on the pixel size of the RS imagery used, each pixel
can contain numerous trees of different tree species and this within-pixel heterogeneity
can greatly confound image interpretation. To alleviate these discrepancies, practitioners
could take a more unified approach and apply the same survey methods across field
crews that includes georeferenced information on canopy condition and composition. The
standards set by the Forest Inventory and Analysis (FIA) program are a great example of
how distributed groups of field crews across a large geographic area can collect data using
the same protocols and produce what is essentially the world’s premier forest inventory
datasets. The uniform methodologies applied by the FIA field crews is an example of
how highly coordinated practitioner survey efforts produce datasets that are beneficial to
researcher and practitioner communities [57,58].

In 2014, CRISP assessed the impacts of HWA on forest stands across the Catskill
Mountains in New York State by evaluating the health of 45–60 random hemlock trees in
plots 4–66 ha in size (containing thousands of trees) and assigning them to one of four
different infestation categories: healthy, moderate, in decline, or severe decline. Because
of resource and time constraints, this relatively diffuse survey approach is a fairly typical
field protocol for practitioners but can limit its utility to RS researchers. A single Landsat
pixel can contain over 30 trees and many of the stands contained hundreds of pixels with
each stand containing a mixture of hemlocks and deciduous trees. Hemlock habitat and
HWA infestation patterns provide even more challenges to monitoring for early detection
of HWA. Hemlocks can occur in mixed forest stands with several other tree species. These
mixed stands can be particularly challenging for detecting hemlock decline because the
signal can be muted by co-occurring trees not affected by HWA (e.g., maples, beech, birch),
especially when using data with relatively coarse spatial resolution. This challenge becomes
even greater when the canopy is dominated by deciduous trees, obscuring the view of
hemlocks from satellite images. HWA feeds on the stored starches in hemlocks, causing
desiccation, discoloration, needle loss, branch die-off and eventual tree death [59]. It can
take several years for the infestation to progress to limb die-off and 10–20 years for a
hemlock to fully succumb to HWA infestation [46]. The tree damage from HWA infestation
often begins at the bottom of the canopy and slowly progresses to the top after a long
period of decline. Thus, the capacity of early detection using surface reflectance alone
is limited, especially when using relatively coarse-resolution imagery where other tree
species co-occur with hemlock [54]. In Figure 2, we highlight the complexities introduced
by stand and pixel heterogeneity. Even when dead trees are present, the surface reflectance
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signal from the dead trees can be muted by the surrounding healthy trees. However, as the
spatial resolution of the imagery increases, capacity to detect decline also increases.

Hyperspectral imagery (HSI)—typically retrieved from sensors mounted to airplanes
rather than satellites—collects surface reflectance data for hundreds of narrow bands
across the spectrum of visible and infrared light, thereby providing much higher spectral
resolution than sensors such as Landsat or Sentinel-2. HSI is and has been used to map
stress for ash (Fraxinus spp.) trees impacted by the invasive emerald ash borer (Agrilus
planipennis) and hemlock trees impacted by HWA [60–62]. HSI can detect decreases in
chlorophyll and water in foliage, both of which are related to increasing physiological
stress [63]. In the Catskill region of New York, HSI was used to predict hemlock decline with
85% accuracy [60]. However, the measured decline was not specific to HWA infestation
and could be from other causes. These methods could still be useful to monitor hemlock
decline even before there are visual signs in the field, providing practitioners with specific
sites in decline to monitor in the field for infestation. However, HSI data can be costly to
obtain and, has limited temporal resolution as data are only available for the dates the
flight took place.

Some of the RS methods discussed thus far (e.g., Landsat, Sentinel-2) are passive,
meaning that they use natural light energy to measure reflectance. Active RS technologies
such as LiDAR and SAR emit their own energy and measure the energy returned [64].
LiDAR provides a three-dimensional reconstruction of forest and surface structure. LiDAR
is particularly useful to monitor early HWA infestations as it collects data from the entire
structure of the tree canopy, not just on the top of the canopy like other satellites instruments
measuring surface reflectance. Previous studies have used LiDAR data from open-source
databases supported by NASA and the U.S. National Ecological Observatory Network,
Global Ecosystem Dynamics Investigation (GEDI) and National Ecological Observatory
Network (NEON), respectively to monitor HWA by looking at changes in forest structure
as needles and branches die off [13,65]. Through this use of LiDAR, researchers found
that HWA infestation was visible in the midstory while the canopy continued to grow [13].
Others also used LiDAR data to monitor a patch of hemlock trees where HWA was the
only major contributor to decline. The author’s first located hemlock in mixed forests
to help separate HWA infestation from other types of decline [12]. HWA monitoring
highlights how different approaches can be used to monitor invasive species depending on
the approach, budget, and level of technical training.
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Figure 2. Imagery of a declining hemlock stand in the Catskill Mountains in New York. The leaf-off
orthoimage (top left) highlights the spatial heterogeneity of the distribution of hemlocks (i.e., green
conifers) throughout the stand (top left). The zoomed-in insets indicate the distribution of dead
hemlock trees (red circles) within the stand using National Agriculture Imagery Program (NAIP)
imagery (top right) and differences in the capacity of NDVI from 30 m Landsat imagery (bottom
left) and 10 m Sentinel-2 imagery to detect forest decline.

3.2. Restoration and Regeneration

Once a hemlock tree succumbs to HWA, they are often replaced by native hardwood
species such as black birch (Betula lenta) as well as other invasive species like the tree of
heaven (Ailanthus altissima) [66]. Tree of heaven is also a host for yet another invasive
species, the spotted lanternfly (Lycorma delicatula). This can create an invasive species
cascade whereby HWA allows a native tree to be replaced by an invasive tree, which in
turn can promote the spread of another invasive forest pest. Treatment, eradication, or host
death are not always the final phase of invasive species management efforts. Measuring the
success of restoration efforts can also be an important use of RS products, but despite some
studies demonstrating the potential for RS technologies to benefit these efforts, application
of RS for this purpose is currently uncommon. In our review of the literature, practitioners
point to the lack of long-term studies assessing restoration efforts as an important factor
limiting advances in restoration strategies. In one review, the authors found that 51%
of in situ restoration studies evaluated the efficacy of restoration efforts by monitoring
native species regeneration for only a year or less [37]. The field data collected was also
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limited in scale, most plots being <1 m2. This scale limits the potential for RS use of
data as well as relevancy to practitioners who generally manage lands on a much larger
spatial scale. Being able to measure the response of an ecosystem to treatments used by
practitioners on a large scale could be valuable and is starting to be used. RS topology
data has been used to improve accuracy of seed firing, using drones to release seeds in
mass, reforestation efforts [67] and can be used to assess vegetation regeneration following
restoration treatment [40]. There is a clear benefit of researcher–practitioner collaborations
to meet the challenges of invasive species like HWA, but there are relatively few examples in
the literature that depict these successes. One example of an invasive species that has great
potential for researcher–practitioner collaboration is the invasive tree saltcedar (Tamarix
spp.), which has been the focus of a variety of publications that range from mapping and
assessing the distribution of saltcedar [68–71] to review papers written with the goal of
facilitating the use of different RS tools by practitioners [72].

Case Study: Saltcedar (Tamarix spp.)
Saltcedar was initially introduced to the U.S. in the 1800s for windbreak, shade,

soil erosion control, and ornamental uses, but has become a problematic weed in the
Southwestern U.S. [73]. The first reports of the genus escaping from cultivation date back
to the 1870s. Construction of dams, diversions, and storage facilities along rivers in the
1900s reduced the summer high flows leaving behind alluvial bars and increased salinity
in riparian systems, making them unsuitable for native vegetation and favoring the salt
tolerant and dense saltcedar [74]. The estimated area of saltcedar went from 4000 ha in the
early 1900s to between 0.5 to 0.8 million ha in 2000 [74–77]. Initially saltcedar was believed
to be beneficial to riparian systems as the dense root system aids in stabilizing lake edge
soils and can desalinate soils. However, stabilizing channels will make the banks more
rigid which can lead to channel restriction and increase the potential and severity of floods.
From 1941 to 1979 the mean width of the Brazos River in Texas was reduced from 155 to
66 m, increasing the number of floods as well as the area impacted by floodwater. As the
water recedes, saltcedar stems shoots are deposited even further down the system and can
begin to root, perpetuating the cycle [78].

Approaches to restoring native ecosystems impacted by saltcedar invasion are varied
and include intense chemical treatments, biocontrol using insects, replanting of native
species, and scheduled dam releases. RS has been used to assess some of these restoration
efforts. One study used a combination of ground and aerial surveys with MODIS satellite
imagery to monitor the regeneration of native trees in the Colorado River Delta. Using Flow
data in combination with NDVI values from 1992 through 2002, the authors discovered
a positive relationship between NDVI and number of years with winter flooding [40].
This along with field counts of native tree species and their estimated ages suggests that
allowing for winter flooding could promote growth of native trees. Some researchers using
Landsat found that the saltcedar leaf beetle (Diorhabda carinulata), which has been intro-
duced to control saltcedar, disperse depending on density and connectivity of saltcedar
shrubs [40]. Other researchers have used MODIS and in situ sap flow sensors to mea-
sure evapotranspiration and calculate water budgets in a restoration plot where native
cottonwood (Populus fremontii) had been planted [79]. The authors of this study expressed
that their methods could be used to help practitioners understand the irrigation needs of
planted cottonwoods to ensure their survival in restoration plots that have been impacted
by saltcedar, but it is unclear if it has been implemented by practitioner groups.

3.3. Role of Students and Universities

Undergraduate and graduate students, as well as the programs training them, can
play a key role in bridging the divide between practitioners and researchers. The di-
verse interests and career objectives of PhD students and the state of the job market for
researchers requires students to obtain technical skills and conceptual knowledge in a
variety of domains [80]. In a study of over 700 PhD recipients in the physical sciences,
many respondents echoed that there was little support for them in pursuing a career out-
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side of academia. When asked to rank the quality of graduate training they received in
different skill sets throughout their graduate program, 43% and 76% reported low quality
training in interdisciplinary work and management skills, respectively, while 68% and 62%,
respectively, reported that those skills are of high importance to their current career [81].
Most PhD students in the U.S. do not end up in tenured academic positions. In a survey of
currently employed physical and agricultural sciences U.S. PhD recipients between 1973
and 2010, only 36% and 43%, respectively, were working academic jobs in 2010 [82]. Encour-
aging dissertation committees to include practitioners (when relevant) can help students
navigate their career path while also building networks across the divide. Students will
get the opportunity to learn the terminology and skill sets of both groups, preparing them
to collaborate with both once they complete their studies [33]. It also enables graduate
students to see first-hand how the research they do is used to solve ecological problems.
Encouraging the inclusion of practitioners in the doctoral training process can ensure that
grad students finish their PhDs feeling confident in their training, having built diverse
networks and opened more career opportunities while being better equipped to study and
solve the problems that threaten our forests.

Departments that want to broaden their curriculum and research mission to make
them more applied or broadly relevant to society may benefit from creating incentives for
cross disciplinary work. This could mean developing graduate or undergraduate courses
where students can experience working with practitioners [83], and collect data for long-
term studies, which can help alleviate some of the funding constraints associated with
long-term studies. Formal acknowledgement of students whose work has been used by
practitioners to solve ecological problems could also provide incentive for collaboration [33].
Internship or grant opportunities offered by universities and funding agencies can open
the door for collaborative opportunities as well. Another benefit of including graduate
students in the process of bridging gaps between researchers and practitioners is their
ability to incorporate social media and networking to build and sustain collaborations and
to disseminate research findings to the public, which is more important than ever [84].
Many forestry programs have close ties to industry professionals and other practitioners
and may serve as a good example for how PhD programs in ecology and RS science can
integrate practitioner communities.

Working with both researchers and practitioners can also open more opportunities
for student funding [30]. Extra funding opportunities are a benefit for all groups, but
graduate students often face increased financial pressure. Collaborations may create
new opportunities for funding from government sources such as the National Science
Foundation, the U.S. Department of Agriculture, and the Department of Defense as well
as state/municipal and institutional sources, especially at institutions that incentivize
cross-disciplinary applied studies [30].

4. Discussion
4.1. Lessons Learned from Researcher–Practitioner Collaborations

Our review of the literature highlights both the need for and importance of researcher–
practitioner collaboration as a means to develop more robust remote sensing models and
to enhance the applicability of these RS tools to practitioners. Our team of researchers and
practitioners co-authoring this paper collectively represent academic institutions, the U.S.
Forest Service, and nonprofit organizations. We came together through a combination of
serendipity, the common need for funding, and shared concerns over the ecological impacts
of HWA. Our collective goals were to (1) quantify the spatial distribution of HWA across
the Catskill and Adirondack regions of New York State (i.e., the northern front of HWA
expansion) and (2) improve early detection capacities. Because of the funding sources
supporting this work, we needed to take a highly collaborative approach that focused on
developing products to substantively improve the capacity of practitioners to monitor and
manage HWA. As is common practice in stakeholder engagement efforts [85], this process
began with extensive dialogue to enable our researchers to better understand the needs
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of practitioners and their metrics of “success” and to enable our practitioners to better
understand the capacity of satellite RS to meet their needs and the limitations of these
technologies. These conversations resulted in several key takeaways (Box 1) that, in our
experience, are highly relevant to a wide range of researcher–practitioner collaborations
involving application of RS technologies to assessments of forest health.

Box 1. Key Takeaways from Researcher–Practitioner Collaboration.

1. Some practitioner groups may rely on volunteeers or interns for much of their field data collection. These practitioner groups
often also have limited resources and/or access to staff with specialized training in acquiring and analyzing RS imagery and
data products. This is a major barrier to the integration of sophisticated RS approaches described in the scientific literature into
practitioner monitoring and management efforts. As such, there is a real need for easily replicated RS products and workflows
that rely on freely available data and tools. Ease of replication is essential to keep these RS approaches consistent, and to prevent
wasted efforts from one-off case studies or applications. Practitioners would benefit from the ability to update these products
over time as new imagery becomes available and without commissioning RS researchers.

2. Satellite RS imagery is often more efficient at detecting the evidence of invasive species rather than the invasive species itself.
For example, in the case of HWA, RS products can detect areas of declining forest health likely related to an HWA infestation,
but not the insect itself. This was highly informative to the practitioner community and provided a better understanding of
both the capacity and limitations of these technologies. This highlights the importance of clear communication regarding what
can actually be detected versus what needs to be inferred indirectly by RS analyses.

3. RS products are only as good as the field data used to calibrate and validate the resultant models. Resources for research are
often quite limited, and this can be especially true for research focused on ecological applications. However, we found there to
be real synergistic opportunities through collaborations between researchers and practitioners. Practitioners regularly send
crews to field sites to assess a variety of attributes related to detection of invasive species and characterizations of the ecological
impacts of these invasive species. However, as our researchers learned, the methods used by field crews may not be consistent
across the different organizations conducting these surveys and the types of data being collected, while suitable for practitioner
objectives, can be of limited use for the development of RS models. For example, practitioners might characterize infestation or
forest health metrics at a stand scale, which can be much larger than the spatial resolution of the RS imagery used by researchers.
Because these stands typically exhibit a high degree of spatial heterogeneity, a single stand-level metric often does not provide
the spatial resolution necessary for pairing with RS imagery. A similar scale mismatch occurs when field data refer to individual
trees, which are typically much smaller than satellite RS spatial resolution; thus the problem can exist in either of two ways.

4. Metrics of “success” can vary considerably between researchers and practitioners. As we discussed earlier, field-based surveys
are the most commonly used approach by practitioners to map the distribution of invasive species. These surveys are the most
effective way to find the actual organism of concern (e.g., the poppyseed-sized HWA can be physically observed). However, in
the words of the practitioners on our team, this approach “is a bit like throwing darts in the dark” and has a low success rate at
finding new occurrences, particularly for emerging pests. As such, easy to use RS products that can identify the locations of
hemlock trees (in the case of HWA) and areas where stands might be in a state of decline can greatly improve the efficacy and
efficiency of their mapping and monitoring efforts. This is out of step with metrics of “success” typically used by the scientific
community and can result in the scientific community overlooking important RS approaches that can significantly benefit
practitioner communities.

In light of these key takeaways in Box 1, our team of researchers has begun developing
RS products based entirely on freely available imagery. These products include models
predicting (1) the distribution of hemlock trees, which has greatly improved the targeting
of practitioner field surveys and (2) areas where these hemlock trees appear to be in a
state of declining health. We have worked together to amend the field data collection
protocols of practitioners to improve the capacity of their field surveys (which are being
conducted regardless) to contribute to the development and validation of the RS models
our researchers are working on. While this is an ongoing effort, we have found thus far that
this approach has greatly increased the efficiency of resource use, improved the capacity of
practitioners to find previously unknown occurrences of HWA, and generated field data on
causes of forest decline that are being used to refine our RS models. Our goal is to develop
(1) a parsimonious field sampling protocol that balances efficiency with collecting the data
most important for model development and validation and (2) a version of our model
rooted in datasets easily accessible through web portals such as ClimateEngine.org and
that can be run by practitioners with basic GIS training.
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4.1.1. Workshops and Stakeholder Meetings

Workshops that bring together different stakeholders can be a powerful tool for ad-
vancing collaborations, exchanging ideas and knowledge, and providing technical training
in RS and GIS tools. Providing an overview of necessary field and RS data, workflow,
and analyses that are performed can help fill in knowledge gaps that practitioners may
have [86]. In return, practitioners could collect the necessary field data and provide bi-
ological information on species of interest and indicate species of concern. This could
include training in the use of free software such as Climate Engine, Google Earth Engine,
and QGIS, and introduction to free and open-source software communities such as Pan-
geo (https://pangeo.io accessed on 22 August 2021), so that practitioners with limited
resources can conduct analyses independently. This would be facilitated by creating GUI
interfaces that improve accessibility for practitioners. Routine webinars or annual con-
ferences can also be useful to discuss developments in technology, emerging invasives,
and data needs. Ideally these workshops, meetings, and conferences would encourage
networking and bring together researchers and practitioners for projects.

Once collaborations begin, regular meetings with management groups, interested
stakeholders, and researchers throughout each phase of a project may be useful to assess
next steps, keep all parties informed of progress, and allow discussion on what resources
are available for the next phase of the project. In our experience, routine meetings with
stakeholders, practitioners, and researchers were invaluable, and provided researchers
with the opportunity to acquire targeted field data and guidance on how to move forward
most effectively. Members of our team were offered access to land for monitoring efforts
and useful monitoring tools such as drones. In addition, we gained valuable knowledge of
the surrounding area and locations of the target invasive species. Regular meetings are
essential for fostering new and maintain existing collaborations, and these collaborations
in turn bring their own sets of benefits and challenges.

4.1.2. The Importance of Field Data for Remote Sensing

In order to effectively capture the signal of an invasive species and its impacts on
a landscape, RS studies need to be planned based on the ecology of an invasive species,
and particularly, the spatial, spectral, and temporal characteristics of its ecological impacts.
Additionally, to be useful for management purposes, RS studies also need to meet the
logistical goals and constraints of practitioners in the field. Lastly, RS researchers should
temper their ideal data needs with the constraints of the available sensors with respect to
their spatial, temporal, and spectral resolutions. In this sense, applied RS studies must
balance three sets of constraints: those defined by the detectable expression of the invasive
species’ ecology; availability of data from practitioners in the field that can be integrated in
the RS model; and by the RS instruments being utilized.

The current abundance of publicly available airborne NEON and satellite (NASA,
USGS, European Space Agency, etc.) data enables RS researchers to choose data sources
and instruments that best meet the demands of invasive species ecology and the needs of
practitioners. This selection process should not be seen as a trivial part of the process since
the selection of a sensor/system can have a substantial impact on the resulting analyses.
However, no matter which sensor or data source is chosen, nearly all studies rely on field
data to isolate the signal of an invasive species from the background components of the
environment [87,88]. In an ideal world with no limitations, these field data would be
detailed enough to enable accurate monitoring of an invasive at a scale, frequency, and
spatial resolution that allows for a timely response by practitioners.

To facilitate or improve collaborations between researchers and practitioners, we
compiled what we perceive to be an ideal list of field variables (Table 1) to be collected
that would lay the groundwork for an applied RS study of an invasive species. These
field variables are meant to provide the basis for RS studies to isolate a unique, remotely
detectable signal of an invasive species—and related impacts on forest health—and to
track its presence and/or progression across a region of interest. These variables are

https://pangeo.io
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assumed to be collected at the plot scale to provide the basis for upscaling to a wider region.
The optimal scale of data collection will vary between sensors and projects. In Table 1,
we also assign levels of difficulty to implementing these measurements in the field and
provide examples of potential challenges. Many RS products are highly sensitive to Leaf
Area Index (LAI) [17] and as such having data related to this and other canopy metrics
are highly informative to the RS model-building process. While there are many ways to
collect data on LAI and other canopy metrics, the forest ecology community has used
hemispherical photographs and image processing software (e.g., the freely available Gap
Light Analyzer [89]) for decades. The biggest obstacle in collecting these data is having
access to a costly camera with a hemispherical lens. If practitioners had the necessary tools,
collecting these images as part of their field surveys could be a relatively easy way to build
an archive of data that can be more readily integrated in RS products while providing
historical data for practitioners. Future endeavors to develop centralized hubs to archive
and process these images at low to no cost, could a be instrumental in revolutionizing the
ways in which practitioners and researchers collaborate and benefit from each other’s areas
of expertise and resources.

4.1.3. Engaging with Civic Ecologists and Community-Based Monitoring Programs

Early detection and rapid response (EDRR) efforts are limited by the number of experts
and natural resource professionals available for extensive monitoring and detection efforts.
In addition, it is hard to predict what the next exotic invasive threat to our natural resources
might look like. For example, Emerald Ash Borer was first detected near Detroit Michigan
in 2002, but it had probably been in the area for nearly a decade [90].

Researchers and practitioners are beginning to recognize the value of mobile apps,
online databases, and community-based monitoring programs (CBM) especially if they
can help track and respond to issues of common community concern [91]. Environmental
educators are also recognizing the value of web-based informatics tools such as eBird,
iNaturalist, and Nature Atlas to enhance student engagement and learning [92]. Biodi-
versity apps are particularly useful in urban areas where species occurrence data is often
lacking [93]. Researchers have used iNaturalist data to learn more about the distribution
of certain phyla such as echinoderms and even to predict how urbanization will impact
bat populations [94,95]. Some museums are even using iNaturalist data to augment reptile
and amphibian museum collections for research [96]. Emerging ecological disasters caused
by exotic invasive plants, pests, and or pathogens often spread at rates faster than current
detection methods can keep pace with much less set up an effective eradication program
(e.g., EAB example above) [92,97]. The Center for Invasive Species and Ecosystem Health
Monitoring has developed a variety of apps focused on different geographical regions
that can be used to report sightings of invasive species. Most of these apps are based in
the U.S. and include the Great Lakes Early Detection Network, Texas Invaders, Southeast
Early Detection Network, and Alaska Weeds ID. IveGot1, Outsmart Invasive Species, and
EDD Maps are other examples of local civic engagement apps where individuals can
report sightings of invasive species in Florida, Massachusetts, and Ontario, respectively.
The European Union’s Joint Research Centre has also developed an invasive species app
called Invasive Alien Species Europe. Other apps such as Map of Life are available for
individuals to gather biodiversity data by recording sightings of plant and animal species
across the globe. PlantNet and eBird are apps used to help identify and record the presence
of different plant and bird species worldwide.

Several web- or app-based informatics tools have emerged over the last couple of
decades that can be used to monitor the spatial distribution of invasive species (Table 2).
However, there are possible disadvantages of using some of these tools especially if the
data are collected by untrained civic ecologists. These disadvantages include varying levels
of protocol uniformity, need for simplified sampling designs and strong coordination and
the need for advanced statistical tools to analyze the data [98]. Lack of protocol uniformity
between collectors is likely the most difficult factor to overcome if researchers and land
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practitioners are to use the information. The other factors mentioned are more easily dealt
with especially if researchers and practitioners work with community-based monitoring
groups to train volunteers and conduct error analysis of the data collected [99]. Regardless
of the data source (expert or non-expert) error analysis is a standard component of the
scientific method.

Earth observation projects integrating RS platforms benefit from data collected by civic
ecologists through image interpretation and collection of in situ data, both of which are
useful for calibration and validation of RS imagery [100]. RS projects can take advantage of
in situ data collected by non-experts as long as the app or database includes information
on where and when the data was collected, as well as the experience level of the observer.
While it is possible to mine existing publicly available data sets to help with calibration and
validation of RS projects it may be more effective to utilize existing methodologies found
in web- or app-based informatics tools to organize a community-based monitoring project
focused on the area of interest for the project. Some apps like the Healthy Trees Healthy
Cities app (https://healthytreeshealthycitiesapp.org/; accessed on 22 August 2021) have
modules that were derived from scientific methods developed for RS-based projects (e.g.,
Health Check module). Project management dashboards often allow administrators to
assign an area of interest for a project and invite users to become a part of a targeted project.
This can provide a level of organization necessary for targeted projects while leveraging
existing networks, protocols, and training resources.

Our practitioner team members have highlighted a few additional things this commu-
nity considers when using an app intended for monitoring invasive species. Many of the
app’s users will be civic ecologists, so up-to-date and comprehensive instructions in the
form of an instructional guide that includes the potential uses of the app are important.
Regular updates are useful, but especially those that implement feedback from app users.
Accessibility is also vital. With limited resources, an app would need to be free or low cost
and function on major operating systems like Android and iOS. Additionally, it would be
necessary for an app to function offline, since often there is no service in rural areas where
data may be collected. Finally, collected data is most useful if can be readily downloaded
or exported.

4.1.4. Open Data

One consistent need we have found is for improved communication of new RS tools
from researchers to practitioners. Generally, keeping up with the constantly evolving
peer-reviewed scientific literature is out of the scope of work and time constraints for
practitioners. Only one-third of 500 surveyed land managers and restoration experts man-
aging invasive species consulted scientific literature to make management decisions [101].
To address the divide, the Journal of Applied Ecology has begun publishing a section
that focuses on practitioner’s perspectives. Communicating about new RS tools becomes
even more difficult when scientific literature describing these tools is blocked behind a
journal’s paywall, which some researchers may have access to through their institutions,
but practitioners may not. Paywalls disproportionately impact researchers in the Global
South as well [102]. Writing a synopsis of a scientific publication or publishing in open-
access journals (e.g., Remote Sensing) can be a simple ways to make new RS tools more
accessible usable to practitioners [103]. Additionally, the practitioners we have partnered
with have suggested that researchers accompany publications with a technical report for
better integration.

Traditionally within the geosciences, hard-won field datasets have been kept by
individual researchers or small laboratory workgroups and shared on an as-needed basis
(or not at all). With the rise of data and code storage and sharing technologies such as
Dropbox, Google Drive, and GitHub, it is now logistically straightforward to make even
large geospatial datasets more readily available. However, a culture of data protectiveness
still exists, and furthermore, large-scale data sharing is hampered by lack of coordinated
indexing and cataloging efforts to facilitate data discovery and accessibility. Many funding

https://healthytreeshealthycitiesapp.org/
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agencies and journals are requiring researchers to increase the amount of data that is
readily accessible, which we anticipate will begin to change research culture and encourage
better exchange of information. Any discipline that would claim the adjective ‘scientific’
must facilitate experimental replication, and since geospatial data processing workflows
are often complex and nuanced, it is vitally important that not only are data shared,
but that their characteristics are documented in a uniform metadata format, and that
processing lineage and provenance are preserved. The Spatio Temporal Asset Catalog
(STAC, https://stacspec.org/; accessed on 22 August 2021) is one approach to capturing
geospatial data characteristics, processing history, and use considerations, while providing
a common, programmatically accessible standard for data indexing, search, and discovery.
This framework is free and open-source software, and licensed under Apache v 2.0, and
can thus be used both within academia and by practitioners (and indeed anyone) around
the world. In combination with free code version control and sharing technologies such
as git (e.g., used with github.com), researchers and practitioners can replicate workflows,
extend to new locations, and fork and modify code to suit their specific needs, without
starting from scratch each time, thus maintaining consistency.

Table 1. A list of field variables that could facilitate collaborations between researchers and practitioners tackling complex
problems like those posed by invasive species detection, monitoring, and management. Collection methods are color-coded
based on the difficulty of the methods required for data collection and challenges for implementation (i.e.: green = easy,
quick, and cheap; red = requires expertise, lengthy, expensive). The color scale is: green < yellow < orange < red, in order of
least to most challenging to implement.

Metrics Field Variables Benefit to RS Collection Methods Challenges for
Implementation

Typically
Measured?

Location
and Date

Latitude, longitude,
date, and time

Spatially and
temporally explicit

measurements.
GPS receiver Some expertise and

equipment required. Yes

Structure

Tree height

Accounts for
variation in heights
between field plots
that can affect RS

signals.

Hypsometer Some expertise and
equipment required. No

Leaf angle
distribution

Provides context for
the reflectance of

vegetation and serves
as a key parameter
for measuring other
vegetation metrics

with RS, such as LAI.

Field assessment High expertise and
time-consuming. No

Composition

Tree species

Provides context for
the reflectance of

vegetation and the
composition of the

RS signal.

Field assessment Some expertise and
time required.

Not generally done
for hemlock surveys

Relative Leaf
Chlorophyll Content

Provides context for
the reflectance of
vegetation and

common RS indices
such as NDVI.

Laboratory
assessment

High expertise,
time-consuming, and
equipment required.

No

Background/Landcover
Accounts for
variation in
landscape

composition.

Field assessment Relatively easy to
acquire.

Not regularly taken

Spectrometer (highly
detailed)

High expertise,
time-consuming, and
expensive equipment

required.
Satellite data

products
Some expertise

required.

https://stacspec.org/
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Table 1. Cont.

Metrics Field Variables Benefit to RS Collection Methods Challenges for
Implementation

Typically
Measured?

Condition

Canopy
Transparency

and/or
Crown Vigor

A measure of foliage
gain/loss.

Field assessment Some expertise
required. Yes

Hemispherical
photography

Some expertise and
equipment required.

LAI
A measure of foliage

gain/loss.

LAI Plant Canopy
Analyzer

High expertise and
expensive equipment

required. No

Hemispherical
photography

Some expertise and
equipment required.

Mortality
A binary measure of

the impacts of an
invasive.

Field assessment Relatively easy to
acquire. Sometimes

Aerial survey High expertise and
expense required.

Presence (and ideally,
absence) of the

invasive

A binary measure of
invasive occurrence. Field assessment Some expertise

required. Yes

Abundance of the
invasive

A continuous
measure of invasive

occurrence.
Field assessment Some expertise

required. Yes

Table 2. Some available apps for monitoring forest health and occurrences of invasive species.

App Name Description User Groups Platforms

Healthy Trees Healthy Cities

Health check module tracks
tree health using

non-stressor-specific
symptoms. Pest check module
records signs and symptoms

of pests.

Civic Ecologists, Scientists,
Land Managers Apple, Android, Web

iMapInvasives Tracks invasive species and
management efforts.

Civic Ecologists, Scientists,
Land Managers, Land Owners Apple, Android, Web

Forest Tree Diagnosis

Decision support tool for
identifying signs and

symptoms of common pests
and diseases of economically
important tree species in the

eastern U.S.

Foresters, Landowners, Land
Managers Android

EDD MapS
Mapping system for

documenting invasive species
and pest distribution.

Civic Ecologists, Educators,
Land Managers, Conservation

Biologists
Apple, Android, Web

Wild Spotter

Engaging and empowering
the public to help find, map,
and prevent invasive species

in America’s wilderness areas.

Civic Ecologists Apple, Android

Inaturalist Record and share observations
of plants and animals. Civic Ecologists/Scientists Apple/Android

5. Conclusions

Invasive species mapping and restoration models are only as good as the field data
used for training and validation. We argue that partnerships between researchers and
practitioners are mutually beneficial and critical to addressing the pressing and complex
threats that invasive species pose to forest ecosystems. To facilitate these collaborations,
we provided a suite of recommendations and best practices of how these groups can work
together for each other’s mutual benefit but acknowledge that this is far from compre-
hensive. These benefits include additional funding which may help lengthen the study
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duration, increase resources for field data collection, and/or allow for the use of RS data
with higher spatial, temporal, or spectral resolution. Maximizing the tools and resources
that we have as invasive species researchers and forest ecologists can optimize our ability
to learn more about the ecological impacts of invasive species and combat their spread. In
addition, increasing the number and level of researcher–practitioner partnerships focused
on invasive species detection and management will also help in this regard.

For best practices, researchers can consult practitioners in the field to identify their
concerns and questions, work together to develop standardized field data collection meth-
ods which can be easily integrated and shared for data archives, select the best tools to
answer their specific questions, and maximize their efforts while saving resources and
learning more about the targeted species. Using open-source data and software and adding
indexed data to online data banks for archive can help improve long-term studies, save
financial resources, and help inform future studies. Graduate students, and the design
of PhD training programs, can be helpful in bridging this gap and encouraging the next
generation to do the same. Through these collaborations, graduate students will receive
training in research while gaining firsthand experience in how research gets used to solve
ecological problems. Collectively, this will enable universities to produce new generations
of researchers and practitioners that are better equipped to study and solve the complicated
problems that threaten our forests, while diversifying the career opportunities available to
those with doctoral degrees [33].

Many scientific papers state that they hope their research can help inform practitioners
or provide methodologies for practitioners, but to truly do that, there needs to be more
consideration of the gap between these communities and greater effort put into closing it.
By forming partnerships, researchers can gain greater access to the field data that is critical
to the development of RS products and practitioners gain access to state-of-the-art tools
that can allow them to allocate more resources to management and treatment of invasive
species rather than detection and mapping.
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