
remote sensing  

Communication

SAR Target Detection Based on Domain Adaptive Faster
R-CNN with Small Training Data Size

Yuchen Guo 1 , Lan Du 2,* and Guoxin Lyu 2

����������
�������

Citation: Guo, Y.; Du, L.; Lyu, G.

SAR Target Detection Based on

Domain Adaptive Faster R-CNN with

Small Training Data Size. Remote Sens.

2021, 13, 4202. https://doi.org/

10.3390/rs13214202

Academic Editor: Salvatore

Stramondo

Received: 23 August 2021

Accepted: 12 October 2021

Published: 20 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Academy of Advanced Interdisciplinary Research, Xidian University, Xi’an 710071, China;
ychguo@xidian.edu.cn

2 National Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China; lvgx_xd@163.com
* Correspondence: dulan@mail.xidian.edu.cn

Abstract: It is expensive and time-consuming to obtain a large number of labeled synthetic aperture
radar (SAR) images. In the task of small training data size, the results of target detection on SAR
images using deep network approaches are usually not ideal. In this study, considering that optical
remote sensing images are much easier to be labeled than SAR images, we assume to have a large
number of labeled optical remote sensing images and a small number of labeled SAR images with
the similar scenes, propose to transfer knowledge from optical remote sensing images to SAR images,
and develop a domain adaptive Faster R-CNN for SAR target detection with small training data size.
In the proposed method, in order to make full use of the label information and realize more accurate
domain adaptation knowledge transfer, an instance level domain adaptation constraint is used rather
than feature level domain adaptation constraint. Specifically, generative adversarial network (GAN)
constraint is applied as the domain adaptation constraint in the adaptation module after the proposals
of Faster R-CNN to achieve instance level domain adaptation and learn the transferable features.
The experimental results on the measured SAR image dataset show that the proposed method has
higher detection accuracy in the task of SAR target detection with small training data size than the
traditional Faster R-CNN.

Keywords: synthetic aperture radar; target detection; domain adaptation; generative adversarial
network

1. Introduction

Synthetic aperture radar (SAR) is an active Earth observation system, which has the
characteristics of all-weather, all-time, high resolution and strong penetration. Therefore,
SAR can play a role that other remote sensing means cannot play. Automatic target
recognition (ATR) of SAR image has become a key technology for processing massive SAR
image data. A typical SAR image ATR system is usually divided into three stages: detection,
discrimination and recognition. SAR image target detection technology is important for the
SAR ATR because the performance of the detection stage will directly affect the accuracy
of the subsequent processing.

The existing SAR image target detection methods can be divided into two types: non-
learning target detection algorithm and learning based target detection algorithm. Constant
false alarm rate (CFAR) [1] is a kind of traditional non-learning target detection algorithm
which is widely used in SAR system for SAR target detection. With the rapid development
of deep learning, learning based deep convolution neural network (CNN) has been widely
and successfully applied in target detection [2–6] and achieves better target detection
performance than non-learning algorithms, such as faster regions with convolutional
neural network (Faster R-CNN) [3], which combs a regional proposal network based on
CNN with a Fast R-CNN detector. Although the SAR target detection methods based
on Faster R-CNN can achieve satisfying performance, a large number of labeled training
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samples are required in most of these methods for model learning, which means that it will
lead to a significant performance drop for small training dataset sizes.

Some studies expand the training samples by using artificially generated samples
to deal with the small training data size problem. For example, several data generation
methods based on generative adversarial network (GAN) models are proposed in [7–10]
to generate realistic infrared images from optical images. Using data from the source
domain to assist the interested target domain’s task is also present in transfer learning.
In particular, when the data distribution is assumed to change across the source and
target domains and the learning task remains the same, we call this transfer learning as
domain adaptation [11]. The domain adaptation [12,13] has been studied to improve the
performance of target domain with the help of source domain that contains abundant
samples. The purpose of domain adaptation is to map the data in source domain and target
domain with different distribution to the same feature space, and find a measurement
criterion to make them as close as possible in this space. Then the data in the target domain
can be classified by directly using the classifier trained on the source domain [14,15]. Early
domain adaptation methods minimize the maximum mean discrepancy (MMD) [12,13,16]
to reduce domain discrepancy. Recent works [14,15,17,18] implement domain confusion
with gradient reversal layer (GRL) or generative adversarial nets (GANs) loss for feature
alignment through adversarial learning. In SAR target recognition, Huang et al. explored
what, where, and how to transfer knowledge from other domains to the SAR domain
through MMD constraint [19]. In target detection research, Inoue et al. achieved a two-step
weakly supervised domain adaptation framework using conventional pixel-level domain
adaptation methods and pseudo labeling [20]. Chen et al. proposed a domain adaptive
Faster R-CNN model to learn domain-invariant features by aligning feature distribution
at the image-level and instance-level through adversarial learning [21]. He et al. and
Chen et al. proposed an importance-weighted GRL to re-weigh source or interpolation
samples [22,23].

In this study, a SAR target detection method based on domain adaptive Faster R-CNN
is proposed, which can solve the problem of low detection accuracy due to small training
data size of SAR images by transferring knowledge from optical remote sensing images
of source domain to SAR images of target domain through domain adaptive learning. A
large number of labeled optical remote sensing images and a small number of labeled SAR
images can capture the similar scenes, such as the parking lots, which contain the interested
target with similar high-level semantic features in both source and target domains. In the
proposed method, domain adaptation constraint is added after the proposals of Faster
R-CNN, which realizes instance level constraint and makes full use of label information
to achieve accurate domain adaptation learning. More specifically, a GAN constraint is
utilized as the domain adaptation constraint in the adaptation module to achieve domain
adaptation and learn the transferable features. With the help of label information, the
proposed model can accurately narrow the differences between the high-level features of
interested target of the target domain and those of the source domain via domain adaptive
learning, so as to assist the learning of target detection model in the target domain. The
proposed model can alleviate the overfitting problem caused by the small training data
size of SAR images, and effectively improve the SAR image target detection performance.

The remainder of this letter is arranged as follows. Section 2 represents the proposed
domain adaptive Faster R-CNN framework. Section 3 shows the experimental results
and analysis based on the measured SAR data and optical remote sensing data. Section 4
discusses the domain adaptation performance in our method. Finally, Section 5 concludes
this letter.

2. Domain Adaptative Faster R-CNN

The SAR target detection methods are faced with the challenge of performance degra-
dation when lacking labeled data for model training. However, the optical remote sensing
images are much easier to be labeled, thus abundant labels can be obtained to learn the
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features that perform well for detection. In this paper, we aim to transfer the abundant
information of optical remote sensing images with a large number of labeled samples to
SAR images with a small number of labeled samples to help SAR target detection. As
mentioned in the introduction, although there are great differences between optical remote
sensing images and SAR images, the interested target captured in them have similar high-
level semantic features. Thus, it is possible to learn the transferable high-level features
between the optical and SAR images via adaptation methods.

Let Ds =
{(

xs
i , ys

i
)}Ns

i=1 represent the source domain dataset with Ns samples, ys
i is the

label of the i-th sample xs
i ; let Dt =

{(
xt

i , yt
i
)}Nt

i=1 represents the target domain dataset with
Nt samples.

The proposed model consists of three parts: the feature extraction module, domain
adaptation module and detection module. (1) The feature extraction module contains two
base networks: truncated VGG16 network with the region proposal network (RPN) and
the region-of-interest (ROI) pooling for the feature extraction of target domain; truncated
VGG16 network with RPN and ROI pooling fixed with the pre-trained network by the
source domain data for the feature extraction of source domain. (2) The domain adaptation
module constrains the features of the target domain to be close to those of the source
domain. (3) The detection module contains fully connected network for location and class
prediction of the target. In the proposed method, the base networks in the feature extraction
module and the detection module have the same architectures as those in traditional Faster
R-CNN. For intuitive illustration, the architecture of the proposed domain adaptive Faster
R-CNN is shown in Figure 1.

Figure 1. The architecture of the domain adaptive Faster R-CNN for source and target domain data, i.e., the optical remote
sensing images and SAR images. In the domain adaptation module, the features of two domains are constrained with the
GAN criterion.

The source domain has abundant samples to learn the features that depict the source
domain data well, while the target domain cannot achieve promising performance with
small training data size. We first train the source domain detection model with the source
domain data, and then try to transfer the knowledge from the source domain to the
target domain. First, we initialize the target domain detection model with the source
domain detection model. For the source and target domain data, i.e., the optical images
and SAR images, capturing the similar scene, we use the distributions over the high-
level representations as the bridge for cross-domain data. Moreover, we assume that the
marginal distributions over the high-level features across two domains should be similar.
Specifically, to reduce the domain shift, we use the GAN constraint [24] in the domain
adaptation module:

LDA = Exs [log D(Fs(xs))] + Ext [log(1 − D(Ft(xt)))], (1)
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Ft presents the feature extraction module of target domain, Ext [log(1 − D(Ft(xt)))]

indicates the expectation that the discriminator D judges Ft(xt) as the feature belong to tar-
get domain, Fs presents the feature extraction module of source domain, Exs [log D(Fs(xs))]
indicates the expectation that the discriminator D judges Fs(xs) as the feature belong to
source domain.

In our model, Ft and D are iteratively updated. Specifically D wants to maximize
the LDA loss and Ft wants to minimize the LDA loss. The feature extraction module of
source domain Ft and the discriminator D compete in a two-player minimax game. The
discriminator tries to distinguish features of source domain from features of target domain;
and the Ft tries to fool the discriminator. As a result, our model can force Ft(xt) to be
indistinguishable from Fs(xs) and reduce the feature distance.

Then, we can give the objective function of the target domain Faster R-CNN:

min
Ft ,FC

max
D

L = α
(

LRPN + Lcls_reg

)
+ βLDA, (2)

LRPN = LRPN_cls + LRPN_reg, (3)

Lcls_reg = Lcls + Lreg, (4)

where FC presents the detection module of target domain, LRPN_reg and LRPN_cls are
respectively the anchor-location and anchor-classification loss terms of the RPN for the
target proposals; Lreg and Lcls are respectively the box-regression and box-classification
probability loss terms of the ROI for the target, α and β represent the weight coefficients of
LRPN + Lcls_reg and LDA, respectively.

3. Results

To validate the effectiveness of the proposed method, some experiments are conducted
in this section. The description of the datasets is firstly presented. Then the experimental
results and analysis on the measured data are shown via a domain adaptation scenario.

3.1. Description of the Datasets

One SAR image dataset and one optical remote sensing image dataset are adopted
to conduct some experiments to verify the effectiveness of our method. In the following,
the SAR image dataset is the miniSAR dataset [25], and the optical image dataset is the
Toronto dataset [26].

The miniSAR dataset is acquired by U.S. Sandia National Laboratories with the
resolution of 0.1 m × 0.1 m. In detail, miniSAR dataset contains nine images with size
1638 × 2510 pixels, seven of which are used for training and the other two for testing. Two
SAR images of the miniSAR dataset are shown in Figure 2. In addition, the Toronto dataset
covers the city of Toronto with a color depth of 24 bits per pixel (RGB) and 0.15 m spatial
resolution. The original image has the size of 11,500 × 7500 pixels, thus the original images
are segmented into several subareas. Twelve subarea images are selected as the training
set and 11 subarea images are selected as test images, respectively. In Figure 3, we present
two images of the Toronto dataset. As we can see from Figures 2 and 3, there is some
artificial clutter, including roads and buildings, and some natural clutter such as grasslands
and trees.

It is not suitable to directly use the original images as the input of network, because
the size of the original images is very large. In the following experiments, the original
training images of the two datasets are cropped into multiple 300 × 300 sub-images, and
then these sub-images are utilized for network training. Moreover, the original test images
are also cropped into 300 × 300 sub-images by sliding window repeatedly. Here the
size of the repetition sliding window is set as 100 pixels. Then the detection results of
these test sub-images can be restored to the original test SAR image. Finally, the final
detection results can be obtained by employing the non-maximum suppression (NMS)
deduplication algorithm.
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Figure 2. Two images of miniSAR dataset: (a) image A. (b) image B.

Figure 3. Two images of Toronto dataset: (a) image A. (b) image B.

3.2. Evaluation Criteria

The detection performance of different methods can be quantitatively evaluated via
precision, recall, and F1-score [27], and the calculation formulas of them are as:

Precision =
TP

TP + FP
, (5)

Recall =
TP

TP + FN
, (6)

F1-score =
2 × Precision × Recall

Precision + Recall
, (7)

where the number of correctly detected targets is represented as TP, the number of false
alarms is represented as FP, and the number of miss alarms is represented as FN. The
precision and recall measure the fraction of true positives over all detected results and the
fraction of true positives over the ground truths, respectively. By calculating the harmonic
mean between precision and recall, the main reference F1-score can be obtained to evaluate
the detection performance comprehensively.

3.3. Performance Comparison

In this subsection, the proposed domain adaptive Faster R-CNN method is compared
with conventional SAR target detection methods, such as the Gaussian-CFAR [1], Faster R-
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CNN [3], and the Faster R-CNN initialized with the source domain detection model. Except
for the CFAR method, which does not require training samples, the number of training
samples for each method in the target domain is 110 firstly. The intuitional target detection
results on miniSAR dataset of the proposed method and three comparison methods are
shown in Figure 4. To make the experimental results clear and intuitive, the correctly
detected target chips are represented as green rectangles, false alarms are represented as
red rectangles and missing alarms are represented as blue rectangles. Since the performance
of the CFAR methods depend on the detection threshold, all the following results of SAR
target detection methods are the best by setting different thresholds.

As shown in Figure 4a,b, the Gaussian CFAR cannot locate targets accurately and
has a lot of false alarms. Since the ground scene is quit complex in the miniSAR data,
which contains vehicles as the targets to be detected and a lot of buildings, trees, roads and
grasslands as the clutter, the CFAR methods are hard to gain a satisfying result by selecting
a suitable clutter statistical model. As shown in Figure 4a,b, the Gaussian CFAR has a lot of
false alarms and cannot locate targets accurately. Figure 4c,d show the detection results
of Faster R-CNN. Compared with the unsupervised method CFAR, Faster R-CNN has a
better detection performance with labeled information and deep convolutional network.
Figure 4e,f show the detection results of Faster R-CNN initialized with the source domain
detection model, which proves that simple transfer method has little help for the SAR
detection task. Figure 4g,h show the detection results of our method. Both the missing
alarms and false alarms in the results are reduced compared with the abovementioned
methods because our method make use of the knowledge transferred from optical images.

Figure 4. Cont.
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Figure 4. The SAR target detection results of the proposed method comparing with the comparisons for the two test images
of miniSAR dataset. (a,b) are the results of Gaussian-CFAR; (c,d) are the results of Faster R-CNN; (e,f) are the results of
Faster R-CNN with initialized operation; (g,h) are the results of our method.

For quantitative evaluation and analysis, the missing alarms and the false alarms of all
the methods are counted from the correctly detected target chips to verify the performance.
Further, to quantitatively analyze the overall SAR target detection results, we calculate
precision, recall and F1-score shown in Table 1 as the evaluation criteria. Compared with
other SAR target detection methods, the proposed domain adaptive Faster R-CNN can
correctly detect more targets. Meanwhile, the missing alarms and the false alarms of
the proposed method are both the fewest. It can be clearly seen from the quantitative
evaluation criteria that our domain adaptive Faster R-CNN achieves the highest scores on
precision, recall and F1-score. Specifically, the proposed method is at least 2.81%, 2.44% and
2.61% higher in terms of precision, recall and F1-score than the other compared SAR target
detection methods. It can be concluded that the performance of the proposed domain
adaptive Faster R-CNN method significantly superior to that of the other three SAR target
detection methods.

Further, the experimental results of each method are also given in Table 1 when the
number of training samples in the target domain are reduced to 11. The proposed method
yields a nearly 6% improvement in F1-score compared to Faster-RCNN. It can be found
that our method has a greater performance improvement with a smaller number of target
domain training samples.
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Table 1. Overall evaluation of different conventional target detection methods.

Method SAR Training
Samples Missing Alarms False Alarms Precision Recall F1-Score

Gaussian CFAR × 24 177 0.3587 0.8048 0.4962

Faster R-CNN

110

11 26 0.8116 0.9106 0.8582

Faster R-CNN +
parameter transferring 11 25 0.8175 0.9106 0.8615

Proposed method 8 21 0.8456 0.9350 0.8876

Faster R-CNN

11

21 30 0.7561 0.6667 0.7086

Faster R-CNN +
parameter transferring 20 30 0.7561 0.6732 0.7122

Proposed method 15 24 0.8049 0.7347 0.7682

Then, the experimental results of Faster-RCNN, Faster-RCNN + parameter transfer-
ring and the proposed method with different numbers of used SAR training samples in
the target domain are presented in Figure 5. As shown in Figure 5, the more the SAR
training samples are used, the better performance the original Faster R-CNN and the other
two methods obtain. Moreover, compared to the results of the original Faster R-CNN, the
parameter transferring and the domain adaptation module both can contribute to better
detection performance in the proposed method. In particular, when the used SAR training
samples are fewer, the superiority of the domain adaptation module is more obvious.
Thus the detection performance of the proposed method is much better than the original
Faster R-CNN.

Figure 5. The experimental results with different numbers of used SAR training samples in the
target domain.

4. Discussion

In order to yield an intuitive visualization of the domain adaptation results, t-distribution
stochastic neighbor embedding (t-SNE) is employed to map features in multidimensional
space to a two-dimensional space. Then the two-dimensional t-SNE visualizations from
the features of Toronto and miniSAR samples can be shown. Since the miniSAR and
Toronto datasets respectively contain 110 and 2600 training samples, we randomly choose
110 examples from the Toronto dataset and all 110 samples from the miniSAR dataset to



Remote Sens. 2021, 13, 4202 9 of 10

show the two-dimensional t-SNE results of the features for the 220 samples. The features
of the 220 samples from two datasets are respectively obtained via the source and target
base networks and then they are jointly mapped to a two-dimensional space with t-SNE,
and the projection results are presented in Figure 6. As we can see from Figure 6a, before
adaptation, the feature space between Toronto and miniSAR samples are clearly separable,
which shows there is great domain discrepancy between the two datasets. In Figure 6b,
after feature-level adaptation via our method, the features distribution of miniSAR samples
is similar to that of Toronto samples, which illustrates our method can effectively align the
features distribution and reduce the domain shift.

Figure 6. Two-dimensional t-SNE visualizations from the features of the Toronto and miniSAR samples. Black: 110 samples
from Toronto dataset; Red: 110 samples from miniSAR dataset. (a) Feature visualization of Toronto and miniSAR samples
without adaptation; (b) Feature visualization of Toronto and miniSAR samples via our proposed method.

5. Conclusions

This paper presents a novel SAR target detection method based on domain adaptive
Faster R-CNN, which takes advantage of the domain adaptation to solve the problem of
small training data size. The proposed approach is built on the Faster R-CNN model. The
instance level domain adaptation is incorporated to learn the transferable features that
bridge the cross-domain discrepancy between the optical remote sensing images and SAR
images. In this way, the optical remote sensing images are utilized to help learn the features
of SAR images that are useful for detection. Detailed experimental comparisons are given
to confirm the effectiveness of the proposed method.
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