
remote sensing

Article

Managing Time-Sensitive IoT Applications via Dynamic
Application Task Distribution and Adaptation

Harindu Korala *, Dimitrios Georgakopoulos, Prem Prakash Jayaraman and Ali Yavari

����������
�������

Citation: Korala, H.;

Georgakopoulos, D.; Jayaraman, P.P.;

Yavari, A. Managing Time-Sensitive

IoT Applications via Dynamic

Application Task Distribution and

Adaptation. Remote Sens. 2021, 13,

4148. https://doi.org/10.3390/

rs13204148

Academic Editor: Akram Al-Hourani

Received: 10 August 2021

Accepted: 12 October 2021

Published: 16 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Science and Software Engineering, Swinburne University of Technology,
Melbourne 3122, Australia; dgeorgakopoulos@swin.edu.au (D.G.); pjayaraman@swin.edu.au (P.P.J.);
ayavari@swin.edu.au (A.Y.)
* Correspondence: hkorala@swin.edu.au

Abstract: The recent proliferation of the Internet of Things has led to the pervasion of networked
IoT devices such as sensors, video cameras, mobile phones, and industrial machines. This has
fueled the growth of Time-Sensitive IoT (TS-IoT) applications that must complete the tasks of
(1) collecting sensor observations they need from appropriate IoT devices and (2) analyzing the data
within application-specific time-bounds. If this is not achieved, the value of these applications and
the results they produce depreciates. At present, TS-IoT applications are executed in a distributed
IoT environment that consists of heterogeneous computing and networking resources. Due to the
heterogeneous and volatile nature (e.g., unpredictable data rates and sudden disconnections) of the
IoT environment, it has become a major challenge to ensure the time-bounds of TS-IoT applications.
Many existing task management techniques (i.e., techniques that are used to manage the execution
of IoT applications in distributed computing resources) that have been proposed to support TS-
IoT applications to meet their time-bounds do not provide a sophisticated and complete solution
to manage the TS-IoT applications in a manner in which their time-bounds are guaranteed. This
paper proposes TIDA, a comprehensive platform for managing TS-IoT applications that includes a
task management technique, called DTDA, which incorporates novel task sizing, distribution, and
dynamic adaptation techniques. DTDA’s task sizing technique measures the computing resources
required to complete each task of the TS-IoT application at hand in each available IoT device, edge
computer (e.g., network gateways), and cloud virtual machine. DTDA’s task distribution technique
distributes and executes the tasks of each TS-IoT application in a manner that their time-bound
requirements are met. Finally, DTDA includes a task adaptation technique that dynamically adapts
the distribution of tasks (i.e., redistributes TS-IoT application tasks) when it detects a potential
application time-bound violation. The paper describes a proof-of-concept implementation of TIDA
that uses Microsoft’s Orleans Actor Framework. Finally, the paper demonstrates that the DTDA
task management technique of TIDA meets the time-bound requirements of TS-IoT applications by
presenting an experimental evaluation involving real time-sensitive IoT applications from the smart
city domain.

Keywords: IoT; time-sensitive IoT applications; distributed IoT data analysis; distributed systems

1. Introduction

The Internet of Things (IoT) is a novel expansion of the Internet that forms a network
of heterogeneous physical objects such as sensors, video cameras, mobile phones, and
industrial machines (all of which we refer to as IoT devices) that can communicate and
exchange data with each other over the Internet [1–3].

In recent years, the quantity of data generated from IoT devices (we refer to this
data as IoT data) has grown significantly and there has been a great deal of interest in
extracting valuable insights from these data [4]. To accomplish this, IoT applications collect
IoT data from appropriate IoT devices and produce high-value information by analyzing
the collected IoT data.

Remote Sens. 2021, 13, 4148. https://doi.org/10.3390/rs13204148 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-4500-3443
https://orcid.org/0000-0002-0588-5931
https://doi.org/10.3390/rs13204148
https://doi.org/10.3390/rs13204148
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13204148
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13204148?type=check_update&version=2

Remote Sens. 2021, 13, 4148 2 of 31

In this paper, we focus on IoT applications that must complete the tasks of collect-
ing IoT data and analyzing them within an application specific time-bound to produce
high-value results. If this is not achieved, the value of such applications and the results
they produce depreciates. We refer to such applications as Time-Sensitive IoT (TS-IoT)
applications and such time-related requirements of the data analysis as time-bound re-
quirements. We can consider a vehicle accident prediction application that must (1) gather
IoT data generated from sensors located at traffic lights, vehicles, and traffic cameras
deployed at intersections, (2) analyze the collected data to predict a possible accident using
many machine learning techniques [5,6], and (3) prevent the accident by informing the
corresponding driver in near real-time (e.g., within a 30 ms time-bound). If there is any
additional time (i.e., more than the application time-bound) involved in completing the
data analysis, the predicted accident information will not be beneficial to prevent the acci-
dent. To discuss further the problem of satisfying time-bound requirements, consider that
TS-IoT applications are comprised of a set of tasks and are intrinsically distributed. Each of
these tasks may need to perform one of the following: collect IoT data from heterogeneous
IoT devices, process the collected data using various techniques such as stream processing
and resource-intensive machine learning and statistical techniques, manage the storage
requirements for stateful data analysis, and maintain the data analysis pipelines (i.e., results
produced by a task may be used as an input to another task/tasks in the same application).
Currently, TS-IoT applications that are comprised of such tasks are executed in distributed
IoT environments.

The IoT environments consist of various heterogeneous distributed computing re-
sources [3,7]. These computing resources include: (1) IoT devices that are directly connected
with sensors, which generate IoT data; (2) edge-computers, i.e., any computing resource
that is closer than the cloud to the IoT devices and is not directly connected to them (e.g.,
network gateways, dedicated edge computers); and (3) cloud data centers. These comput-
ing resources are connected to each other and/or to the Internet via multiple heterogeneous
networks (e.g., narrowband/NB-IoT, LoRa, BLE, and Wi-Fi). Moreover, IoT environments
tend to be volatile due to (1) unpredictable IoT data generation rates, (2) uncertain availabil-
ity of resources caused by mobility, connection issues, etc., and (3) overloaded resources
ascribed to multitenancy (i.e., multiple applications utilizing the same set of resources).

Ensuring the time-bound requirements of TS-IoT applications is largely determined
by the total application execution time. This can be computed as the summation of
the total data processing time and the total data communication time. The total data
communication time is influenced by the relevant network delays involved in moving IoT
data to corresponding resources to process them, whereas the total data processing time
is influenced by the computing resource where the data analysis is performed. Therefore,
guaranteeing the time-bound requirements depends significantly on the choice of suitable
resources from the IoT environment. Nevertheless, there are trade-offs in the selection
of the cloud virtual machines, edge-computers, and/or IoT device resources to execute
a TS-IoT application [8,9]. Although analyzing IoT data on IoT devices yields the lowest
communication delays, IoT devices have limited computing resources. Edge computers
have greater computing resources than IoT devices, but they are likely to suffer from
more communication delays than IoT devices. Cloud virtual machines offer virtually
unlimited resources [8]; therefore, several researchers [10] have used cloud computing
resources to process large quantities of sensor data, such as remote sensing data. However,
processing these data in the cloud induces significant communication delays when IoT
data is transferred to the cloud [11,12]. Moreover, each task of the TS-IoT application also
has diverse resource requirements. For example, a machine learning classification task may
require more computing resources than a simple data aggregation task. Therefore, although
it is usually feasible to meet the time-bound requirements of each TS-IoT application by
distributing tasks for execution in the IoT devices, edge computers, and the cloud, we must
determine the best possible distribution of tasks from the perspective of communication
and computing resource constraints. However, determining the task distribution for TS-IoT

Remote Sens. 2021, 13, 4148 3 of 31

applications is more difficult than for other applications due to the volatility of the IoT
environment and the unpredictability of IoT data streams. Therefore, task distributions of
TS-IoT applications may need to be dynamically adapted to deal with possible time-bound
violations caused by the unpredictable and volatile nature of the IoT environment. Thus,
this has become a major research challenge.

Many existing studies in IoT have proposed various task management techniques
(i.e., techniques that are used to manage the execution of IoT applications in distributed
computing resources) to address the research challenge of supporting the time-bound
requirements of TS-IoT applications. These task management techniques include: (1) task
sizing techniques that determine the amount of computing and networking resource
needed to complete the execution of TS-IoT application tasks; (2) task distribution tech-
niques that distribute and execute TS-IoT application tasks in the IoT environment; and
(3) task adaptation techniques that dynamically adapt the distribution of TS-IoT appli-
cation tasks to mitigate possible time-bound violations. However, existing task sizing
techniques [13–15] have depended on simulation tools [16] or include limited testbed
implementations. Thus, they cannot accurately estimate the suitable quantity of resources
required for TS-IoT application tasks. Existing task distribution techniques have employed
computationally expensive complex optimization techniques [17–20] because they have
been built for use with distributed real-time systems that include controlled execution
environments, unlike volatile IoT environments, and most of them cannot scale with a large
number of IoT devices. Thus, existing task distribution techniques are not suitable to use
with TS-IoT applications that have stringent time-bound requirements. Task adaptation
techniques [18,21] that are found in the literature involve higher overheads and most of
them adapt the distribution of tasks in a reactive manner (i.e., after noticing the applica-
tion’s execution time exceeded the time-bound requirements). Finally, there is a lack of
comprehensive task management techniques that integrate task sizing, task distribution,
and task adaptation techniques to collectively facilitate the TS-IoT applications to meet
their time-bound requirements.

To overcome this shortcoming, in this paper, we propose a novel Time-Sensitive IoT
Data Analysis platform called TIDA that includes a task management technique, called
DTDA, which utilizes the computing resources available in the IoT devices, edge computers,
and the cloud for meeting the time-bound requirements of each TS-IoT application when
the entire pool of available computing resources is sufficient to collectively achieve this.
Specifically, this paper significantly extends our earlier work [3] and makes the following
novel contributions:

1. A novel task management technique called Dynamic Task Distribution and Adapta-
tion (DTDA) that integrates the following techniques:

• A task sizing technique that utilizes an unsupervised machine learning technique
to extract the most important features from task sizing measurement data (i.e.,
computing and network resources required to complete each task of a time-
sensitive IoT application).

• A greedy task distribution technique that distributes and executes the TS-IoT
application in the IoT environment, which was presented in [3].

• A novel task adaptation technique that dynamically adapts and re-distributes
TS-IoT application tasks when it predicts a time-bound violation (i.e., the TS-IoT
application cannot meet its time-bound requirements).

Our earlier work [3] presented a greedy task distribution technique that is unable to
dynamically adapt the task distribution in real-time to cope with the volatile changes in
the IoT environment. Hence, the proposed DTDA technique presented in this paper aims
to address this key limitation of the greedy task distribution technique.

2. A complete implementation of the improved task sizing and novel task adaptation
techniques using Microsoft’s Orleans Actor framework.

Remote Sens. 2021, 13, 4148 4 of 31

3. A comprehensive experimental evaluation using a real-world smart city use case and
related dataset that includes: (a) an experimental setup that forms four clusters of
computing resources with heterogeneous system configurations to validate the DTDA
task management technique; and (b) a comprehensive comparison with two current
state-of-the-art task management techniques that shows how well the TIDA platform,
which implements the above techniques, meets the time-bound requirements of
TS-IoT applications.

The remainder of the paper is organized as follows. Section 2 presents the related
work, Section 3 presents a motivating use case scenario, Section 4 describes the system
model and problem formulation, Section 5 discusses the dynamic task distribution and
adaptation technique, and Section 6 presents the design and implementation of the TIDA
platform. Section 7 presents the experimental evaluation results and Section 8 concludes
the paper and outlines potential future work.

2. Related Work

TS-IoT applications are executed in an IoT environment that connects a variety of IoT
devices such as sensors, mobile phones, cameras, and industrial machines with each other
and/or to the Internet. Intrinsically, this environment is highly distributed. Traditional
distributed real-time systems consist of a set of computer resources interconnected by a
real-time communication network [22]. Generally, distributed real-time systems include a
controlled execution environment (i.e., an environment where applications are executed).
In addition, distributed real-time systems found in power plants and factory control
systems are not connected to the Internet. In these distributed real-time systems, attributes
of the execution environment, such as latencies of networks, data generation rates, and
available computing resources, can be determined in advance [23,24]. On the contrary,
although the IoT environment is highly distributed, it has unique characteristics that
impose additional challenges for the execution of TS-IoT applications in such a manner
that their time-bound requirements are met compared to traditional distributed real-time
systems [3,8,25]. We further discuss these additional challenges of the IoT environment in
Section 3 via a motivation scenario, and in Section 4 by presenting a formal model for the
IoT environment.

Many techniques can be found in the literature that have been developed for dis-
tributed real-time systems and aim to optimize the execution of real-time applications in
terms of execution time [26], cost of execution [27], and energy consumption [28]. Further-
more, due to the controlled execution environment of the distributed real-time systems,
these techniques largely consist of optimization-based scheduling techniques [22,29–31]
that can effectively determine which task needs to be executed, at what time it needs
to be executed, and the resource that should be used for the execution. However, such
optimization-based techniques are only effective in controlled and predictable execution
environments. More specifically, in this paper, we focus on techniques for dynamically
distributing and adapting the tasks of TS-IoT applications by determining the relevant
communication delays involved and the needed computing resource capacities. However,
adaptive scheduling techniques found in distributed real-time systems determine which
tasks need to be executed, at which times, to meet the deadlines of the system. Therefore,
the task scheduling techniques developed for distributed real-time systems cannot be used
for TS-IoT application task distribution. Due to this reason and the unique characteristics
of the IoT environment (such as heterogeneity and volatility) compared to traditional
distributed real-time systems, techniques developed for distributed real-time systems
cannot be effectively used with TS-IoT applications to meet their time-bound requirements.
Therefore, many studies have been recently conducted to devise suitable techniques for
facilitating TS-IoT applications to meet their time-bound requirements.

Meeting the time-bound requirements of TS-IoT applications is challenging due to the
heterogeneous and volatile nature of the IoT environment and the time-bound requirements
of such applications [8,32]. In one of our previous works [3], we proposed an approach for

Remote Sens. 2021, 13, 4148 5 of 31

dealing with these challenges that involves distributing TS-IoT applications in a collection
of interrelated tasks and selecting the appropriate IoT computing and network resources
to execute the tasks of each application in such a manner that they collectively meet the
application’s time-bound requirements. To enable such task distribution, a task sizing
technique was proposed for estimating the computing and network resources required
by the tasks of TS-IoT applications. Related work in determining the most suitable IoT
resources for computing IoT application tasks includes [13,14], which investigated (1) how
to estimate the computing resources required by cloud-based IoT applications based on
historical performance metrics, and (2) evaluated various techniques for achieving this via
the Cloudsim simulator. Zeng et al. [15] presented a simulator called IOTSim to analyze IoT
applications to understand how they would perform in cloud computing environments.
In [16], the researchers proposed a technique for measuring the performance of computing
resources when different IoT application tasks are executed, whereas Korala et al. [33]
introduced a platform to experimentally evaluate the performance of TS-IoT applications.
Alhamazani et al. [34] proposed another approach for measuring performances of IoT
applications across multiple cloud environments. Souza et al. [35] proposed a novel
framework to take measurements of IoT microservices-based applications deployed across
edge and cloud environments.

Most related research in task distribution has considered this problem as an optimiza-
tion problem and proposed various optimization techniques (such as linear programming,
non-linear programming, and heuristic techniques) for this purpose. For example, Taneja
et al. [36] proposed a technique for efficient distribution of application tasks across cloud
and edge resources in a resource-aware manner. Skarlat et al. [37] proposed an optimization
technique that generates a task execution plan for IoT applications. Hong et al. [17] intro-
duced a technique for optimizing the scheduling of IoT application tasks in edge devices.
Yousefpour et al. [18] formulated IoT application distribution as an Integer Non-Linear
Problem (INLP). The authors then used INLP to minimize the cost of resource usage while
satisfying the QoS requirements of the applications. The optimization techniques proposed
by [12,19,20] determine appropriate computing resource selection for meeting the QoS
requirements of IoT applications. Related computing frameworks and tools, such as those
in [38–42], have employed similar techniques to manage the distribution of TS-IoT applica-
tions. Zhang et al. [43] proposed a recommender system for dealing with the heterogeneity
of cloud computing resources.

The IoT is subject to uncertainties, including unpredictable IoT data, volatile and
mobile computing resources, and overloaded resource-constrained computing resources,
due to multitenancy [35]. Therefore, task execution plans may need to be adapted dynami-
cally to deal with possible time-bound violations. To address this, many related studies
have presented dynamic task redistribution techniques, which involve generating new
task execution plans periodically and/or in instances where certain computing resources
become overloaded. Yousefpour et al. [18] introduced a technique to dynamically adapt
the task execution techniques by periodically releasing and deploying tasks when there are
QoS requirement violations. Skarlat et al. [21] also proposed a technique to dynamically
redistribute the tasks when certain resources are overloaded and/or disconnected from
the IoT environment. Xu et al. [44] proposed a solution that can recommend appropri-
ate virtual machines for IoT application workloads in edge-cloud environments using
a tree-based machine learning algorithm to predict performance metrics for these IoT
application workloads.

In summary, optimization-based techniques that have been developed for distributed
real-time systems cannot be used with TS-IoT applications to enable them to meet their
time-bound requirements due to the volatile nature of the IoT environment. Task sizing
techniques found in the literature have relied on simulation tools [13,14] or include limited
testbeds [16] for sizing tasks using estimations. These techniques cannot effectively esti-
mate the resources needed by TS-IoT application tasks because they do not deal with the
heterogeneity and dynamic nature of the IoT environment. Most of the task distribution

Remote Sens. 2021, 13, 4148 6 of 31

techniques in the literature employ complex optimization techniques [17–20] in device task
execution plans; furthermore, most of them do not consider task sizing and are expensive
to compute. Existing dynamic task adaptation techniques [18,21] have mainly employed
task redistribution techniques and they dynamically adapt the task execution plans in a
reactive manner (i.e., after observing that the application has failed to meet the time-bound
requirement or after observing the resources are overloaded), which is not an effective
solution to guarantee the time-bound requirements. Due to these reasons, these techniques
are not suitable for TS-IoT applications that have demanding time-bound requirements.
On the contrary, TIDA includes a Dynamic Task Distribution and Adaptation (DTDA)
task management technique that integrates: (1) a task sizing technique that measures
the computing and network resources required by the tasks when they are executed in
the IoT environment; (2) a greedy task distribution technique that uses the task sizing
information to generate time-bound satisfying task execution plans to distribute tasks in
the IoT environment; and (3) a dynamic task adaptation technique that utilizes a predictive
machine learning model to accurately predict possible time-bound violations and make
necessary adaptations to the task execution plans to ensure the time-bound requirements
are met. Furthermore, TIDA was implemented by extending Microsoft Orleans and the
greedy algorithm was evaluated using a real-world smart city application.

3. Smart City Passenger Counting Application—Motivating Scenario

Let us consider a smart city application that requires an accurate count of passengers
for a public transport system in near real-time. The passenger count information is used by
the transport service to improve planning and scheduling of buses, allocate buses or trains
to meet the actual demand, and respond to unplanned incidents such as bus breakdowns
and accidents. Figure 1 illustrates the motivating scenario, computing resources, and IoT
data analysis tasks in this TS-IoT application.

Remote Sens. 2021, 13, 4148 6 of 33

limited testbeds [16] for sizing tasks using estimations. These techniques cannot effec-
tively estimate the resources needed by TS-IoT application tasks because they do not deal
with the heterogeneity and dynamic nature of the IoT environment. Most of the task dis-
tribution techniques in the literature employ complex optimization techniques [17–20] in
device task execution plans; furthermore, most of them do not consider task sizing and
are expensive to compute. Existing dynamic task adaptation techniques [18,21] have
mainly employed task redistribution techniques and they dynamically adapt the task ex-
ecution plans in a reactive manner (i.e., after observing that the application has failed to
meet the time-bound requirement or after observing the resources are overloaded), which
is not an effective solution to guarantee the time-bound requirements. Due to these rea-
sons, these techniques are not suitable for TS-IoT applications that have demanding time-
bound requirements. On the contrary, TIDA includes a Dynamic Task Distribution and
Adaptation (DTDA) task management technique that integrates: (1) a task sizing tech-
nique that measures the computing and network resources required by the tasks when
they are executed in the IoT environment; (2) a greedy task distribution technique that
uses the task sizing information to generate time-bound satisfying task execution plans to
distribute tasks in the IoT environment; and (3) a dynamic task adaptation technique that
utilizes a predictive machine learning model to accurately predict possible time-bound
violations and make necessary adaptations to the task execution plans to ensure the time-
bound requirements are met. Furthermore, TIDA was implemented by extending Mi-
crosoft Orleans and the greedy algorithm was evaluated using a real-world smart city
application.

3. Smart City Passenger Counting Application—Motivating Scenario
Let us consider a smart city application that requires an accurate count of passengers

for a public transport system in near real-time. The passenger count information is used
by the transport service to improve planning and scheduling of buses, allocate buses or
trains to meet the actual demand, and respond to unplanned incidents such as bus break-
downs and accidents. Figure 1 illustrates the motivating scenario, computing resources,
and IoT data analysis tasks in this TS-IoT application.

Figure 1. Illustration of motivating scenario.

To count passengers in this smart city environment we utilized the following IoT
devices, edge computers, and cloud resources:

Figure 1. Illustration of motivating scenario.

To count passengers in this smart city environment we utilized the following IoT
devices, edge computers, and cloud resources:

1. Orbbec Persee IoT devices providing a combination of RGB and infrared cameras
with a fully functioning onboard computer were mounted above the doors of each
bus. We used these devices to count the passengers stepping in and out of each bus at

Remote Sens. 2021, 13, 4148 7 of 31

each bus stop in the transport network. The IoT data generated by these IoT devices
included (1) video data, (2) depth sensor data, and (3) infrared data at 30 frames per
second. In addition to generating a large volume and variety of IoT data from their
sensors, the Orbbec Persee devices provide internal computing and storage resources.

2. Edge computers at bus stops and train stations. These edge computers act as gateways
for IoT devices and connect to the cloud data center via the Internet. Furthermore,
edge computers also include additional computing and storage resources that can be
used for IoT data analysis.

3. A cloud data center with virtually unlimited computing resources.

In this IoT environment, the IoT devices, edge computers, and the cloud are connected
via different networks (e.g., NB-IoT, 4G, and broadband). The Orbbec Persee IoT devices
incorporate Wi-Fi cards and, as a result, they can connect to the edge computer at each
bus stop. In addition, these IoT devices can also be directly connected to the cloud via
4G during the entire bus journey. However, IoT devices can connect to edge computers
only when they are near bus stops or train stations. The edge computers and the cloud
data centers are connected via broadband Internet. To compute the occupancy of each bus
and the total occupancy, this TS-IoT application must perform the following: (1) capture
passenger data while passengers are stepping in and out of each bus; (2) analyze the
collected RGB/infrared/depth data and recognize individual passengers; and (3) compute
the occupancy of each bus at each bus stop and the entire transport network. This task may
involve the following sub-tasks: (1) pre-processing the collected RGB/infrared/depth data;
(2) classifying passengers as entering or exiting by applying classification techniques such
as the Haar-cascade classifier (please note that, in this paper, we consider the classifier to be
an already trained classifier; hence training the classifier is not considered to be an IoT data
analysis task and is not discussed further in this paper); (3) calculating the total occupancy
of the bus; (4) computing the total occupancy of all the busses in the transport network.

The IoT passenger count application has a variable timebound that is hard to meet,
i.e., it fails to meet its time-bound requirement when any bus reaches the next bus stop
before its occupancy information from the previous bus stop is counted. Meeting the time-
bound requirements in the IoT often depends on the appropriate selection of computing
and networking resources for each TS-IoT application. In the passenger counting IoT
application, although we perform the entire data analysis quickly in the cloud, this may
involve a significant communication delay to collect all the passenger RGB/infrared/depth
data. Offloading the collected passenger data to the edge computers and performing the
data analysis in the edge computers is another option. However, we only have a limited
time to transfer the passenger data to the edge computer and the computing resources
in edge computers are more limited than in the cloud. Processing data in an IoT device
itself is another option that is viable only if an IoT device has enough computing resources
available for the tasks of the IoT application at hand.

Therefore, to meet the time-bound requirements of this and any other TS-IoT appli-
cation, we must determine the best possible distribution of the data analysis tasks that
comprise the TS-IoT application from the perspective of providing enough computing re-
sources and communication capacity, and compute the assigned analysis tasks in a manner
such that the entire TS-IoT application meets its time-bound(s).

However, as discussed in Section 2, unlike distributed real-time systems, the IoT envi-
ronment introduces additional challenges. The IoT environment consists of heterogeneous
computing resources connected by multiple networks, which have different data transfer
rates, latencies, and bandwidth values. Moreover, the IoT environment tends to be volatile
due to (1) unpredictable IoT data generation rates; (2) uncertain availability of resources
caused by mobility, connection issues, etc.; and (3) overloaded resources attributed to multi-
tenancy [3,8,25]. Therefore, TS-IoT applications require adaptation of their task distribution
during the runtime to continue to satisfy the application time-bounds. For example, the
number of passengers onboard at each bus stop varies and cannot be predicted; thus, the
passenger onboarding data fluctuates throughout the bus journey. Moreover, some comput-

Remote Sens. 2021, 13, 4148 8 of 31

ing resources (e.g., the cloud virtual machines) that are processing the TS-IoT application
tasks may disconnect from the IoT environment due to network issues. Additionally, some
computing resources such as edge computers may become overloaded due to multiple
applications competing for resources, in addition to simply not having enough available
resources to handle the incoming variable IoT data. Hence, the computing and storage
resources of the IoT are volatile. As a result of this, although we determine the best possible
distribution of tasks for the TS-IoT application before deployment, it is a challenging task to
meet the application time-bounds during the application runtime. Moreover, due to these
reasons, existing optimization-based techniques devised for distributed real-time-systems
are not suitable and are ineffective in supporting the time-bound requirements of the TS-IoT
applications, because it is necessary to dynamically adapt the distribution of the tasks of
TS-IoT applications to deal with possible time-bound violations caused by the volatile
nature of the IoT environment.

4. System Model & Problem Formulation

Due to the trade-offs between IoT resources in the distributed IoT environment, it is
necessary to generate a task execution plan (which meets the application’s time-bounds
requirement) by determining the relevant communication delays involved and the needed
computing resource capacities for each task. A task execution plan is a mapping of the
tasks of the TS-IoT application to the corresponding computing resources where the tasks
are executed. To address this, first, we present a formal description of the resources in the
IoT environment and the TS-IoT applications. Then, we formulate the task distribution
problem as an optimization problem.

4.1. Resource Model

Computing resources (i.e., IoT devices, edge computers, and the cloud) and network re-
sources in the distributed IoT environment form a graph GRes = (Comp_Res , Network_Res),
where Comp_Res represents the distributed computing resources and Network_Res rep-
resents the network links between computing resources. A single computing resource of
GRes can be denoted as cri, where cri ∈ Comp_Res and i ∈ 1 . . . m, m is the total number of
computing resources in GRes. Each cri has an attribute called Available_Rescri , which is the
amount of computing and storage resources available at cri. Further, Available_Rescri can
be represented as a tuple of

〈
cpui

cr , rami
cr
〉
. Figure 2 shows the IoT environment graph of

the resource model.

Remote Sens. 2021, 13, 4148 9 of 33

Figure 2. IoT environment graph.

A single network link of the ܩோ௦ represents the network resources of a network link
between two computing resources, ܿݎ and ܿݎ . This can be denoted as ݊ݎ ∈
-where ݅ and ݆ denote the corresponding indexes of the two computing re ,ݏܴ݁_݇ݎݓݐ݁ܰ
sources that are connected via network link ݊ݎ . Each ݊ݎ has the following attribute:
ೕ݀݊ܽܤ_݈ܾ݈݁ܽ݅ܽݒܣ is the amount of available bandwidth of the network resource link
ݎ݊ . Furthermore, ݀݊ܽܤ_݈ܾ݈݁ܽ݅ܽݒܣೕ is captured by a tuple ൻݑ

 , ݊ݓ݀
ൿ where ݑ

is the amount of available upload bandwidth and ݀݊ݓ

 is the amount of available
download bandwidth in ݊ݎ .

As discussed in Section 3, due to the volatile nature of the IoT environment,
ݏܴ݁_݈ܾ݈݁ܽ݅ܽݒܣ of computing resources, the number of connected computing resources
in the IoT environment, and ݀݊ܽܤ_݈ܾ݈݁ܽ݅ܽݒܣೕ of the network links vary over time and
the degree of change is hard to predict.

4.2. Application Model
A TS-IoT application is comprised of a set of (possibly inter-dependent) tasks that

interact via data exchanges. A TS-IoT application can be represented as a directed acyclic
graph (DAG), ܩ = , ݏ݇ݏܽܶ) -represents the tasks of the TS ݏ݇ݏܽܶ where ,(ݏݓ݈݂ܽݐܽܦ
IoT application and ݏݓ݈݂ܽݐܽܦ represents the data flows between Tasks. Each TS-IoT
application has a time-bound requirement and we denote it as ܶܤ.

A single task of the ܩ can be denoted as ݐ , where ݐ ∈ ∋ ݅ and ݏ݇ݏܽܶ 1 … ݊,
where ݊ is the total number of tasks in ܩ. Each task can be of two types: stateful tasks
and stateless tasks. Stateful tasks require buffering a certain number of data items before
processing them. We identify the number of data items required to buffer in a stateful task
as the queue size and denote this as ݍ௧ . Stateless tasks do not require buffering of data
items during their data processing; therefore, we consider ݍ௧of stateless tasks to be 1.
Furthermore, to identify whether a task is stateful, we denote the following binary attrib-
ute, ݈݅ݑ݂݁ݐܽݐݏ_ݏ௧ ௧݈ݑ݂݁ݐܽݐݏ_ݏ݅ : = 1 if the task ݐ is a stateful task and ݈݅ݑ݂݁ݐܽݐݏ_ݏ௧ = 0
otherwise. With the current proposed model, we assume that the tasks run continuously;
hence, we do not consider any loop variables (i.e., control variables) for this model at this
stage.

Each ݐ , has the following attributes: ܶܽݏܴ݁_݇ݏ௧ is the amount of computing re-
sources required for the execution of ݐ; ܲ݁݉݅ݐ_ܿݎ௧ denotes the time taken to process

Figure 2. IoT environment graph.

Remote Sens. 2021, 13, 4148 9 of 31

A single network link of the GRes represents the network resources of a network link
between two computing resources, cri and crj. This can be denoted as nrij ∈ Network_Res,
where i and j denote the corresponding indexes of the two computing resources that are
connected via network link nrij. Each nrij has the following attribute: Available_Bandnrij

is the amount of available bandwidth of the network resource link nrij. Furthermore,
Available_Bandnrij is captured by a tuple 〈upij , downij〉 where upij is the amount of avail-
able upload bandwidth and downij is the amount of available download bandwidth in nrij.

As discussed in Section 3, due to the volatile nature of the IoT environment, Available_Rescri

of computing resources, the number of connected computing resources in the IoT environ-
ment, and Available_Bandnrij of the network links vary over time and the degree of change
is hard to predict.

4.2. Application Model

A TS-IoT application is comprised of a set of (possibly inter-dependent) tasks that
interact via data exchanges. A TS-IoT application can be represented as a directed acyclic
graph (DAG), GApp = (Tasks, Data f lows), where Tasks represents the tasks of the TS-
IoT application and Data f lows represents the data flows between Tasks. Each TS-IoT
application has a time-bound requirement and we denote it as TBApp.

A single task of the GApp can be denoted as ti, where ti ∈ Tasks and i ∈ 1 . . . n,
where n is the total number of tasks in GApp. Each task can be of two types: stateful tasks
and stateless tasks. Stateful tasks require buffering a certain number of data items before
processing them. We identify the number of data items required to buffer in a stateful
task as the queue size and denote this as qti . Stateless tasks do not require buffering of
data items during their data processing; therefore, we consider qti of stateless tasks to be 1.
Furthermore, to identify whether a task is stateful, we denote the following binary attribute,
is_state f ulti : is_state f ulti = 1 if the task ti is a stateful task and is_state f ulti = 0 otherwise.
With the current proposed model, we assume that the tasks run continuously; hence, we
do not consider any loop variables (i.e., control variables) for this model at this stage.

Each ti, has the following attributes: Task_Resti is the amount of computing resources
required for the execution of ti; Proc_timeti denotes the time taken to process the IoT data
at a specific computing resource. This depends on the computing resource where the task
is executed. A ti is also associated with two delays. We denote these as Start_Delayti

and Wait_Delayti . The time taken to produce the first data item during IoT data pro-
cessing is denoted by Start_Delayti and the delay between producing data items is de-
noted as Wait_Delayti . We assume that the aforementioned attributes can be obtained
by measurements.

A single dataflow of GApp represents the dataflow (i.e., data transfer) between the pre-
decessor task ti and successor task tj, and this can be denoted as dij, where dij ∈ Data f lows.
i and j denote the indexes of the corresponding tasks. In our model, we assume that data is
transferred piece by piece. Each dij has the following attributes: Datadij

is the size of a single
data piece transferred through dij; the amount of time to send a single piece of data via a
network link is denoted as Com_delaydij

. Figure 3 shows the TS-IoT application graph.
The above model is based on the following assumptions:

• We assume that cloud data centers in the IoT environment have a large amount of
computing and storage resources [8], whereas IoT devices and edge computers have
limited computing and storage resources.

• We assume the Task_Resti can be obtained by measurements via executing the corre-
sponding task on a reference computing resource.

• We assume the Proc_timeti on a computing resource can be obtained by estimation
based on previous measurements.

• We assume the GRes is developed by considering the number of computing resources
and their networks available in the IoT environment.

Remote Sens. 2021, 13, 4148 10 of 31

Remote Sens. 2021, 13, 4148 10 of 33

the IoT data at a specific computing resource. This depends on the computing resource
where the task is executed. A ݐ is also associated with two delays. We denote these as
௧ݕ݈ܽ݁ܦ_ݐݎܽݐܵ and ܹܽ݅ݕ݈ܽ݁ܦ_ݐ௧. The time taken to produce the first data item during IoT
data processing is denoted by ܵݕ݈ܽ݁ܦ_ݐݎܽݐ௧ and the delay between producing data items
is denoted as ܹܽ݅ݕ݈ܽ݁ܦ_ݐ௧ . We assume that the aforementioned attributes can be ob-
tained by measurements.

A single dataflow of ܩ represents the dataflow (i.e., data transfer) between the
predecessor task ݐ and successor task ݐ, and this can be denoted as ݀ , where ݀ ∈
-and ݆ denote the indexes of the corresponding tasks. In our model, we as ݅ .ݏݓ݈݂ܽݐܽܦ
sume that data is transferred piece by piece. Each ݀ has the following attributes:
ௗೕܽݐܽܦ is the size of a single data piece transferred through ݀ ; the amount of time to
send a single piece of data via a network link is denoted as ݕ݈ܽ݁݀_݉ܥௗೕ. Figure 3 shows
the TS-IoT application graph.

Figure 3. TS-IoT application graph.

The above model is based on the following assumptions:
 We assume that cloud data centers in the IoT environment have a large amount of

computing and storage resources [8], whereas IoT devices and edge computers have
limited computing and storage resources.
We assume the ܶܽݏܴ݁_݇ݏ௧ can be obtained by measurements via executing the cor-
responding task on a reference computing resource.
We assume the ܲ݁݉݅ݐ_ܿݎ௧ on a computing resource can be obtained by estimation
based on previous measurements.
We assume the ܩோ௦ is developed by considering the number of computing re-
sources and their networks available in the IoT environment.

4.3. Problem Formulation
Our objective is to generate an application-specific, time-bound satisfying task exe-

cution plan for the IoT environment within the available resources. To realize this, we
need to generate a task execution plan in an IoT environment in a manner such that the
end-to-end response time of the TS-IoT application is within the time-bound requirement
of the application. Furthermore, in this model, we consider TS-IoT application graphs
with multiple paths, and to capture this we consider the end-to-end response time of the
critical path in the graph. We define this critical path of the application graph as a set of
tasks and dataflows, forming a path, for which the end-to-end response time is maximal.
We refer to this end-to-end response time of the application as Total Application Execution
Time and denote it as ܶܿ݁ݔܧ_݈ܽݐ. Given this definition, we can formulate the following
equation:

ܿ݁ݔܧ_݈ܽݐܶ = max
 ∈ ଵ…௧௦

() (1)݁݉݅ܶ_ܿ݁ݔܧ_ℎݐܽܲ

Figure 3. TS-IoT application graph.

4.3. Problem Formulation

Our objective is to generate an application-specific, time-bound satisfying task ex-
ecution plan for the IoT environment within the available resources. To realize this, we
need to generate a task execution plan in an IoT environment in a manner such that the
end-to-end response time of the TS-IoT application is within the time-bound requirement
of the application. Furthermore, in this model, we consider TS-IoT application graphs with
multiple paths, and to capture this we consider the end-to-end response time of the critical
path in the graph. We define this critical path of the application graph as a set of tasks and
dataflows, forming a path, for which the end-to-end response time is maximal. We refer
to this end-to-end response time of the application as Total Application Execution Time and
denote it as Total_ExecApp. Given this definition, we can formulate the following equation:

Total_ExecApp = max
p ∈ 1...Paths

(Path_Exec_Timep) (1)

where Path_Exec_Timep is the end-to-end execution time along the path p and Paths is the
total number of paths in GApp. For any path p, we can calculate the Path_Exec_Timep as
the summation of execution times (i.e., summation of data processing time at tasks and
delays involved in bringing data to the task, buffering data at tasks, etc.) of each task that
is in that path p. Given this definition, we obtain the following:

Path_Exec_Timep = ∑Y
j=1 Task_Exetj (2)

where Y is the total number of tasks in the path p and Task_Exetj is the execution time of
the jth task in the path p of GApp. Task_Exetj can be calculated from the following:

Task_Exetj = Proc_timetj + Com_delaydij
·qtj+Wait_delayti · qtj+

Start_delayti

(3)

In Equation (3), Proc_timetj is the amount of time taken to process IoT data by tj.
Com_delaydij

is the amount of time taken to transfer a single data item from the predecessor
task ti to the task at hand tj via dij. To capture the total Com_delaydij

, we multiply this
with the queue size of tj, which we denote as qtj . Note we do not need to consider the
maximum of Com_delaydij

because we apply this equation on a single path of the graph,
and at the end, the critical path is chosen using Equation (1). We assume Com_delaydij

to be
0 if the two tasks (i.e., ti and tj) are executed in the same computing resource. Start_delayti

is the time taken to produce the first data item by the predecessor task ti and Wait_delayti

is the delay between producing data items at the predecessor task ti. For stateful tasks to
capture the total Wait_delayti , this is multiplied by qtj (i.e., the queue size of the task tj).
Com_delaydij

can be calculated using the following:

Comm_delaydij
=

Datadij

Available_Bandnrij

(4)

Remote Sens. 2021, 13, 4148 11 of 31

where Datadij
denotes the size of a single data piece that needs to be sent to tj from

predecessor task ti via dij that is placed on network link nrij and Available_Bandnrij is the
available bandwidth of the nrij.

Decision variables: We define the decision variables that form the task execution plan
as follows: the first decision variable α

cri
tj

denotes whether a task tj is distributed on a

computing resource cri. The next decision variable γ
nri
dij

denotes whether a dataflow dij is
placed on a network resource nri.

Constraints: First, the task distribution of computing resources and dataflow placement
on network link resources must not exceed the available resources of those corresponding
computing and network resources. A task tj can be distributed in the computing resource
cri if Available_Rescri is at least equal to or more than Task_Restj of tj. We can formally
denote it as follows:

∀ cri ∈ Comp_Res,
Tasks

∑
tj

Task_Rest j ∗ α
cri
tj
≤ Available_Rescri (5)

Each network link can only transfer data that is within its available bandwidth and
we can formally denote it as follows:

∀ nrij ∈ Network_Res

Data f lows

∑
dij

Datadij
∗ γ

nrij
dij
≤ Available_Bandnrij (6)

where Datadij
denotes the amount of data transfer between task ti and tj via network link

nrij and γ
nrij
dij

is the binary variable denoting whether a dataflow dij is placed on a network
resource nrij.

Regarding the second constraint, TS-IoT applications must satisfy their time-bound
requirements. We can formally denote it as follows:

Total_ExeApp ≤ TBApp (7)

Objective function: The objective of the task distribution problem is to devise a task
execution plan in an IoT environment that yields the minimum application execution time
while satisfying the time-bound and resource constraints. We formally denote it as follows:

Minimize:
Total_ExecApp= max

p ∈ 1...Paths
(Path_Exec_Timep) (8)

Subject to: Equations (5)–(7).
However, solving this problem via optimization techniques tends to be NP-hard,

and to ensure the time-bound requirements of TS-IoT applications in a such volatile IoT
environment we need to generate time-bound satisfying task execution plans at the rate
of the change occurring in the IoT environment. However, existing optimization-based
techniques devised for distributed systems are ineffective. Hence, we aim to solve this
problem using a novel dynamic task distribution and adaptation technique described in
the next section. Table 1 lists the definitions of all notations we used in the above system
model and the problem formulation.

Remote Sens. 2021, 13, 4148 12 of 31

Table 1. Notations used in the system model and problem formulation.

Notation Definition

GRes Gra ph representing the IoT environment
Comp_Res Distributed computing resources in the IoT environment

Network_Res Network links between computing resources
cri ith computing resource
m Total number of computing resources in GRes

Available_Rescri The quantity of resources available at ith computing resource
nrij The network resources of a network link between two computing resources, cri and crj

Available_Bandnrij The amount of available bandwidth of the network resource link nrij
GApp Graph representing the TS-IoT application
Tasks Tasks of the TS-IoT application

Data f lows Dataflows between tasks
TBApp Time-bound requirement of the TS-IoT application

ti ith task of the TS-IoT application
n Total number of tasks in GApp
y Total number of different paths throughout the application GApp

is_state f ulti Binary variable denoting whether a task is stateful or not
qti Queue size of the ith task

Task_Resti The amount of computing resources required for the execution of the task ti
Proc_timeti Time taken to process the IoT data at a specific computing resource by task ti

Start_Delayti Time taken to produce the first data item during IoT data processing of task ti
Wait_Delayti The delay between producing data items of task ti

dij Dataflow between the predecessor tasks ti and successor task tj
Datadij

Size of a single data piece transferred through dij
Com_delaydij

The amount of time to send a single piece of data via a network link dij
Total_ExecApp Total application execution time

Path_Exec_Timep End-to-end execution time along the path p of graph GApp

5. Task Management Technique That Includes Task Sizing, Distribution and
Adaptation Techniques

In this section, we present three novel techniques we devised for meeting TS-IoT
application time-bounds as part of the task management technique. The task sizing
technique is presented in Section 5.1 and its results are used by the task distribution
technique that is discussed in Section 5.2. The task adaptation technique adapts the task
distribution by redistributing or reconfiguring individual tasks, whenever a potential
violation of the TS-IoT applications time-bound is detected.

5.1. Task Sizing Technique

The task sizing technique is used for: (1) measuring the computing and network
resources needed for the execution of TS-IoT application tasks in the available IoT devices,
edge computers, and the cloud; and (2) the execution times of the TS-IoT application tasks.
Unlike the existing task sizing techniques found in the literature, instead of estimating
the computing and network resources needed to complete the IoT data analysis of the
tasks of TS-IoT applications and the execution times of tasks, the proposed task sizing
technique executes the TS-IoT application tasks in available computing resources in the IoT
environment, and measures the computing and network resources needed for the execution
of TS-IoT application tasks and execution times of tasks in the available IoT devices, edge
computers, and the cloud. This enables more realistic resource needs and execution times of
TS-IoT application tasks to be gathered compared to estimations. The task sizing technique
is executed whenever the application developer submits a new TS-IoT application to the
TIDA platform or whenever there is a change in the underlying IoT environment, such as
resources becoming disconnected and connected. In this task sizing technique, each task of
the TS-IoT application is executed on every available unique IoT device, edge computer,
and the cloud using sample IoT data submitted by the TS-IoT application developer. The

Remote Sens. 2021, 13, 4148 13 of 31

computing and network resources needed for the execution of each TS-IoT application
task in the IoT environment are measured and recorded. These resource measurements
are then used by the task distribution technique discussed in Section 5.2, and for training
the machine learning (ML) model that is used in the task adaptation technique, which is
discussed in Section 5.3.

The task sizing measurement data mainly captures the resource utilization metrics
(e.g., CPU utilization and memory utilization metrics) and execution times of the tasks
when the tasks are executed on available computing resources. As shown in Table 2, the
raw task sizing measurement data consisted of 12 features. Unlike earlier task sizing
solutions, e.g., [3], this task sizing technique employs an unsupervised machine learning
technique called Principal Component Analysis (PCA) [45] to extract the most important
features from the 12 features of the task sizing measurement data and then store these
extracted features in the database. Feature extraction is the process of constructing a new
set of features that is more informative and non-redundant than the raw measured data.
Feature extraction techniques such as PCA can find correlations among the features in
the task sizing measurement data. For example, consider the two features, the average
CPU usage and maximum CPU usage, from the task sizing measurement data. These two
features could be closely correlated; hence, keeping both of these features will not yield any
additional benefit. There may also be many other features that are highly correlated with
each other. Therefore, using a feature extraction technique such as PCA, a summarized
version (which is more informative and non-redundant) of the original features can be
derived from a combination of the original features. After applying the PCA technique
on the task sizing measurement data, we were able to derive five new features that better
describe the task sizing measurement data.

Table 2. Features of task sizing measurement data.

Features

Average CPU Usage, Max CPU Usage, Min CPU Usage, Average Memory
Usage, Max Memory Usage, Min Memory Usage, Average Memory Usage

Percentage, Max Memory Usage Percentage, Min Memory Usage
Percentage, ResourceCPU (No of CPU cores in the computing resource),

ResourceRAM (Total RAM in the computing resource), Data Size

The extracted features are then used to train the machine learning model used in
the task adaptation technique. In addition, during the execution of the application, as
preformed in the task sizing, we periodically measure the resource utilization and ex-
ecution times. This monitored data is then used to periodically update the task sizing
measurements. This provides continuously updated task sizing measurements and allows
this technique to deal with variations in the volume and velocity of IoT data that lead to
unexpected demand for computing resources. Table 2 shows the features of task sizing
measurement data.

More in-depth details of this task sizing technique can be found in [3]. Most of
the task sizing techniques in the literature include limited testbed implementations or
rely on simulation tools to size the TS-IoT application tasks (i.e., to estimate the amount
of resource required for the execution of tasks and the execution time of task on each
resource). However, none of the existing task sizing techniques can effectively deal with
(1) variations in the volume and velocity of IoT data that are common in IoT, and (2) the
computing resource heterogeneity in the real IoT environment. Unlike other existing task
sizing techniques, the technique proposed here measures the actual (i.e., not simulated)
computing and network resources required to complete each task of the TS-IoT application
at hand in the available computing resources in the IoT environment. Therefore, it provides
more accurate estimations of the resource required for each TS-IoT application task and the
execution time of each task per unique IoT device, edge computer, and cloud computing
resource available. Section 5.2 discusses the task distribution technique that uses the

Remote Sens. 2021, 13, 4148 14 of 31

resource estimates (i.e., task sizing measurements) produced by the task sizing technique.
The pseudocode of the task sizing technique is shown in Algorithm 1.

Algorithm 1: Task Sizing Technique

Input: TaskList, ResourceList
Output: MeasuredData

function SizeTask (TaskList, ResourceList)
1: foreach resource in ResourceList do
2: foreach task in TaskList do

3: Execute task and measure the computing and
network resource usage and execution time

4: Return the measured data
5: end foreach
6: end foreach
7: end function

5.2. Task Distribution Technique

In this section, we propose a novel task distribution technique that follows a greedy
heuristic approach to incrementally solve the task distribution problem and generate a
time-bound satisfying task execution plan. As mentioned in Section 5.1, the greedy task
distribution technique utilizes the task sizing measurements produced by the task sizing
technique to construct a time-bound satisfying task execution plan for executing each
TS-IoT application. The greedy task distribution technique can be re-executed as needed to
construct different task execution plans in situations where certain computing resources are
disconnected from or connected to the IoT environment after the greedy task distribution
technique was previously executed for any TS-IoT application. The pseudocode of the
proposed greedy task distribution technique is shown in Algorithm 2.

The technique takes the TaskList, ResourceList, MeasuredData, and TBApp as inputs.
Then, for each task in the TaskList, the technique finds an eligible (i.e., has enough capacity
to fulfill the resources required by the task) computing resource, which yields the lowest
execution time for that task from a sorted resources map. To construct the sorted resources
map for the first task in the TaskList, the technique uses only the computing resources
that are closer to the IoT data source. To find such resources the algorithm uses the
GetResourcesCloserToDataSource () function. Therefore, the first task of the application
is always assigned to a computing resource that is closer to the data source, provided
it has enough resource capacity (lines 4–5 in Algorithm 2). Moreover, to construct the
sorted resources map for tasks that have predecessor tasks, the algorithm retrieves the
tuples of the corresponding task from the measurement table and constructs a sorted
resources map using the data in the tuples. The map consists of the resources and the
corresponding execution time measured for that task. Furthermore, the map is sorted
based on the measured execution times and we consider that one computing resource can
host multiple tasks if it has enough resource capacity (lines 6–8 in Algorithm 2).

Once the sorted resources map is created, the technique iterates through each item in
the sorted resources map until it finds an eligible computing resource. When the technique
identifies an eligible computing resource, it first assigns that resource to the corresponding
task via updating the task distribution map, then updates the available resources of the
selected resource, updates the Total_ExecApp based on the estimated execution time, exits
the while loop, and moves to the next task in the task list (lines10–19 in Algorithm 2). The
technique iteratively determines eligible computing resources in a greedy manner (i.e.,
picks the resource that would yield the lowest execution time) for each task in the task list.

It should be noted that IoT can be volatile, because in the real world the IoT data
volume/velocity and the available computing resources often vary. Although the task dis-
tribution technique can be executed several times to produce different task execution plans
whenever computing resources are disconnected or connected, it is not capable of changing
or adapting its task execution plan at hand to deal with possible time-bound violations

Remote Sens. 2021, 13, 4148 15 of 31

caused by varying IoT data volumes and available computing resources. Therefore, the
task execution plans constructed by the task distribution technique may not achieve the
time-bound requirements of the TS-IoT application due to such volatility. To overcome this
drawback, we propose a novel task adaptation technique, which is discussed in Section 5.3.

Algorithm 2: Greedy Task Distribution Technique

Input: TaskList, ResourceList, MeasuredData, TBApp
Output: TaskExecutionPlan <task, resource>

function GreedyTaskDistribution (TaskList, ResourceList, MeasuredData, TBApp)

01: Initialize TaskExecutionPlan <task, resource ≥ null, CanDistribute = true,
SortedResourceMap <resource, execution_time>, Total_ExeApp = null;

02: while TaskList is not empty AND CanDistribute is true do
03: task = TaskList. GetItem ();
04: if IsFirstTask(task)
05: SortedResourceMap = GetResourcesCloserToDataSource ();
06: else
07: SortedResourceMap = MeasuredData.GetData (task);
08: end if
09: Initialize TaskPlaced = false, i = 0;
10: while i < SortedResourceMap. Count AND TaskPlaced is false do
11: resource = SortedResourceMap. GetItem(i);
12: if CheckResourceCapacity (task, resource)
13: TaskExecutionPlan. Add (task, resource);
14: UpdateAvailableResourceCapacities (resource, ResourceList);
15: Total_ExeApp ± SortedResourceMap. GetValue (resource);
16: TaskPlaced = true;
17: end if
18: i++;
19: end while
20: if TaskPlaced is false OR Total_ExeApp > TBApp
21: CanDistribute = false;
22: end if
23: end while
24: if Total_ExeApp ≤ TBApp AND CanDistribute
25: return TaskExecutionPlan;
26: else
27: TaskExecutionPlan = AllocateAllTasksToCloud ();
28: return TaskExecutionPlan;
29: end if

end function

5.3. Task Adaptation Technique

The objective of the task adaptation technique is to dynamically adapt the task execu-
tion plan of the TS-IoT application to mitigate potential time-bound violations caused by
unexpected changes in the IoT device observation volume and velocity, and computing
resources becoming unavailable due to the volatility of the IoT environment. To achieve
this, the task adaptation technique employs a variation of the XGBoost regression tree
model [46] to periodically predict the application’s total execution time assuming that
the application continues to follow its current task execution plan. Next, the predicted
total application execution is compared with the time-bound requirement of the TS-IoT
application to assess whether the current task execution plan at hand can meet its time-
bound requirement. If the predicted total application execution time is earlier than or meets
the time-bound requirement of the TS-IoT application, then the current task execution
plan remains unchanged. If the predicted total application execution time is later than
the time-bound of the TS-IoT application, then an alternative task execution plan that can
guarantee the time-bound requirements is selected from a set of alternative task execution
plans (the creation of alternative execution plans is discussed further in Section 5.4). More
specifically, when selecting an alternative task execution plan, the XGBoost model is used

Remote Sens. 2021, 13, 4148 16 of 31

to predict the total application execution times for each of the alternative task execution
plans and pick the task execution plan that yields the lowest total application execution
time. After selecting an alternative task execution plan, the tasks that were running will
be stopped. Then, the TS-IoT application tasks will be redistributed according to this
alternative task execution plan and start executing again.

The task adaptation technique continuously trains the XGBoost model in an online
manner using the features extracted from the task sizing measurement data (as shown in
Table 2 and discussed in Section 5.1). XGBoost is a tree-based ensemble machine learning
algorithm, which was selected as the basis of the proposed task adaptation technique due
to its fast convergence speed. Compared to the other performance prediction models,
such as neural networks [47], decision tree-based models require less training data, less
training time, and less parameter tuning. Moreover, the ensemble tree-based algorithms,
which combine several decision trees, performed better when compared to single decision
tree-based models [44].

5.4. Combining the Task Sizing, Distribution, and Adaptation Techniques to Meet TS-IoT
Application Time-Bounds

In this section, we outline how the techniques we discussed in Sections 5.1–5.3 are com-
bined in an integrated task management technique called the Dynamic Task Distribution
and Adaptation (DTDA) technique. In summary, DTDA ensures that TS-IoT application
meets their time-bounds as follows:

Step 1: Size the TS-IoT application’s tasks in the available resources (i.e., all available
IoT devices, edge computers, and cloud virtual machines) using the task sizing technique
(line 4 in Algorithm 3).

Step 2: Train the XGBoost model according to the task adaptation technique using the
features extracted from the task sizing measurement data (lines 5–8 in Algorithm 3).

Step 3: Construct all the possible task execution plans for the submitted TS-IoT appli-
cation. For this purpose, we need to create all the different possibilities in distributing the
tasks of the TS-IoT application to the available computing resources. Therefore, we generate
all the combinatorial possibilities for distributing tasks of a given TS-IoT application to the
available computing resources in the IoT environment. For example, consider an instance
where a given TS-IoT application is comprised of three tasks (e.g., t1, t2, and t3) and an
IoT environment that has two available computing resources (e.g., cr1 and cr2). In this
step, all the different possible distributions of the tasks t1, t2, and t3 in the two computing
resources cr1 and cr2 will be generated. As we discussed in Section 4, each different task
distribution possibility in the IoT environment is considered as a task execution plan; thus,
we identify all the possible task execution plans for the submitted TS-IoT application.
Pre-computing all the possible task execution plans permits the task adaptation technique
to quickly pick an alternative task execution plan from the list of all possible plans that
have been pre-computed. This enables the dynamic adaptation technique to quickly pick
an alternative plan that will meet the time-bound of the application (line 7 in Algorithm 3).

Step 4: Generate a time-bound satisfying task execution plan (from this point on we
refer to this as the current task execution plan) using the greedy task distribution technique,
which was discussed in Section 5.2 (line 9 in Algorithm 3).

Step 5: Distribute the tasks into the IoT devices, edge computers, and/or cloud-based
virtual machines according to the task execution plan and start executing the application
tasks (line 10 in Algorithm 3).

Step 6: Periodically measure the resource usage and execution times of the tasks to
update the task sizing measurement data by (1) extracting the features from them, and
(2) using the extracted features to retrain the ML model (lines 13–18 in Algorithm 3).

Step 7: Periodically predict the total application execution time of the task execution
plan at hand using the XGBoost model (lines 20–22 in Algorithm 3).

Step 8: Assess whether the task execution plan at hand can guarantee the time-bound
requirement of the TS-IoT application using the predicted total application execution time
(line 23 in Algorithm 3).

Remote Sens. 2021, 13, 4148 17 of 31

Step 9: If a possible time-bound violation is detected, select an alternative task execu-
tion plan from the set of pre-computed task execution plans (lines 24–34 in Algorithm 3).

Step 10: Redistribute the TS-IoT application tasks according to the alternative task
execution plan and restart the application execution (line 35 in Algorithm 3).

The pseudocode of the proposed DTDA technique is shown in Algorithm 3.

Algorithm 3: Dynamic Task Distribution and Adaptation Technique (DTDA)

Input: GApp , GRes, TBApp
01: Initialize TaskList = null, ResourceList = null; TaskExecutionPlanAtHand = null;
02: TaskList = CreateTaskListFromAppGraph (GApp);
03: ResourceList = CreateResourceListFromResourceGraph (GRes);
04: MeasuredData = SizeTask (TaskList, ResourceList, TBApp);//Use Task Sizing Technique
05: ExtractedFeatures = ExtractFeatures (MeasuredData);//Extract features from measured data
06: SaveExtractedFeatures (ExtractedFeatures);
07: TaskExecutionPlanList = ComputeAllPossiblePlans (TaskList, ResourceList);
08: TrainMLModel(ExtractedFeatures);//Train ML model using extracted features
09: TaskExecutionPlanAtHand = GreedyTaskDistribution (TaskList, ResourceList, MeasuredData, TBApp);
10: DistributeTasks (TaskExecutionPlanAtHand);
11: NoChangeInIoTEnviornment = True;//This variable will change to false if any resource disconnects or connects to the IoT
12: while NoChangeInIoTEnviornment is True do
13: if PeriodicUpdate is true AND PeriodicPredict is false
14: MeasuredData = MonitorAndMeasure ();
15: ExtractedFeatures = ExtractFeatures (MeasuredData);
16: UpdateValuesOfFeatureData (ExtractedFeatures);
17: TrainMLModel (ExtractedFeatures);
18: end if
19: if PeriodicUpdate is false AND PeriodicPredict is true
20: MeasuredData = MonitorAndMeasure ();
21: ExtractedFeatures = ExtractFeatures (MeasuredData);
22: Total_ExeApp = Predict (ExtractedFeatures, TaskExecutionPlanAtHand);
23: IsTimeBoundViolation = AssessTimeBoundViolation (Total_ExeApp, TBApp);
24: if IsTimeBoundViolation is true
25: Initialize FoundNewPlan = False; i = 0;
26: while TaskExecutionPlanList is not empty AND FoundNewPlan is false do
27: TaskExecutionPlan = TaskExecutionPlanList. GetItem(i);
28: PredictedTime = Predict (ExtractedFeatures, TaskExecutionPlan);
29: if PredictedTime =< TBApp
30: TaskExecutionPlanAtHand = TaskExecutionPlan;
31: FoundNewPlan = True;
32: end if
33: end while
34: end if
35: DistributeTasks (TaskExecutionPlanAtHand);
36: end if
37: end while

6. TIDA Platform

To meet the time-bound requirements of TS-IoT applications we developed a novel
time-sensitive IoT data analysis (TIDA) platform [48]. TIDA utilizes the combination of the
task sizing, distribution, and adaptation techniques as described in Section 5 to distribute
and execute the tasks of each TS-IoT application in the cloud, edge computers, and IoT
devices. In this section, we discuss the design and implementation of the TIDA platform.

6.1. Architecture of the TIDA Platform

In this section, we discuss each component of the architecture. The architecture for the
TIDA platform is illustrated in Figure 4.

Remote Sens. 2021, 13, 4148 18 of 31

Remote Sens. 2021, 13, 4148 19 of 33

IoT devices. In this section, we discuss the design and implementation of the TIDA plat-
form.

6.1. Architecture of the TIDA Platform
In this section, we discuss each component of the architecture. The architecture for

the TIDA platform is illustrated in Figure 4.

Figure 4. The architecture of the TIDA platform.

Task Transformation Engine: To execute any TS-IoT application irrespective of its
underlying application model, we propose a transformation technique that transforms
data analysis tasks of any TS-IoT application into a set of common executable units of the
TIDA platform. We refer to these executable units as “actors”. Each actor has the following
characteristics: (1) represents a data analysis task of the TS-IoT application, (2) function-
ally equivalent to its corresponding data analysis task, and (3) independent of any appli-
cation model. The transformation engine is responsible for this function of the platform,
and it takes any TS-IoT application specification as an input and transforms its data anal-
ysis tasks into a set of functionally equivalent actors that can be executed by the platform.

Task Sizing Engine: This engine is responsible for implementing the task sizing tech-
nique that involves measuring computing and network resources for the execution of
tasks of the TS-IoT application.

Task Distribution Engine: This implements the task distribution technique and is re-
sponsible for efficiently managing the distribution of tasks. The task distribution engine
is comprised of two modules. These are the distribution planner module and distribution
invocator module. Distribution planners can accommodate different task distribution
techniques. Task distribution techniques (such as the dynamic task distribution and ad-
aptation technique discussed in Section 5) generate task execution plans. Then, these task
execution plans are sent to the distribution invocator, which then distributes the tasks to
the corresponding resources according to the plan and invokes their executions.

Monitoring Engine: This engine periodically monitors the execution landscape in
terms of resource utilization (CPU usage and RAM usage) and execution progress of tasks.
It is comprised of a measuring module and a metric module. The measuring module is
responsible for periodically collecting the resource utilization and task execution progress
and forwarding this information to the metrics module. The metrics module then uses this
information to compute numerous metrics, which is then forwarded to the reasoner en-
gine. The metrics [33] currently supported by the TIDA platform are as follows:
 Total Application execution time;
 Total data communication time during the application execution;
 Total data processing time of the application. (i.e., time taken to analyze the IoT data);

Figure 4. The architecture of the TIDA platform.

Task Transformation Engine: To execute any TS-IoT application irrespective of its
underlying application model, we propose a transformation technique that transforms
data analysis tasks of any TS-IoT application into a set of common executable units of the
TIDA platform. We refer to these executable units as “actors”. Each actor has the following
characteristics: (1) represents a data analysis task of the TS-IoT application, (2) functionally
equivalent to its corresponding data analysis task, and (3) independent of any application
model. The transformation engine is responsible for this function of the platform, and it
takes any TS-IoT application specification as an input and transforms its data analysis tasks
into a set of functionally equivalent actors that can be executed by the platform.

Task Sizing Engine: This engine is responsible for implementing the task sizing
technique that involves measuring computing and network resources for the execution of
tasks of the TS-IoT application.

Task Distribution Engine: This implements the task distribution technique and is
responsible for efficiently managing the distribution of tasks. The task distribution engine
is comprised of two modules. These are the distribution planner module and distribution
invocator module. Distribution planners can accommodate different task distribution
techniques. Task distribution techniques (such as the dynamic task distribution and
adaptation technique discussed in Section 5) generate task execution plans. Then, these
task execution plans are sent to the distribution invocator, which then distributes the tasks
to the corresponding resources according to the plan and invokes their executions.

Monitoring Engine: This engine periodically monitors the execution landscape in
terms of resource utilization (CPU usage and RAM usage) and execution progress of tasks.
It is comprised of a measuring module and a metric module. The measuring module is
responsible for periodically collecting the resource utilization and task execution progress
and forwarding this information to the metrics module. The metrics module then uses this
information to compute numerous metrics, which is then forwarded to the reasoner engine.
The metrics [33] currently supported by the TIDA platform are as follows:

• Total Application execution time;
• Total data communication time during the application execution;
• Total data processing time of the application. (i.e., time taken to analyze the IoT data);
• Data processing time of each data analysis task;
• Time-bound violation ratio of the TS-IoT application.

Prediction Engine: This engine is responsible for periodically predicting the applica-
tion’s total execution using monitored data. To realize this, the prediction engine employs
an XGBoost-based machine learning model to periodically predict the application’s total
execution time using features extracted from the monitored data. Using the predicted

Remote Sens. 2021, 13, 4148 19 of 31

application’s total execution time, the prediction engine can assess whether the tasks at
hand can meet the time-bound requirements with the task execution plan at hand, as
discussed in Section 5.3. If it cannot meet the time-bound requirements, the task adaptation
engine is triggered to make the necessary adaptations to the task execution plans to deal
with predicted future time-bound violations.

Task Adaptation Engine: This engine implements the task adaptation technique and
is responsible for making the necessary dynamic adaptations to the task execution plans
whenever the prediction engine predicts a possible future time-bound violation. To achieve
this, the task adaptation engine selects an alternative task execution plan that can guarantee
the time-bound requirements from a set of pre-computed task execution plans. Finally, it
triggers the task distribution engine to redistribute the tasks according to the alternative
task execution plan.

6.2. Implementation of the TIDA Platform

A proof of concept implementation of the TIDA platform [48] was implemented using
Microsoft’s Orleans Actor framework [49]. Orleans actors are developed to scale elastically,
and they can run on any operating system that has .NET core installed. Therefore, we
decided to implement the TIDA platform’s underlying executable units as Orleans actors.
This enabled us to develop a highly scalable and efficient task management system that
led to the development of a proof-of-concept task distribution engine. Furthermore, we
implemented the discussed DTDA technique as part of the task distribution engine. The
transformation engine was implemented as a .NET CORE class library. For the proof of
concept implementation of this research, we developed a wrapper that can be used to read
a workflow specification file modeled using the camunda [50] workflow modeler. The
monitoring engine was implemented as an Orleans start-up service, which is activated
when TIDA is up and running. The monitoring engine periodically monitors the execution
landscape in terms of resource utilization and execution progress of tasks. Moreover, its
metric module then computes the metrics that are mentioned in Section 6.1. The reasoning
engine was implemented as a Flask Python service. The machine learning model was
implemented using the Python XGBoost library. Other engines interact with the reasoner
engine via REST API calls. The task adaptation engine was implemented as another .NET
CORE class library. A PostgreSQL [51] relational database was used as our storage provider.
This store measured data, feature data, application-specific data, and information of the
resources such as the health of each resource.

7. Experimental Evaluation of TIDA
7.1. Time-Sensitive IoT Application, Dataset and Experimental Setup

To evaluate the TIDA platform and its techniques, we implemented the passenger
counting TS-IoT application discussed in Section 3. The application was modeled as a
workflow application using the camunda workflow modeler. As we discussed in Section 3,
the passenger counting TS-IoT application is comprised of three main data analysis tasks:
(1) pre-processing task, (2) classification task, and (3) counting task. The pre-processing
task is mainly responsible for pre-processing the passenger onboarding video data by
converting them to gray-scale from RGB. The classification task uses a Haar-cascade
machine learning classifier to classify passengers as entering or exiting, and to maintain
counts for entering/exiting. The counting task simply aggregates the exit and enter counts
received from the classification task to compute the total occupancy in the bus. We used
the OpenCV library for pre-processing and classification tasks, and implemented the
application using C#. Figure 5 shows the application graph of the passenger counting
IoT application.

Remote Sens. 2021, 13, 4148 20 of 31

Remote Sens. 2021, 13, 4148 21 of 33

the OpenCV library for pre-processing and classification tasks, and implemented the ap-
plication using C#. Figure 5 shows the application graph of the passenger counting IoT
application.

Figure 5. Passenger counting TS-IoT application tasks.

The dataset used for experimental evaluation was obtained during a project carried
out in Sydney, Australia [52], using a Orbbec Persee device, which provides internal com-
puting and storage resources consisting of a Quad-core Cortex A17 processor (which has
a processing speed of 1.8 GHz), 2 GB RAM, and 8 GB internal storage. We used three
passenger onboarding video files with three different sizes (12.5, 25, and 37.5 MB) for the
evaluations. Each of these video files has a resolution of 640 × 480 and 30 frames per sec-
ond (FPS). Figure 6 shows a sample of the passenger onboarding data.

Figure 6. Passenger onboarding video.

The experiments were conducted in a cloud-based environment. For this purpose,
we created a testbed in the cloud using the NECTAR research cloud [53]. The computing
resources of the experimental testbed were categorized into four clusters of cloud virtual
machines and each cluster consisted of three cloud virtual machines. To emulate edge
computers and IoT devices, we created eight cloud virtual machines (four virtual ma-
chines that emulate edge computers and four virtual machines that emulate IoT devices)
with similar system configurations of real-world edge computers and IoT devices. For this
purpose, we considered the system configurations of the Cisco 807 industrial services
router for edge computers and Orbbec Persee camera’s system configurations for the IoT
device. In summary, the experimental setup comprised the following computing re-
sources: Cluster 1 consisted of three virtual machines that emulated IoT devices; Cluster
2 consisted of three virtual machines that emulated edge computers; Cluster 3 consisted
of three cloud virtual machines; and Cluster 4 consisted of three virtual machines that
emulated an IoT device, edge computer, and a cloud virtual machine. In this evaluation,
we simulated the IoT data communication through the network because all the computing
resources were created in the cloud. To compute the total data communication time, the
sample video files and the pre-processed video files (i.e., the data output of the pre-pro-
cessing task) were transferred to the cloud virtual machines over the Internet (bandwidth
4 Mbps) from a local computer and the amount of time taken to transmit was measured.
Figure 7 shows the four computing resources clusters and the computing resources of
each cluster with their corresponding system configurations.

Figure 5. Passenger counting TS-IoT application tasks.

The dataset used for experimental evaluation was obtained during a project carried
out in Sydney, Australia [52], using a Orbbec Persee device, which provides internal
computing and storage resources consisting of a Quad-core Cortex A17 processor (which
has a processing speed of 1.8 GHz), 2 GB RAM, and 8 GB internal storage. We used three
passenger onboarding video files with three different sizes (12.5, 25, and 37.5 MB) for
the evaluations. Each of these video files has a resolution of 640 × 480 and 30 frames
per second (FPS). Figure 6 shows a sample of the passenger onboarding data.

Remote Sens. 2021, 13, 4148 21 of 33

the OpenCV library for pre-processing and classification tasks, and implemented the ap-
plication using C#. Figure 5 shows the application graph of the passenger counting IoT
application.

Figure 5. Passenger counting TS-IoT application tasks.

The dataset used for experimental evaluation was obtained during a project carried
out in Sydney, Australia [52], using a Orbbec Persee device, which provides internal com-
puting and storage resources consisting of a Quad-core Cortex A17 processor (which has
a processing speed of 1.8 GHz), 2 GB RAM, and 8 GB internal storage. We used three
passenger onboarding video files with three different sizes (12.5, 25, and 37.5 MB) for the
evaluations. Each of these video files has a resolution of 640 × 480 and 30 frames per sec-
ond (FPS). Figure 6 shows a sample of the passenger onboarding data.

Figure 6. Passenger onboarding video.

The experiments were conducted in a cloud-based environment. For this purpose,
we created a testbed in the cloud using the NECTAR research cloud [53]. The computing
resources of the experimental testbed were categorized into four clusters of cloud virtual
machines and each cluster consisted of three cloud virtual machines. To emulate edge
computers and IoT devices, we created eight cloud virtual machines (four virtual ma-
chines that emulate edge computers and four virtual machines that emulate IoT devices)
with similar system configurations of real-world edge computers and IoT devices. For this
purpose, we considered the system configurations of the Cisco 807 industrial services
router for edge computers and Orbbec Persee camera’s system configurations for the IoT
device. In summary, the experimental setup comprised the following computing re-
sources: Cluster 1 consisted of three virtual machines that emulated IoT devices; Cluster
2 consisted of three virtual machines that emulated edge computers; Cluster 3 consisted
of three cloud virtual machines; and Cluster 4 consisted of three virtual machines that
emulated an IoT device, edge computer, and a cloud virtual machine. In this evaluation,
we simulated the IoT data communication through the network because all the computing
resources were created in the cloud. To compute the total data communication time, the
sample video files and the pre-processed video files (i.e., the data output of the pre-pro-
cessing task) were transferred to the cloud virtual machines over the Internet (bandwidth
4 Mbps) from a local computer and the amount of time taken to transmit was measured.
Figure 7 shows the four computing resources clusters and the computing resources of
each cluster with their corresponding system configurations.

Figure 6. Passenger onboarding video.

The experiments were conducted in a cloud-based environment. For this purpose,
we created a testbed in the cloud using the NECTAR research cloud [53]. The computing
resources of the experimental testbed were categorized into four clusters of cloud virtual
machines and each cluster consisted of three cloud virtual machines. To emulate edge
computers and IoT devices, we created eight cloud virtual machines (four virtual machines
that emulate edge computers and four virtual machines that emulate IoT devices) with
similar system configurations of real-world edge computers and IoT devices. For this
purpose, we considered the system configurations of the Cisco 807 industrial services
router for edge computers and Orbbec Persee camera’s system configurations for the IoT
device. In summary, the experimental setup comprised the following computing resources:
Cluster 1 consisted of three virtual machines that emulated IoT devices; Cluster 2 consisted
of three virtual machines that emulated edge computers; Cluster 3 consisted of three cloud
virtual machines; and Cluster 4 consisted of three virtual machines that emulated an IoT
device, edge computer, and a cloud virtual machine. In this evaluation, we simulated the
IoT data communication through the network because all the computing resources were
created in the cloud. To compute the total data communication time, the sample video
files and the pre-processed video files (i.e., the data output of the pre-processing task) were
transferred to the cloud virtual machines over the Internet (bandwidth 4 Mbps) from a
local computer and the amount of time taken to transmit was measured. Figure 7 shows
the four computing resources clusters and the computing resources of each cluster with
their corresponding system configurations.

Table 3 illustrates the overall system configurations of the computing resources in the
experimental setup.

Remote Sens. 2021, 13, 4148 21 of 31
Remote Sens. 2021, 13, 4148 22 of 33

(a) (b)

(c) (d)

Figure 7. Experimental setup with corresponding system configurations. (a) Cluster 1 (IoT devices). (b) Cluster 2 (edge
computers). (c) Cluster 3 (cloud servers). (d) Cluster 4 (IoT devices, edge computer, and cloud server).

Table 3 illustrates the overall system configurations of the computing resources in
the experimental setup.

Table 3. System configurations of the computing resources.

Computing Resources Type CPU RAM Number of Computing Resources
Cloud virtual machine 2.5 GHz Intel Core Processor 4 VCPUs 12 GB 4

Edge computer 2.29 GHz Intel Core Processor 2 VCPUs 4 GB 4
IoT device 2.29 GHz Intel Core Processor 1 VCPUs 2 GB 4

7.2. Experimental Evaluation Methodology and Evaluation Metrics
We compared the performance of the proposed task management technique (DTDA)

with three state-of-the-art task management techniques, namely binpack [54], random
[55], and greedy [3]. We implemented the abovementioned task management techniques
in the TIDA platform to fairly compare the performance of the aforementioned techniques
under different computing resource clusters and different quantities of data (passenger
onboarding video size). Table 4 shows the task management techniques we used for this
experimental evaluation.

Figure 7. Experimental setup with corresponding system configurations. (a) Cluster 1 (IoT devices). (b) Cluster 2 (edge
computers). (c) Cluster 3 (cloud servers). (d) Cluster 4 (IoT devices, edge computer, and cloud server).

Table 3. System configurations of the computing resources.

Computing Resources Type CPU RAM Number of Computing
Resources

Cloud virtual machine 2.5 GHz Intel Core Processor 4 VCPUs 12 GB 4
Edge computer 2.29 GHz Intel Core Processor 2 VCPUs 4 GB 4

IoT device 2.29 GHz Intel Core Processor 1 VCPUs 2 GB 4

7.2. Experimental Evaluation Methodology and Evaluation Metrics

We compared the performance of the proposed task management technique (DTDA)
with three state-of-the-art task management techniques, namely binpack [54], random [55],
and greedy [3]. We implemented the abovementioned task management techniques in
the TIDA platform to fairly compare the performance of the aforementioned techniques
under different computing resource clusters and different quantities of data (passenger
onboarding video size). Table 4 shows the task management techniques we used for this
experimental evaluation.

Remote Sens. 2021, 13, 4148 22 of 31

Table 4. Task management techniques used for experimental evaluation.

Task Management
Technique Description

Capabilities of Task Management Technique

Task Sizing Task
Distribution Task Adaptation

Binpack technique [54]

Binpack task management technique
manages the TS-IoT application tasks by

distributing them to computing
resources that have the least available

amount of CPU and memory. This
minimizes the number of resources in

use and is more cost-efficient. However,
this technique does not size the tasks
before the distribution and it is not

capable of adapting its task distribution
during the runtime.

No Yes No

Random technique [55]

Random task management technique
manages the TS-IoT application tasks by

distributing tasks to computing
resources randomly and executing them.
However, this technique does not size

the tasks before distribution and it is not
capable of adapting its task distribution.

No Yes No

Greedy technique [3]

Greedy technique sizes the tasks and
then uses that task sizing information to

generate a time-bound satisfying task
execution plan and distribute the tasks

according to that plan. However, it
cannot adapt its task execution plans

during runtime.

Yes Yes No

DTDA technique
DTDA technique is the task

management technique proposed in this
paper and described in Section 5.

Yes Yes Yes

We continuously executed the passenger counting IoT application tasks for 1 h in
each computing resources cluster (as discussed in Section 7.1) using the task management
techniques presented in Table 4. During the execution, at regular intervals (i.e., every 2 min),
we generated IoT data processing requests (i.e., a request sent to the TS-IoT application to
process the IoT data generated by IoT devices along with the generated data) with varying
passenger onboarding video data sizes to be processed by the passenger counting IoT
application tasks. To vary the data sizes, we used the following passenger onboarding
video files—12.5, 25.0, and 37.5 MB. Generating IoT data processing requests at regular
intervals with varying data sizes enabled us to replicate how a real passenger counting
IoT application deployed on buses processes different quantities of passenger onboarding
data collected at bus stops, as discussed in Section 3. In this experimental evaluation, we
considered the following two evaluation scenarios:

1. Evaluate the impact of task management techniques on the total application execution
time of the passenger counting IoT application.

The main objective of this evaluation scenario was to evaluate the impact of the task
management techniques on the total application execution time (i.e., the end-to-end time
taken to complete a single IoT data processing request) of the passenger counting IoT
application when it is executed in different computing resources clusters with varying data
sizes. To realize this, during the experimentation, for each IoT data processing request,
we measured the data processing time and data communication delay incurred by the
passenger counting IoT application for completing the IoT data processing request. We
denote the data processing time as Data_Processing_TimeApp and data communication

Remote Sens. 2021, 13, 4148 23 of 31

delay as Data_Comm_DelayApp. Then, we used these two metrics to compute the total
application execution (which is denoted as Total_ExeApp) for completing an IoT data
processing request as follows:

Total_ExeApp = Data_Processing_TimeApp + Data_Comm_DelayApp (9)

It should be noted that, in general, there can be more attributes that contribute to
the Total_ExeApp of a TS-IoT application. However, in this experiment, we considered
Data_Processing_TimeApp and Data_Comm_DelayApp as the two main attributes that make
up the Total_ExeApp. The results of this experimental evaluation scenario are presented
in Section 7.3.1.

2. Evaluate the impact of task management techniques on the time-bound violation of
the passenger counting IoT application.

The main objective of this evaluation scenario was to assess how well the task man-
agement techniques supported the time-bound requirements of the passenger counting
IoT application when it is executed in different computing resources clusters with varying
data quantities. To realize this, we first set the time-bound requirement of the passenger
counting IoT application to 60 s, which is the average time to travel between two bus
stops. For each IoT data processing request, we then observed whether the passenger
counting IoT application’s Total_ExeApp exceeds the time-bound requirement (i.e., 60 s).
A time-bound violation happens when Total_ExeApp of the passenger counting IoT ap-
plication exceeds the time-bound requirement when processing an IoT data processing
request. We used an evaluation metric called time-bound violation counts to capture the
total number of time-bound violations that occur during the experimentation. We denote
the time-bound violation count as V_Count. Moreover, to compare the impact of task
management techniques on time-bound violations, we computed an evaluation metric
called time-bound violation ratio, which we denote as V_Ratio. Time-bound violation ratio
(V_Ratio) is the time-bound violation count over the total number of IoT data processing
requests completed during the experimentation. We denote the total number of IoT data
processing requests completed as Total_Requests and V_Ratio is computed as follows:

V_Ratio =
V_Count

Total_Requests
(10)

The range for the V_Ratio is from 0 to 1, where 0 is the best-case scenario when each
IoT data processing request is completed within the time-bound requirement of the TS-IoT
application, whereas 1 is the worst-case scenario where the passenger counting IoT applica-
tion has failed to meet the time-bound requirement for any IoT data processing request. The
results of this experimental evaluation scenario are presented in Sections 7.3.2 and 7.3.3.
Table 5 provides a summary of the evaluation metrics discussed in this section.

Table 5. Evaluation metrics.

Evaluation Metric Notation Definition of the Metric

Total_ExeApp Application execution time
Data_Processing_TimeApp Data processing time of the application

Data_Comm_DelayApp Data communication delay of the application
V_Count Time-bound violation count
V_Ratio Time-bound violation ratio

7.3. Experimental Evaluation Results and Discussion
7.3.1. Impact of Task Management Techniques on the Total Application Execution Time
under Different Computing Resources and Data Sizes

As discussed earlier, for this experimental evaluation scenario, we considered the
total application execution time as the summation of data processing time and the data
communication delay of the passenger counting IoT application. For ease of comparison,
we took the average values of the total application execution time, data processing time,

Remote Sens. 2021, 13, 4148 24 of 31

and data communication delay because these metrics were measured/computed per
IoT data processing request during the experimentations. Therefore, Figure 8 illustrates
the comparison of the average total application time, average data processing time, and
average data communication delay of the passenger counting IoT application under each
task management technique when executed in four different computing resource clusters
with varying data sizes.

Remote Sens. 2021, 13, 4148 25 of 33

7.3. Experimental Evaluation Results and Discussion
7.3.1. Impact of Task Management Techniques on the Total Application Execution Time
under Different Computing Resources and Data Sizes

As discussed earlier, for this experimental evaluation scenario, we considered the
total application execution time as the summation of data processing time and the data
communication delay of the passenger counting IoT application. For ease of comparison,
we took the average values of the total application execution time, data processing time,
and data communication delay because these metrics were measured/computed per IoT
data processing request during the experimentations. Therefore, Figure 8 illustrates the
comparison of the average total application time, average data processing time, and aver-
age data communication delay of the passenger counting IoT application under each task
management technique when executed in four different computing resource clusters with
varying data sizes.

Figure 8. Comparison of the average data processing time, communication delay, and total application execution time of
the passenger counting IoT application under each task management technique when executed in four different compu-
ting resources clusters with varying data sizes. (a) Cluster 1 (IoT devices). (b) Cluster 2 (edge computers). (c) Cluster 3
(cloud virtual machines). (d) Cluster 4 (IoT devices, edge computer and cloud virtual machine)

(a) (b)

(c) (d)

Figure 8. Comparison of the average data processing time, communication delay, and total application execution time of
the passenger counting IoT application under each task management technique when executed in four different computing
resources clusters with varying data sizes. (a) Cluster 1 (IoT devices). (b) Cluster 2 (edge computers). (c) Cluster 3 (cloud
virtual machines). (d) Cluster 4 (IoT devices, edge computer and cloud virtual machine).

By analyzing the results presented in Figure 8, we can see that as the size of the data
increases the average total application execution time also increases. Results presented in
Figure 8a show that executing the passenger counting IoT application in cluster 1 did not
incur any data communication delay, but this led to higher average data processing time for
each task management technique compared to that of other clusters. This is mainly because
cluster 1 consisted entirely of IoT devices, which (1) have limited computing resources and
(2) do not involve any communication delay. Furthermore, we note that the impact of the

Remote Sens. 2021, 13, 4148 25 of 31

task management techniques on average total application execution time, average data
processing time, and average data processing delay in cluster 1 varied inconsistently with
the size of data. More specifically, the binpack technique yielded the highest average data
processing time in cluster 1 for all the three data sizes, whereas the random, greedy, and
DTDA techniques resulted in similar average total data processing time when the size of
the data was 12.5 and 25 MB. However, when the size of the data increased to 37.5 MB, the
DTDA technique yielded the second-highest average data processing time (71.41 s).

By comparison, results presented in cluster 3 show that the average total application
execution time, average data processing time, and average data communication delay
of the passenger counting IoT application were not significantly impacted by the task
management technique in use. In addition, we can observe that cluster 3 recorded the
highest average data communication delay and lowest data processing time for each of the
three data sizes compared to the other clusters. This is mainly because cluster 3 consisted
of three cloud virtual machines, which (1) have higher computing resources and (2) involve
high network delays.

Results presented in cluster 2 show that both greedy and DTDA techniques performed
equally well for each of the three data sizes and reduced the average data processing time
compared to the binpack and random techniques as follows: by 11.11% when data size was
12.5 and 25 MB, and by 9.43% data size was 37.5 MB.

Results presented in Figure 8d illustrate that the binpack technique yielded the highest
average data processing time for each of the three data sizes in cluster 4. Noticeably, the
binpack technique did not involve any data communication delay. As we discussed in
Section 7.2, it manages the TS-IoT application tasks by distributing them to computing
resources that have the least available CPU and memory. Therefore, it is evident that, in
this case, the binpack technique distributed all the tasks of the passenger counting IoT
application to the IoT device; thus, no communication delay is involved. By comparison,
the random, greedy, and DTDA techniques recorded similar average total application
execution times when the size of the data was 12.5 and 25.0 MB. However, when the size of
the data increased to 35.0 MB, the DTDA technique improved the average data processing
time compared to the greedy technique by 20%, the random technique by 36%, and the
binpack technique by 53%.

7.3.2. Time-Bound Violation Ratio of Task Management Techniques under Different
Computing Resources

The comparison of time-bound violation ratio results in Figure 9 shows that the time-
bound violation ratios for cluster 1 and cluster 3 are similar (i.e., 0.34) for each of the four
task management techniques, with the exception of cluster 1, where binpack resulted in a
0.5 time-bound violation ratio. This is mainly due to the computing resources in cluster 1
and cluster 3. Cluster 1 utilizes three IoT devices, which have limited resources, whereas
cluster 3 utilizes three cloud virtual machines, which have more resources compared
to cluster 1. When a TS-IoT application is entirely executed in a resource-constrained
environment, its tasks may overload the most constrained resources, causing a time-
bound violation. In addition, when a TS-IoT application is executed entirely on cloud
virtual machines, the significant communication delays involved in sending IoT data
to the cloud contribute to higher time-bound violation ratios. In these cases, the task
management technique employed cannot prevent the time-bound violation of the passenger
counting application.

However, we can note that the time-bound violation ratios significantly varied when
the passenger counting application was executed in cluster 2 and cluster 4. The binpack
technique manages TS-IoT applications by distributing the tasks of the application to
computing resources that have the least available amount of CPU and memory. Although
this minimizes the number of computing resources in use and is more cost-efficient, this
leads to overloading of the computing resources that are processing the tasks. Thus,
this can increase the data processing time of the tasks, which will lead to time-bound
violations. As we can see from the results in clusters 2 and 4, the binpack technique

Remote Sens. 2021, 13, 4148 26 of 31

recorded the highest time-bound violation ratios. More specifically, it recorded time-bound
violations ratio of 0.34 and 0.67 in clusters 2 and 4, respectively. By comparison, the
random technique manages the TS-IoT applications by randomly distributing the tasks
of the application to computing resources. Therefore, the results obtained by executing
the application under the random task management technique in clusters 2 and 4 show
average results. In particular, this approach recorded a time-bound violation ratio of 0.34 in
both clusters 2 and 4. The greedy technique generates time-bound satisfying task execution
plans by considering the IoT environment, the time-bound requirements of the application,
and the computing resource demands of the application tasks (obtained by the task sizing
technique). Therefore, compared to the binpack and random task management techniques,
the greedy technique recorded lower time-bound violations by distributing and executing
the tasks according to a time-bound satisfying task execution plan that keeps the passenger
counting application’s total execution time within the application time-bound on most
occasions. However, the greedy technique is not capable of adapting its task execution
plans to cope with the dynamic changes occurring in the IoT environment, such as varying
IoT data sizes and available computing resources; thus, when the application is executed
in clusters 2 and 4 under the greedy technique, we still observe time-bound violation ratios
of 0.25 and 0.23, respectively. On the contrary, the proposed DTDA technique of TIDA
is capable of adapting the task execution plans of the running application to deal with
possible time-bound violations; thus, we can observe that the DTDA technique recorded
the lowest time-bound violation ratios for the passenger counting application when it was
executed in clusters 2 and 4. More precisely, DTDA recorded a time-bound violation ratio
of 0.08 in cluster 2 and 0.13 in cluster 4. Compared to the greedy technique [3], the novel
DTDA technique presented in this paper improves the time-bound violation by 68% in
cluster 2 and 42.8% in cluster 4.

Remote Sens. 2021, 13, 4148 27 of 33

technique employed cannot prevent the time-bound violation of the passenger counting
application.

Figure 9. Comparison of time-bound requirement violation ratios under different computing re-
sources clusters.

However, we can note that the time-bound violation ratios significantly varied when
the passenger counting application was executed in cluster 2 and cluster 4. The binpack
technique manages TS-IoT applications by distributing the tasks of the application to com-
puting resources that have the least available amount of CPU and memory. Although this
minimizes the number of computing resources in use and is more cost-efficient, this leads
to overloading of the computing resources that are processing the tasks. Thus, this can
increase the data processing time of the tasks, which will lead to time-bound violations.
As we can see from the results in clusters 2 and 4, the binpack technique recorded the
highest time-bound violation ratios. More specifically, it recorded time-bound violations
ratio of 0.34 and 0.67 in clusters 2 and 4, respectively. By comparison, the random tech-
nique manages the TS-IoT applications by randomly distributing the tasks of the applica-
tion to computing resources. Therefore, the results obtained by executing the application
under the random task management technique in clusters 2 and 4 show average results.
In particular, this approach recorded a time-bound violation ratio of 0.34 in both clusters
2 and 4. The greedy technique generates time-bound satisfying task execution plans by
considering the IoT environment, the time-bound requirements of the application, and the
computing resource demands of the application tasks (obtained by the task sizing tech-
nique). Therefore, compared to the binpack and random task management techniques, the
greedy technique recorded lower time-bound violations by distributing and executing the
tasks according to a time-bound satisfying task execution plan that keeps the passenger
counting application’s total execution time within the application time-bound on most
occasions. However, the greedy technique is not capable of adapting its task execution
plans to cope with the dynamic changes occurring in the IoT environment, such as varying
IoT data sizes and available computing resources; thus, when the application is executed
in clusters 2 and 4 under the greedy technique, we still observe time-bound violation ra-
tios of 0.25 and 0.23, respectively. On the contrary, the proposed DTDA technique of TIDA
is capable of adapting the task execution plans of the running application to deal with
possible time-bound violations; thus, we can observe that the DTDA technique recorded
the lowest time-bound violation ratios for the passenger counting application when it was
executed in clusters 2 and 4. More precisely, DTDA recorded a time-bound violation ratio
of 0.08 in cluster 2 and 0.13 in cluster 4. Compared to the greedy technique [3], the novel

Figure 9. Comparison of time-bound requirement violation ratios under different computing re-
sources clusters.

7.3.3. Time-Bound Violation Ratio of Task Management Techniques under Different
Passenger Onboarding Video Data Sizes

The comparison of time-bound violation ratio results in Figure 10 shows that when the
size of the data increases, the time-bound violation ratio also increases. More specifically, we
can observe that, in all clusters, when the size of the passenger onboarding video was 12.5
and 25.0 MB, random, greedy and DTDA techniques recorded zero time-bound violations.

Remote Sens. 2021, 13, 4148 27 of 31

Remote Sens. 2021, 13, 4148 28 of 33

DTDA technique presented in this paper improves the time-bound violation by 68% in clus-
ter 2 and 42.8% in cluster 4.

7.3.3. Time-Bound Violation Ratio of Task Management Techniques under Different Pas-
senger Onboarding Video Data Sizes

The comparison of time-bound violation ratio results in Figure 10 shows that when
the size of the data increases, the time-bound violation ratio also increases. More specifi-
cally, we can observe that, in all clusters, when the size of the passenger onboarding video
was 12.5 and 25.0 MB, random, greedy and DTDA techniques recorded zero time-bound
violations.

Figure 10. Comparison of the time-bound violation ratio of task management techniques under different computing re-
source clusters and varying data sizes. (a) Cluster 1 (IoT devices). (b) Cluster 2 (edge computers). (c) Cluster 3 (cloud
virtual machines). (d) Cluster 4 (IoT devices, edge computer and cloud virtual machines).

However, we can observe that, in clusters 1 and 4, the binpack technique recorded
time-bound violation ratios of 0.50 and 1.00 when the size of the passenger onboarding
video reached 25.0 MB. By comparison, we note that when the size of the passenger
onboarding video increased to 37.5 MB, all the task management techniques failed to fulfil

(a) (b)

(c) (d)

Figure 10. Comparison of the time-bound violation ratio of task management techniques under different computing
resource clusters and varying data sizes. (a) Cluster 1 (IoT devices). (b) Cluster 2 (edge computers). (c) Cluster 3 (cloud
virtual machines). (d) Cluster 4 (IoT devices, edge computer and cloud virtual machines).

However, we can observe that, in clusters 1 and 4, the binpack technique recorded
time-bound violation ratios of 0.50 and 1.00 when the size of the passenger onboarding
video reached 25.0 MB. By comparison, we note that when the size of the passenger
onboarding video increased to 37.5 MB, all the task management techniques failed to fulfil
the time-bound requirements of the passenger counting IoT application in clusters 1 and 3.
As discussed in the previous section, this is mainly due to the limited resources found in IoT
devices and the high communication delays involved in sending the passenger onboarding
data to the cloud. Figure 10b–d indicates that both binpack and random techniques were
unable to support the time-bound requirements of the passenger counting IoT application
when the size of the passenger onboarding data reached 37.5 MB. However, for the same
size of the passenger onboarding data, the DTDA technique maintained the time-bound
violation ratio within 0.25 in cluster 2 and 0.50 in cluster 4. These results demonstrate that,
in cluster 2, the DTDA technique improved the time-bound violation ratio compared to
the greedy technique by 67%, and compared to the random and binpack techniques by
75%. In cluster 4, the DTDA technique reduced the time-bound violation compared to

Remote Sens. 2021, 13, 4148 28 of 31

the greedy technique by 33.33%, and compared to the random and binpack techniques by
50%. Finally, these results validate that the DTDA technique dynamically adapts the task
execution plans to deal with the increased size of the passenger onboarding data, and this
enables it to reduce the time-bound violations of the passenger counting IoT application
compared to other task management techniques when the size of the data increases.

In summary, the evaluation results showed that when the passenger counting applica-
tion is executed in cluster 1 (the cluster that consists of only IoT devices) and cluster 3 (the
cluster that consists of only cloud virtual machines), regardless of the task management
technique in use, on most occasions the passenger counting application failed to meet
its time-bound requirement. The communication delay involved with sending data to
the cloud and the resource-constrained nature of IoT devices may be the main reasons
behind this behavior. Furthermore, the results showed that DTDA, which is our proposed
task management technique of the TIDA platform, successfully fulfilled the time-bound
requirements of the passenger counting IoT application with varying sizes of passenger
onboarding data when the passenger counting IoT application was executed in cluster 3
(the cluster that consists of only edge computers) and cluster 4 (the cluster that consists
of IoT devices, edge computers, and cloud virtual machines), whereas the three other
task management techniques failed to meet the time-bound requirements. Moreover, the
evaluation results showed that the DTDA technique improved the time-bound violation
ratios by 42.84% and the data processing time by 20.42% compared to the greedy technique
presented in [3] when the application was executed in cluster 4. Finally, the evaluation
results demonstrated that the TIDA platform that includes the DTDA technique periodi-
cally predicts possible future time-bound violations and adapts its task execution plans to
mitigate possible time-bound violations. This enabled the platform to meet the time-bound
requirements of the passenger counting IoT application more often than the other task
management techniques.

8. Conclusions and Future Work

In this paper, we extended our previous research presented in [3] and proposed
a complete solution, called TIDA, for meeting the time-bound requirements of TS-IoT
applications. The proposed TIDA platform uses a novel task management technique, called
DTDA, which combines three novel techniques: task sizing, task distribution, and task
adaptation. The task sizing technique measures the computing and network resources
required to complete each TS-IoT application task in each available computing resource in
the IoT environment, whereas the task distribution technique utilizes the measurements of
task sizing to create time-bound satisfying task execution plans to distribute and execute
TS-IoT application tasks in the IoT environment. Finally, the task adaptation technique
utilizes a machine learning model to accurately and periodically predict possible time-
bound violations and, in the case of a time-bound violation, dynamically adapts the task
distribution by redistributing tasks according to an alternative task execution plan.

We described a proof-of-concept implementation of the TIDA platform that imple-
ments the above techniques using Microsoft’s Orleans framework. We evaluated the TIDA
by developing a passenger counting IoT application, executing the application in a cloud-
based testbed under four TS-IoT application management techniques, and assessing how
well each of these techniques enables the application to meet its time-bound requirements.
The results showed that the dynamic task distribution and adaptation (DTDA) technique
of TIDA (discussed in Section 5), on average, improves the time-bound violation ratio by
43.34%, compared to the greedy technique, which is the base-line TS-task management
technique of the TIDA platform. Moreover, the evaluation demonstrated the TIDA’s ability
to adapt to the varying volume of IoT data by dynamically adapting the task execution
plans to deal with possible time-bound violations.

Although the current implementation of the DTDA technique is capable of dynami-
cally adapting its task execution plans, during the adaptation step, the technique iterates
through a set of pre-computed task execution plans to select an alternative time-bound

Remote Sens. 2021, 13, 4148 29 of 31

satisfying plan, and then redistributes all the tasks into the computing resources according
to the new plan. This step is not efficient and scalable because it may cause a significant
delay when the number of tasks and the computing resources increase. Moreover, in this re-
search, for the evaluation, we considered only one TS-IoT application. However, in the real
world, there can be multiple IoT applications competing for the computing and networking
resources in the IoT environment, and resources often connect and disconnect from the IoT
environment. Therefore, in our future work, we aim to: (1) improve the DTDA technique to
be more efficient and scalable; (2) conduct more experiments in a volatile IoT environment
with multiple IoT applications; (3) compare the TIDA platform’s ability to meet time-bound
requirements with existing solutions; and (4) improve the existing machine learning tech-
nique by incorporating federated machine learning techniques [56]. Moreover, we plan to
explore and incorporate (1) IoT services search and discovery techniques [57], (2) digital
twin capabilities [58], and (3) contextualization [59] and approximation approaches [60]
into the TIDA platform to make it a comprehensive IoT solution.

Author Contributions: Conceptualization, H.K., D.G. and P.P.J.; Formal analysis, H.K.; Methodology,
H.K.; Software, A.Y.; Supervision, D.G., P.P.J. and A.Y.; Writing—original draft, H.K.; Writing—review
& editing, D.G. and P.P.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey on Enabling Technologies,

Protocols, and Applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [CrossRef]
2. Georgakopoulos, D.; Jayaraman, P.P. Internet of things: From internet scale sensing to smart services. Computing 2016, 98,

1041–1058. [CrossRef]
3. Korala, H.; Georgakopoulos, D.; Jayaraman, P.P.; Yavari, A. A Time-Sensitive IoT Data Analysis Framework. In Proceedings of

the 54th Hawaii International Conference on System Sciences, Koloa, HI, USA, 5 January 2021; pp. 7185–7194.
4. Chen, J.; Chen, Y.; Du, X.; Li, C.; Lu, J.; Zhao, S.; Zhou, X. Big data challenge: A data management perspective. Front. Comput. Sci.

2013, 7, 157–164. [CrossRef]
5. Koga, Y.; Miyazaki, H.; Shibasaki, R. A CNN-Based Method of Vehicle Detection from Aerial Images Using Hard Example Mining.

Remote Sens. 2018, 10, 124. [CrossRef]
6. Zhao, Q.; Zhang, B.; Lyu, S.; Zhang, H.; Sun, D.; Li, G.; Feng, W. A CNN-SIFT Hybrid Pedestrian Navigation Method Based on

First-Person Vision. Remote Sens. 2018, 10, 1229. [CrossRef]
7. Zhou, H.; Taal, A.; Koulouzis, S.; Wang, J.; Hu, Y.; Suciu, G.; Poenaru, V.; De Laat, C.; Zhao, Z. Dynamic Real-Time Infrastructure

Planning and Deployment for Disaster Early Warning Systems. In Lecture Notes in Computer Science, Proceedings of the International
Conference on Computational Science, Wuxi, China, 11–13 June 2018; Springer: Berlin, Germany, 2018; pp. 644–654.

8. Naha, R.K.; Garg, S.; Georgakopoulos, D.; Jayaraman, P.P.; Gao, L.; Xiang, Y.; Ranjan, R. Fog Computing: Survey of Trends,
Architectures, Requirements, and Research Directions. IEEE Access 2018, 6, 47980–48009. [CrossRef]

9. Georgakopoulos, D.; Jayaraman, P.P.; Fazia, M.; Villari, M.; Ranjan, R. Internet of Things and Edge Cloud Computing Roadmap
for Manufacturing. IEEE Cloud Comput. 2016, 3, 66–73. [CrossRef]

10. Garg, S.; Forbes-Smith, N.; Hilton, J.; Prakash, M. SparkCloud: A Cloud-Based Elastic Bushfire Simulation Service. Remote Sens.
2018, 10, 74. [CrossRef]

11. Jayaraman, P.P.; Perera, C.; Georgakopoulos, D.; Dustdar, S.; Thakker, D.; Ranjan, R. Analytics-as-a-service in a multi-cloud
environment through semantically-enabled hierarchical data processing. Softw. Pract. Exp. 2016, 47, 1139–1156. [CrossRef]

12. Naha, R.K.; Garg, S.; Chan, A.; Battula, S.K. Deadline-based dynamic resource allocation and provisioning algorithms in
Fog-Cloud environment. Futur. Gener. Comput. Syst. 2020, 104, 131–141. [CrossRef]

13. Aazam, M.; Huh, E.-N. Dynamic resource provisioning through fog micro datacenter. In Proceedings of the 2015 IEEE Inter-
national Conference on Pervasive Computing and Communication Workshops, St. Louis, MO, USA, 23–27 March 2015; pp.
105–110.

http://doi.org/10.1109/COMST.2015.2444095
http://doi.org/10.1007/s00607-016-0510-0
http://doi.org/10.1007/s11704-013-3903-7
http://doi.org/10.3390/rs10010124
http://doi.org/10.3390/rs10081229
http://doi.org/10.1109/ACCESS.2018.2866491
http://doi.org/10.1109/MCC.2016.91
http://doi.org/10.3390/rs10010074
http://doi.org/10.1002/spe.2432
http://doi.org/10.1016/j.future.2019.10.018

Remote Sens. 2021, 13, 4148 30 of 31

14. Aazam, M.; St-Hilaire, M.; Lung, C.-H.; Lambadaris, I. MeFoRE: QoE Based Resource Estimation at Fog to Enhance QoS in IoT. In
Proceedings of the 23rd International Conference on Telecommunications (ICT), Thessaloniki, Greece, 16–18 May 2016; pp. 1–5.
[CrossRef]

15. Zeng, X.; Garg, S.K.; Strazdins, P.; Jayaraman, P.P.; Georgakopoulos, D.; Ranjan, R. IOTSim: A simulator for analysing IoT
applications. J. Syst. Arch. 2017, 72, 93–107. [CrossRef]

16. Arlitt, M.; Marwah, M.; Bellala, G.; Shah, A.; Healey, J.; Vandiver, B. IoTAbench: An Internet of Things Analytics Benchmark. In
Proceedings of the 6th ACM/SPEC International Conference on Performance Engineering, Austin, TX, USA, 31 January 2015;
pp. 133–144. [CrossRef]

17. Hong, H.-J.; Tsai, P.-H.; Hsu, C.-H. Dynamic module deployment in a fog computing platform. In Proceedings of the 2016 18th
Asia-Pacific Network Operations and Management Symposium (APNOMS), Kanazawa, Japan, 5–7 October 2016; pp. 1–6.

18. Yousefpour, A.; Patil, A.; Ishigaki, G.; Kim, I.; Wang, X.; Cankaya, H.C.; Zhang, Q.; Xie, W.; Jue, J.P. FOGPLAN: A Lightweight
QoS-Aware Dynamic Fog Service Provisioning Framework. IEEE Internet Things J. 2019, 6, 5080–5096. [CrossRef]

19. Skarlat, O.; Nardelli, M.; Schulte, S.; Dustdar, S. Towards QoS-Aware Fog Service Placement. In Proceedings of the 2017 IEEE 1st
International Conference on Fog and Edge Computing (ICFEC), Madrid, Spain, 14–15 May 2017; pp. 89–96.

20. Li, L.; Li, S.; Zhao, S. QoS-Aware Scheduling of Services-Oriented Internet of Things. IEEE Trans. Ind. Inform. 2014, 10, 1497–1505.
[CrossRef]

21. Skarlat, O.; Karagiannis, V.; Rausch, T.; Bachmann, K.; Schulte, S. A Framework for Optimization, Service Placement, and Runtime
Operation in the Fog. In Proceedings of the 2018 IEEE/ACM 11th International Conference on Utility and Cloud Computing
(UCC 2018), Zurich, Switzerland, 17–20 December 2018; pp. 164–173.

22. Rivas, J.M.; Gutiérrez, J.J.; Palencia, J.C.; Harbour, M.G. Schedulability Analysis and Optimization of Heterogeneous EDF and FP
Distributed Real-Time Systems. In Proceedings of the 2011 23rd Euromicro Conference on Real-Time Systems, Porto, Portugal,
5–8 July 2011; pp. 195–204.

23. Eles, P. Distributed Real-Time Systems. Available online: http://www.it.uom.gr/teaching/distrubutedSite/dsIdaLiu/lecture/
lect11-12.frm.pdf (accessed on 22 June 2021).

24. CAR. Distributed Systems and Internet of Things. Available online: https://www.icar.cnr.it/en/sistemi-distribuiti-e-internet-
delle-cose/ (accessed on 10 September 2021).

25. Ranjan, R.; Rana, O.; Nepal, S.; Yousif, M.; James, P.; Wen, Z.; Barr, S.; Watson, P.; Jayaraman, P.P.; Georgakopoulos, D.; et al. The
Next Grand Challenges: Integrating the Internet of Things and Data Science. IEEE Cloud Comput. 2018, 5, 12–26. [CrossRef]

26. Tămaş-Selicean, D.; Pop, P.; Steiner, W. Design optimization of TTEthernet-based distributed real-time systems. Real Time Syst.
2014, 51, 1–35. [CrossRef]

27. Deng, P.; Zhu, Q.; Davare, A.; Mourikis, A.; Liu, X.; Di Natale, M. An efficient control-driven period optimization algorithm for
distributed real-time systems. IEEE Trans. Comput. 2016, 65, 3552–3566. [CrossRef]

28. Mishra, R.; Rastogi, N.; Zhu, D.; Mossé, D.; Melhem, R. Energy aware scheduling for distributed real-time systems. In Proceedings
of the International Parallel and Distributed Processing Symposium, Nice, France, 22–26 April 2003; p. 9.

29. Kopetz, H. Real-Time Systems: Design Principles for Distributed Embedded Applications; Springer: Berlin, Germany, 2011.
30. Zhao, Y.; Gala, V.; Zeng, H. A Unified Framework for Period and Priority Optimization in Distributed Hard Real-Time Systems.

IEEE Trans. Comput. Des. Integr. Circuits Syst. 2018, 37, 2188–2199. [CrossRef]
31. Xie, G.; Zeng, G.; Li, Z.; Li, R.; Li, K. Adaptive Dynamic Scheduling on Multifunctional Mixed-Criticality Automotive Cyber-

Physical Systems. IEEE Trans. Veh. Technol. 2017, 66, 6676–6692. [CrossRef]
32. Ranjan, R.; Hsu, C.-H.; Chen, L.Y.; Georgakopoulos, D. Holistic Technologies for Managing Internet of Things Services. IEEE

Trans. Serv. Comput. 2020, 13, 597–601. [CrossRef]
33. Korala, H.; Jayaraman, P.P.; Yavari, A.; Georgakopoulos, D. APOLLO: A Platform for Experimental Analysis of Time Sensitive

Multimedia IoT Applications. In Proceedings of the 18th International Conference on Advances in Mobile Computing and
Multimedia, Chiang Mai, Thailand, 30 November–2 December 2020; pp. 104–113. [CrossRef]

34. Alhamazani, K.; Ranjan, R.; Jayaraman, P.P.; Mitra, K.; Liu, C.; Rabhi, F.; Georgakopoulos, D.; Wang, L. Cross-Layer Multi-Cloud
Real-Time Application QoS Monitoring and Benchmarking As-a-Service Framework. IEEE Trans. Cloud Comput. 2019, 7, 48–61.
[CrossRef]

35. Souza, A.; Cacho, N.; Noor, A.; Jayaraman, P.P.; Romanovsky, A.; Ranjan, R. Osmotic Monitoring of Microservices between
the Edge and Cloud. In Proceedings of the 2018 IEEE 20th International Conference on High Performance Computing and
Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and
Systems (HPCC/SmartCity/DSS), Exeter, UK, 28–30 June 2018; pp. 758–765.

36. Taneja, M.; Davy, A. Resource aware placement of IoT application modules in Fog-Cloud Computing Paradigm. In Proceedings
of the 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), Lisbon, Portugal, 8–12 May 2017;
pp. 1222–1228.

37. Skarlat, O.; Schulte, S.; Borkowski, M.; Leitner, P. Resource Provisioning for IoT Services in the Fog. In Proceedings of the IEEE
9th International Conference on Service-Oriented Computing and Applications (SOCA), Macau, China, 4–6 November 2016.
[CrossRef]

http://doi.org/10.1109/ICT.2016.7500362
http://doi.org/10.1016/j.sysarc.2016.06.008
http://doi.org/10.1145/2668930.2688055
http://doi.org/10.1109/JIOT.2019.2896311
http://doi.org/10.1109/tii.2014.2306782
http://www.it.uom.gr/teaching/distrubutedSite/dsIdaLiu/lecture/lect11-12.frm.pdf
http://www.it.uom.gr/teaching/distrubutedSite/dsIdaLiu/lecture/lect11-12.frm.pdf
https://www.icar.cnr.it/en/sistemi-distribuiti-e-internet-delle-cose/
https://www.icar.cnr.it/en/sistemi-distribuiti-e-internet-delle-cose/
http://doi.org/10.1109/MCC.2018.032591612
http://doi.org/10.1007/s11241-014-9214-8
http://doi.org/10.1109/TC.2016.2557322
http://doi.org/10.1109/TCAD.2018.2857380
http://doi.org/10.1109/TVT.2017.2674302
http://doi.org/10.1109/TSC.2020.3000844
http://doi.org/10.1145/3428690.3429176
http://doi.org/10.1109/TCC.2015.2441715
http://doi.org/10.1109/SOCA.2016.10

Remote Sens. 2021, 13, 4148 31 of 31

38. Yigitoglu, E.; Mohamed, M.; Liu, L.; Ludwig, H. Foggy: A Framework for Continuous Automated IoT Application Deployment
in Fog Computing. In Proceedings of the 2017 IEEE International Conference on AI & Mobile Services (AIMS), Honolulu, HI,
USA, 25–30 June 2017; pp. 38–45.

39. Brogi, A.; Forti, S. QoS-Aware Deployment of IoT Applications through the Fog. IEEE Internet Things J. 2017, 4, 1185–1192.
[CrossRef]

40. Khan, M.S.H.; Roy, P.; Khanam, F.; Hera, F.H.; Das, A.K. An Efficient Resource Allocation Mechanism for Time-Sensitive Data
in Dew Computing. In Proceedings of the 2019 International Conference of Artificial Intelligence and Information Technology
(ICAIIT), Yogyakarta, Indonesia, 13–15 March 2019; pp. 506–510.

41. Meng, J.; Tan, H.; Li, X.-Y.; Han, Z.; Li, B. Online Deadline-Aware Task Dispatching and Scheduling in Edge Computing. IEEE
Trans. Parallel Distrib. Syst. 2020, 31, 1270–1286. [CrossRef]

42. Štefanič, P.; Cigale, M.; Jones, A.C.; Knight, L.; Taylor, I.; Istrate, C.; Suciu, G.; Ulisses, A.; Stankovski, V.; Taherizadeh, S.; et al.
SWITCH workbench: A novel approach for the development and deployment of time-critical microservice-based cloud-native
applications. Futur. Gener. Comput. Syst. 2019, 99, 197–212. [CrossRef]

43. Zhang, M.; Ranjan, R.; Haller, A.; Georgakopoulos, D.; Strazdins, P. Investigating decision support techniques for automating
Cloud service selection. In Proceedings of the 4th IEEE International Conference on Cloud Computing Technology and Science
Proceedings, Taipei, Taiwan, 3–6 December 2012; pp. 759–764.

44. Xu, Y.; Li, J.; Lu, Z.; Wu, J.; Hung, P.C.; Alelaiwi, A. ARVMEC: Adaptive Recommendation of Virtual Machines for IoT in
Edge–Cloud Environment. J. Parallel Distrib. Comput. 2020, 141, 23–34. [CrossRef]

45. Shlens, J. A tutorial on principal component analysis. arXiv 2014, arXiv:1404.1100.
46. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd International Conference

on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.
47. Kousiouris, G.; Cucinotta, T.; Varvarigou, T. The effects of scheduling, workload type and consolidation scenarios on virtual

machine performance and their prediction through optimized artificial neural networks. J. Syst. Softw. 2011, 84, 1270–1291.
[CrossRef]

48. Korala, H.; Yavari, A.; Georgakopoulos, D.; Jayaraman, P.P. Design and Implementation of a Platform for Managing Time-Sensitive
IoT Applications. In Proceedings of the 2020 IEEE 6th International Conference on Collaboration and Internet Computing (CIC),
Atlanta, GA, USA, 1–3 December 2020; pp. 44–53.

49. Bykov, S.; Geller, A.; Kliot, G.; Larus, J.R.; Pandya, R.; Thelin, J. Orleans: Cloud Computing for Everyone. In Proceedings of the
2nd ACM Symposium on Cloud Computing, ACM, New York, NY, USA, 26–28 October 2011; pp. 1–14.

50. Camunda.org. 2019. Available online: https://camunda.com/ (accessed on 30 March 2021).
51. NGINX | High Performance Load Balancer, Web Server, & Reverse Proxy, F5 Inc. Available online: https://www.postgresql.org

(accessed on 22 July 2020).
52. Moser, I. A Methodology for Empirically Evaluating Passenger Counting Technologies in Public Transport. In Proceedings of the

41st Australasian Transport Research Forum (ATRF), Canberra, Australia, 30 September–2 October 2019.
53. Nectar. 2018. Available online: https://nectar.org.au/research-cloud/ (accessed on 21 March 2019).
54. Soppelsa, F.; Kaewkasi, C. Native Docker Clustering with Swarm; Packt Publishing Ltd.: Birmingham, UK, 2016.
55. Breitbach, M.; Schafer, D.; Edinger, J.; Becker, C. Context-Aware Data and Task Placement in Edge Computing Environments. In

Proceedings of the 2019 IEEE International Conference on Pervasive Computing and Communications (PerCom), Kyoto, Japan,
11–15 March 2019; pp. 1–10.

56. Khan, L.U.; Saad, W.; Han, Z.; Hossain, E.; Hong, C.S. Federated Learning for Internet of Things: Recent Advances, Taxonomy,
and Open Challenges. IEEE Commun. Surv. Tutorials 2021, 23, 1759–1799. [CrossRef]

57. Dawod, A.; Georgakopoulos, D.; Jayaraman, P.P.; Nirmalathas, A. An IoT-owned Service for Global IoT Device Discovery,
Integration and (Re)use. In Proceedings of the 2020 IEEE International Conference on Services Computing (SCC), Beijing, China,
7–11 November 2020; pp. 312–320.

58. Bamunuarachchi, D.; Banerjee, A.; Jayaraman, P.P.; Georgakopoulos, D. Cyber twins supporting industry 4.0 application
development. In Proceedings of the 18th International Conference on Advances in Mobile Computing & Multimedia, Chiang
Mai, Thailand, 30 November–2 December 2020; pp. 6–73. [CrossRef]

59. Yavari, A. Internet of Things Data Contextualisation for Scalable Information Processing, Security, and Privacy; RMIT University:
Melbourne, Australia, 2019.

60. Katsipoulakis, N.R.; Labrinidis, A.; Chrysanthis, P.K. Spear: Expediting stream processing with accuracy guarantees. In
Proceedings of the 2020 IEEE 36th International Conference on Data Engineering (ICDE), Dallas, TX, USA, 20–24 April 2020;
pp. 1105–1116. [CrossRef]

http://doi.org/10.1109/JIOT.2017.2701408
http://doi.org/10.1109/TPDS.2019.2961905
http://doi.org/10.1016/j.future.2019.04.008
http://doi.org/10.1016/j.jpdc.2020.03.006
http://doi.org/10.1016/j.jss.2011.04.013
https://camunda.com/
https://www.postgresql.org
https://nectar.org.au/research-cloud/
http://doi.org/10.1109/COMST.2021.3090430
http://doi.org/10.1145/3428690.3429177
http://doi.org/10.1109/ICDE48307.2020.00100

	Introduction
	Related Work
	Smart City Passenger Counting Application—Motivating Scenario
	System Model & Problem Formulation
	Resource Model
	Application Model
	Problem Formulation

	Task Management Technique That Includes Task Sizing, Distribution and Adaptation Techniques
	Task Sizing Technique
	Task Distribution Technique
	Task Adaptation Technique
	Combining the Task Sizing, Distribution, and Adaptation Techniques to Meet TS-IoT Application Time-Bounds

	TIDA Platform
	Architecture of the TIDA Platform
	Implementation of the TIDA Platform

	Experimental Evaluation of TIDA
	Time-Sensitive IoT Application, Dataset and Experimental Setup
	Experimental Evaluation Methodology and Evaluation Metrics
	Experimental Evaluation Results and Discussion
	Impact of Task Management Techniques on the Total Application Execution Time under Different Computing Resources and Data Sizes
	Time-Bound Violation Ratio of Task Management Techniques under Different Computing Resources
	Time-Bound Violation Ratio of Task Management Techniques under Different Passenger Onboarding Video Data Sizes

	Conclusions and Future Work
	References

