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Abstract: Crop yield forecasting is performed monthly during the growing season by the United
States Department of Agriculture’s National Agricultural Statistics Service. The underpinnings
are long-established probability surveys reliant on farmers’ feedback in parallel with biophysical
measurements. Over the last decade though, satellite imagery from the Moderate Resolution Imaging
Spectroradiometer (MODIS) has been used to corroborate the survey information. This is facilitated
through the Global Inventory Modeling and Mapping Studies/Global Agricultural Monitoring
system, which provides open access to pertinent real-time normalized difference vegetation index
(NDVI) data. Hence, two relatively straightforward MODIS-based modeling methods are employed
operationally. The first model constitutes mid-season timing based on the maximum peak NDVI
value, while the second is reflective of late-season timing by integrating accumulated NDVI over a
threshold value. Corn model results nationally show the peak NDVI method provides a R2 of 0.88
and a coefficient of variation (CV) of 3.5%. The accumulated method, using an optimally derived
0.58 NDVI threshold, improves the performance to 0.93 and 2.7%, respectively. Both these models
outperform simple trend analysis, which is 0.48 and 7.4%, correspondingly. For soybeans the R2

results of the peak NDVI model are 0.62, and 0.73 for the accumulated using a 0.56 threshold. CVs
are 6.8% and 5.7%, respectively. Spring wheat’s R2 performance with the accumulated NDVI model
is 0.60 but just 0.40 with peak NDVI. The soybean and spring wheat models perform similarly
to trend analysis. Winter wheat and upland cotton show poor model performance, regardless of
method. Ultimately, corn yield forecasting derived from MODIS imagery is robust, and there are
circumstances when forecasts for soybeans and spring wheat have merit too.
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1. Introduction

Timely and accurate crop yield forecasting at regional and national levels is a funda-
mental agricultural statistic providing early insight into season-ending production totals [1].
This information helps decision-makers reduce food allocation risk through understanding
the supply situation across geographies in near real-time. It serves not only as an early
warning for resource apportionment but also can help guide domestic and international
trade, economic and environmental policy, and highlight chronically underperforming
farming areas [2–4].

The monitoring of crop yields over large regions can be undertaken in several ways.
The traditional method is mostly through on-the-ground probability-based surveys. These
usually involve contacting a random selection of farmers and asking for their opinions on
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their prospective yields. Alternatively, the information can also be directly obtained via
biophysical measurements of the plants themselves, also through a sampling process. The
United States Department of Agriculture (USDA), National Agricultural Statistics Service
(NASS) has a long history of undertaking both methodologies [5], which combined inform
its monthly crop production reports [6] for the United States of America (USA). Of note,
the USDA more broadly monitors and tracks crop production globally through a variety of
methods [7,8].

Crop yield forecasting and estimation can also be modeled. There is a lot of research
toward this goal, and it is generally divided into two approaches. The first is through
employing process-based models. Here all the underlying biophysical mechanisms that
drive crop growth and grain production must be understood and assimilated. Input
variables can include soil type, rainfall, sunlight, seed variety, plant date, fertilizer, etc. The
most common process-based yield models are known by their acronyms of WOFOST [9],
DSSAT [10], and APSIM [11]. Some of these models also integrate remotely sensed satellite
information such as soil moisture or leaf area index [12–15]. A strong research bias has
been toward modeled corn yields versus other crops with any of these methods [16–20].
Predictions from any of these models can be good, but they suffer from complexity in an
operational setting because many input datasets and assumptions must be managed.

The second category of models is empirical. Here, observations from the past are used
to inform what is happening in the present, without a strong need for understanding of
the causality. The relationships between the predictor variables and the outcomes have
traditionally been explored through statistical inference, but machine learning approaches
can be used too. A fundamental requirement for the empirical approach is access to reliable
and deep historical yield statistics, thus limiting where it can be employed, geographically.
However, some governmental operational examples by organizations do exist in North
America and Europe [21,22] as well as more broadly in an international context [23]. For
several years, NASS has developed empirical, regional yield models for corn and soybeans
in parallel with its traditional field surveys.

Imagery data from earth observation satellites have been particularly common as
inputs for empirical crop yield modeling and have a long history of use. The data’s wide
area coverage, timeliness, and relatively simple handling needs are all major benefits for
implementation as predictor variables. Most pervasive is the use of the visible red and
near-infrared (NIR) spectral bands, which have strong negative and positive correlations,
respectively, with plant productivity [24–27]. Furthermore, data reduction of these two
bands through the equation known as the normalized difference vegetation index (NDVI)
is strongly correlated with photosynthetic capacity, and thus yield. It is calculated as:

NDVI = (NIR − red)/(NIR + red) (1)

NDVI amplifies the contrast between the two spectral bands and has widespread
adoption for use within the vegetation monitoring community. Values are unitless and
can theoretically range from −1.0 to 1.0. Observations that are less than 0.3 are areas
mostly devoid of vegetation, while extremely verdant spots can reach 0.9 or higher. Many
other spectral band combinations exist and are used for vegetation monitoring, but NDVI
performance usually competes with if not outperforms others [28], which explains its
continued popularity.

The launch of the series of Advanced Very High-Resolution Radiometer (AVHRR)
instruments aboard National Oceanic and Atmospheric Administration polar orbiting
satellites in the early 1980 s provided the first widespread means for collecting NDVI
imagery [29] for use in empirical style crop yield modeling estimation [30–34]. Two NDVI
products were available from the AVHRR: Local Area Coverage (LAC) at 1 km spatial
resolution; and Global Area Coverage (GAC) at 8 km. Though coarser, GAC data became
the standard for vegetation monitoring and crop yield [35,36] given its daily global coverage
as LAC data were often incomplete given the limited onboard data storage capacity of the
satellites at the time. The most practical use of the imagery was shown to be creation of
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composited mosaics that combine the best-of, cloud free imagery over multi-day periods
such as a week or a dekad [37]. This produced imagery that is ready-to-use with lower
image preprocessing capacity needed by end users.

The turn of the century brought a new era of crop yield modeling with the launch of
the Terra and Aqua satellites carrying the Moderate Resolution Imaging Spectroradiometer
(MODIS) instrument. MODIS offered significantly better spatial resolution than AVHRR
by going from at best 1 km down to 250 m. As a result, crop yield modeling efforts be-
gan shifting to leverage the data improvement provided by MODIS [38,39]. However,
widespread uptake was slow due to increased data volumes, absence of a dedicated opera-
tional data delivery for agriculture, and the deep AVHRR data history. Thus, yield research
with AVHRR continued [40–45]. Over time though, a history of MODIS data has accrued,
leading to intensified research efforts to develop MODIS-based yield models [46–52].

Attempts to fully summarize the many remote-sensing-based yield modeling efforts,
from both AVHRR and MODIS, have been undertaken [53–55]. Corn and the symbiotic crop
soybeans have seen the majority of crop-specific modeling attention with MODIS [56–58],
as has the commodity of wheat [46,59,60]. Study areas of interest have occurred throughout
the world, but studies have tended to target the major grain producing areas. Efforts
to combine process and empirical models have also been undertaken [61]. A shift from
more traditional statistical modeling techniques to machine learning is just getting under-
way [62–64].

Yield model results from the myriad of past research, built from simple linear models
using NDVI or something more sophisticated, typically range from 0.70 to 0.90 as expressed
by the coefficient of determination (R2). The coefficient of variation (CV) ranges from
roughly 5.0% to 20.0%. These numbers imply good performance but fail to recognize that
an educated guess via simple averaging or trend modeling can often be better. This may
be the reason for the lack of widespread yield modeling uptake in the applied setting.
NASS itself has not fully embraced remotely sensed yield estimation but finds utility in
many situations.

As such, the objective of this manuscript is to describe the within-season crop yield
forecasting ability of ready-to-use, pre-summarized MODIS NDVI data at USA national
and state levels used by NASS. This was measured for the dominant USA crops of corn,
soybeans, spring wheat, winter wheat, and cotton. The methods shown here are not
necessarily advanced but strive to provide a pragmatic approach for use in a time-sensitive,
operational setting. A broader aim is to reflect the various remotely sensed yield modeling
research during the MODIS era and reinforce that simple yield estimation approaches can
be the best.

2. Materials and Methods
2.1. Study Area

Crops are found throughout much of the USA and are dominated by the commodities
of corn, soybeans, wheat, and cotton. There are roughly 315 million acres (125 million
hectares) of cropland dedicated to field crops. The past five years have averaged 91 million
acres (37 million hectares) to corn, 84 million to soybeans, 12 million to spring wheat,
33 million to winter wheat, and 13 million to upland cotton [65]. This respectively equals
about 29%, 27%, 4%, 11%, and 4% of the cropland total, or 75% combined.

Figure 1 shows the distribution of these primary crops across the conterminous US.
Corn and soybeans are most heavily concentrated in the core of the country centered in
and around the state of Iowa. This broad region is often referred to colloquially as the Corn
Belt. Here the summers are warm and humid and the winters cold and snowy. Crop yields
within the Corn Belt are some of the best in the world given exceptionally fertile soils and
usually ample precipitation of nearly a meter per year. Only areas toward the west where it
becomes drier, particularly in Nebraska, need irrigation to supplement the natural rainfall.
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Figure 1. Study area. USA states in dark grey represent those that were also focused on for state-level yield assessment in
addition to national-level. Crops shown are from the 2020 USDA NASS Cropland Data Layer.

Adjacent west of the Corn Belt, yet east of the Rocky Mountains, is the semi-arid region
known as the Great Plains. Here winter wheat, which is seeded in the fall, is planted in
abundance. Because it requires less water, it can still thrive with only rainfed conditions of
about half a meter per year. The state of Kansas and the immediate surrounding area grow
the heaviest concentration of winter wheat in the USA. However, the crop is distributed
throughout other parts of the country too, particularly in the interior areas of the northwest,
such as in the state of Washington as well as in areas of the eastern and southern Corn Belt.
The temperatures in these areas are generally more moderate than the Corn Belt, and thus
the plants can survive winter dormancy.

Spring wheat, which is seeded in the spring, is most commonly found within the
northern reaches of the Corn Belt and along the USA–Canada border. North Dakota and
the surrounding states are where spring wheat is the most heavily concentrated. The region
gets moderate rainfall of about half a meter per year but is extremely cold in the winter.

Finally cotton, the upland variety, is grown in the very humid south and southeast
USA with pockets centered in the states of Georgia and Western Texas. Georgia receives
more than a meter per year of precipitation, so irrigation is rare. Cotton in West Texas,
however, is heavily dependent on irrigation given the summers are very hot and rainfall is
roughly one third of Georgia’s.

2.2. Data

The foundational dataset for this work is summarized time series NDVI data provided
via the Global Agriculture Monitoring (GLAM) system [66]. GLAM is operated and
maintained by the Global Inventory Modeling and Mapping Studies (GIMMS) team located
at the National Aeronautics and Space Administration (NASA) Goddard Space Flight
Center (GSFC). The GIMMS group ensures that GLAM receives the best science quality data
for NDVI production from NASA’s Land, Atmosphere Near real-time Capability for Earth
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Observing System (LANCE) operated by the Earth Science Data and Information System.
The USDA/NASA GLAM system has been funded through an interagency agreement
since 2003 by the USDA Foreign Agricultural Service (FAS), International Production
Assessment Division (IPAD). This was a follow-on agreement to global AVHHR NDVI
processing, which started in 2000.

The GLAM MODIS NDVI system was built from the GIMMS experience gained when
providing the first operational and global AVHRR time series dataset from 1981 as refer-
enced in the Introduction section. GIMMS developed the maximum value compositing
(MVC) technique for AVHRR NDVI processing, and MVC became the standard operational
cloud screening method for reducing clouds in NDVI time series composites [37]. Fur-
thermore, the MODIS NDVI compositing algorithms were refined by the MODIS science
team, which utilized a bi-directional reflectance distribution function model that includes
an operational view angle constraint [67,68]. The GLAM system produces and archives
eight-day NDVI imagery composites from Terra and Aqua MODIS with 250-m spatial
resolution globally. Near real-time eight-day MODIS NDVI composites from LANCE are
first generated. Then those are ultimately replaced a few days later with science-quality
Collection 6 MOD09 NDVI composites as provided by the MODIS Adaptive Processing
System as part of NASA’s Terrestrial Information Systems Branch. The data are versioned
through Collections and are updated every several years to take advantage of improved
processing algorithms.

GLAM also summarized the imagery to produce eight-day NDVI averages, and
departure from the long-term historical averages, over national, sub-national, and 0.25-
degree grid levels. These are disseminated in tabular form and eliminate the need for any
image processing by an analyst. Furthermore, these averages can be tailored to exclude, or
“mask”, non-agricultural areas within an area of interest. This focuses the time series signal
to remove non-pertinent areas such as water bodies, urban areas, forests, etc. For the US,
crop-specific masks were developed using the NASS Cropland Data Layer (CDL) [69].

The generation of these USA masks involved gathering the six years of 30 m CDLs
from 2011–2016, “stacking” them, and counting for each pixel the number of occurrences by
crop type during the period. Ideally, these would have been calculated over the full MODIS
period, but the CDLs only exist nationally from 2008 onward, so the 2011–2016 period
was used to represent the center of the time span. Next, if a 30 m CDL-scaled pixel had a
specific crop two or more times during the six-year period it was flagged. The surface area
of those flagged pixels was then calculated within the constraints of each 250 m MODIS
pixel. If the area of the flagged 30 m pixels comprised 50 percent or more of the 250 m
one, then the whole pixel was placed into the crop mask. The constraints chosen were
purposely conservative to help generate the most dynamic signal. Ultimately, the full time
series of NDVI data were extracted back to 2002 from GLAM using the crop-specific masks
at the national and various state levels. Only the data from the MODIS morning overpass
Terra were used. Note that the Terra MODIS data span back to 2000, but the first two years
had time-series gaps and thus were excluded from the analyses.

In parallel, historical yield data were obtained via NASS’s Quickstats database query
tool [65]. Quickstats is the consolidated repository for all NASS published data. The
yield information within it comes from the annual Crop Summary [6] reports that are
released every January. The Crop Summary reports document the final production, in
terms of harvested area and yield, and estimates of all major USA field crops. Data were
obtained over the 2002–2020 period for the nation and select states for corn, soybeans,
spring and winter wheat, and upland cotton. The NASS yield data are considered the “gold
standard” globally, although uncertainties are not provided. The annual yield estimates
were ultimately aligned with the corresponding average MODIS NDVI data.

2.3. Methods

Three linear modeling methods were examined and performed identically by crop
type. Models were fit at the USA national level and at the state level where the crop is
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prevalent. The predictor variable for the first model was simply year; that is, a trend model
based on time was fit. The second model involved taking the annual peak, or maximum,
average NDVI over the area of interest and relating that to historical yields from the same
region. The third model utilized an accumulation of NDVI over the growing season and
then relating that to yields. The construction of each method is explained in more detail in
the following subsections.

2.3.1. Year Trend

Nineteen years of NASS yield averages were regressed against the corresponding
years 2002–2020 to generate the linear trend model. In other words, the year was the
independent variable and the yield the dependent variable. This could have been extended
to include years prior to 2002, but to make a direct assessment against the MODIS NDVI
data it was limited to 19 years. The resulting trend model could be considered the naïve
guess and an easy-to-build benchmark.

2.3.2. Peak NDVI

For 2002–2020 the maximum, or peak, MODIS NDVI was obtained annually from the
time series, and each year’s yield was linearly regressed against the maximum NDVI of
the corresponding year. Note that the maximum NDVI did not pertain to a singular date
during the growing season but rather varied in time based on the crop and unique growing
conditions, as expressed with the NDVI temporal profile of that year. For winter wheat the
peak NDVI tended to occur in late April, spring wheat late June, corn late July, soybeans
early August, and upland cotton in the middle of August.

Figure 2 shows, for context, the NDVI time series profiles for corn over the USA for
the four most extreme scenarios occurring during the period 2002–2020. Year 2018 had
the earliest NDVI onset of vegetative growth, while 2019 had the latest. Year 2012 had
the weakest NDVI amplitude, while 2020 was the strongest. The maximum NDVI in 2020
peaked at 0.86 but was only 0.78 in 2012, which occurred in early August and mid-July,
respectively. The 2019 maximum was 0.84 and did not occur until mid-August. Of note, the
corresponding published yields for years 2012, 2018, 2019, and 2020 were 123.1, 176.4, 167.5,
and 172.0 bushels/acre (7.73, 11.07, 10.51, and 10.80 metric tons/hectare), respectively.
The 123.1 and 176.4 values reflect the yield range for the entire period. The year 2012 was
characterized by the most severe drought over the last 30 years. Year 2019 was the latest
planting on record given an extremely cool and wet spring. Years 2018 and 2020 both had
strong yields despite very different NDVI timings.
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2.3.3. Accumulated NDVI

For 2002–2020 the accumulated, or integrated, NDVI was calculated over each growing
season and then regressed against the corresponding crop yield. This seasonal integration
of NDVI can be calculated in different ways, but here a method analogous to the calculation
of growing degree days (GDD) [70] was employed. GDD accumulate growing season
temperature over a set base, usually 10 degrees C, to produce a measure of total heating
over time. Here MODIS NDVI was used instead of temperature. However, NDVI does not
have a known optimal base to use as a floor for accumulating values above. If the base is
set too low, there is risk of incorporating noisy or confusing NDVI information far from
the mid-season peak vegetative and reproductive periods. If it is set too high, information
could be lost during the vegetative green-up and brown-down periods, or the threshold
might never be reached at all.

To discover an optimal NDVI threshold for the accumulation method, an iterative test
was set up to understand the model performance. The coefficient of determination (R2)
was used as the metric for model performance and tracked as the NDVI threshold was
varied. This was conducted at the national level for all five crops. Figure 3 summarized the
results graphically with the x-axis depicting the NDVI threshold value and the y-axis the
model performance.
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season. The right end of each line represents the minimum NDVI maximum that occurred during
the period.

The corn yield model performance was quite insensitive to the threshold. When set
between 0.45 and 0.75, the R2 was consistently above 0.90. This is reassuring and suggests
there is flexibility in choosing the value. Ultimately, the corn model performed the very
best when the NDVI threshold was set to 0.58, which resulted in an R2 of 0.93, so that was
used as the threshold. Soybeans also showed a mostly flat response to the threshold values,
although it was lower overall. The performance decreased when below 0.50. Its most
optimized performance was at an NDVI of 0.56, for which the R2 was 0.73. Spring wheat
had a more complicated optimal NDVI thresholding result. It was nearly flat, staying
between an R2 of 0.5 and 0.6 but showed the best threshold performance at a questionably
low 0.30. This was the predetermined point at which the experiment stopped given the
assumption that anything much lower is background noise or irrelevant. This minimum
0.30 was kept as the spring wheat NDVI threshold, however. For winter wheat, a clear
threshold optimization point occurred at 0.34, albeit the model was weak with an R2 of
only 0.21. Finally, upland cotton was very poor across its possible thresholding range. It
did maximize with an R2 of 0.09 at 0.37 NDVI, so that was used as a threshold. These
thresholds were established at the national level and held the same for the crops during
the state-level yield analysis even though tuning could improve model performance in
some cases.
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3. Results

USA national-level yield linear modeling depictions for the different crop types and
independent variables (year, seasonal peak NDVI, and season accumulated NDVI) are
shown in Figure 4. Each scatterplot has 19 points representing a year between 2002–2020.
The y-axis in each is the NASS published yield average in USA units (i.e., bushels per acre
or, for cotton, bales per acre). The charts in the left column contain the yield values through
the years and document any temporal trend. The middle column is the annual yield
versus the seasonal peak, or maximum, NDVI. The right column is the annual yield versus
seasonally accumulated NDVI, over an optimized threshold. Again, for corn, soybeans,
spring wheat, winter wheat, and cotton, the respective NDVI thresholds were optimized
at 0.58, 0.56, 0.30, 0.34, and 0.37. The resulting least-squares regression (LSR), used for
quantitative comparison, is shown as a dotted red line.
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The correlation coefficient (R2), standard error (SE), and normalized SE via the coeffi-
cient of variation (CV) from each LSR are summarized in Table 1. R2 provides a comparative
indication of the model performance with larger values being better. The SE and CV pro-
vide the absolute and relative model error, akin to the standard deviation. Lower error
values are better. The table provides model summaries at the USA national level, as well as
at the state level for select states for which the crops of interest are commonly found.

Table 1. Model performance results expressed as the correlation coefficient (R2), standard error (SE),
and coefficient of variation (CV). Highlighted grey is the best performance of the three scenarios by
crop and region.

Crop Region Model Performance
Trend Peak NDVI Accumulated NDVI

R2 SE 1 CV R2 SE 1 CV R2 SE 1 CV

Corn

USA 0.48 11.4 7.4 0.88 5.6 3.5 0.93 4.3 2.7
Illinois 0.29 22.0 12.8 0.82 11.0 6.6 0.91 7.7 4.5
Indiana 0.26 20.1 12.5 0.77 11.1 7.0 0.87 8.3 5.2

Iowa 0.32 14.2 8.1 0.64 10.4 5.9 0.78 8.2 4.6
Kansas 0.02 15.7 12.0 0.24 13.8 10.6 0.36 12.7 9.8

Minnesota 0.48 11.5 6.8 0.71 8.5 5.0 0.84 6.3 3.8
Missouri 0.23 24.8 17.9 0.53 19.4 14.0 0.58 18.4 13.2
Nebraska 0.62 10.6 6.4 0.84 6.9 4.2 0.89 5.8 3.5

Ohio 0.33 19.2 12.3 0.83 9.6 6.2 0.77 11.3 7.3
South Dakota 0.59 14.3 10.7 0.68 12.6 9.4 0.79 10.2 7.6

Wisconsin 0.60 11.1 7.3 0.90 5.5 3.6 0.78 8.2 5.4

Soybeans

USA 0.72 2.6 5.8 0.62 3.0 6.8 0.73 2.5 5.7
Arkansas 0.80 2.9 7.0 0.04 6.5 15.4 0.27 5.6 13.4

Illinois 0.68 4.0 7.9 0.28 6.0 11.9 0.54 4.8 9.5
Indiana 0.54 3.8 7.7 0.54 3.8 7.7 0.65 3.3 6.7

Iowa 0.36 4.9 9.6 0.48 4.4 8.7 0.61 3.8 7.5
Kansas 0.28 6.4 17.9 0.77 3.6 10.2 0.85 2.9 8.3

Minnesota 0.42 4.2 9.6 0.07 5.3 12.2 0.47 4.0 9.2
Missouri 0.43 4.8 11.9 0.66 3.8 9.3 0.66 3.7 9.1
Nebraska 0.64 4.0 7.7 0.87 2.4 4.7 0.90 2.1 4.1

North Dakota 0.15 3.7 11.4 0.11 3.8 11.7 0.18 3.6 11.2
Ohio 0.57 4.1 8.7 0.64 3.8 8.0 0.62 3.9 8.2

South Dakota 0.62 3.9 10.1 0.47 4.6 11.8 0.60 4.0 10.2

Spring
Wheat

USA 0.58 3.8 8.8 0.40 4.5 6.8 0.60 3.6 8.6
Minnesota 0.37 6.2 11.5 0.47 5.7 10.6 0.33 6.3 11.9
Montana 0.34 5.1 16.8 0.76 3.1 10.1 0.81 2.7 8.9

North Dakota 0.55 4.7 11.4 0.26 6.1 14.6 0.52 4.9 11.7

Winter
Wheat

USA 0.48 3.2 6.9 0.08 4.2 9.2 0.21 3.9 8.4
Colorado 0.26 7.5 21.8 0.52 6.0 17.5 0.40 6.8 19.7

Idaho 0.24 6.4 7.6 0.23 6.4 7.6 0.45 5.4 6.5
Kansas 0.15 7.0 17.2 0.18 6.8 16.8 0.40 5.9 14.5

Oklahoma 0.03 6.9 22.1 0.40 5.4 17.3 0.25 6.0 19.3
Montana 0.48 4.3 10.1 0.53 4.1 9.7 0.64 3.6 8.4

Washington 0.21 7.0 10.5 0.37 6.3 9.4 0.67 4.5 6.7

Cotton
USA 0.24 52.7 6.4 0.16 55.1 6.7 0.09 57.4 7.0

Georgia 0.27 99.8 11.9 0.19 105.1 12.5 0.00 116.9 14.0
Texas 0.05 91.4 13.8 0.42 71.1 10.7 0.35 75.6 11.4

1: 1 corn bu/ac = 0.0628 mt/ha, 1 soybean or wheat bu/ac = 0.0673 mt/ha, 1 cotton lb/ac = 0.0011 mt/ha.

National-level yields are increasing on average through time for all crops as shown on
the left column of scatterplots in Figure 4. The R2 results in Table 1 are best for soybeans at
0.72 and worst for cotton at 0.24. Corn, spring wheat, and winter wheat fall in between with
R2 of 0.48, 0.58, 0.48, respectively. The strength of soybeans is notable, given it contained a
low outlier year in 2012. In summary, simple linear modeling based solely on knowing the
year provides some predictive insight for all crops examined but is strongest for soybeans.

The modeling using seasonal maximum peak NDVI shows mixed results. For corn
the R2 is 0.88, a significant improvement from the 0.48 trend model. In terms of SE, the
value drops roughly in half going from 11.4 to 5.6 bu/ac (0.72 to 0.35 mt/ha). Likewise, the
CVs dropped from 7.4% to 3.5%. For the other four crops, the peak NDVI methodology
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performs worse than the trend. Soybeans R2 fell from 0.72 to 0.62 with the SE increasing
from 2.6 to 3.0 bu/ac (0.17 to 0.20 mt/ha). Thus, CVs increased from 5.8% to 6.8%. Spring
wheat showed some forecasting utility using peak NDVI by having an R2 of 0.40, but, in
context, that was down from the 0.58 trend model. Winter wheat and cotton R2 results
were near zero, or very poor, using peak NDVI as a yield predictor.

Results based on the accumulated NDVI method showed continued mixed results by
crop. Corn nationally saw the very best model performance improving to 0.93 in terms
of R2. The SE was 4.3 bu/ac (0.27 mt/ha) and thus a CV of only 2.7%. For soybeans and
spring wheat the accumulated NDVI method was marginally better than using trend alone,
up 0.01 to 0.73, and 0.02 to 0.60, respectively. For winter wheat and cotton the performance
was worse than with trend and quite poor overall, reaching R2 values of only 0.21 and
0.09. CVs for the non-corn crops ranged from 5.7% to 8.6%, which were like those from the
trend models.

Crop yield model results compared at the state level mostly mirrored those of the
nation for corn and soybeans. For corn the accumulated NDVI approach was best in all
cases except Ohio and Wisconsin, where the peak NDVI method was shown to be best. For
all methods, the state-level averages were not as strong as the results nationally, nor was
one singularly better. For soybeans, the accumulated NDVI method was the best modeling
method for six of the eleven states presented. The method based simply on annual trend
was best in Arkansas, Illinois, and South Dakota. The peak NDVI modeling for soybeans
was best in a single state, Ohio.

In contrast though, state models for the other three crops exhibited little consistency
with the national ones. Winter wheat showed the accumulated NDVI method was best in
four out of six states. Spring wheat showed mixed and mostly weak performance for all
states tested. Cotton was poor regardless of state or method.

4. Discussion

The efficacy of using MODIS NDVI data for USA-wide yield modeling was varied.
For corn, both the mid-season peak and the season ending accumulation methodologies
performed very well to excellent and easily outperformed trend analysis alone. This was
nearly consistent at the state level as well providing even more confidence in the results.
Corn yield estimation from MODIS data has a history of success [38,52,56–58] and the
results here only reinforce if not improve upon it, particularly given the simplicity of the
effort involved.

The modeling results for soybeans and spring wheat were also good and strengthen
prior research [47,50,59,62]. This is only at first glance, however. When taken in the context
of trend modeling, the results are arguably only fair. Reasons for the weakness compared
to corn are unknown, but the speculation is the relationship of the soybean and spring
wheat grain yields to the verdancy of the biomass, as expressed through NDVI, is simply
not as strong. There is still some suggestion that the accumulated NDVI is still useful,
particularly for soybeans at the state level. A better forecasting approach might be to
combine the year trend and the accumulated MODIS information together in an integrated
model. Alternative, MODIS information could only be relied upon when an anomaly is
suggested from ancillary sources such as weather or field reports.

The results for winter wheat did not show much usefulness in any situation. This
contradicts other MODIS yield research [15,46,60], but it is speculated those efforts were
tested under more optimal conditions and over a shorter history. Confounding factors
could be winter wheat’s much earlier growing season making it more frost prone than most
crops. Furthermore, winter wheat has higher propensity to go unharvested, usually due to
drought, which is hard to control for using generalized crop masks. Cotton results were
even worse. There is no MODIS-based research to support or oppose these findings. As
with winter wheat, an explanation could be that large swaths of cotton can go unharvested
in years when growing conditions are poor. In those regions the MODIS signal is likely
being heavily influenced by areas of low NDVI values that were ultimately abandoned.
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Using crop production instead of yield as the dependent variable might provide better
modeling outcomes.

As described in the methodology, a single threshold was optimally sought for the
accumulation by crop for the national-level model. Furthermore, the threshold used at the
national level was propagated to the state level, both for simplicity and because the model
performance was not overly sensitive to the threshold. However, the optimal thresholding
levels were found to vary by state. Using state-specific thresholds can improve results for
the accumulated NDVI scenario. Corn saw the biggest impact with the 10-state average
R2 increasing from 0.76 to 0.81 (no table shown) and the CV decreasing from 6.5% to 5.8%.
For soybeans the result was more subtle with R2 only increasing from 0.57 to 0.60 and
conversely the CV decreasing from to 8.9% to 8.6%. The other crops showed little difference.
In short, threshold tuning the accumulated NDVI models at finer geographic scales can in
some instances produce results that more closely match those of the national level.

The modeling goal is to generate a simple estimate of the regional average yield
for each crop. However, the integration of the NDVI data in context with the models
can provide richer information. By applying the derived yield model to all pixels within
the MODIS imagery, a map can be generated to provide detailed contextual information.
Figure 5 illustrates this for corn in the year 2020. In short, the derived accumulated NDVI
model equation was applied against the seasons’ worth of time series GIMMS MODIS
data at a 250 m pixel resolution. To isolate only the corn areas, the 2020 CDL was used
as a mask. Map areas in blue and purple are those with the highest yields. Iowa and
Minnesota showed the strongest yields throughout, and this is consistent with the USDA
estimate of 192.0 bu/ac (12.05 mt/ha), which was the highest in the Corn Belt that year.
Iowa usually competes for the best yields annually, but 2020 saw widespread dryness, and
a large derecho in early August, which decreased yields across that state. The map captures
this corn yield reduction centered in Iowa. That state only realized a yield of 178.0 bu/ac
(11.17 mt/ha) in 2020 even though the five years prior averaged 198 bu/ac (12.43 mt/ha).
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There is a recent trend toward using finer resolution data than MODIS, which can
provide yield maps at the field level [71–76] and even sub-field [77–79]. Finer spatial
granularity is certainly important in complex landscapes [80,81] where field sizes are small.
There is little doubt that this spatially detailed information has utility for field-level yield
monitoring and management. Whether or not this massive quantity of data would improve
regional-level yield estimation is unclear though. It is obvious that the effort would be
orders of magnitude more difficult given the massive data handling needs.

Finally, it must be acknowledged that the lengthier than projected two decades long
MODIS era is coming to an end. MODIS has provided a highly consistent dataset through
the period allowing for unprecedented regional to global monitoring of agriculture building
upon what was learned from AVHRR. This 20-year history has translated into a robust
application to rapidly monitor certain crops, particularly corn, from afar. As MODIS is
retired, it is natural to look toward alternative data sources, and it is anticipated the similar
Visible Infrared Imaging Radiometer Suite (VIIRS) mission will be the replacement data
source for this style of work. The first VIIRS instrument was placed into orbit nearly a
decade ago, and a second has already followed, allowing for both historical assessment
and overlap with MODIS. The uptake has been slow, likely owing to the deeper history
of MODIS, the afternoon versus morning overpass time, and the spatial degradation of
the red and NIR bands, which are 375 m resolution versus 250 m. Whether VIIRS will be
adequate for yield modeling is yet to be tested, however.

5. Conclusions

Leveraging relatively straightforward summarized MODIS data as disseminated via
the GLAM interface allows construction of an excellent corn yield model for the USA
nationally. Using an accumulated NDVI method, the SE was 4.3 bu/ac (0.27 mt/ha). This
equates to a CV uncertainty of only 2.7%. It seems unlikely any other modeling approach,
whether empirically or physically based, could best that performance, particularly if includ-
ing ease of use as a consideration. The accumulated method does have the disadvantage
of needing most of the season to have transpired before being able to run, so is limited
for forecasting. However, the peak NDVI method can be implemented mid-season and is
still very good with SE of 5.6 bu/ac (0.35 mt/ha), or a 3.5% CV. These both significantly
outperform the benchmark trend only model, which has a SE of 11.4 bu/ac (0.72 mt/ha)
or a CV of 7.4%. State-level corn results are more muted but they still provide a good
SE average of 9.7 bu/ac (0.61 mt/ac), equating to a CV of 6.5%, with the accumulated
NDVI method. The average CVs for the peak methodology were poorer at 7.2%, but still
consistently better than using a trend model, which was 10.7%.

For the other crops the usefulness of the MODIS data for yield modeling, versus
simple trend, is less clear. Soybeans showed the best results at the national and state levels
using the accumulated NDVI methodology, but the model estimates were only marginally
better than just using trend. This is shown with the national soybean model CV, being 5.8%
for trend and 5.7% for accumulated NDVI. Spring wheat also had similar CVs for both
trend and accumulated NDVI, being 8.8% and 8.6%, respectively. Ultimately, the soybean
and spring wheat CVs were two to three times worse than for corn. The winter wheat
results were mostly poor, but there were suggestions the Northwest USA states could see
some yield modeling utility with the GLAM MODIS NDVI data. All modeling scenarios
for upland cotton, trend or MODIS-based, were poor. Given the success of the method
for corn, it suggests for these other crops it is not so much a failure of the methodology
but rather weakness in the underlying assumption of the relationship between the MODIS
NDVI data and crop yield.

It is anticipated these results would be similar if the yield modeling methods were
performed for intensive crop regimes globally. To concretely test this, however, is a chal-
lenge given the less comprehensive and robust historical yield estimate databases available
in most countries. A secondary weakness of this modeling approach internationally is
the lack of high-quality crop maps for the masking of coarse-scale imagery like MODIS.
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Ultimately, expansion of this style of work beyond the USA is highly welcomed, as is the
pursuit of models for other crops.
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