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Abstract: Detailed information on urban land uses has been an essential requirement for urban
land management and policymaking. Recent advances in remote sensing and machine learning
technologies have contributed to the mapping and monitoring of multi-scale urban land uses, yet
there lacks a holistic mapping framework that is compatible with different end users’ demands.
Moreover, land use mix has evolved to be a key component in modern urban settings, but few
have explicitly measured the spatial complexity of land use or quantitively uncovered its driving
forces. Addressing these challenges, here we developed a novel two-stage bottom-up scheme for
mapping essential urban land use categories. In the first stage, we conducted object-based land
use classification using crowdsourcing features derived from multi-source open big data and an
automated ensemble learning approach. In the second stage, we identified parcel-based land use
attributes, including the dominant type and mixture mode, by spatially correlating land parcels with
the object-based results. Furthermore, we investigated the potential influencing factors of land use
mix using principal components analysis and multiple linear regression. Experimental results in
Ningbo, a coastal city in China, showed that the proposed framework could accurately depict the
distribution and composition of urban land uses. At the object scale, the highest classification accuracy
was as high as 86% and 78% for the major (Level I) and minor (Level II) categories, respectively. At the
parcel scale, the generated land use maps were spatially consistent with the object-based maps. We
found larger parcels were more likely to be mixed in land use, and industrial lands were characterized
as the most complicated category. We also identified multiple factors that had a collective impact on
land use mix, including geography, socioeconomy, accessibility, and landscape metrics. Altogether,
our proposed framework offered an alternative to investigating urban land use composition, which
could be applied in a broad range of implications in future urban studies.

Keywords: remote sensing; land use classification; ensemble learning; mixed land use; urban
planning

1. Introduction

Our planet witnessed rapid urbanization in recent decades. By 2018, global artifi-
cial surface areas reached 797,076 km2, more than 2.5 times that of 1990 [1]. This trend
is expected to continue in the coming decades that by 2050, about 70% of the world’s
population (6.7 billion) is going to live in urban areas [2,3]. Although urbanization can
promote economic growth and living standards improvement, its negative outcome in
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the meantime has triggered a series of environmental and ecological problems, such as
environmental degradation [4,5], greenspace exposure [6,7], cropland displacement [8,9],
and biodiversity loss [10,11]. To maintain such trade-off as well as achieve sustainability, it
is therefore of great importance to capture the spatiotemporal dynamics of urban land use
changes from historical retrospect and future prediction, which in fundament, requires the
availability of accurate and fine-resolution urban land use maps.

Recent developments of remote sensing, social sensing, and machine learning tech-
nologies have greatly facilitated large-scale urban land use classification and application in
a cost-effective manner. According to the spatial size of the mapping unit, existing urban
land use mappings can be generally classified into three groups: pixel-based, object-based,
and parcel-based [12,13]. The pixel-based approach refers to the method that utilizes spec-
tral and textual signatures derived from multispectral remote sensing images for sensing
urban land uses [14–19]. For instance, Pacifici, Chini and Emery [18] used multi-scale textu-
ral metrics from very high-resolution (VHR) panchromatic imagery and a neural network
approach for generating per-pixel urban land use maps in four American and Italian cities.
These pixel-based efforts boost our understanding in urban land use patterns from a macro
perspective. However, the utilization of pixel-based classifications has been largely limited
in practical applications, given the fact it cannot provide land use information on specific
entities within a city [13].

To better uncover the spatial composition of urban functions, previous studies have
widely employed image segmentation technology for retrieving urban land use information
at the object scale [20–23]. Object-based image analysis aims at utilizing the spectral and
contextual information of pixels in classifying them into homogeneous objects with consis-
tent visual cues (e.g., spectrum, texture, and shape) [24,25]. In recent years, advanced deep
learning technology, which converts features into abstract classes at a deeper level [26–28],
has aroused new popularity in urban land use mapping empowered by a variety of new
and improved deep learning algorithms [29–35]. Zhang et al. [30], for instance, built a novel
object-based convolutional neural network (OCNN) for urban land use classification from
VHR remote sensing images. Bao et al. [34] proposed the deeper-feature convolutional
neural network (DFCNN) for extracting deeper features of building semantic recognition.
Nevertheless, the object-based approach has some disadvantages. On the one hand, there
is no universally accepted method to determine an optimal scale level to segment objects.
This makes the successful use of the object-based paradigm largely rely on repeatedly
modifying training objects, performing the classification, observing the output, and/or
testing different combinations of functions as a trial-and-error process [36]. On the other
hand, there exists an “application gap” for object-based classifications in practical urban
planning and management. The main reasons for the disparity are (1) the indistinguishable
socioeconomic attributes of the same ground object layouts, (2) the weak transferability
of the supervised frameworks and the time-consuming training sample annotation; and
(3) the category system inconsistency between the data source and the urban land use
application [37].

A street parcel, represented as the tract of land that has a relatively homogeneous
function, is more compatible with the basic analyzing unit in urban studies [38,39]. Given
this advantage, parcel-based schemes have been widely exploited in recent urban land
use classifications [37,39–41]. For example, Gong et al. [41] produced the essential urban
land use categories (EULUC) map for China in 2018 based on the Random Forest classifier
and multiple features derived from OpenStreetMap (OSM) road network, Sentinel-2 multi-
spectral imagery, Luojia-1 nighttime lights (NTLs), Gaode Points of Interest (POIs), and
Tencent location-based service data. This map marks the beginning of a new collaborative
urban land use mapping scheme across large areas and can serve as a base dataset for
related research and practices in the future. However, limited by the data quality, the
model function, and the mixed land use issue, existing parcel-based urban land use maps
are still at a relatively low mapping accuracy. In the nationwide study of EULUC-China,
for example, the reported overall accuracy is around 61% for the Level I category and 58%
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for the Level II category [41]. This hinders their applications in fine-resolution research at
local and regional scales. Additionally, the majority of current studies are carried out in a
determined spatial context (either pixel, object, or parcel). In consequence, it is valuable to
construct a flexible and adjustable mapping framework that can simultaneously meet the
demands from varying research and practice groups.

In recent years, ensemble learning, as an efficient method of machine learning, has
received much attention from the remote sensing community. One advantage of ensemble
learning is the capacity that strategically generates and combines multiple models or
classifiers in solving a particular computational intelligence problem [42]. When multiple
models are employed, the combined result of them is almost always better as compared
to using a single model [43]. Consequently, ensemble learning is extremely helpful in
improving mapping accuracy and has been widely adopted in various studies, including
land cover classification [44,45], wetland monitoring [46,47], and change detection [48,49].
Nonetheless, the performance of ensemble learning in urban land use classification remains
poorly understood.

Mixed land use has always been an unneglectable issue in land management and
urban planning [50,51]. It is defined as the phenomenon that two or more land use types,
such as industrial zones, commercial zones, and residential districts, simultaneously pro-
vide services for different groups in a spatial entity (for example, a land parcel) [52,53]. The
city itself is an integrated, complex, and multifunctional systems system. Theoretically and
practically, land use mix, as a fundamental principle of urban development, has achieved
substantial progress worldwide [54]. In the book named The Death and Life of Great Amer-
ican Cities, Jacobs claims that the mixture of land uses is one of the critical preconditions
for maintaining the city’s vitality [55]. Apart from that, mixed land use has been treated as
a desirable wheel for advocating active travel and promoting public health [56–59]. How-
ever, existing measurements of urban land use mix are mainly based on ground survey or
statistical data and usually require a large amount of labor expense [51,54,60,61]. Moreover,
few studies have quantitively explored the underlying factors that drive land use mix.

To address these challenges, we developed a novel two-stage bottom-up framework
for urban land use categories mapping with multi-source geospatial big data and an
automatic ensemble learning approach. Taking Ningbo as the case study, we provided
a comprehensive review of urban land use composition in a Chinese city with the four
research aims as follows: (1) derive urban land use classification maps accurately at both
object and parcel scales; (2) verify the efficiency and robustness of ensemble learning in
object-based urban land use classification; (3) measure the degree of land use mix at the
parcel scale; and (4) investigate potential influencing factors that drive land use mix.

2. Methodology
2.1. Basic Assumption: Each Parcel Is Composed of Objects

The starting point of our two-stage urban land use mapping framework lies in the
spatial structure of mapping units, that is, each parcel consists of several objects, which
have the same or different land use attributes. Since a pixel does not explicitly represent
an entity characterizing the urban environment, we exclude the pixel-scale context in
this study. A parcel is defined as a geographically meaningful region with relatively
homogeneous socioeconomic functions and is usually delineated by the road network that
surrounds [12,39,41]. An object is defined as a group of pixels with consistent visual cues,
such as spectrum, texture, and shape [24,36]. Normally, a parcel has a larger area than an
object does. Figure 1a displays a conceptional example of spatial interdependence between
parcels and objects, in which a parcel contains multiple objects with different urban land
uses including residential areas, commercial areas, and educational areas. In some cases,
parcels may be used for a single land use type, for example, all buildings within a land
parcel being for residential purpose. We interpret such kinds of parcels (i.e., one with
objects in it all having the same function) as relatively pure land use.
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Figure 1b shows a flowchart for the generation of the two kinds of mapping units
(i.e., the basic spatial context for urban land use classification in this study). We leveraged
multiple datasets from OSM road network, global urban boundaries (GUB) [62], and the
10 m global land cover product (FROM-GLC10) [63] for generating parcels while adopting
a seed-based segmentation approach called the simple non-iterative clustering (SNIC)
algorithm [64] for segmenting the 10 m Sentinel-2 imagery into homogeneous objects. See
Supplementary Material Section S1 for more information on the generation of two types of
mapping units.

2.2. Stage-1: Mapping at the Object Scale

Figure 2 presents a flowchart outlining the entire mapping scheme. According to
the basic assumption in Section 2.1, we divided this framework into mapping essential
urban land use categories at two stages: the object scale (EULUC-seg, stage 1) and the
parcel scale (EULUC-parcel, stage 2). In stage 1, four main procedures were involved
(Figure 2): extracting features from multi-source remotely sensed and social sensing data;
collecting training and validation samples; automatic classification with ensemble learning;
and mapping and accuracy assessment. We performed ensemble learning and statistical
analysis in the Python 3 environment and used the ArcMap 10.3 software for spatial
analysis and map production.

2.2.1. Feature Extraction

The inclusive features can be divided into two categories: remote sensing based and
social sensing based. For remote sensing images, the average value, the sum value, and
the standard deviation of each band are the most commonly used features. Additionally,
texture features that describe the degree of tonal variations across pixels of an image or
the level of landscape heterogeneity of an area [65] is another widely adopted item of
information in land use classification [15,20,22,66,67]. Among the numerous texture calcu-
lation approaches in the literature, the gray level co-occurrence matrix (GLCM) method
proposed by Haralick et al. [68] is a reliable method that computes the texture of an image
by counting the occurrences of combinations of specific values between neighborhood
pixels [69]. Following the GLCM method, we calculated six texture metrics of variance,
correlation, contrast, dissimilarity, entropy, and angular second moment in this study.
Details about the metric calculation and descriptions are provided in Table S1.
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As for social sensing data, feature extraction is determined by the structure and
characteristics of data. For example, the point of interest (POI) data are a set of points
recording multiple spatial and attribute information of geographical entities, such as
addresses, names, coordinates, and land use types. In this case, features of POI data
are usually calculated based on the number and proportion of each POI type within the
mapping unit.

Table S2 summarizes all object-based features used in the stage 1 mapping of EULUC-
seg. In total, 76 features derived from multi-source remotely sensed and social sensing data
sources were included in this study.

2.2.2. Sample Collection

We adopted the two-level classification system proposed in our previous study for
mapping urban land use, which comprises five major (Level I) categories (residential,
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commercial, industrial, transportation, and public) and twelve minor (Level II) categories
(residential, village, business, commercial, industrial, transportation, administrative, ed-
ucational, medical, sport and cultural, park and greenspace, and undeveloped) (Table 1).
This classification system originated from the EULUC scheme proposed by Gong et al. [41]
and was later modified by Tu et al. [23] considering the characteristics of the study area.
Detailed descriptions for each category of the two-level EULUC classification system are
provided in Table S3. Based on the defined classification system, we identified 485 sam-
ples of the ground truth through visual interpretation and field investigation (Table 1).
Practically, we first randomly selected objects within the study area and interpreted them
based on multiple online sources such as Google Earth (https://www.google.com/earth/,
accessed on 20 August 2021) and Baidu Street View Maps (https://map.baidu.com/, ac-
cessed on 20 August 2021). Second, we conducted an on-site field survey back in October
2019 and confirmed that more than 99% of the investigated samples were correct [23]. For
subsequent analysis, the collected samples were randomly split into two datasets, that
is, 70% for training (340) and 30% for validation (145). The training data were used for
ensemble learning through multi-layer stacking, 5-fold cross-validation, and parameter
tuning (see Section 2.2.3). The optimal model retrieved from ensemble learning was then
applied to the validation samples for an accuracy assessment (see Section 2.2.4).

Table 1. Classification system and samples.

Level I Level II Number of Samples

01 Residential 0101 Residential 83
0102 Village 50

02 Commercial 0201 Business 51
0202 Commercial 33

03 Industrial 0301 Industrial 48
04 Transportation 0401 Transportation 20

05 Public 0501 Administrative 28
0502 Educational 43

0503 Medical 15
0504 Sport and cultural 21

0505 Park and greenspace 73
0506 Undeveloped 20

Total 485

2.2.3. Ensemble Learning

As shown in Figure 2, we leveraged the multi-layer stacking model in ensemble
learning. Each stack layer (L) is composed of several individual base models (“Base
Learner” (BL)) and a “Meta Learner” (ML). Iteratively, each base model in BLn is trained
individually with the output of MLn−1 in the previous stack layer, and MLn is trained
by stacking the learning results from BLn and original input features. The revisit of the
original data enables high-layer stackers to achieve more robust and accurate performance
during the training process.

Apart from multi-layer stacking, here we adopted a bagging approach called k-fold
cross-validation for reducing variance in predicting results and mitigating over-fitting is-
sues in ensemble learning. Practically, for any base model in BLn, we randomly partitioned
the input dataset into k subsamples with equal size (stratified based on labels). Among the
k subsamples, one single subsample was reserved as the validation set for model testing,
and the remaining k−1 subsamples were used for model training. This cross-validation
process would be repeated k times, in which each k subsample was used only once for the
validation. The averaged k results were then computed as the final output.

We employed the AutoGluon package introduced by Erickson et al. [70] to realize
automatic ensemble learning. AutoGluon is an open-source Python library that automates
the process of model selection, hyperparameter tuning, and model ensembling during ma-
chine learning [70]. Based on the given parameters, such as training time, bagging strategy,

https://www.google.com/earth/
https://map.baidu.com/
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etc., AutoGluon will automatically achieve the best classification results by combining and
stacking multi-model classifications. In this study, the parameter “num_bag_folds” was
set to 5 for 5-fold cross-validation, “auto_stack” was set to True for automatic multi-layer
stacking, and “time_limit” was set to 3600 for a maximum learning time of 3600 s in total.
To achieve the most robust classification results, we used all the available base models
provided by AutoGluon herein ensemble learning, which included Random Forest [71],
Extremely Randomized Trees [72], Gradient Boosted Decision Trees (CatBoost) [73], Light
Gradient Boosting Machine (LightGBM) [74], and Neural Networks [75]. For each base
model, we tested its performance under 20 sets of parameter combinations and chose
values with the highest overall accuracy as the optimal parameters. An introduction to
each base model as well as its parameter settings is provided in Supplementary Material
Section S2.

2.2.4. Accuracy Assessment and Mapping

Two evaluation schemes were included in the accuracy assessment. For the training
process, the average overall accuracy [76] derived from the 5-fold cross-validation using
ensemble learning was calculated for comparing the classification performance of different
models. In this process, the model with the highest training accuracy was defined as
the optimal model. For the validation process, the validation sample set (described in
Section 2.2.2) was used to assess the performance of the optimal model independently.
Specifically, we calculated the overall accuracy, Kappa coefficient, user accuracy, and
producer accuracy based on the confusion matrix [77].

After that, we predicted the land use categories based on the derived features (Section 2.2.1)
and the optimal training model (Section 2.2.3), and finally generated the stage-1 mapping
results of EULUC-seg.

2.3. Stage-2: Mapping at the Parcel Scale

Since each parcel consisted of several objects, we could further identify the land use
attributes (dominant category, degree of mix, etc.) of parcels according to objects within
them, which had been classified in the previous stage of EULUC-seg. Specifically, for stage 2
mapping of EULUC-parcel, we defined and calculated three indices, i.e., dominant category
(DC), dominant rate (DR), and complexity index (CI), based on the spatial relationship
between land parcels and objects. We assigned DC as the final map of EULUC-parcel. We
used DR and CI to measure the land use mix of parcels.

Let Pi represent the area proportion of the i-th land use category to the entire parcel
and n the total number of land use categories of a parcel. Three indices of DC, DR, and CI
can be calculated as:

DC = argmax
i

Pi, (1)

DR = PDC, (2)

CI = −
n

∑
i=1

Pi ln(Pi)/ ln(n), (3)

DC is determined as the land use category with the largest area proportion within each
parcel. DR refers to the area proportion of DC in the entire parcel. The larger the DR, the
purer the parcel (1 indicates single land use). CI is essentially an entropy-based index that
characterizes the evenness of land use classes and has been widely adopted in measuring
land use mix [50,60,78–80]. It ranges from 0 to 1 with a higher CI value indicating a more
mixed parcel and vice versa. CI equals 0 when there is only one land use within the parcel
and reaches 1 when all the land use classes are evenly distributed. In this study, we mainly
focused on the calculation and analysis of land use mix for the Level I category.
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2.4. Quantifying Influencing Factors of Land Use Mix

With an understanding of the current status of land use mix, our next goal was to
explore the underlying factors behind the spatial heterogeneity of land use mix, which
can provide guidance and insight for urban planning and neighborhood design. After
a comprehensive review of the existing literature [51,57,61,81], we selected 19 variables
from four aspects of geography, socioeconomy, accessibility, and landscape as the potential
influencing factors of urban land use mix (Table 2). The variables, calculated at the parcel
scale, were based on attributes of the landscape itself (e.g., parcel size), in addition to other
multi-source geospatial data (e.g., using digital elevation model (DEM) data to obtain
elevations). Taking the Level I category as an experiment, we further uncovered the driving
forces of land use mix by performing principal components analysis (PCA) and multiple
linear regression with CI as the dependent variable. A detailed description of how we
processed and calculated the raw data to derive these variables as well as quantified their
associations with land use mix was provided in the Supplementary Material Section S3.

Table 2. Factors that influence land use mix. Noted all variables were calculated at the parcel scale.

Aspect Description Variable Data Source Spatial Resolution
(m)

Geography Mean of elevation elevation SRTM DEM 2 30
Mean of NDVI 1 ndvi Sentinel-2 10
Fraction of clay fra_clay Soil texture data 1000
Fraction of sand fra_sand Soil texture data 1000
Fraction of silt fra_silt Soil texture data 1000

Socioeconomy Number of business points business Baidu POI 3 /
Number of commercial points commercial Baidu POI 3 /

Mean of population pop WorldPop 100
Mean of nighttime light ntl Luojia-1 130

Mean of house price house_price Lianjia /
Accessibility Distance to bus station dis_bus Baidu POI 3 /

Distance to subway station dis_subway Baidu POI 3 /
Distance to railway dis_ railway OSM 4 ±20

Distance to major road dis_major_road OSM 4 ±20
Distance to minor road dis_minor_road OSM 4 ±20
Distance to track road dis_track_road OSM 4 ±20

Landscape Area of parcel area / /
Shape index of parcel shape / /

Richness index of parcel richness / /
1 NDVI: normalized difference vegetation index. 2 SRTM DEM: shuttle radar topography mission digital elevation model. 3 POI: point of
interest. 4 OSM: OpenStreetMap.

3. Experimental Tests and Results
3.1. Study Area and Data
3.1.1. Study Area

Ningbo is a sub-provincial city located in the northeastern Zhejiang province, China
(between 28◦51′–30◦33′N and 120◦55′–122◦16′E, Figure 3). It faces the East China Sea and
Zhoushan Archipelago to the east, Hangzhou Bay to the north, and Shanghai—the largest
and most prosperous metropolis in China—across the sea [82]. Topographically, the city is
high in the southwest and low in the northeast with an average elevation of 4 m [83]. The
total land area of Ningbo is 9816.23 km2, of which plain accounts for 40.3%, hill accounts
for 25.2%, and mountain accounts for 24.9% [84].
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Benefiting from the country’s “Reform and Opening-Up” policy, Ningbo is among the
first batch of Chinese coastal cities that opened to the outside world back in the 1980s. It has,
therefore, been experiencing dramatic socioeconomic development, rapid urban expansion,
and substantial population growth in the past four decades. Statistically, Ningbo’s gross
domestic product (GDP) has increased from USD 0.37 billion in 1979 to USD 191.68 billion
in 2020. It now possesses a registered population of 6.03 million with an urbanization rate
of 72.9% [85]. As an important economic, industrial, and trading center in East China,
the city has a diversified land use pattern [23,84,86], making it a representative region for
case studies.

3.1.2. Data

As listed in Table 3, we included an expansive set of remotely sensed and social sensing
data layers for mapping urban land use categories, including Sentinel-1 Synthetic Aperture
Radar (SAR) imagery, Sentinel-2 multispectral imagery, Luojia-1 NTL imagery, WorldPop
population dataset, and Baidu POI data. All these datasets were collected during the year
2018 for temporal consistency. Details for the preparation and processing of each category
of the used datasets are provided in the Supplementary Material Section S4. Figure S2
displays and compares six layers of the datasets used in the city center of Ningbo, in which
a significant difference is observed in spectral reflectance, spatial resolution, and data
structure. Compared with Sentinel-1 and Sentinel-2 (Figure S2a–c), Luojia-1 and WorldPop
reveal fewer spatial details due to the relatively low spatial resolution (Figure S2d,e). As
the only vector dataset used, the distribution of POI data shows a certain heterogeneity
across space (Figure S2f). Following Section 2.2.1, we further extracted an expansive set of
spectrum, texture, and additional features based on these datasets for object-based urban
land use classification (i.e., stage 1 mapping). Figure S3 provides an example of the five
typical object-based features derived.
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Table 3. An overview of datasets used for mapping urban land use.

Category Data Source Resolution (m) Year

Synthetic Aperture Radar Sentinel-1 10 2018
Multispectral Sentinel-2 10–60 2018

Nighttime light Luojia-1 130 2018
Population WorldPop 100 2018

Points of Interest Baidu POI / 2018

3.2. Results
3.2.1. Accuracy Assessment

Tables 4 and 5 compare the classification accuracy of different models of EULUC-
seg for the two-level categories. At the object scale, Ensemble models achieved the best
performance for both the Level I category (training accuracy: 86.47%) and the Level II
category (training accuracy: 77.94%), followed by Neural Networks, LightGBM, CatBoost,
Extremely Randomized Trees, and Random Forest models with slightly lower accuracy.
This indicated that the multi-layer stacking strategy did help improve model performance
in land use classification. Another finding was that Ensemble and Neural Networks models
required more training time than other models. Given the relatively superior performance
of Ensemble models, we chose them as the optimal models for subsequent analysis.

Table 4. Level I accuracy comparison of different models of EULUC-seg in terms of training accuracy,
training time, and stack level. Note the training accuracy is the average overall accuracy of the 5-fold
cross-validation during training.

Model Training Accuracy
(%) Training Time (s) Stack Level

Random Forest 80.29 85.57 1
Extremely Randomized Trees 80.88 68.46 1

CatBoost 82.65 232.77 1
LightGBM 83.82 168.00 1

Neural Networks 86.47 4271.07 1
Ensemble 86.47 4271.52 2

Table 5. Level II accuracy comparison of different models of EULUC-seg in terms of training accuracy,
training time, and stack level. Note the training accuracy is the average overall accuracy of the 5-fold
cross-validation during training.

Model Training Accuracy
(%) Training Time (s) Stack Level

Random Forest 69.41 75.01 1
Extremely Randomized Trees 72.35 58.75 1

CatBoost 72.06 423.39 1
LightGBM 74.41 170.89 1

Neural Networks 75.29 4356.12 1
Ensemble 77.94 5279.67 2

We further evaluated the classification performance of optimal models for each land
use category in EULUC-seg, using the validation sample set in Section 2.2.2. An overall
accuracy of 85.52% and a kappa coefficient of 0.79 were obtained for the five Level I
categories (Table S5). Residential land had the highest user accuracy of 97.73%, while
transportation land had the lowest user accuracy of 71.43%. In terms of producer accuracy,
the classification performance of all Level I categories was rather satisfying (>85%). As
for the Level II category, the overall accuracy and the kappa coefficient were 77.93% and
0.75, respectively (Table S6). Out of the twelve Level II categories, residential, village, and
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greenspace could be well classified, with both user accuracy and producer accuracy higher
than 80%. In contrast, public land uses such as educational, medical, and sport and cultural
lands yielded less plausible classification performance. As shown in the confusion matrix
in Table S6, such kinds of land use categories, which aim at public management and service,
can be easily confused with residential and business lands. Moreover, it was discovered
that commercial lands had a relatively low user accuracy (41.67%), while industrial lands
had a relatively low producer accuracy (60.00%).

3.2.2. Mapping of Essential Urban Land Use Categories

Figure 4 shows the two-stage urban land use mapping results for Level II categories in
Ningbo. Compared with EULUC-parcel, EULUC-seg was more fragmented with smaller
mapping units. Owing to the proposed bottom-up mapping scheme, urban land use
distributions showed good spatial consistency between the object scale and the parcel
scale. The core urban area was dominated by residential, business, and commercial lands
(Figure 4b1,b2), whereas the suburban area was mainly distributed with residential, village,
industrial, and greenspace lands (Figure 4a1,a2,c1,c2). Table S7 summarizes the statistics
of urban land use composition at the object scale. Statistically, within the 1441.27 km2

urban area of Ningbo, residual lands accounted for 30.17% (434.83 km2), commercial
lands accounted for 2.68% (38.61 km2), industrial lands accounted for 20.03% (288.71 km2),
transportation lands accounted for 0.99% (14.22 km2), and public lands accounted for
46.13% (664.90 km2). Overall, these results were essentially in accordance with our previous
research [23].
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Figure 5 distributes land use mix in Ningbo as well as its relationship with parcel
size. In terms of spatial distribution, land use was heterogeneously mixed in the city
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center, with larger parcels generally having higher CI values (Figure 5a) and lower DR
values (Figure 5b). This was confirmed in the linear regression results, where a significantly
positive relationship (r = 0.57, p < 0.01) was observed between CI and parcel area (Figure 5c),
while a significantly negative relationship (r = −0.60, p < 0.01) was observed between DR
and parcel area (Figure 5d). Moreover, it was discovered that land use was relatively mixed
in peri-urban areas, with CI values generally higher than 0.6 (Figure 5a).

1 

 

 
Figure 5. Land use mix of Level I categories in Ningbo. (a) Maps of complexity index in the city center. (b) Maps of
dominant rate in the city center. (c) The relationship between complexity index and area of parcels. (d) The relationship
between dominant rate and area of parcels. r in (c,d) represents the Pearson correlation coefficient.

Table 6 compares the degree of mix between different land use categories. Land uses
for industrial and transportation purposes were the most complicated, with an average CI
value of 0.56± 0.29 and 0.49± 0.35 and an average DR value of 0.76± 0.17 and 0.73 ± 0.23,
respectively. In contrast, public lands had the simplest use among all categories, with a
minimum CI value of 0.31 ± 0.37 and the maximum DR value of 0.87 ± 0.18. Moreover,
residential and commercial lands were relatively simple, with half of them having a DR
value higher than 0.86. In general, among the 5562 parcels investigated, most of them were
dominated by one land use category only (average DR value: 0.84 ± 0.18) and about a
quarter of them had a CI value greater than 0.71.
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Table 6. Statistics of complexity index and dominant rate for each Level I land use category. Definition
for each land use category can be seen in Table 1.

Level I Indices

Complexity index

Count Mean STD 0% 25% 50% 75% 100%
2-9 01 1767 0.37 0.36 0.00 0.00 0.33 0.70 1.00

02 570 0.46 0.38 0.00 0.00 0.53 0.80 1.00
03 722 0.56 0.29 0.00 0.40 0.61 0.76 1.00
04 110 0.49 0.35 0.00 0.00 0.60 0.80 0.99
05 2493 0.31 0.37 0.00 0.00 0.00 0.66 1.00

Total 5662 0.38 0.37 0.00 0.00 0.36 0.71 1.00

Dominant rate

Count Mean STD 0% 25% 50% 75% 100%
2-9 01 1767 0.85 0.17 0.32 0.72 0.93 1.00 1.00

02 570 0.82 0.18 0.36 0.68 0.86 1.00 1.00
03 722 0.76 0.17 0.27 0.63 0.79 0.90 1.00
04 110 0.73 0.23 0.31 0.51 0.73 1.00 1.00
05 2493 0.87 0.18 0.31 0.74 1.00 1.00 1.00

Total 5662 0.84 0.18 0.27 0.70 0.92 1.00 1.00
Note. STD: standard deviation; x%: quantiles at the x% level.

3.2.3. Influencing Factors of Land Use Mix

Table 7 summarizes the extracted ten components from PCA, which totally explain
93.68% of the variables listed in Table 2. According to the calculated variable weights
of different PCs (Table S8), we defined variables with loading factors greater than 0.5 as
important variables and assigned physical meaning to each PC. For example, PC1 and
PC2, which accounted for 39.17% and 16.59% of the overall variance in the original data,
respectively, were both mainly explained by the variable of distance to subway station
(dis_subway). Therefore, these two components could be generally grouped as accessibility.

Table 7. Summary of the extracted ten components from PCA. Important variables with a loading factor higher than 0.50
are listed.

Component Percentage of Explained
Variances (%) Important Variables Physical Meanings

PC1 39.17 dis_subway accessibility
PC2 16.59 dis_subway accessibility
PC3 11.41 dis_track_road, dis_rail accessibility
PC4 7.01 ndvi geography
PC5 4.09 richness, shape landscape
PC6 3.99 fra_silt geography
PC7 3.74 dis_major_road accessibility
PC8 3.37 house_price, shape socioeconomy and landscape
PC9 2.43 dis_major_road, house_price accessibility and socioeconomy
PC10 1.89 dis_rail accessibility

Total 93.68

Table 8 reports the results of the multiple linear regression model with complexity
index CI as the dependent variable. Both PC1 and PC2, which represented the accessibility
aspect, were significantly associated with the complexity index in a positive manner,
indicating that the longer the distance to the subway station, the larger the land use mix
will be. Contrary to the subway, regression results of PC3 showed that the complexity of
parcels would increase when their distances to the track road or the railway decreased
(p < 0.05), a negative relationship. These results of PC1–3 indicated that accessibility had
a double-edged impact on land use. PC8 was negatively associated with the complexity



Remote Sens. 2021, 13, 4241 14 of 19

index at the p < 0.001 level, implying parcels with higher house prices and more irregular
shapes would have less mixed land use. Moreover, regression results of PC4 and PC6 both
reflected that a friendlier natural environment (such as higher green cover rates) could lead
to an increase in land use mix.

Table 8. Model report for the multiple linear regression analysis predicting Level I complexity index
from the extracted ten components from PCA.

Coefficient STD p Value
CI95

LL UL

Intercept 41.40 *** 0.55 0.000 40.33 42.48
PC1 5.17 *** 1.43 0.000 2.37 7.97
PC2 6.21 ** 2.19 0.005 1.91 10.52
PC3 −6.51 * 2.65 0.014 −11.7 −1.32
PC4 8.70 * 3.38 0.010 2.07 15.34
PC5 −7.23 4.42 0.102 −15.88 1.43
PC6 10.80 * 4.48 0.016 2.02 19.58
PC7 −8.69 4.62 0.060 −17.76 0.37
PC8 −20.52 *** 4.87 0.000 −30.06 −10.98
PC9 −8.91 5.73 0.120 −20.15 2.33
PC10 8.68 6.51 0.183 −4.09 21.45

Note. *** indicates p < 0.001, ** indicates p < 0.01, and * indicates p < 0.05. STD: standard deviation; CI95: 95%
confidence interval; LL: lower limits of CI95; UL: upper limits of CI95.

4. Discussion
4.1. Advantages of the Proposed Framework

Different from previous studies that only focused on a single mapping scale, in this
research, we identified land use attributes at both parcel and object scales using a bottom-up
mapping strategy, with the aid of multi-source geospatial big data and ensemble learning
approaches. The developed mapping scheme has some noticeable advantages. First, it
significantly improves classification accuracy at the object scale. Machine learning has
been widely accepted as a fundamental tool for land use and land cover classification.
In this study, leveraging the automatic ensemble learning strategy, we tested a group of
machine learning algorithms and compared multi-model performance in urban land use
classification, using the same training and validation samples. Our results showed that
Ensemble models achieved more robust and better performance in terms of classification
accuracy. Compared with other models, the utilization of Ensemble models could yield a
net increase in the training accuracy of 2.65–6.18% for the Level I category and 2.65%–8.53%
for the Level II category (Tables 4 and 5). Since the protocol of ensemble learning is
to incorporate results of various models through multi-layer stacking and bagging, this
method is especially suitable for dealing with extensive data with high dimensions. The
efficiency and robustness of machine learning have also been observed and discussed in
our previous experiments for land use and land cover mapping [12,23,44,87–89].

Second, the proposed scheme has, in the meantime, achieved robust classification
results at the parcel scale. Mixed land use has been a major challenge in parcel-based land
use mapping. In the nationwide study of EULUC-China, for instance, Gong et al. [41]
discovered that overall accuracy decreases rapidly with the increase in the land use mix
of parcels. Figure S4 also provides a comparison between the two-stage mapping results
of this study with the EULUC-China maps [41]. Since Gong et al. [41] directly performed
classification at the parcel scale, parcels with mixed land use, especially large ones, were
easily misclassified (Figure S4j–l). By addressing this shortcoming, our mapping results
will be more accurate in revealing land use patterns and keep solid spatial consistency
between objects (Figure S4d–f) and parcels (Figure S4g–i).

Third, the proposed mapping framework has offered an alternative to measuring land
use mix. At the parcel scale, we delineated the degree of land use mix (CI) and the rate
of dominant land use (DR) through spatial aggregation and indices calculation, using the
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classification results at the object scale. We found that larger parcels had more mixed land
use, of which many were distributed in the peri-urban area (Figure 5). We also found
that industrial land uses were the most complicated, while residential and public lands
were the simplest land uses (Table 6). These findings were generally in line with previous
research [51,80]. Theoretically, the proposed scheme is very flexible and can be extended
to any other region in the future. Based on the generated land use maps, urban planners,
decision-makers, and stakeholders may use them as a benchmark to understand the current
distribution, rationality, and mixture of land use or to examine the implementation effects
of land adjustment and planning policy. Moreover, the produced maps can be correlated
with factors such as urban livability or environmental quality to explore the potential
influencing factors of mixed land use, which in turn guide future urban planning.

4.2. Limitations and Future Work

A few remaining caveats caused by data limitations need to be acknowledged. On the
one hand, the size of mapping units largely depends on the data quality and parameter
settings. For instance, parcels in this study are generated based on buffered roads of OSM
data (Figure 1b). For areas where OSM roads are sparse or even absent, the generated
parcels can be too large and are not suitable for urban studies. On the other hand, this study
focuses on the spatial complexity of different land use categories but neglects other kinds
of mixes (such as horizontal mix or inner mix). In reality, it is common in urban planning
that a building provides both commercial and residential functions. To deeper uncover
the nature of urban land use composition, higher-quality emerging data (such as street
view maps) and more refined models (such as the 3D model) are urgently needed in future
work. Lastly, our experiments and analysis focus on one Chinese city of Ningbo given the
cost of sample collections and data availability, and the results and conclusions may not be
applicable to other cities. Nonetheless, the main purpose of this research is to develop a
prototype that comprehensively examines the distribution, mixture, and factors of urban
land use. Potentially through crowdsourcing and cross-cooperation, our next goal is to
de-composite land use patterns across cities with different socioeconomic development
and historical-cultural backgrounds, which provides new insights into urban planning and
management at a broader scale.

5. Conclusions

Leveraging multi-source open big data and machine learning algorithms, this research
developed a flexible and cost-effective framework for multi-scale urban land use category
mapping. Following this framework, we first performed object-based land use classification
using an expansive set of remote sensing and social sensing data layers including OSM,
Sentinel-1, Sentinel-2, Luojia-1, WorldPop, and Baidu POI data. Secondly, by spatially
joining the classification results from the object scale, we calculated three land use attributes
including dominant category, dominant rate, and complexity index at the parcel scale. Our
results indicated that Ensemble models achieved better results than the other base models,
with a training accuracy of 86% for the Level I category and 78% for the Level II category,
respectively. In addition, the two-stage mapping results showed strong consistency in
spatial patterns. These findings elucidated the role of multi-layer stacking and bagging in
urban land use classifications.

Land use mix, as a ubiquitous characteristic of cities, has become a key concern in
recent urban planning. Here, we proposed an efficient approach to measuring the degree
of land use mix and its underlying driving forces. With this detailed information, planners,
stakeholders, and city officials can quickly understand current land use compositions as
well as decide when and where adjustments should be made. The new framework is
expected to be widely utilized in various applications and implications across regions
and countries.
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