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Abstract: High-throughput measurement of plant photosynthesis ability presents a challenge for the
breeding process aimed to improve crop yield. As a novel technique, hyperspectral lidar (HSL) has the
potential to characterize the spatial distribution of plant photosynthesis traits under less confounding
factors. In this paper, HSL reflectance spectra of maize leaves were utilized for estimating the
maximal velocity of Rubisco carboxylation (Vcmax) and maximum rate of electron transport at a
specific light intensity (J) based on both reflectance-based and trait-based methods, and the results
were compared with the commercial Analytical Spectral Devices (ASD) system. A linear combination
of the Lambertian model and the Beckmann law was conducted to eliminate the angle effect of the
maize point cloud. The results showed that the reflectance-based method (R2 ≥ 0.42, RMSE ≤ 28.1
for J and ≤4.32 for Vcmax) performed better than the trait-based method (R2 ≥ 0.31, RMSE ≤ 33.7
for J and ≤5.17 for Vcmax), where the estimating accuracy of ASD was higher than that of HSL.
The Lambertian–Beckmann model performed well (R2 ranging from 0.74 to 0.92) for correcting the
incident angle at different wavelength bands, so the spatial distribution of photosynthesis traits of
two maize plants was visually displayed. This study provides the basis for the further application of
HSL in high-throughput measurements of plant photosynthesis.

Keywords: hyperspectral; light detection and ranging (lidar); biochemical parameters; photosynthe-
sis traits; high-throughput

1. Introduction

Increasing crop productivity is a major target in the 21st century to feed the growing
population and respond to global climate change. The current increase rate of crop yield,
however, cannot meet the demand of the global population [1] and will lead to serious
food shortages by 2050 [2]. Enhancing photosynthetic ability provides the possibility for
pursuing crop yield since harvested crop dry mass mainly comes from photosynthesis [3,4].
The improved photosynthesis is mainly achieved by the understanding of the photosyn-
thetic pathways, simulation of the photosynthetic process, and the advancement of genetic
engineering [5,6]. Despite breeding, researchers have attempted to screen for crop cultivars
with high photosynthesis ability, high-throughput measurement of the photosynthetic
ability for thousands of plant genotypes in the field remains a significant challenge [7,8].

Photosynthetic parameters are spatially heterogeneous and differ along with the depth
of plant canopy [9], and the lower leaf layers with shading intercept less light compared
to the upper layers [5,10]. As canopy photosynthesis light response differs from that of
isolated leaves in the canopy [11], the three-dimensional (3D) distribution of photosyn-
thesis can help to explore the mechanism of upscaling photosynthesis from leaf-scale to
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canopy-scale. The understanding of the upscaling process is beneficial for manipulating
photosynthesis at the leaf level for improved crop productivity [5], as well as estimating
photosynthetic performance at larger scales with fewer uncertainties in data interpreting
when leaf-level measurements are used as “ground truth” data [3]. Furthermore, canopy
photosynthesis is a key driver in almost all crop simulating models as photosynthesis de-
terminates the growth and development of crops [4], thus the estimation of photosynthetic
proxies in 3D is also the key for optimizing crop simulating models.

Traditionally, gas exchange measurements based on photosynthetic light response
curves are used in photosynthetic capacity, while this time-consuming and laborious
method cannot satisfy the requirement of high-throughput research quantifying hundreds
to thousands of crop cultivars [12]. Sun-induced chlorophyll fluorescence (SIF) has been
widely recognized as one proxy of photosynthesis capacity since the SIF signal emitted
from chlorophyll a molecules results from the competition with photosynthesis and non-
photochemical quenching (NPQ, i.e., heat dissipation) [13–15]. The observed SIF signal,
however, is not equal to the total emitted SIF due to its dependence on canopy structure,
thus lessening its correlation with photosynthesis capacity [15,16]. Despite the SIF signal
being successfully tested in the estimation of photosynthetic parameters at the small plot
level [12], the quantitative measurement of SIF was based on the decoupling of reflected
information and SIF signal within the upwelling radiation [16–18], presenting a challenge in
the application of plant high-throughput phenotyping measurements. Optical reflectance
reflects the interaction between target plants and incident radiation at a wide spectral
domain, thus it has been gradually recognized as a potential tool for plant photosynthetic
capability estimation. The linkage between photosynthetic parameters and reflectance were
mainly explored based on a handheld spectroradiometer (Analytical Spectral Devices—
ASD) [19–23], as the signal recorded by the spectroradiometer at the leaf scale is less
affected by confounding factors such as canopy structure and background which may mask
the detected spectral information of targets [8], providing the basis for further employing
spectral information at large scales.

Regardless of the high spectral accuracy, the time-consuming ASD measurement
with a leaf clip only records signals at several positions within leaves, constraining its
high-throughput agricultural application. Alternatively, hyperspectral sensors and cam-
eras board on field-based phenotyping platforms [3,24,25] or manned aircraft and un-
manned aerial vehicle remote sensing platforms [26] have a great advantage in estimating
field-based photosynthetic capacity due to their flexibility and efficiency. Despite these
commercial spectral systems coupled with high-throughput plant phenotyping platforms
that can record spectral information with high spatial resolution, their application is still
confounded mainly by two factors: (1) The recorded signals are easily complicated by
soil background and canopy structure, thus the masking of these confounding factors to
plant reflectance results in the lower signal-to-noise ratio of the recorded signal [27–29];
(2) the acquired photosynthesis traits lack spatial information since plant photosynthetic
parameters generally present heterogeneity in three-dimensional (3D) space [4,30]. Thus,
hyperspectral systems for high-throughput extraction of plant photosynthesis traits are at
present still limited.

To address the problems stated above, a point cloud with abundant spectral informa-
tion is a promising approach. Spectral point clouds with spatial information can easily
separate vegetation information from soil and background signals. Furthermore, optical
reflectance information thus photosynthetic parameters can be characterized in space. Gen-
erally, there are three traditional ways for the generation of the spectral 3D point cloud. The
first is the combination of the hyperspectral information with the 3D point cloud [27,31].
This method requires complicated processing steps such as the transformation of coor-
dinate systems, and the difference of instantaneous field of view between passive and
active sensors leading to difficulty of data coupling. Monitoring target properties from the
sensing platform boarding several monochromatic laser sensors is another method [32,33],
while sensors with different spectral bands have their respective attributes (e.g., laser
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width, divergence angle), thus asking for advanced techniques of point cloud registration.
The last method is the structure from motion (SFM) method, which reconstructs spectral
point clouds with two-dimensional images acquired from different viewing angles [34,35].
The accuracy of the reconstrued point cloud is largely affected by the quality of captured
two-dimensional images. In addition, as a proximal remote sensing method, the effect of
SFM is easily complicated by leaf specular reflection and shading.

Hyperspectral lidar (HSL) systems combining the advantages of both lidar and imag-
ingscopy have gradually developed [36–39]. Its design is based on the advanced super-
continuum laser (SC source), which can extend a narrow wavelength band to a wide
spectrum covering 400–2400 nm [40,41]. The newly emerged equipment can detect target
hyperspectral reflectance at any 3D position, achieving the obtainment of target spectral
and spatial information using a single system, thus avoiding registration and data coupling
problems [38,39]. The agricultural and forestry applications of HSL have been mainly
tested in the estimation of biochemical parameters, such as chlorophyll and nitrogen (N),
for maize [42], rice [43,44], and trees [45,46]. Despite lidar being an important tool for
phenotyping technology [47,48], no research has been conducted to test the potential of
HSL in photosynthesis. Considering the lower scanning effectiveness of HSL prototype
systems, the majority of previous researches was conducted at the leaf level [38,43,44].
However, unawareness of the physiological and biochemical information in 3D space has
prevented a deeper understanding and accurate estimation of plant properties.

Maize is one of the world’s most important crops and also represents a model for
species with C4 photosynthesis. Maize, paddy rice, wheat, and soybean are the four
most important primary foodstuffs consumed globally [6]. To the best of our knowledge,
previous studies have only focused on passive remote sensors for photosynthesis traits
estimation, while no research about photosynthesis has been conducted with HSL. Three
points were evaluated in this study: (1) whether the spectral information of the HSL system
is sufficient for estimating photosynthetic parameters (e.g., maximal velocity of Rubisco
carboxylation (Vcmax), and maximum rate of electron transport at a specific light intensity
(J)), (2) the difference of the estimation precision between HSL and ASD, and (3) whether
HSL has the potential for characterizing the 3D distribution of photosynthesis traits.

2. Materials and Methods
2.1. Mazie Plants and Sampling

Maize plants were planted outdoors in flowerpots with a diameter of 35 cm during
the growing season in 2021 at the National Experiment Station for Precision Agriculture
(40◦10.6′N, 116◦26.3′E), China. Potted maize plants were irrigated and loosened every 3 to
5 days; other conditions were set according to local agricultural practices and identical for
all maize plants. Given the limited space of indoor measurements, the growth period of
maize plants was about 1.5 months, with the height varying between 50 to 100 cm.

A total of 74 leaves randomly selected from 50 maize plants were measured in this
experiment. HSL backscattered intensity, leaf standard reflectance, and CO2 response
curves were measured for each leaf. Leaf N and chlorophyll were also determined.

2.2. The HSL Prototype System

The hyperspectral lidar system is a full-waveform laser scanner developed by the
Chinese Academy of Sciences [39,41]. The full-waveform lidar system records the entire
backscattered waveform instead of several discrete points. Due to the wide spectral
range (400–2500 nm) of the SC laser source, the returned backscattered intensity of targets
contains abundant spectral information compared with traditional lidar systems. An
optical granting system was used to divide the returned spectrum into 32 wavelengths
from 409 nm to 914 nm. Other specifications of the system are given in Table 1. In this
study, 20 wavelengths (ranging from 523 to 833 nm) with a higher signal-to-noise ratio
were chosen to test the ability of HSL of estimating plant photosynthetic parameters.
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Table 1. Characteristics of the hyperspectral LiDAR prototype instrument.

Hyperspectral LiDAR System Specifications:

Spectral resolution 16 or 17 nm
Sampling rate 5 GHZ

Divergence angle Less than 5 mrad
Laser repetition rate 24 kHZ
Laser output power About 100 mW

2.3. Data Acquisition and Processing
2.3.1. CO2 Response Curves

CO2 response curves were measured in situ when maize plants were under normal
growth status. A portable leaf gas exchange system (LI-6400, LICOR Biosciences, Lincoln,
NE, USA) was used. A standard 2 × 3 cm2 chamber with a red/blue LED light source was
installed on the LI-6400 system, as shown in Figure 1b. The photosynthetic photon flux
density was set at 2000 µmol m−1 s−1 to provide the light source for leaves, the temperature
was set to close to the environment. Each maize leaf was first adapted to the environment
of the chamber for about 30 min. During the measurement, the CO2 concentration in the
chamber was set to 400, 300, 200, 100, 50, 400, 600, 800, 1000, 1200 µmol mol−1, and the
measurement under each CO2 concentration lasted a minimum of 200 s and a maximum of
300 s. Vcmax and J at 25 ◦C were determined from measured CO2 response curves using a
curve-fitting program for C4 plants [49].
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and (e) destructive sampling.

2.3.2. HSL Data

Following the measurement of CO2 response curves, selected leaves were removed
from maize plants and sent to the dark laboratory for HSL measurements. No external
light was used since HSL actively emits the laser source. Before scanning each leaf, a
white reference panel was scanned at a distance of 5 m. Subsequently, maize leaf pasted
on a black panel and perpendicular to the laser source was scanned at the same distance.
Twenty-five reflectance curves were recorded and then averaged to give the reflectance
characteristics of each leaf.

Besides the acquisition of leaf-level HSL data, two maize plants inclined to the HSL
system were scanned to further test the ability of HSL in characterizing 3D photosynthetic
parameters. To correct the angle effect of backscatter intensity, another 10 maize leaves
were scanned to simulate the fraction of specular and diffuse intensity. The incident angles
varied between 0◦ and 70◦, with a step of 5◦ from 0◦ to 30◦ and 10◦ from 30◦ to 70◦.

For each full-waveform data, the backscattered intensity was defined as the maxi-
mum intensity of each curve after Gaussian filtering. The corresponding returned time
was used to calculate line-of-sight distance based on the time-of-flight principle
(distance = 3 ∗ 108 m/s ∗ returned time/2), thus the 3D position of each target point can
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be determined when coupled with the viewing angle. The reflectance at different wave-
lengths was defined as the ratio of backscattered intensity between the leaf and the white
reference panel.

2.3.3. ASD Reflectance Data

Along with the HSL measurements, leaf reflectance was measured indoors using
ASD with a spectral resolution of 1 nm (350–2500 nm). An illuminator was obliquely
placed about 50 cm above targets to provide the external light for the ASD system. Other
light sources were turned off during the measurement. Before measuring each leaf, the
reflectance information of the reference panel was recorded. Twenty reflectance spectrums
were measured at different positions for each leaf. Abnormal spectrums were eliminated
based on the 3σ principle, and the remaining spectrums were averaged to give a mean
value for each leaf.

2.3.4. Destructive Sampling

The determination of biochemical parameters was the last step. Measured leaves were
placed in a plastic bag and then used for the determination of N and chlorophyll. When
maize leaves were mixed in 95% ethanol, chlorophyll content was determined based on
their absorption properties at two spectral bands (665 nm and 649 nm). The N concentration
was subsequently determined using the Kjeldahl method [50]. Maize leaves were first
oven-dried at 105 ◦C until a constant weight was reached and subsequently digested in a
solution at 420 ◦C for 45 min in an automatic Kjeldahl digestion unit.

2.4. Incident Angle Correction

The specular backscattered intensity confounds the reflectance properties of targets,
and the fraction of diffuse and specular intensity relies on both leaf surface and wavelength
bands [51]. A linear combination of the Lambertian model and the Beckmann law [52] was
used to simulate leaf backscattered intensity.

I = f (kdcosα + ((1− kd) exp(−(tan2α/m2))/(cos5α))) (1)

where I is the backscatter intensity, f is backscatter intensity at normal incidence angle, kd
is the diffuse fraction and varies between 0 to 1, α is incidence angle, and m is the surface
roughness and varies between 0 to 0.6.

kd and m were determined when the best fit was observed between modeled and
measured intensity via the iteration process. Leaf points with their incident angle above
70 degrees were removed from the maize point cloud, as the over-correction effect was
observed for large incident angles [53].

2.5. Statistical Analysis

The workflow of this study is illustrated in Figure 2. Actual photosynthetic traits (e.g.,
Vcmax and J) of maize leaves were detected by the Li-6400 system, the spectral information
of HSL was subsequently utilized for estimating these two photosynthesis traits. Given
that the detection mechanisms between active and passive sensors differed, the result of
HSL was also compared with that of the ASD at the leaf level. The estimation process
was based on two methods: (1) Reflectance-based method [8,19,22]: partial least squares
regression (PLSR) models of Vcmax and J were directly performed on all recorded spectral
information; (2) trait-based method [19,54]: photosynthetic parameters were estimated
based on their linear relationship with biochemical traits (N and chlorophyll), where the
actual values of N and chlorophyll were obtained by destructive sampling. Compared
with ASD, HSL can also extract spatial information of targets, achieving the simultaneous
extraction of structural and spectral properties. Thus, with the correction of the incident
angle effect in the HSL 3D point, the spatial distribution of photosynthetic traits at the
plant level was characterized based on the constructed leaf-level estimating models.
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The minimum root mean square errors of prediction (RMSEP) calculated from the
validation results were utilized to determine the optimal number of latent variables. Due to
the relatively small dataset of this research, no additional validation dataset but leave-one-
out cross-validation method was used to test the prediction performance of constructed
PLSR models. The coefficient of determination (R2), root mean square error (RMSE), and
index of agreement (dr) were used to describe the fitness between measured and predicted
values. dr was found to have a broad utility in model performance [55], its calculation
was based on the mean absolute error (MAE) of estimation results and the mean absolute
deviation (MAD) of observed values, as shown in Equation (2). For simplicity, we set c as
1.0. All statistical analyses were performed in Python, version 2.7 (http://www.python.org,
accessed on 23 September 2021).

dr =

{
1− MAE

c∗MAD (MAE ≤ c ∗MAD)
MAD

c∗MAE − 1 (MAE > c ∗MAD)
, (2)

3. Results
3.1. Measured Leaf Properties
3.1.1. Leaf Traits

Measured leaf traits of 74 maize leaves collected from 50 maize plants presented a
wide variation (Figure 3). Vcmax and J varied between 21 and 48 µmol m−2 s−1, 86 and
272 µmol m−2 s−1, respectively. Measured chlorophyll and N had close correlations with
Vcmax and J (Figure 4), whereas N showed stronger relationships with photosynthesis traits.
The constructed linear relationships were coupled with reflectance information for the
trait-based estimation of Vcmax and J.
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3.1.2. Leaf Reflectance Spectra

The reflectance spectra (523–833 nm) were mainly located in the visible region, with
several wavelengths belonging to the near-infrared region.

Twenty wavelength bands were contained in each HSL and ASD reflectance curve
since ASD data was resampled according to HSL wavelengths. The spectral spectrums
derived from passive and active sensors were slightly different, and the ASD spectrum was
regarded as the leaf standard reflectance curve. The red-edge region of the HSL spectrum
was not as steep as that of ASD, and the HSL reflectance was lower than ASD reflectance
for wavelengths above 735 nm (Figure 5).
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3.2. Leaf-Level Photosynthesis Traits Estimation
3.2.1. Reflectance-Based Method

With reflectance at 20 wavelength bands as inputs, PLSR models of Vcmax and J
were built by extracting principal components in these wavelengths. Leave-one-out cross-
validation was conducted to show the estimating ability of constructed PLSR models, as
shown in Figure 6. A moderate result (R2 = 0.47 and RMSE = 4.32 µmol mol−1 s−1 for
Vcmax, R2 = 0.42 and RMSE = 28.1 µmol mol−1 s−1 for J) was observed for HSL data pairs.
The dr value was largest (0.20) in J estimation with ASD data, indicating 20 percent of the
total reference effort can be explained by model predictions. However, the two points with
Vcmax higher than 43 µmol mol−1 s−1 obviously deviated from the 1:1 line.
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Compared with the results derived from the HSL dataset, improved relationships (R2 = 0.57
and 0.61 and RMSE = 3.86µmol mol−1 s−1 for Vcmax, R2 = 0.61 and RMSE = 23.2 µmol mol−1 s−1

for J) were built between measured and predicted photosynthetic parameters for ASD data,
and the data points of both Vcmax and J were closer to the 1:1 line. The main reason was
that the leaf reflectance obtained by the commercial ASD system was more representative
of leaf properties, despite an additional illumination that was needed during ASD data
collection.

3.2.2. Trait-Based Method

The trait-based method was based on the relationship between photosynthetic and
biochemical parameters, thus the retrieval of chlorophyll and N using spectral information
was the prerequisite. With the coefficients of constructed PLSR models, leave-one-out
cross-validation results were obtained by leaving one sample as the testing dataset for
each repetition (Figure 7). The dr values were all located in the positive portion, varying
between 0.22 and 0.68. For both HSL and ASD datasets, the correlation between measured
and predicted values was better for chlorophyll (R2 = 0.64 for HSL and 0.77 for ASD)
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than N concentration (R2 = 0.66 for HSL and 0.68 for ASD), and the estimation accuracy
of biochemical properties was higher in contrast with photosynthetic parameters. With
the estimated chlorophyll and N values, as well as the constructed linear model between
biochemical and photosynthetic parameters (Figure 4), Vcamx and J were predicted and then
fitted with measured values (Figure 8). Most dr values were negative, which means that
the average error magnitude was larger than the average reference error. The data points
of ASD were closer to the 1:1 line, thus higher R2 (R2 ≥ 0.32 for Vcamx and ≥0.24 for J) and
lower RMSE values (RMSE ≤ 4.89 µmol mol−1 s−1 for Vcamx and ≤32.51 µmol mol−1 s−1

for J) were obtained than HSL data. The N-based method (Figure 8a,b) performed better
than the chlorophyll-based method (Figure 8c,d).
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Leaf spectrum contained more information about biochemical properties than Vcmax
and J, and corresponding PLSR models with higher accuracy were constructed for chloro-
phyll and N concentration. However, the trait-based method showed weaker estimation
ability than the reflectance-based method (Table 2) since the highest relationship in Vmax or
J estimation was obtained by using the reflectance-based method for both ASD and HSL
datasets. Data points of the trait-based method were far away from the 1:1 line, especially
for Vcamx and J with higher values. This was mainly caused by the weaker correlation
between measured biochemical and photosynthetic parameters of the experimental dataset.

Table 2. The R2 values of Vcmax and J estimation results for HSL and ASD datasets. The highest R2 values are shown in bold.

HSL ASD

Reflectance-Based Chlorophyll-Based N-Based Reflectance-Based Chlorophyll-Based N-Based

Vcmax 0.47 0.24 0.32 0.57 0.36 0.40
J 0.42 0.18 0.24 0.61 0.31 0.37
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3.3. Plant-Level Photosynthesis Traits Characterization

The diffuse fraction and the roughness at different wavelengths were retrieved from
the Lambertian–Beckmann simulating model (Table 3). The constructed models, with R2

all above 0.74, performed well for simulating the reflectance of maize leaves at different
incident angles. With the increasing wavelengths, kd values decreased in the first few
bands and then significantly increased from 637 nm (Figure 9a). To further explore the
relationship between the faction of diffuse intensity and reflectance at 20 wavelength
bands, a linear model was built and a strong positive correlation (R2 = 0.77, Figure 9b) was
observed. The four points within 523–572 nm deviated from others, which was related to
lidar manufacturing technology. In contrast, m showed no dependence on wavelengths.
Constructed Lambertian–Beckmann models were subsequently utilized for correcting the
angle effect of the maize 3D point cloud.

The spectral point cloud of two maize plants was constructed from HSL full-waveform
data. The spatial property of maize plants was visually demonstrated in Figure 10a,b. The
maize leaves and stem were separated and displayed in space, despite the density of the
maize point cloud being relatively sparse which was limited by the scanning speed of the
HSL prototype system. Leaf points with their incident angle below 70 degrees were further
used for calculating photosynthetic parameters, while the spectral information of stem
and flowerpot points were not processed. Taking Vcmax as an example, the 3D distribution
of photosynthetic parameters, estimated using the reference-based method, was subse-
quently characterized based on the spectral information at each position (Figure 10c,d),
demonstrating the potential ability of HSL to monitor plant photosynthesis in 3D space.
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Table 3. The simulation of HSL backscattered intensity based on the linear combination of Lambertian
model and Beckmann law. kd stands for the diffuse fraction, and m stands for surface roughness.

523 nm 540 nm 556 nm 572 nm 589 nm

kd 0.8 0.85 0.82 0.79 0.75
m 0.15 0.17 0.16 0.16 0.16
R2 0.74 0.75 0.79 0.80 0.81

605 nm 621 nm 637 nm 653 nm 670 nm

kd 0.7 0.7 0.67 0.72 0.75
m 0.16 0.16 0.15 0.15 0.16
R2 0.82 0.84 0.87 0.89 0.89

686 nm 703 nm 719 nm 735 nm 751 nm

kd 0.8 0.84 0.88 0.9 0.92
m 0.17 0.18 0.17 0.19 0.19
R2 0.89 0.88 0.89 0.9 0.92

768 nm 784 nm 800 nm 816 nm 833 nm

kd 0.92 0.93 0.95 0.96 0.98
m 0.21 0.2 0.12 0.01 0.01
R2 0.94 0.93 0.95 0.81 0.81
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4. Discussion

Previous studies have tested the ability of passive optical sensors in plant photosyn-
thesis traits estimation [8,19,22], while these remote sensors were easily affected by some
confounding factors (e.g., illuminating conditions, plant structure, and soil background)
and had a weak ability in detecting plant structural parameters, limiting their further
application in precision agriculture. In contrast, this study showed the potential of HSL as
an active remote sensor in estimating maize photosynthesis properties at both the leaf level
and plant level. The estimation accuracy of HSL (R2 < 0.5) was lower than that of previous
studies conducted with passive spectral data [19,20,22], which can be explained by several
points: (1) The high intensity of the HSL laser beam and ASD illuminator caused damage to
leaf physiological properties, thus leaf spectral properties were slightly changed; (2) except
for Li-6400 measurements conducted in situ with living leaves, other measurements were
carried out with maize leaves removed from maize plants; (3) only 20 wavelength bands
with a higher signal-to-noise ratio (523–833 nm) were chosen in this experiment, while pre-
vious researchers used more wavelength bands with a wider spectral range. The collected
spectral spectrum of ASD and HSL was not identical (Figure 5), which can be explained by
the difference in measurement time between these two systems and the different detection
mechanisms between active and passive remote sensors. Compared with the estimation
results of HSL, ASD showed a higher accuracy at the 2D leaf level (Table 2). However,
ASD as a passive optical sensor needs an external light source and has a weak ability in
characterizing plant 3D structural properties. In contrast, with the ability to generate a 3D
spectral point cloud, HSL as an active sensor can characterize photosynthesis traits at the
plant level.

Leaf traits (e.g., chlorophyll, N, and LMA) have been proven to have a strong linkage
with photosynthetic parameters [8,20,22]. Chlorophyll, N, Vcmax, and J of maize leaves
were simultaneously estimated by HSL (Figures 6 and 8), thus the reflectance informa-
tion can provide an insight into the mechanism under photosynthesis prediction. The
reflectance-based method performed better than the N-based method and chlorophyll-
based method (Table 2), while the result of this study was not consistent with previous
studies demonstrating that the trait-based method was superior to the reflectance-based
method [19]. In this study, HSL reflectance information had a closer relationship with
biochemical parameters than photosynthesis traits, while the weaker relationship between
measured biochemical and photosynthetic data (Figure 4) caused the lower accuracy of the
trait-based method.

The diffuse fraction of backscattered intensity comes from the multiple scattering of
leaf radiation, and the intensity of specular reflection represents the properties of the leaf
surface [52]. In this study, the linear combination of the Beckmann law and the Lambertian
model was used for the correction of the incident angle. With R2 ranging from 0.74 to 0.92
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at 20 wavelengths (Table 3), this simulating model showed its effectiveness for lidar data,
the same as previous lidar studies [52]. The diffuse fraction, kd, of constructed simulating
models showed a strong dependence on wavelength bands, where the wavelength with a
higher reflectance had a higher kd value (Figure 9). The wavelength-dependent feature of
the specular and diffuse fraction was also observed by Qian et al. [56].

Plant photosynthesis is not only related to photosynthetic parameters such as Vcmax,
and J, but also to light interception largely affected by canopy structure [9,57]. Prior
to the simulation of light interception within the plant canopy using optical simulating
methods such as ray-tracing and radiosity, the accurate construction of plant 3D models is
vitally important [10,57,58]. Lidar systems have a strong ability in constructing 3D point
clouds, and HSL prototype systems have shown their ability in the extraction of structural
parameters [59–61]. Thus, HSL has the potential to assess canopy light interception when
coupled with optical simulating models. In this study, the spatial distribution of Vcmax of
two maize plants was illustrated based on the HSL point cloud (Figure 10).

Several limitations were faced in this study that requires improvements in further
studies. Firstly, the HSL used in this study was a prototype system, thus its scanning
efficiency was inferior compared with commercial lidar devices. To meet the requirement
of obtaining a large dataset, the development of hardware manufacturing technology is
the prerequisite. Secondly, the maximum returned intensity of 20 wavelength bands was
extracted after the Gaussian filtering of full-waveform data in this experiment, whereas
more data processing methods need to be explored as the HSL data containing both spectral
and spatial information is a novel type of lidar data.

Furthermore, the experiment was performed indoors and mounted on a tripod. High-
throughput plant phenotyping platforms aimed at improving the data collection efficiency
and accuracy, thus the efficiency of crop breeding, involves various proximal sensing
platforms and remote sensing platforms [1,62]. Lidar sensors can be boarded on proximal
sensing planforms (e.g., gantry, vehicle, tripod, backpack, and handheld platforms) both
indoors and outdoors [62], while the efficiency of some field-based platforms is limited
when applied to large plot areas [63]. For remote sensing platforms, laser sensors can
couple with unmanned aerial vehicles, manned aircraft, and satellites for efficient high-
throughput monitoring of plant phenotyping at the plot, landscape, or region level [64,65].
Despite the high-throughput measurement of photosynthesis traits not being possible
with prototype HSL systems at present, HSL with improved manufacturing technology
may board on various platforms to meet high-throughput demands of photosynthesis
estimation in the future.

5. Conclusions

The results successfully addressed the three points evaluated in the study: (1) Based
on the spectral information of 20 wavelength bands, HSL has the ability to estimate photo-
synthetic parameters. (2) The estimation accuracy of ASD was higher than that of HSL, as
ASD was a commercial system while the efficiency of the prototype HSL system needs to be
further improved. The estimation process was based on either the reference-based method
or the trait-based method, whereas the trait-based method performed worse than the
reflectance-based method for both ASD and HSL datasets (Table 2). (3) Containing spectral
and structural properties of targets, HSL data have the ability to estimate photosynthesis
traits at both the leaf level and 3D plant level.

The linear combination of the Lambertian model and Beckmann law performed well
(R2 ≥ 0.74 for 20 wavelength bands) in correcting the incident angle, thus the distribution
of plant-level photosynthesis traits was visually displayed based on the HSL 3D spectral
point cloud. The characterization of 3D photosynthesis traits is beneficial for understanding
the upscaling process of plant photosynthesis [5], estimating photosynthetic performance
at larger scales [3], and optimizing crop-simulating models [4]. Despite the potential of
HSL in estimating 3D photosynthesis traits not being fully explored, this study provided
the basis for further application of HSL in the photosynthesis field.
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The maximum returned intensity of HSL full-waveform was used for the estimation of
maize biochemical and photosynthetic properties; whereas, full-waveform data is superior
to discrete returns, as it can extract more information (e.g., echo width and backscatter
cross-section) correlated with plant reflectance information [66,67]. In the next step, the
advanced data decomposition method of HSL full-waveform data needs to be explored.
With the development of HSL hardware manufacturing technology, HSL could be boarded
on various platforms for high-throughput measurement of plant photosynthesis, which is
important for breeding studies and the pursuit of crop yield.
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