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Abstract: In recent years, high-resolution remote sensing semantic segmentation based on data fusion
has gradually become a research focus in the field of land classification, which is an indispensable
task of a smart city. However, the existing feature fusion methods with bottom-up structures can
achieve limited fusion results. Alternatively, various auxiliary fusion modules significantly increase
the complexity of the models and make the training process intolerably expensive. In this paper, we
propose a new lightweight model called top-down pyramid fusion network (TdPFNet) including
a multi-source feature extractor, a top-down pyramid fusion module and a decoder. It can deeply
fuse features from different sources in a top-down structure using high-level semantic knowledge
guiding the fusion of low-level texture information. Digital surface model (DSM) data and open
street map (OSM) data are used as auxiliary inputs to the Potsdam dataset for the proposed model
evaluation. Experimental results show that the network proposed in this paper not only notably
improves the segmentation accuracy, but also reduces the complexity of the multi-source semantic
segmentation model.

Keywords: semantic segmentation; data fusion; deep learning; open street map; digital surface
model; high-resolution remote sensing image

1. Introduction

The generation of high-resolution remote sensing images (RSI) has provided more
convenient and detailed data sources for many civil applications, such as land classification,
urban planning, and environmental monitoring. Most existing land classification methods
are timeconsuming and expensive, and difficult to apply to fully explore the potential value
of big remote sensing data. Therefore, the classification methods using machine learning or
deep learning tools have gradually become the mainstream approaches to high-resolution
remote sensing semantic segmentation.

Due to the limitation in computing power, traditional image segmentation algorithms [1–3]
usually focus on the characterization of the image pixels and mathematical modeling of
local features for clustering or segmentation. They require only regional spatial information
and do not use high-level semantic information. Therefore, the segmentation often resulted
in information loss and thus accuracies. In 2015, the birth of the fully convolutional
network (FCN) [4] was a major breakthrough in semantic segmentation representing the
era of deep learning. As a result, a large number of excellent end-to-end single-source
semantic segmentation models have sprung up. Networks such as SegNet [5], U-Net [6],
PSPNet [7] and DeepLab series [8–11] have achieved excellent segmentation results with a
single input source.

However, the lack of sufficient information due to single sensing source input makes
it difficult for semantic segmentation models to distinguish some similar instances such
as buildings and roads with same colour. Data fusion refers to information processing
technology that automatically analyzes and synthesizes a number of observational source
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inputs obtained under certain criteria to complete the required decision-making and
evaluation tasks. Data fusion normally leads to significant performance improvement of
image segmentation. Generally, such technologies based on deep learning mainly adopts
multiple feature-level or decision-level fusion. Hence, it is natural to use the features
extracted by the convolutional neural network (CNN) [12] for further processing such as
fusion for segmentation. Moreover, different application scenarios have different choices
of fusion objects (auxiliary data). Hazirbas et al. proposed a fusion network (FuseNet) [13],
which uses depth information to assist RGB information in achieving better semantic
segmentation results in indoor scenes. Sun et al. used digital surface model (DSM) [14]
to provide height information for high-resolution remote sensing. The introduction of
multi-source data once again broke through the upper bound of the segmentation accuracy
of traditional methods.

The current semantic segmentation models based on data fusion technology still
has two problems. Firstly, most works [13,15] use channel merging or parallel encoders
methods for data fusion, which all belong to bottom-up fusion structures. It can be seen
from Figure 1a. As the fusion goes deeper, the feature maps usually become smaller
and smaller and it is difficult to restore and take advantage of the high-level semantic
knowledge in a high-resolution image [4]. Secondly, more and more auxiliary structures
are added to fusion models to improve the results, leading to much increased difficulty in
modeling training. We need to strike a balance between high quality results and low model
complexity. To address these problems, we propose a novel top-down pyramid fusion
network (TdPFNet) for high-resolution remote sensing semantic segmentation. As shown
in Figure 1b, the network adopts a top-down fusion mode, in which high-level semantic
knowledge guides low-level texture information to complete the fusion. The new approach
ensures not only high accuracy of the segmentation results, but also reduces the complexity
of the model. The specific contributions of this paper are as follows.

• We construct a top-down network called TdPFNet for multi-source semantic segmen-
tation. The top-down fusion module can use high-level knowledge to guide low-level
information to fuse the complementary features for more accurate segmentation.

• We compare two different auxiliary inputs, which include DSM and OSM. DSM data
contain the height information that RGB image lacks, and the OSM data contain rich
building and road information. We demonstrate that fusing OSM data with RSI can
achieve better segmentation results than DSM.

• The experimental results show that our method successfully fuses the information
from different sources with a lightweight structure. Moreover, TdPFNet proposed
in this paper achieves competitive results with other state-of-the-art methods on
Potsdam dataset.

Encoder
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Encoder Encoder

F
u

sio
n

(b)

Figure 1. Two kinds of fusion methods, which include (a) bottom-up fusion and (b) top-down fusion.
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The remainder of this paper is organized as follows. Section 2 introduces the related
work of semantic segmentation. Section 3 introduces our proposed method in detail.
Section 4 details the experimental results along with in-depth analysis. Section 5 further
discusses and summarizes the advantages, limitations and potential improvements of the
proposed model. Section 6 provides the conclusions and our future work perspectives.

2. Related Work

Semantic segmentation is a classic problem of computer vision. It involves taking
some raw data (such as remote sensing images) as input and converting them into a mask
with a highlighted area of interest, where each pixel is assigned a unique category ID. Dif-
ferent from the image classification task, semantic segmentation needs to correctly identify
different discrete objects and mark semantic information in a complex and changeable
background. Objects are often affected by phenomena such as occlusion, fragmentation,
and lighting, which further increase the difficulty of semantic segmentation. So, it is
hard to obtain high-precision semantic segmentation results, especially of complex scenes
like high-resolution remote sensing images. Our work is built from the works of many
other researchers. In this section, we briefly review the enlightening developments in
high-resolution remote sensing semantic segmentation.

2.1. Deeplab Series

Chen et al. proposed the first version of DeepLab [8] on ICLR. It combines the
advantages of deep convolutional neural network (DCNN) and fully connected conditional
random field (FCCRF) [16]. DeepLabv2 [9] alleviates the loss of information caused by
continuous pooling by replacing pooling layers with dilated convolutions. Deeplabv3 [10]
removes the CRF module and uses batch normalization (BN) [17] layers to accelerate deep
network training by reducing internal covariate shift. The final DeepLabv3+ [11] has two
improvements. Firstly, the use of depthwise separable convolutions (Xception) [18] reduces
the complexity of the model and improves the training speed. Secondly, a lightweight
decoder is added and the high-level semantic information is fused with the low-level
spatial information. DeepLabv3+ achieves a good balance between model complexity
and accuracy.

2.2. Symmetric Encoder-Decoder

The SegNet [5] network proposed by Badrinarayanan et al. uses a symmetric encoder-
decoder structure. The unique pooling indices allows the model to retain location informa-
tion and to reduce the negative impact of pooling operations. It also eliminates the need
to learn up-sampling parameters, thereby reducing the complexity of the model. Another
well-known symmetric network is called U-Net [6], which includes more low-level regional
features than FCN, so that the edge information of images can be recovered more finely.
Even with a small training set, the model can still obtain a decent result. U-Net++ [19]
refines the jump connection structure in U-Net, which improves the network’s adaptability
and learning ability by using different scale features through short connection filling and
superimposing features of different levels.

2.3. Multi-Scale Feature Perception

How to perceive and fuse multi-scale information has always been a big challenge
for high-resolution semantic segmentation. Feature Pyramid Network (FPN) [20] extracts
features layer by layer through top-down paths and horizontal paths, which enable the
model to learn richer semantic information. Pyramid Scene Parsing Network (PSPNet) [7]
combines ASPP and auxiliary loss functions to further improve the accuracy of semantic
segmentation. DenseASPP [21] uses dense connections to combine different convolution
modules with multiple dilation rates to effectively improve the receptive field of the
model without significantly increasing the complexity. Dynamic Multi-scale Network
(DMNet) [22] can adaptively capture multi-scale features to predict pixel-level labels.
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2.4. Multi-Source Data Fusion

The fusion of multi-sensor data can effectively improve the accuracy of segmentation
results [23–28] due to the complementarity of information from different sources. In the
early works, some works used machine learning methods (such as SVM [29]) to fuse
images from different sensors to obtain dense land segmentation results at the decision
level. Waske et al. chose Synthetic Aperture Radar (SAR) images as the fusion object,
because SAR is an active earth observation system, and can observe the ground all the time
in any weather with a certain degree of ground penetration ability [30]. It is widely used in
various applications such as disaster management [31–33]. A recent study [34] combined
SAR and Thematic Mapper (TM) images to detect pixel changes. Some researches [35,36]
fused the data of Sentinel-1 and Sentinel-2 for land classification. In addition, LiDAR data
is also used in various remote sensing segmentation tasks [37–39]. Finally, the holding
of various data fusion competitions [40–42] also greatly stimulated the enthusiasm of
many researchers.

On the other hand, more and more excellent deep segmentation networks based
on data fusion have been proposed with the emergence of FCN. In order to deal with
indoor scene segmentation tasks, Hazirbas et al. proposed FuseNet [13] to combine RGB
images and depth images. The backbone of FuseNet is still a classic encoder-decoder
structure network similar to SegNet. In addition, it uses an auxiliary encoder to extract
depth image features and then fuse them in the main encoder. Digital surface model (DSM)
is used to provide height information for high-resolution remote sensing images in [14].
Sankaranarayanan et al. [15] fused high-resolution remote sensing images with 3-channel
auxiliary input including normalized DSM, NDVI and IR data to get a clearer output.

3. Our Method

As shown in Figure 2, the model proposed in this paper can be divided into three
modules, which include a multi-source feature extractor, a top-down pyramid fusion
module and a decoder. The multi-source feature extractor consists of two lightweight
encoders to receive high-resolution remote sensing data and auxiliary data. Both of them
use the mainstream backbone network called residual network (ResNet). ResNet with
deep structure can efficiently extract multi-scale features from input images, while the
existance of the bottleneck blocks makes it possible to have fewer parameters. The extracted
features are fed into top-down pyramid module for fusion. It fuses the data in a top-down
structure, where high-level semantic knowledge can effectively guide the complementation
of low-level information. The top-down model makes it easier to learn comprehensive
knowledge of remote sensing images for accurate distinctions between different object
categories. Finally, the decoder is used to restore multi-source and multi-scale features
to pixel-level semantic labels. It is worth noting that these modules are designed in a
lightweight structure. The new network will be detailed in the remainder of this section.

Main 

Encoder

TdPFM Decoder

Auxiliary 

Encoder

categorical 

crossentropy 

loss

Pixel 

Label

RSI

DSM

OSM
Prediction

Figure 2. The overall structure of TdPFNet.
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3.1. Multi-Source Feature Extractor

The multi-source feature extractor is composed of two lightweight encoders to extract
the features of remote sensing images and auxiliary images at the same time. Compared
with the single input model of merged channels, multiple branches can perform bet-
ter in extracting features from different sources [13]. However, multiple encoders also
bring about higher model complexity. The backbone network used in this work is called
ResNet, and can easily achieve a deep structure with fewer negative effects. As shown
in Figure 3, the residual structure composed of one 3 × 3 convolutional layer and two
1 × 1 convolutional layers is called bottleneck block. In order to reduce the computational
complexity, the data dimensionality is reduced at the input and then restored after a
3 × 3 convolution. Bottleneck blocks are widely used in deep structures, such as ResNet-
101 and ResNet-152. Therefore, even with hundreds of layers, they are still considered to
be lightweight networks.
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Figure 3. The structure of a bottleneck block, where x represents the input feature map, the fitting
function of each block is F(x) and the expected latent mapping is H(x). x fits H(x) together with
F(x) by skip connection. Instead of learning H(x) directly, the structure learns the residual H(x)− x
for reduced complexity.

We use ResNet-101 as the main encoder to extract multi-scale features of high-
resolution remote sensing images, which has been adopted by many excellent semantic
segmentation models [7,11]. Empirically, we find that ResNet-50 is already sufficient to
extract the features of auxiliary inputs with acceptable model complexity. Specifically, we
remove fully connected layers for classification to form a fully convolutional structure to
fittingly perform the pixel-level segmentation task. Two encoders simultaneously extract
features in four different scales (from 1/4 to 1/32), and then send them into top-down
pyramid fusion module (TdPFM).

3.2. Top-Down Pyramid Fusion Module

Traditional semantic segmentation methods based on data fusion either use simple
fusion like channel-merging that may lose the multi-scale characteristics from different
images, or include too many redundant fusion structures unnecessarily for high accuracy,
leading to significantly increased model complexity. We aim to find a structure to balance
between high-quality results and model complexity. The traditional bottom-up fusion
methods are difficult to fully fuse the low-level details due to lacking information from
high-level semantics. Therefore, we design a top-down pyramid fusion module, which can
effectively fuse features from different sources and scales. The new model allows higher
level features to guide the fusion of current features, and can easily achieve sufficient
information fusion.
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The top-down pyramid fusion module in Figure 4 can be divided into four layers
to receive multi-source features of four different scales extracted by ResNet. The specific
structure of each layer is shown in Figure 5. Except for the top layer, each data fusion
unit contains three input paths and one output path. The two horizontal paths receive
two feature maps of the same scale from main and auxiliary encoder, and the vertical path
receives 2× upsampling results output by the previous layer, which can provide effective
high-level guidance for current fusion.

Fusion

Layer

Fusion

Layer

Fusion

Layer

Fusion

Layer

Residual

Block

Residual

Block

Residual

Block

Residual

Block

Residual

Block
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Block

Residual

Block

Residual

Block

Main Encoder Auxiliary EncoderTdPFM

RSI

DSM

Or OSM

1/32

1/4

1/8

1/16

1/4

1/8

1/16

1/32

Figure 4. The overall structure of TdPFNet (excluding decoder). It mainly includes two modules: Multi-source feature
extractor and multi-source feature pyramid fusion module. The first module includes the main encoder and the auxiliary
encoder used to receive high resolution remote sensing data and auxiliary data, respectively. The second module contains
four fusion layers. The extracted features contain four different scales (from 1/4 to 1/32), and are sent to TdPFM for fusion.

+
Conv

1×1

Conv

3×3

Conv

1×1

Upsample

2×

Fusion Layer

U

S1 S2

Outf

Figure 5. The structure of a fusion layer. If it is the top layer, U is not included.

The specific fusion output function is shown below:

Outf = Conv3×3(Up2×(U)⊕ Conv1×1(S1)⊕ Conv1×1(S2)), (1)

where ⊕ denotes element-wise addition, S1 and S2 represent two features in the same scale
and U represents the feature map from the previous layer. Up2× is a bilinear up-sampling
unit for doubling the size of the feature maps. Conv1×1 represents a convolutional layer



Remote Sens. 2021, 13, 4159 7 of 18

with a 1× 1 convolution kernel to adjust features from different sources to the same number
of channels (256). A 3 × 3 convolution is appended to each merged feature to reduce the
aliasing effect of upsampling. The fused features are sent to the next layer to provide
high-level semantic guidance. The final outputs of four different scales are fed to the
decoding module to be restored to dense pixel-level labels.

3.3. Lightweight Decoder

The main function of the decoder is to restore the fused sparse features into dense
semantic segmentation results. Empirically, deep-level features usually contain rich seman-
tic information, but lack the low-level spatial details. To better restore the image texture
details, traditional symmetric decoding methods such as SegNet and U-Net always fuse
the low-level information from encoders multiple times through jump connections during
decoding. However, in our top-down fusion, the final outputs from the fusion module
already contains a wealth of high-level and low-level information. Therefore, we only need
to arrange and fuse multi-level information, and then reconstruct them into the original
resolution to obtain accurate segmentation results.

As shown in Figure 6, we first upsample feature maps of each layer to 1/4 of the
original resolution through upsampling units (type 1, one or more in series). Each up-
sampling unit is composed of a bilinear interpolator and a 3 × 3 convolution, as shown in
Figure 7. After all features have been concatenated, the number of channels is adjusted
by a 1 × 1 convolution for fusion, because fewer channels mean reduced computational
operations. Then, we upsample (type 2) the fusion result to restore the original resolution
and use a 1 × 1 convolution to achieve the final classification channels. Finally, the output
is obtained through the softmax activation function. In addition, we added a BN layer after
each convolutional layer to accelerate the convergence rate.

Fusion

Layer

Fusion

Layer

Fusion

Layer

Fusion

Layer

TdPFM

Upsampling

Unit

Upsampling

Unit

Upsampling

Unit

Upsampling

Unit

Decoder

Prediction

C

Upsampling

Unit

Upsampling

Unit

Upsampling

Unit

1/4

1/8

1/16

1/32

1/4

Figure 6. The overall structure of TdPFNet (excluding extractor). It mainly includes two modules: Multi-source feature
pyramid fusion module and lightweight decoder. The first module contains four fusion layers with different scales. The
second module contains some upsampling units (where C represents concatenation operation). Multi-scale features from
TdPFM are reconstructed to the images with the original resolution through multiple upsampling operations.
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Figure 7. The structure of upsampling unit.

Compared with the symmetric decoding methods such as SegNet or U-Net adopted
by FuseNet, the decoding scheme with the top-down pyramid structure is less costly
in complexity. Because we only use one block in each layer when decoding and unify
the number of channels to 256, the model complexity is reduced significantly. The new
design allows good segmentation accuracy to be achieved while maintaining lightweight
model structure.

3.4. Loss Function

The loss function is used to estimate the difference between the predicted value p
of the deep learning model and the groud truth y. It is also a necessary component for
optimizing model parameters through backpropagation. The loss function is usually a
non-negative scalar function represented by L(y, p). The smaller the value of the function
is, the higher the accuracy of the model.

In this work, we use the categorical crossentropy loss function:

L(y, p) = −
n

∑
i=1

yi × log pi, (2)

where n represents the total number of categories, yi is the i-th bit of the one-hot encoding
vector of the label, and pi represents the i-th bit of the softmax output vector. Categorical
crossentropy loss function performs well for the instances with only one category. Therefore,
it is suitable to deal with the single label classification problems such as the dataset used in
this work.

4. Experiment

In this section, we use multiple sets of experiments to verify the superiority of TdPFNet
to other models. First, we analyze the pros and cons of DSM and OSM as auxiliary data
sources by ablation studies. Then, the performance of the proposed model is compared with
those of the traditional single-source segmentation methods and the latest multi-source
segmentation technologies. Finally, we analyze the complexity of the model.

4.1. Datasets

We evaluated our proposed model on the ISPRS2D high-resolution remote sensing im-
agedataset (https://www2.isprs.org/commissions/comm2/wg4/benchmark/semantic-
labeling/, accessed on 16 October 2021). It provides two state-of-the-art airborne image
datasets, consisting of very high resolution treue ortho photo (TOP) tiles and corresponding
digital surface models (DSMs) derived from dense image matching techniques. Due to
the limitation of OSM data collection, we selected Potsdam only as the evaluation dataset.
Potsdam shows a typical historic city with large building blocks, narrow streets and dense
settlement structure. It was manually divided into the six most common land cover cate-
gories including impervious surface, building, low vegetation, tree, car and background

https://www2.isprs.org/commissions/comm2/wg4/benchmark/semantic-labeling/
https://www2.isprs.org/commissions/comm2/wg4/benchmark/semantic-labeling/
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(marked in white, blue, cyan, green, yellow and red). The background class includes
water bodies and other objects that look very different from everything else and that are
usually not of interest in semantic object classification in urban scenes. The Potsdam dataset
contains 38 patches of the same size, and each patch is composed of a TOP extracted from
a larger TOP mosaic. The ground sampling distance of both, the TOP and the DSM, is 5 cm,
and the pixel resolution is 6000 × 6000. 24 images are used for training and 14 images are
used for testing. All images have corresponding pixel-level ground truth.

DSM is a ground elevation model that contains the height of ground buildings, bridges,
and trees. It can provide additional height information for 2D remote sensing images.
Therefore, it is also a mainstream dataset for fusion. In addition, we notice that there
is a large remote sensing information resource that is available, but has not been fully
utilized, which is called the public geographic information system (GIS) database, such
as open street map (OSM). Some works [15] usually use it as a rough label to train the
proposed model. Although containing some errors caused by volunteer-driven marking,
OSM database is an easy-to-obtain and highly valuable resources. Therefore, we also
selected OSM data as an auxiliary input for comparison and fusion processing, where the
rich road and building information can be obtained to help the segmentation of remote
sensing images. As shown in Figure 8, the first image shows the original high-resolution
remote sensing image, the second one is the corresponding normalized DSM image and
the third is the OSM data collected by ourselves. Different from the calibrated DSM data
from the ISPRS2D, the OSM data of the corresponding city we collect requires additional
manual coordinate correction to ensure that it aligns with the remote sensing images in
spatial dimensions. Both DSM and OSM images are converted into 3 channels, which is
the same as remote sensing RGB images, for convenience in data fusion processing.

(a) (b) (c)

Figure 8. A sample from Potsdam dataset. From left to right, they are the data for (a) original high-resolution remote
sensing RGB image, (b) the normalized DSM image and (c) the corresponding OSM data.

4.2. Data Augmentation

As we all know, data augmentation can effectively reduce the risk of overfitting due
to the insufficiency of training samples, and improve the generalization performance of
deep learning models. Moreover, the semantic segmentation model proposed in this paper
has parameters with the number far exceeding the size of the training set. It is obviously
unrealistic to train the proposed model effectively by using the ISPRS2D dataset only.
Therefore, we applied the following augmentation strategies to expand the training set.
Firstly, we divided each image into patches with a pixel resolution of 256 × 256 by random
cutting. Secondly, we mirrored and flipped each patch. Finally, we randomly rotated
each patch by 90 degrees. It is worth noting that the two auxiliary data sources and the
groud truth need to be enhanced synchronously with the remote sensing data to ensure
data consistency.
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4.3. Implementation Details

The experiments in this paper are based on the deep learning framework Tensorflow2.1
with python3.8. The experimental platform is a workstation equipped with a Ubuntu 20.04
operating system. All bands of high-resolution images were normalized between [0, 1], and
the batch size of the input was set to 10. We used the pre-trained weights on ImageNet to
initialize the backbone network, and the rest used the He normal distribution initialization
method, where the parameters were generated by a normal distribution with a mean value
of 0 and a standard deviation of

√
2/fan-in. The optimizer adopted was stochastic gradient

descent (SGD) with the momentum of 0.9, which can improve the convergence speed of
the networks. TdPFNet was then trained for 80 epochs with an initial learning rate of 0.01,
which was reduced by a factor of 0.1 after 40th and 60th epochs. In order to evaluate the
fusion results of TdPFNet, we used two common evaluation criteria called overall accuracy
(OA) and mean F1 score (MF1).

They are defined as follows:

OA =
TP + TN

P + N
, (3)

precision =
TP

TP + FP
, (4)

recall =
TP

TP + FN
, (5)

F1 = 2 × precision × recall
precision + recall

, (6)

where P is the number of Positive samples, N is the number of negative samples, TP , TN,
FP and FN are the numbers of true positive, true negative, false positive and false negative
samples, respectively.

4.4. Ablation Studies

In order to verify the effectiveness of our TdPFNet and to show the differences
between DSM or OSM as auxiliary inputs specifically, we added a single-source pyramid
fusion network (TdPFNet(RSI)) as the baseline, whose original auxiliary encoder had been
removed from TdPFNet, for some ablation studies. Figure 9 shows the results predicted by
the proposed model, in which the first column represents original high-resolution remote
sensing RGB images, the second represents the corresponding ground truth, the third
represents predictions of TdPFNet(RSI) and the last two columns show the results fused by
DSM and OSM. From the experimental results in Table 1 and Figure 9, it can be found that
the addition of DSM and OSM data can effectively improve the segmentation accuracy of
the model, and MF1 reach the highest 92.2 with the help of OSM. From another perspective,
once the fusion-based model is separated from the auxiliary input, the segmentation results
will be more or less affected. However, TdPFNet(RSI) still can generate good results, which
means that it has strong robustness. We also conducted experiments on the CRF module
and found that it had little impact on our fusion results, while increasing the complexity of
model training, so we removed it in subsequent experiments.

Then, we conduct ablation experiments on different scales of data augmentation, as
shown in Figure 10, where the abscissa indicates how many times the augmented dataset
size has been expanded compared to the original one. Obviously, 0 means that no data
augmentation is applied. From the results, we can find that these models work best when
the size of the dataset is enlarged by 4 times. We also learn that when the training set
continues to be augmented, the performances on the test set start to decrease instead. We
speculate that this may be caused by the reduction of the model’s domain adaptability,
which is beyond the scope of the work in this paper.
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Imp_surf Building Low_veg Tree Car Clutter

(b) (d)(c)(a) (e)

Figure 9. Samples from the prediction results on Potsdam test set. From left to right, they are the
data for (a) original high-resolution remote sensing RGB images, (b) the corresponding ground truth,
(c) predictions of TdPFNet(RSI), (d) results fused with DSM and (e) results fused with OSM.

Table 1. The ablation study for each part of TdPFNet on Potsdam test set. DSM: digital surface model.
OSM: open street map. CRF: conditional random field.

Baseline DSM OSM CRF MF1

X 87.6
X X 91.8
X X 92.2
X X X 91.7
X X X 92.2

0 1 2 3 4 5
Data Augmentation scale

80

82

84

86

88

90

92

94

M
F1

(%
)

TdPFNet(RSI)
TdPFNet(RSI+DSM)
TdPFNet(RSI+OSM)

Figure 10. The ablation study on different data augmentation scales on Potsdam test set.
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4.5. Comparisons with the-State-of-the-Art Models

We selected some traditional single-input segmentation networks to compare with the
proposed model, which include the famous FCN, PSPNet and the widely used Deeplabv3+.
The results of the experiment are shown in Table 2. Considering that these methods do
not have access to DSM or OSM, we remove the auxiliary branch of TdPFNet for fairness,
which is called TdPFNet(RSI). As can be seen from Table 2, even though TdPFNet(RSI) is
relegated to only a single-source (Ss) input model, its performance on the Potsdam dataset
is still competitive to other models. The results prove that the proposed model has strong
robustness, no matter for single-source or multi-source data. After fusing the DSM data,
TdPFNet can achieve a mean F1-score (MF1) of 91.8%, and a MF1 of 92.2% with the OSM
input. There is no doubt that the recognition ability of the model for each category has been
significantly improved with the addition of height or building information. Compared
with the traditional single input model, the MF1 value of TdPFNet is increased by nearly
4%. For the subsequent experimental results, the auxiliary input is fixed to OSM unless
stated otherwise.

Table 2. Detailed performance comparisons with single-source methods on Potsdam test set. The number in bold is the maximum
value. All data are shown in percentage. Ss: Single-source. Ms: Multi-source.

Methods Ss Ms Imp_surf Building Low_veg Tree Car MF1 OA

FCN-8 [43] X 88.7 91.5 82.2 82.2 90.8 87.1 85.5
PSPNet X 89.1 92.5 79.8 82.7 88.8 86.6 85.6

DeepLabV3+ X 90.3 92.8 83.8 81.0 89.7 87.5 87.4

TdPFNet(RSI) X 90.2 93.0 81.3 81.9 91.4 87.6 87.2
TdPFNet (RSI+DSM) X 92.5 97.3 86.5 87.6 95.0 91.8 90.7
TdPFNet (RSI+OSM) X 93.4 97.5 87.7 88.0 94.3 92.2 91.2

Next, for better evaluation, L3Fsn [15] method, V-FuseNet [44], TreeUNet [45] and
other bottom-up multi-source fusion methods on the ISPRS2D competition leaderboard
served as benchmarks for comparison with the proposed model.

• L3Fsn : It is an early fusion framework, which is a variant of FCN-8. The CNN features
obtained from multiple spectral bands are fused in the initial layer rather than the
final layer of the deep neural network. Therefore, there are fewer model parameters
that need to be trained.

• V-FuseNet: It is an early fusion network of multi-modal remote sensing data based on
FuseNet structure, which is a variation of SegNet. Different from the original FuseNet,
V-FuseNet fuses the data from the main and auxiliary encoders, with a convolutional
block followed by summation. It can significantly improve semantic segmentation
results by allowing the network to extract jointly strong multimodal features.

• TreeUNet: It is an adaptive network based on confusion matrix and tree cutting
algorithm. A Tree-CNN block can be constructed based on a deep semantic model
infrastructure adaptively, where each node represents a ResNeXt [46] unit. It allows
the network to choose its own optimal structure automatically. However, the training
process of this method is complicated, and it will take a long time for GPU to find the
best structure.

• Other methods: Since these are some well-known algorithms from the ISPRS2D
competition, they all use such data fusion methods as channel-merging or bottom-up
to fuse multi-modal data including RSI, NDVI and DSM. No matter which method is
used, they have a common problem of features information loss during fusion making
it difficult to restore the original resolution. For convenience, we call these methods
the traditional bottom-up methods.
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As shown in Table 3, the TdPFNet achieved the best or competitive results on Pots-
dam data sets, especially after fusing OSM data. With fusion of OSM data, the accuracy
of impervious surface and building has been significantly improved. TdPFNet get the
highest OA and MF1 score among methods in the table. This is undoubtedly due to the
contributions of using high-level semantic knowledge to guide the fusion and decoding
progress of low-level spatial features. Compared with the traditional bottom-up methods,
the top-down fusion method reveals a stronger ability in reconstructing texture details of
high-resolution remote sensing images.

Table 3. Detailed performance comparisons with the-state-of-the-art models on Potsdam test set. The number in bold is the maximum
value. All percentage signs are omitted. Ms: Multi-source. Bu: Bottom-up. Td: Top-down.

Methods Ms Bu Td Imp_surf Building Low_veg Tree Car MF1 OA

SVL_3 [47] X X 84.0 89.8 72.0 59.0 69.8 74.9 77.2
UZ_1 [48] X X 89.3 95.4 81.8 80.5 86.5 86.7 85.8

KLab_3 [49] X X 89.3 92.0 83.5 83.8 92.0 88.1 86.4
L3Fsn [15] X X 92.6 97.0 86.9 87.4 95.2 91.8 90.3

V-FuseNet [44] X X 92.7 96.3 87.3 88.5 95.4 92.0 90.6
TreeUNet [45] X X 93.1 97.3 86.8 87.1 95.8 92.0 90.7

TdPFNet (RSI+OSM) X X 93.4 97.5 87.7 88.0 94.3 92.2 91.2

5. Discussion

In this section, we further discuss the proposed model and analyze the experimental
results in depth. In addition, we summarize the advantages, limitations and potential
improvements of the model.

5.1. Results Analysis

Figure 11 shows two decay curves of training loss with epochs. The smooth curves
show that the proposed model has excellent robustness. The loss of the model fused with
DSM drops a bit faster. This may be due to the fact that DSM is officially released without
modifications and thus more compatible with the original remote sensing data than the
OSM that were edited by ourselves.
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Figure 11. The decay curve of training loss with epochs.



Remote Sens. 2021, 13, 4159 14 of 18

We enlarge some details of the prediction results, which can be displayed in Figure 12.
The first column represents the original remote sensing slices, the second column represents
the ground truth labels, the third represents predictions of TdPFNet(RSI) and the last two
columns show fusion results with DSM and OSM. We can draw three conclusions from
them. First of all, the height information of DSM and the building information of OSM
can be used to distinguish the similar categories. Secondly, With OSM data the images of
buildings have a clearer outline. Finally, in rare cases like the last two lines, DSM data have
better performance for certain categories, but in most cases, OSM performs better.

Imp_surf Building Low_veg Tree Car Clutter

(b) (d)(c)(a) (e)

Figure 12. Slices from the prediction results. From left to right, they are the data for (a) original
high-resolution remote sensing RGB slices, (b) the corresponding ground truth, (c) predictions of
TdPFNet(RSI), (d) results fused with DSM and (e) results fused with OSM.

5.2. GPU Inference Time

We calculated the GPU inference time for each excellent model with a 6000 × 6000 image
(24 × 24 patches) and made a comparative analysis, as shown in Table 4. The penultimate
column of the table shows the backbone of each network and the last column lists the GPU
inference times.

Table 4. The GPU inference times of various models. Ms: Multi-source. Bu: Bottom-up. Td: Top-down.

Methods Ms Bu Td Backbone Time (s)

L3Fsn X X FCN-8 24.4
V-FuseNet X X SegNet 29.8

TdPFNet (RSI+OSM) X X ResNet-101-TdPFNet 22.5



Remote Sens. 2021, 13, 4159 15 of 18

We select two traditional models for comparison, and they both adopt the classic
bottom-up multi-source data fusion strategy. Obviously, the proposed model only takes
22.5 seconds, and it is the least time in Table 4, for three reasons. First, ResNet itself uses
bottleneck blocks, in which the use of 1 × 1 convolutions greatly reduces the number of
parameters. Second, our auxiliary branch uses fewer layers without affecting the quality of
the segmentation results, further reducing the parameters of the network. Third, TdPFNet
only uses one block in each layer when fusing and decoding, and unify the number of
channels to 256. Compared with the traditional symmetric decoding method such as L3Fsn
and V-FuseNet, the top-down fusion structure proposed in this paper maintains the high
accuracy while having the computational complexity significantly reduced.

5.3. Pros and Cons Analysis

When data fusion is applied in semantic segmentation, how to better restore low-level
spatial details becomes a major problem, especially for complex remote sensing images.
Traditional methods use channel-merging or bottom-up fusion structures for data fusion.
Their high-level feature maps become less accurate in detailed spatial information, making
it difficult to restore low-level spatial texture details. The TdPFNet proposed in this paper
uses high-level semantic information to guide the fusion of low-level information step by
step, and the top-down structure can better restore more spatial information. Therefore, the
predicted results have been significantly improved. And the experimental results prove that
our method is robuster in performance, no matter for single-source or multi-source inputs.
Then, we selected two easily accessible data sources, DSM and OSM, effectively help
complete the task of land classification and reduce the data collection cost. Furthermore,
with some previous methods, more and more fusion structures are added to pursue better
fusion results, making the model more and more bloated computationally. TdPFNet adopts
a lightweight fusion strategy and simplifies redundant structures, greatly reducing the
complexity of training and prediction process.

Our method also has some limitations. First, compared with traditional single-source
algorithms, TdPFNet requires more data sources, and inevitably increases the cost of data
preprocessing. Second, The fusion module we proposed can support the fusion of more
than two data sources, but it requires more encoders, and further increases the complexity.
It conflicts with the original intention in this paper. Therefore, we only fuse two data
sources after careful consideration. Finally, because ISPRS2D does not provide additional
fusion sources other than DSM, the OSM data collected by ourselves may conflict with the
original data in some places, such as labeling errors or time differences. We could achieve
better results with higher-quality auxiliary data.

TdPFNet still has a lot of room for improvement. In the future, we can design a
lightweight encoder that can support more data from different sources (except for the
method of channel-merging). In addition, the cost of pixel-level annotations should also be
taken seriously. Intuitively, the introduction of a large amount of multi-source information
can reduce the dependence of samples on annotations. In the current work, we are using the
information redundancy brought by data fusion technology to learn semantic knowledge
from unlabeled samples.

6. Conclusions

In this work, we analyze the existing problems of semantic segmentation based on
data fusion. Specifically, traditional methods fuse the features extracted from different
sources with a bottom-up fusion structure, making it difficult to achieve excellent fusion
results due to information losses in the fusion process. On the other hand, various auxiliary
fusion modules improve the model accuracy, but increase the complexity as well. In order
to solve these problems, we propose a new lightweight model called top-down pyramid
fusion network. It can effectively fuse the multi-scale features from different sources with
the top-down fusion structure, where high-level semantic knowledge guides the gradual
fusion of low-level texture information. And the experimental results prove that our
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method is robuster in performance, no matter for single-source or multi-source inputs.
TdPFNet is easy to train, because it has lower complexity than other multi-source fusion
networks. In addition, we study the feasibility of OSM data as auxiliary input, which
is different from DSM data. Compared with DSM data, OSM data contains more data
on road and building components, which are useful in enhancing the differentiation of
various categories. Finally, the comparative experiments on Potsdam dataset show that
our method can maintain the high accuracy of the model prediction while further having
the complexity reduced.

With the rapid development of remote sensing technology, more and more high-
resolution remote sensing images can be mined. However, the pixel-level labels for re-
searches or model training are always timeconsuming and expensive. In the future, we
plan to focus on weak or semi supervised methods for semantic segmentation, which can
effectively reduce the cost of building the training datasets.
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BN Batch Normalization
Bu Bottom-up
CNN Convolutional Neural Network
DMNet Dynamic Multi-scale Network
DSM Digital surface model
FCCRF Fully Connected Conditional Random Field
FCN Fully Convolutional Network
FPN Feature Pyramid Network
FuseNet Fusion Network
GIS Geographic Information System
IR Infrared Radiation
ISPRS International Society for Photogrammetry and Remote Sensing
MF1 Mean F1-score
Ms Multi-source
NDVI Normalized Difference Vegetation Index
OA Overall Accuracy
OSM OpenStreetMap
PSPNet Pyramid Scene Parsing Network
ResNet Residual Network
RSI Remote sensing images
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SAR Synthetic Aperture Radar
SGD Stochastic Gradient Descent
Ss Single-source
SVM Support Vector Machine
Td Top-down
TdPFM Top-down Pyramid Fusion Module
TdPFNet Top-down Pyramid Fusion Network
TM Thematic Mapper
TOP Treue Ortho Photo
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