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Abstract: How to accurately detect small targets from the complex maritime environment has
been a bottleneck problem. The strong wind-wave backlight conditions (SWWBC) is the most
common situation in the process of distress target detection. In order to solve this problem, the
main contribution of this paper is to propose a small target detection method suitable for SWWBC.
First of all, for the purpose of suppressing the gray value of the background, it is analyzed that
some minimum points with the lowest gray value tend to gather in the interior of the small target.
As the distance from the extreme point increases, the gray value of the pixel in all directions also
increases by the same extent. Therefore, an inverse Gaussian difference (IGD) preprocessing method
similar to the distribution of the target pixel value is proposed to suppress the uniform sea wave and
intensity of the sky background. So as to achieve the purpose of background suppression. Secondly,
according to the feature that the small target tends to “ellipse shape” in both horizontal and vertical
directions, a multi-scale and multi-directional Gabor filter is applied to filter out interference without
“ellipse shape”. Combined with the inter-scale difference (IsD) operation and iterative normalization
operator to process the results of the same direction under different scales, it can further suppress
the noise interference, highlight the significance of the target, and fuse the processing results to
enrich the target information. Then, according to different texture feature distributions of the target
and noise in the multi-scale feature fusion results, a cross-correlation (CC) algorithm is proposed
to eliminate noise. Finally, according to the dispersion of the number of extreme points and the
significance of the intensity of the small target compared with the sea wave and sky noise, a new
peak significance remeasurement method is proposed to highlight the intensity of the target and
combined with a binary method to achieve accurate target segmentation. In order to better evaluate
the performance index of the proposed method, compared with current state-of-art maritime target
detection technologies. The experimental results of multiple image sequence sets confirm that the
proposed method has higher accuracy, lower false alarm rate, lower complexity, and higher stability.

Keywords: maritime strong wind-wave backlight condition; infrared maritime target detection;
multi-scale feature extraction; cross-correlation theory; peak significance remeasurement

1. Introduction

Nowadays, the rapid development and high reliability of infrared search and tracking
systems has become an increasingly urgent need in the field of maritime search and
rescue [1–3]. How to accurately detect small targets in complex sea conditions has been the
essential issue of maritime search and rescue. The main work of this paper is to solve the
problem of small target detection under SWWBC. At present, detection methods for small
targets in the complex maritime environment are emerging one after another.

In the research based on contrast and similarity characteristics, C. L. Philip [4] based
on the robustness of HVS, proposed a multi-scale local contrast measurement method
based on the derived kernel model (DK Model) to achieve infrared target detection. Li [5]
proposed a local adaptive contrast detection method (LACM-LSK) based on local steering
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kernel reconstruction. Due to the improved local contrast method requirement that the
target has a big difference in the local area compared with the clutter interference, the
application scenario has greater limitations.

In the research based on texture directional features, aghaziyarati [6] proposed a
method based on the cumulative directional derivative weighting coefficient to overcome
the shortcomings of the average absolute gray difference (AAGD) algorithm. Moradi [7]
constructed a new directional small target detection algorithm, called absolute directional
mean difference (ADMD), using a concept similar to the average absolute gray difference.
Wei [8] et al. decomposed the multi-scale image into horizontal direction by a wavelet
transform method and define a “mutual wavelet energy composition” method (MWEC)
to detect small infrared targets in the sea sky environment. Due to the weak ability of
the above methods to suppress strong sea wave clutter, the false alarm rate will be higher
when applied in SWWBC.

In the research based on statistical characteristics, Zhu [9] considered the inherent
spatial correlation between image pixels to indicate that the background is continuous
and highly correlated. On the contrary, the target is regarded as destroying the local
correlation. Therefore, segmenting the target from the background can be regarded as
the restoration of the low-rank matrix. Zhang [10] adopted a new non-convex low-rank
constraint based on the infrared patch tensor (IPT) model, that is, the partial sum of tensor
nuclear norm (PSTNN) joint weighted l1 norm to effectively suppress background. Due to
the large amount of calculation in the above methods, real-time and practicality cannot be
guaranteed.

In the research based on spatiotemporal characteristics, Zhao [11] proposed a small
infrared moving target detection algorithm based on the spatiotemporal consistency of mo-
tion trajectory. Chiman [12] combined the optical flow method with contrast enhancement,
connected component analysis, target association, and other methods to effectively perform
target detection. The above method needs to calculate the corresponding relationship of
feature points between different images, the detection platform must have the ability of
antivibration, otherwise, the robustness to the complex noise environment is extremely
poor.

In the research based on deep learning, Li [13] applied the deep learning maritime
target detection model provided by Google, combined with the super-pixel segmentation
algorithm to optimize the Grabcut algorithm, and discovered the deep learning marine
target detection and segmentation, which can accurately extract the target contour and
semantic information. Ryu [14] proposed a new far-infrared small target detection method
based on deep learning and a heterogeneous data fusion method to solve the problem of
the lack of semantic information due to the small target size. If the limited training samples
contain not enough information, the target will not be well recognized in the deep learning
method.

Recently, it has been noticed that the ability of the human visual attention system to
detect objects from complex scenes of optical images is faster and more reliable [15,16].
Many excellent computational visual attention models have been proposed to simulate the
structure of the human visual system.

Itti [17,18] proposed a visual attention system based on the behavior and neuron
structure of the early primate visual system. First, Gaussian filter and Gabor filter and
linear “center-surround” difference operation are applied to extract early visual features,
then multi-scale image features under the same feature are linearly superimposed, and
then the images under different features are linearly fused to form a single saliency map.
Finally, Koch [19] proposed to filter the target location according to the dynamic neural
network (WTA and IOR) in order from strong to weak. Dong [20] proposed a method
based on the visual attention and pipeline-filtering model (VAPFM), the overall method
adopts single-frame suspected target detection based on the improved visual attention
model and multi-frame real target judgment based on anti-jitter (VAPFM). Wang [21]
proposed a robust anti-jitter spatiotemporal saliency generation with parallel binarization
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(ASSGPB) method. Using the spatial saliency and time consistency of the target, the real
target is separated from the cluttered area. The above-mentioned target detection method
is effective in some simple scenes, if the task is to detect targets in complex scenes, the
above method may lose its effect such as in SWWBC. In view of the above problems, the
proposed method should have the following properties:

(1) Lower false alarm rate; (2) Lower time-consumption; (3) Higher detection rate; (4)
Higher stability.

In order to realize the above four attributes, this paper proposes a small target detection
method in SWWBC. The final experimental results show that the proposed method is
superior to the traditional and the latest target detection methods in detection performance.
The rest of this paper is organized as follows. In Section 2, a small target detection method
in SWWBC is introduced. Section 3 introduces the details of the experiment and analyzes
the results. Section 4 summarizes the conclusion.

2. Materials and Methods

Figure 1 is the flow chart of our proposed structure for target detection, which is
mainly divided into five steps, namely background suppression, feature extraction, noise
elimination, target enhancement, and target segmentation. In the first step, the acquired
infrared image is processed by IDG filter to generate the preprocessed image, the purpose
is to suppress background intensity. In the second step, the preprocessed image is divided
into two signal streams, which are processed by horizontal and vertical Gabor filters [22,23]
in multi-scale, respectively, to generate multi-scale feature images. The multi-scale feature
map of each direction is generated after the IsD operation and iterative normalization
operator. The multi-scale feature map is fused and iterative normalization operation to
generate saliency map, so as to eliminate noise and extract texture features. The third step
is to generate a result map by CC calculation to filter the noise. In the fourth step, the local
maxima in eight directions are obtained from the CC result image, in order to find the
subsequent target segmentation points, the peak significance is re-measurement to achieve
the target enhancement. Finally, using the binary segmentation method to determine the
true target.
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2.1. Background Suppression

Reducing the background gray value as much as possible is a key purpose of back-
ground suppression methods. In order to achieve the best background suppression effect,
the analysis of the characteristics of the target and background is an essential process.
Therefore, our paper first analyzes the weak small target patch and background patch in
the typical infrared image, and the analysis results are shown in Figure 2. The background
patch of Figure 2a is selected at the sea wave with the typical gray distribution. In Figure 2b,
it is selected at the thick clouds and sea waves. It is found from the gray value distribution
of the weak small target patch in (a) T1 and (b) T1 T2, the interior of the small target tends
to gather some gray minimum points which are quite different from the surrounding pixels.
With the increase of the distance from the minimum point, the gray values of the pixels in
all directions raise by the same extent. However, the gray value distribution of (a) B1 B2 B3
sea wave patch and (b) B1 clouds patch and B2 sea wave patch has no similarity with the
target patch.

Remote Sens. 2021, 13, x FOR PEER REVIEW 5 of 22 
 

T1

B1 147 137 127 130 141 95 89

128 125 141 140 132 97 99

142 129 134 124 121 89 98

105 124 128 129 122 98 94

68 75 76 71 167 171 178

79 75 78 76 169 172 175

139 138 141 143 138 85 87

73 65 22 6 17 21 78

71 45 26 13 18 21 76

72 39 39 41 47 50 75

76 88 74 71 77 73 79

124 117 98 103 74 78 88

117 68 69 60 57 70

100 64 30 37 37 50 71

60

T1

B1

224 221 227 230 241 231 212

228 225 241 240 232 231 215

242 225 235 229 241 228 227

231 230 221 209 222 229 230

212 215 218 221 231 233 234

221 219 231 236 241 231 230

228 224 229 227 225 221 227

B2

B2

26 28 24 27 29 24 21

27 19 18 21 21 23 25

22 23 19 18 17 20 27

16 27 21 29 22 28 25

28 21 17 16 19 21 23

30 29 28 31 28 27 19

18 20 19 21 23 25 27

B3

B3

 
(a) 

198 178 173 170 172 179 208

199 194 171 171 172 191 210

207 195 190 190 193 193 216

212 220 215 209 222 216 215

204 212 211 203 201 204 208

199 187 186 182 183 183 208

198 180 177 175 173 177 202

199 187 166 161 167 184 193

197 182 176 173 178 183 200

206 188 182 188 181 180 194

192 200 194 191 198 199 199

194 196 191 197 195 195 198

192 188 180 179 187 189 195

200 183 165 166 176 183 199

T1 T2

B1

B2

197 198 198 198 195 197 198

239 239 238 237 232 231 230

232 239 230 236 238 237 231

231 230 235 239 232 236 235

198 198 195 193 191 198 199

189 189 197 195 193 197 196

194 198 197 197 195 191 197

134 134 130 135 132 131

134 130 135 135 132 134 135

130 130 132 134 135 135 135

134 134 131 135 131 140 131

135 130 134 132 135 130 131

134 130 130 135 135 135 135

134 134 132 134 135 134 131

135

T2

T1 B1

B2
 

(b) 

Figure 2. Analysis results of infrared small target block region and background patch region. (a) 
Typical image A infrared small target patch area and background patch area. (b) Typical image B 
infrared small target patch area and background patch area. 

An IGD preprocessing algorithm similar to the target area gray value distribution is 
designed, the IGD preprocessing method is shown in Equation (1),  𝜎ଵ and 𝜎ଶ indicates the 
high-scale and low-scale filter parameters. 

𝐼𝐺𝐹(𝑥, 𝑦) = 12𝜋𝜎ଵଶ 𝑒ି௫మା௬మଶఙభమ − 12𝜋𝜎ଶଶ 𝑒ି௫మା௬మଶఙమమ              (1)

The kernel function three-dimensional results are shown in Figure 3. From them, it 
can be found that the three-dimensional distribution of grayscale values in the target area 
is similar to the three-dimensional result of the kernel function, so the significance of the 
background can be better suppressed. According to the target space area in the statistical 
dataset is less than 80 pixels, IGD kernel size is selected as 9 × 9 in this paper. So that the 
spatial area of the kernel basically matches the spatial area of the target and the best back-
ground suppression effect can be obtained. 

Figure 2. Analysis results of infrared small target block region and background patch region. (a)
Typical image A infrared small target patch area and background patch area. (b) Typical image B
infrared small target patch area and background patch area.

An IGD preprocessing algorithm similar to the target area gray value distribution is
designed, the IGD preprocessing method is shown in Equation (1), σ1 and σ2 indicates the
high-scale and low-scale filter parameters.

IGF(x, y) =
1

2πσ1
2 e
− x2+y2

2σ1
2 − 1

2πσ22 e
− x2+y2

2σ2
2 (1)
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The kernel function three-dimensional results are shown in Figure 3. From them, it
can be found that the three-dimensional distribution of grayscale values in the target area
is similar to the three-dimensional result of the kernel function, so the significance of the
background can be better suppressed. According to the target space area in the statistical
dataset is less than 80 pixels, IGD kernel size is selected as 9 × 9 in this paper. So that
the spatial area of the kernel basically matches the spatial area of the target and the best
background suppression effect can be obtained.
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Figure 3. IGD kernel function.

The final obtained background suppression results are shown in Figure 4. Firstly,
it can be seen by comparing the global gray histogram of the original image of typical
images A and B with the global gray histogram of the processing image, gray values of
the background after processing are decreased and substantially smaller than those of the
target.
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Figure 4. Global gray histogram and local contrast of typical original image and background
suppression result.
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Secondly, the local contrast is calculated by Equation (2), g f represents the average
gray level of the foreground, and gb represents the average gray level of the background.

Contrast =
max

[
g f , gb

]
min

[
g f , gb

] (2)

For ease of observation, the competing areas with the same or higher local contrast as
the target area are marked in green. The results show that the background interference area
that has the same or higher local contrast as the target area after processing is significantly
reduced, the reason for this result is also due to the reduction of the gray value of most
backgrounds. Finally, it can also be found from the processed result image that the uniform
sea waves and sky background in the original image are eliminated, which is also more
beneficial to subsequent target detection tasks.

2.2. Feature Extraction

Accurate feature extraction [24,25] can better retain target information and eliminate
interference information. By observing the resulting image after the background suppres-
sion, it can be found that the small target is closer to the “ellipse shape” and has strong
texture characteristics in both the horizontal and vertical directions, and the Gabor filter
just has the ability to extract the “ellipse shape” characteristics. In addition, the Gabor
filter also has the function of multi-scale resolution [26,27]. By adjusting the size of the
filter template to achieve “fine to coarse” feature extraction, we can ensure that the target
region can be accurately extracted features. The mathematical expression of the Gabor
filter is a deep representation in Equations (3) and (4). θ represent the filtering direction, γ
represent the aspect ratio, δ represent the standard deviation, λ represent the wavelength,
and ψ represent the phase. Figure 5 shows the result of feature extraction of background
suppression images A and B.

G(θ, γ, δ, λ, ψ, x, y) = exp
(
− x′2 + γy′2

2δ2

)
cos
(

2π
x′

λ
+ ψ

)
(3)

{
x′ = x cos(θ) + y sin(θ)

y′ = −x sin(θ) + y cos(θ)
(4)
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image A. (a2) Vertical texture features in multi-scale image A. (b1) Horizontal texture features in multi-scale image B. (b2)
Vertical texture features in multi-scale image B.

In the results of multi-scale horizontal and vertical texture feature extraction, it can be
observed that the brightness of the target between adjacent scales in the same direction
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gradually decreases, and the brightness of the sea wave and clouds between adjacent scales
in the same direction gradually increases or remains unchanged. According to the intensity
variation characteristics of targets, waves and clouds, subtract the results of different scales
in the same direction, which is called “IsD operation”. In the final “IsD operation” result,
the position with a large difference is more likely to be the target, and the position with a
small difference or negative difference is more likely to be the noise. Firstly, the negative
difference is regarded as real noise and the value of the corresponding position is set to zero.
Secondly, the iterative normalization operator is used to increase the intensity difference
between the target and the noise and reduce the intensity of the noise to a negative number,
so as to distinguish the target and the noise. The iterative normalization operator is shown
in Equation (5), cex and σex is stimulus factor and stimulus variance, respectively, which is
used to further enhance the global highly significant region. cinh and σinh is the suppression
factor and the suppression variance respectively, which is used to further attenuate the
global weak significance region. The results of multi-scale horizontal and vertical texture
feature image processing are shown in Figure 6.

INorm(cex, σex, cinh, σinh, x, y) =
c2

ex
2πσ2

ex
e−(x2+y2)/2σ2

ex −
c2

inh
2πσ2

inh
e−(x2+y2)/2σ2

inh (5)
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In order to extract as much information of the target as possible, the IsD operation
results with the same direction are fused, and the final fusion result is shown in Figure 7.
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Algorithm 1: Get the result of multi-scale feature fusion.

Input:
Gaussian difference preprocessing results Gimg.
Output:
Multiscale fusion results MFR.
1 : G01= Gimg

⊗
Gabor(0, 0.5, 2.3333, 7, 0, 9) Equation (3)

2 : G02= G01
⊗

Gabor(0, 0.5, 2.3333, 15, 0, 9) Equation (3)
3 : G03= G02

⊗
Gabor(0, 0.5, 2.3333, 21, 0, 9) Equation (3)

4 : G901= Gimg
⊗

Gabor(90, 0.5, 2.3333, 7, 0, 9) Equation (3)
5 : G902= G901

⊗
Gabor(90, 0.5, 2.3333, 15, 0, 9) Equation (3)

6 : G903= G902
⊗

Gabor(90, 0.5, 2.3333, 21, 0, 9) Equation (3)
7 : CS01= (G01 − G02 )

⊗
INorm(0.5, 0.02, 1.5, 0.25) Equation (5)

8 : CS02= (G01 − G03 )
⊗

INorm(0.5, 0.02, 1.5, 0.25) Equation (5)
9 : CS901= (G901 − G902 )

⊗
INorm(0.5, 0.02, 1.5, 0.25) Equation (5)

10 : CS902= (G901 − G903 )
⊗

INorm(0.5, 0.02, 1.5, 0.25) Equation (5)
11 : MFR = (CS01 + CS02 + CS901 + CS902 )

⊗
INorm(0.5, 0.02, 1.5, 0.25) Equation (5)

2.3. Noise Elimination

The amount of noise elimination [28,29] will directly affect the difficulty of extracting
the real target. From the analysis of Figure 7, it is found that fusion results still exist in
a large number of non-uniform sea wave noise as well as cloud noise in both directions,
how to suppress the noise becomes the research focus of this section. Further observation
revealed that the targets had significant texture features in both horizontal and vertical
directions after the multi-scale feature fusion result image, such as T1 in Figure 7 T1_H
T1_V, T2_H T2_V, T3_H T3_V. Since sea waves have periodic flow and only have significant
unidirectional texture features, such as Figure 7 N2_H N2_V or multi-direction is not
significant texture features, such as Figure 7 N1_H N1_V. This leads to three conclusions:

Conclusion 1: It is a false target that does not have significant texture features in both
horizontal and vertical directions.

Conclusion 2: It is a false target that has significant texture characteristics in a single
horizontal or vertical direction.

Conclusion 3: It is the real target that has significant texture features in both the
horizontal and vertical directions.

According to the above three conclusions, a CC calculation method is proposed, as
shown in Equation (6), where CCS represents the CC response value and CCF is the CC
factor, which determines the response degree of the final result. H and V are the extracted
horizontal and vertical texture information respectively, and Hmean and Vmean are the
averages of horizontal and vertical texture information, respectively. Details of proof
process can be found in Appendix A.1.

CCS =

{
e(−CCF×( |H−V|

min(H,V)
)), Others

0, H ≤ Hmean or V ≤ Vmean
(6)

The final multi-scale feature fusion result obtained by CC calculation is shown in
Figure 8. It can be found that sea waves and clouds are effectively eliminated. In addition,
we calculated the noise numbers of Figure 7(a1,a2) to be 65 and 38, respectively, and the
noise number of the CC processing result was reduced to 29, and the noise numbers of
Figure 7(b1,b2) were, respectively, 105 and 81, the noise number of the CC processing result
is reduced to 33.
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Algorithm 2: Cross-correlation calculation

Input:
Horizontal texture feature map H, Vertical texture feature map V, correlation factor δ.
Output:
Cross-correlation map CC
1: The size of image is W × H
2: for x = 1: W do
3: for y = 1: H do
4: if H(x, y) ≤ 1

W∗H ∑W
i=1 ∑H

j=1 H(i, j)
∣∣∣∣∣∣ V(x, y) ≤ 1

W∗H ∑W
i=1 ∑H

j=1 V(i, j) do
5: CC = 0
6: else
7: CC = exp(−CF ∗ (H −V/min(H, V)))
8: end if
9: end for
10: end for
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2.4. Target Enhancement

Target enhancement [30,31] can improve the generalization ability of the final segmen-
tation model, it will make it easier to extract the target from the infrared image. The CC
performance eliminates most of the maritime noise and sky background interference in the
multi-scale feature fusion result, however, there are still some special image data focused
on sea wave noise or sky background and the target has a similar CC result. In order to
enable the algorithm to accurately segment the real target, this section studies from the
perspective of target enhancement, a method based on peak significance remeasurement is
proposed. Physically, there is often a radiation center inside a small target, and the energy
decays as the radiation center extends outward, and attenuation degree is basically the
same, so the infrared image shows a small number of extreme points around the target.
When the sea waves with periodicity and continuity flow to the highest point, the reflection
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of solar radiation energy will produce more peak points, the cloud layer also has more
peak points due to strong edge texture characteristics.

Based on the above assumptions, the CC result is mapped to the original image as a
mask to obtain an eight-direction local maximum, retained the largest peak point in the
same connected domain (for the convenience of observation, carries out the morphological
expansion operation). The result is shown in Figure 9. By analyzing the difference between
the noise with the strongest interference in Figure 9 (such as N1) and the target (such as T1
T2), it is confirmed that the number of peak points of T1 and T2 in a certain range is far less
than the number of peak points around N1. In addition, the CC result shows that the target
is more significant than the clutter interference. Therefore, the following two conclusions
are obtained:
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Figure 9. Local maximum detection results. (a) Local maximum result of image A. (b) Local maximum result of image B.

Conclusion 1: the real target is more likely to have less peak aggregation degree,
otherwise it is the false target.

Conclusion 2: if the significance of the center peak point is stronger than the neighbor-
hood peak point, the significance of the center peak point will be enhanced, on the contrary,
weaken the intensity of the central peak point.

Conclusion 1 is achieved by weighting the number of peak aggregations in a certain
range. The mathematical expression is shown in Equation (7). Among ωA is the weighting
factor for the number of peaks clustered at point A. NrA represents the total number of
peak points covered by the area radius with A as the center, and N represents the total
number of peak points in the entire image. Details of the proof process can be found in
Appendix A.2.

ωA = 1− NrA
N

(7)

According to Equation (7), The final detection effect is directly related to the selection
of neighborhood radius rA. different neighborhood radius scales are selected to carry
out multiple groups of experiments, and the experimental results are shown in Figure 10.
Where (a1) and (b1) count the number of target peak aggregations and the number of
background peak aggregations under different neighborhood radius scales, (a2) and (b2)
are the weighted coefficients of the number of target peak aggregations calculated by the
statistical number of target/background peak aggregations according to Equation (7). It
can be seen from Figure 10(a2,b2) that when a parameter scale is 81, the target has the largest
weighting coefficient of peak aggregation number compared with other scale windows. In
other words, the target enhancement effect is best when the parameter scale is 81.
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Conclusion 2 is achieved by the significant difference coefficient between the center
peak point and the neighborhood peak point, The mathematical expression is shown in
Equation (8). ψA is the significant difference coefficient between peak A and neighborhood
peak, SA and Si are the significance values of the central peak point A and neighborhood
peak point i. Details of the proof process can be found in Appendix A.2.

ψA =
∑C

i=B(SA − Si)

SA
(8)

The final peak significance re-measurement result of point A can be based on Equation (9).
RA is the re-measurement significance result of point A. The final target’s ωA, ψA and
SA values must be greater than the noise’s ωA, ψA and SA values, the calculated result
target’s RA value is much larger than the noise. The final result after the peak significance
measurement is shown in Figure 11. We calculated the significance of target T1 in Figure 8a
is 180, which is 203 after significance re-measurement. In Figure 8b, the significant values
of target T1 and T2 are 168 and 150. After significance re-measurement, the significant
values are 220 and 210. It can be found that the re-measurement of peak saliency achieves
the improvement of target saliency and achieves the effect of target enhancement compared
with Figure 8.

RA = ωA ∗ ψA ∗ SA + SA (9)
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Algorithm 3: Peak saliency re-measurement and binary segmentation

Input:
Total number of peak points N. Window radius r. Horizontal and vertical coordinates of peak
point LX, LY. Cross-correlation map S.
Output:
Peak saliency re-measurement result map R.
Initialize:
NrA = 0, SD = 0;
1:for n = 1: N do
2: for i = LX(n) − r: LX(n) + r do
3: for j = LY(n) − r: LY(n) + r do
4: if S(i,j) > 0 do
5: NrA= NrA +1
6: ψ(n) = SD +

S(LX(n), LY(n))−S(i,j)
S(LX(n), LY(n))

7: end if
8: end for
9: end for
10: ω(n) = 1− NrA/N
11: end for
12:for n = 1: N do
13:R(n) = ω(n)× ψ(n)× S( LX(n), LY(n)) + S( LX(n), LY(n))
14:end for

2.5. Target Segmentation

Accurate target segmentation [32,33] is the main step to detect the real target. In order
to make the segmentation results have higher stability and lower time-consumption, we
perform the binarization segmentation processing on the peak significance remeasurement
result, and the calculation is shown in Equation (10), where avg and std are maximum
value point mean and standard deviation, ϕ is an adjustable factor to adjust the intensity
of thresholding after binarization segmentation. in order to maintain the original area of
the target as much as possible, the segmented result is applied as the seed point to growing
the region of eight connected domains. The final result after binarization segmentation is
shown in Figure 12.

Thresh = avg +ϕ × std (10)
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3. Results and Discussion

In this Section, in order to evaluate the performance index more accurately of the
proposed algorithm. In Section 3.1, validation data sets are introduced and compared
with five kinds of target detection algorithms, which are Partial Sum of Tensor Nuclear
Norm, Wavelet Transform, Anti-jitter Spatiotemporal Saliency Generation with Parallel
Binarization, Visual Attention and Pipeline Filtering Model, Local Steering Kernel. At
the same time, the detailed parameter settings of five detection methods are provided. In
Section 3.2, qualitative results are presented to demonstrate the effectiveness of our method
and demonstrate the effectiveness of the proposed strategy and comparison algorithm in
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detection results. Section 3.3 introduced some evaluation indicators, signal-to-clutter ratio
gain, background suppression factor, time complexity, and receiver operating characteristic
curve (ROC) are analyzed.

3.1. Datasets Introduction

With the help of the long-wave infrared (Wavelength: 8–12 um Resolution: 640 × 512
brand: FLIR) search and rescue system developed by the laboratory, a series of image
sequences (Digital quantization: eight-bit) of SWWBC in a variety of experimental environ-
ments were captured. A representative image of each sequence is shown in the first line
of Figure 13 Data set A consists of 350 infrared maritime images with low target intensity,
weak sea waves, and thick cloud background. Data set B is composed of 250 infrared
maritime images with low sky background intensity and strong sea wave background,
and the gray distribution of the target is uneven due to the influence of sunlight. Data
set C contains 450 images of only sea waves, and the sea waves show uneven brightness
distribution. Data set D are composed of 50 images with a smooth background of sea
wave and sky. Data set E and data set F consist of 100 and 150 infrared maritime images
with different numbers of independent island interference, respectively. The two types of
data sets are captured in different fields of view, data set E contains a target with weak
contrast. Data set G and data set H contain 100 and 150 infrared images with connected
island interference, respectively, data set H is closer to the infrared detector, and the size of
the target is larger.
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3.2. Qualitative Comparisons

Considering that the inversion problem has had an extensive impact on image analysis
and computer vision in recent years and has achieved remarkable target detection results.
The partial sum of the tensor nuclear norm can extract real infrared small targets from com-
plex backgrounds. The wavelet transform method with multi-scale and multi-directional
analysis ability can accurately extract weak and small targets. Considering that the anti-
jitter spatiotemporal saliency generation with the parallel binarization method can detect
targets in the backlight marine environment. Combining single-frame visual attention
mechanism detection of suspected targets and multi-frame pipeline filtering to determine
the real target is a stable small target detection scheme in sea waves conditions. According
to the local area of the strong wind and wave backlit image, the target intensity is low,
and the background intensity is high. Therefore, the target local patch constitutes a strong
contrast. Based on the local steering kernel local descriptor of the human visual system,
the neighborhood is coded with contrast features, so as to achieve accurate weak and
small target detection. In order to analyze the performance advantages of each algorithm
more justly, the detailed parameter settings of five detection methods are listed in Table 1.
Captured data sets cover the common challenges of infrared maritime target detection in
SWWBC. The excellent detection performance of these data sets can verify the effectiveness
of the algorithm.
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Table 1. Parameter setting of state-of-art methods.

Method Abbreviation Parameter Setting

Partial Sum of Tensor Nuclear
Norm [10] PSTNN Patch size: 40 × 40. sliding step: 10.

ε = 10−7. λ = 0.6/
√

max(n1, n2) ∗ n3.

Wavelet Transform [8] WT

Wavelet base: haar.
A slide 6 × 6 pixels window.

The threshold value of judgment of horizontal or
oblique is 20.

Anti-jitter Spatiotemporal
Saliency Generation with
Parallel Binarization [21]

ASSGPB

background excitation factor:
σB = 0.5 + 0.15 ∗ width.

foreground inhibition factor:
σF = 2.7− 6.25e−4 ∗ width.

Visual Attention and Pipeline
Filtering Model [20] VAPFM Classification threshold: 0.016.

Block Size:32 × 32.

Local Steering Kernel [5] LSK global smoothing parameter h = 0.2. overlap size
t = 2. the number of neighboring patches N = 8.

Figure 13 shows the typical images captured and the corresponding results gener-
ated by different experimental algorithms. From the results of data set A, the proposed
method can accurately detect the target and completely eliminate the background clutter
interference. The WT method can detect some targets whereas it also produces a lot of
false targets. Other methods cannot detect the real target. From the results of data set
B, the proposed method, VAPFM, and PSTNN method can successfully detect four sea
targets with bright spots, but VAPFM and PSTNN detected a large number of false alarms,
other methods do not have the ability of accurate detection. From the results of data set
C, the proposed method and VAPFM method can successfully detect the maritime targets
without sea-sky background, but the number of false alarms in VAPFM is unacceptable,
other methods cannot be accurately extracted due to the influence of target intensity and
uneven sea wave background distribution. From the results of data set D, the proposed
method has a good detection effect when the target contrast is weak. Other methods cannot
effectively detect small targets with weak contrast. From the results of data set E and F, the
proposed method can eliminate the interference of independent islands. Other methods
are missed due to the intensity and size of the target and the influence of gradient and
shape features of the island. From the results of data set G, the proposed method and
WT method can effectively suppress the contiguous islands. However, the WT method is
sensitive to gradient, resulting in a lot of false detection. Other methods are missed due to
the intensity and size of the target and the influence of gradient and shape features of the
island. From the results of data set H, the proposed method, ASSGPB and VAPFM methods
can accurately detect large targets, while other methods are trapped by the interference of
sea wave intensity with uneven distribution and connected islands cannot determine the
real target.

The main defects of the comparison method can be summarized as follows. Compared
with the regular environmental wave background, the PSTNN method is difficult to achieve
a low rank in the backlit ocean wave environment, which increases the difficulty of the
target sparsity constraint, which makes it difficult to accurately distinguish the target and
the background. Experiments show that the WT method is sensitive to gradient, so it
will produce a higher false alarm rate when dealing with strong wind-wave backlight
conditions. In strong wind-wave backlight conditions, the gray distribution of the target
will be changed by the interference of the wave background, so the assumption of temporal
and spatial consistency in ASSGPB is no longer applicable, resulting in the inability to
continuously detect weak and small targets. Although VAPFM can overcome flowing
waves, it cannot suppress the interference of islands with stable strength, resulting in a
higher false alarm rate, and weak targets are easily eliminated. Experiments show that LSK
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local descriptor will produce a stronger response value only when there is a uniform and
low-intensity background around the target, it does not have the ability to characterize
weak and small targets in strong wind-wave backlight conditions.

3.3. Quantitative Comparisons

We select the signal-to-clutter ratio gain and the background suppression factor as
evaluation indices. The SCRG value and the BSF value are defined as:

SCRG =
(S/C)out
(S/C)in

(11)

BSF =
Cin
Cout

(12)

where S and C are the average target intensity and clutter standard deviation respectively.
The (·)in and (·)out are the original image and the result of the method. The signal-to-clutter
ratio gain index measures the magnification of the target relative to the backgrounds before
and after processing. The background suppression factor represents the suppression effect
of backgrounds without any information about the target. Experimental results of these
methods with the index are shown in Table 2. The highest value of each evaluation index
in each column is marked red, and the second-highest one is marked blue. it can be
analyzed that the proposed method achieves the highest values of SCRG and BSF in A-G.
The proposed method can improve SCRG to some extent, it means the detected target is
more prominent than the backgrounds while achieving a better suppression effect on the
background. That is to say, the proposed method outperforms the compared methods
in both target enhancement and background suppression from the angle of numerical
indicator values for these data sets. For H, the proposed method has the second-highest
SCRG and BSF, which is smaller than the ASSGPB method because the method is more
suitable for detecting large-size targets. However, the difference between the proposed
method and the comparison methods is small.

Table 2. Evaluation indices comparison of SCRG, BSF.

Method Evaluation Indices A B C D E F G H

Proposed SCRG 21.9 18.2 35.4 34.2 36.1 33.5 35.5 27.2

BSF 6.2 7.8 10.8 10.7 9.47 9.6 7.9 7.5

PSTNN
SCRG 9.5 13.1 11.3 10.8 8.5 8.2 5.3 4.8

BSF 3.5 8.2 3.1 4.2 3.2 3.4 3.1 2.5

WT
SCRG 13.1 9.8 14.4 17.6 15.1 13.1 14.8 12.5

BSF 5.4 3.3 6.6 6.7 4.3 4.2 4.7 4.8

ASSGPB
SCRG 1.9 2.1 5.0 6.6 4.5 24.5 3.6 36.8

BSF 1.8 2.2 4.1 6.0 3.1 7.4 4.1 9.0

VAPFM
SCRG 8.9 7.8 18.5 18.7 16.6 16.2 15.9 15.6

BSF 3.4 2.3 8.1 8.8 6.7 6.1 5.8 4.1

LSK
SCRG 3.2 5.8 4.3 4.8 3.3 5.2 4.3 3.8

BSF 1.3 1.6 2.1 4.1 2.2 2.4 3.1 2.5

Table 3 shows the algorithm complexity. Suppose the image size is and m, n are the
rows and columns of the image. The computational cost of WT is O (mn log mn), the main
time-consuming part is wavelet decomposition. The computational cost of the proposed
method and LSK is O (l2 log l2), where the l2 is the size of the optimal window. Considering
the image size, the final cost of the proposed method and LSK is O (l2 log l2mn). For
VAPFM and ASSGPB, it is obvious that the major time-consuming part is calculating the
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saliency map pixel by pixel. A sliding window of size is needed for computing the saliency
value of the central pixel. Thus, k2 times mathematical operation per pixel is required,
namely, in a single scale, The time complexity of i scale is O (ik2mn). As the ASSGPB is a
multi-frame method, the final complexity is O (sik2mn), S is the number of images in the
pipeline. For the PSTNN methods, the dominant factor is singular value decomposition
(SVD), the size of the patch-tensor is n1× n2× n3, the dominant factor of the complexity
cost in calculating the SVD and FFT, the final computation cost of PSTNN model is O
(n1n2n3logn1n2).

Table 3. Comparison of computational complexity of six methods.

Method Proposed PSTNN WT

Complexity O
(
mnl2 log l2 ) O (n1n2n3logn1n2 ) O (mn log mn )

Method ASSGPB VAPFM LSK

Complexity O
(
sik2mn) O

(
ik2mn) O

(
mnl2 log l2 )

To further demonstrate the advantages of the developed method, we provide the ROC
curves of the test sequences in Figure 14. ROC curve is usually used to assess detection
performance and represents the varying relationship of detection rate and false alarm rate.
The horizontal coordinate of the ROC curve is false alarm rate and the vertical coordinate
is detection rate, mathematical expression is as follows:

DR =
DT
AT

(13)

FAR =
FD

FD + DT
(14)

where AT denotes the total number of real target detections in the image sequence, DT
denotes the total number of detected real targets and FD is the total number of false targets,
which are the residual clutters. Furthermore, if there is an overlapping area between the
detected target and the ground truth target, then the detected target will be taken as the
actual target. If the distance between two detected targets is within a certain range (two
pixels), the two targets will be regarded as one target.
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The results show that the detection rate of the proposed algorithm can reach 100%
without island and cloud background interference (CD), and the maximum false alarm
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rate is not more than 0.05. When there is thick cloud interference (AB), the detection rate
can also reach more than 0.95, and the maximum false alarm rate is not more than 0.08,
which is the optimal result. When there is island interference (EFGH), the detection rate
can reach more than 0.92, and the maximum false alarm rate is less than 0.16. In addition,
it can be observed that when the false alarm rate is not more than 0.05, the detection rate
of the proposed method is higher than other comparison methods. In other words, the
proposed method almost achieves the highest detection rate and the lowest false alarm
rate. It means that the proposed method is superior to other latest methods.

4. Conclusions

To achieve the purpose of accurate detection of distress targets in SWWBC, a small
target detection algorithm in SWWBC is proposed. Our main work is divided into five
parts, which are: background suppression using IGD method; Multi-scale Gabor filter; the
IsD operator; iterative normalization operator; and multi-scale fusion are applied to realize
feature extraction.

More specifically, the main contributions of the proposed target detection method are
as follows.

(1) We propose an IGD preprocessing method which is similar to the pixel distribution
of the target block image to suppress the uniform wave and sky background intensity and
achieve the purpose of background suppression.

(2) We apply a multi-scale Gabor filter to extract horizontal and vertical directional
texture features, combine the proposed IsD operation and iterative normalization operator
to highlight the target, and suppress noise interference.

(3) According to the fact that the target has more significant texture intensity than the
noise in the horizontal and vertical directions, we propose a CC method to remove the
noise.

(4) According to the dispersion of the number of extreme points and the significance
of the intensity of the small target compared with the sea wave and sky noise, we propose
a peak significance re-measurement method to make the target prominent and combine
with a binary method to achieve accurate target segmentation.

The performance of infrared target detection can be evaluated from five aspects:
image quality, time complexity, detection rate, false alarm rate, and stability. The final
experimental results show that the method has a higher background suppression factor
and signal-to-clutter ratio gain, indicating that the processed background is suppressed,
and the target is more prominent than the background, which is beneficial to the final
target detection. The proposed method has low time complexity and has the potential of
parallel processing, which can meet the real-time requirements. According to the ROC
curve obtained from the final statistics, it can be found that compared with other state-of-art
methods, the proposed algorithm can achieve the maximum detection rate while reducing
the false alarm rate as much as possible, and the area under the ROC curve of different
data sets is similar, so the proposed algorithm has excellent stability.
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Appendix A.

As follows, we will prove the conclusions presented in Section 2.3 noise elimination
and Section 2.4 target enhancement.

Appendix A.1. A CC Calculation Method

Proof conclusion 1: For Equation (6), when the horizontal and vertical directions do
not have obvious texture features, the significant value of these “unobvious” positions
is generally less than the average value, when H <= Hmean and V <= Vmean, CCS = 0.
Corresponding pixel position is judged as a false target.

Proof conclusion 2: For Equation (6), when a single direction in horizontal or vertical
has obvious texture characteristics, that is, the value of H and V is different, the value of
|H − V| is bigger, and the value of 1/min(H, V) is also greater. So |H − V|*(1/min(H,V))
has a larger value, so exp(−CF ∗ (H −V/min(H, V)))−> 0, that is, CCS−> 0, correspond-
ing pixel position is judged to be a false target.

Proof conclusion 3: For Equation (6), when both the horizontal and vertical directions have
obvious texture features, that is, the values of H and V are higher than their respective mean val-
ues and the difference between the values of H and V is small, then |H − V| −> 0, 1/min(H,V)
is smaller, |H − V|*(1/min(H,V)) −> 0, exp(−CF ∗ (H −V/min(H, V))) −> 1, that is,
CCS −> 1. Corresponding pixel position is judged as the real target.

Appendix A.2. Peak Significance Re-Measurement Method

Proof conclusion 1: Figure A1 shows a diagram for calculating the weighting factor of
the number of peak clusters, where NrA = A + B + C, N = NrA + D + E + F. If point A is a
noise point, NrA value is larger, the weighting factor ωA is smaller. On the contrary point,
A is the target, NrA value is smaller, the weighting factor ωA is larger.
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Figure A1. Schematic diagram of weighted coefficient calculation of peak aggregation number.

Proof conclusion 2: If point A is a noise point and the value of SA is close to or smaller
than Si, then the value of the weighting coefficient ψA is small or negative. On the contrary,
if point A is the target and the value of SA is much larger than Si, the result of the weighting
coefficient ψA value is greater.
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