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Abstract: China is promoting the construction of an integrated positioning, navigation, and timing
(PNT) systems with the BeiDou Navigation Satellite System (BDS) as its core. To expand the position-
ing coverage area and improve the positioning performance by taking advantage of device-to-device
(D2D) and self-organizing network (SON) technology, a BDS/SON integrated positioning system is
proposed for the fifth-generation (5G) networking environment. This system relies on a combination
of time-of-arrival (TOA) and BeiDou pseudo-range measurements to effectively supplement BeiDou
signal blind spots, expand the positioning coverage area, and realize higher precision in continuous
navigation and positioning. By establishing the system state model, and addressing the single-system
positioning divergence and insufficient accuracy, a robust adaptive fading filtering (RAF) algorithm
based on the prediction residual is proposed to suppress gross errors and filtering divergence in order
to improve the stability and accuracy of the positioning results. Subsequently, a federated Kalman
filtering (FKF) algorithm operating in fusion-feedback mode is developed to centrally process the
positioning information of the combined system. Considering that the prediction error can reflect
the magnitude of the model error, an adaptive information distribution coefficient is introduced
to further improve the filtering performance. Actual measurement and significance test results
show that by integrating BDS and SON positioning data, the proposed algorithm realizes robust,
reliable, and continuous high precision location services with anti-interference capabilities and good
universality. It is applicable in scenarios involving unmanned aerial vehicles (UAVs), autonomous
driving, military, public safety and other contexts and can even realize indoor positioning and other
regional positioning tasks.

Keywords: Beidou Navigation Satellite System; self-organizing network; robust filtering; fading
filtering; federated kalman filtering

1. Introduction

Global navigation satellite system (GNSS), as an indispensable foundation for the
collection and management of information on a national scale, has played important roles
in traffic management, emergency response, and marine and national defense. With the
construction and implementation of the Global Positioning System (GPS) in the United
States [1,2], the Global National Satellite System (GLONASS) in Russia [3,4], Galileo in
the European Union [5], the BDS in China [6], the Quasi-Zenith Satellite System (QZSS)
in Japan, and the Indian Regional Navigation Satellite System (IRNSS) [7], compatibility
and interoperability have become major trends in the future development of GNSS, and
academic journals and conferences worldwide have published many articles addressing
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theoretical analyses of compatibility and interoperability [8–10]. In addition, with a focus
on the differences between systems [11], time interoperability [12], spatial coordinate
interoperability, and positioning and integrity algorithms [13], much research has been
performed to date. As an outcome of this research, it has been noted that after the collection,
screening and fusion of multi-constellation and multifrequency GNSS data, the dependence
on any single constellation is weakened, and the risk of performance degradation or
service interruption caused by electromagnetic interference, terrain occlusion, ionospheric
scintillation, denial of service or other factors are reduced, significantly improving various
navigation performance indicators [14].

However, the GNSS has natural vulnerabilities. The reception power of a satellite sig-
nal is only approximately −160 dBW, resulting in poor penetration, and the frequency and
structure of such civil signals are open, leaving them vulnerable to deception and interfer-
ence. Consequently, in cities, forests, complex sheltered areas or complex electromagnetic
countermeasure environments, the availability, continuity, robustness and reliability of
PNT services cannot be guaranteed. With the gradual expansion of GNSS applications and
increasing user demand, related vulnerabilities have gradually been revealed in the context
of automatic driving and military and national defense. Therefore, in 2016, China began to
promote the construction of an integrated PNT system with BDS as its core [15,16], aiming
to achieve high integration of multiple PNT sources and multisource data fusion in order
to generate PNT service information as a unified spatial-temporal benchmark with anti-
interference and anti-deception capabilities and features of high robustness, availability,
continuity, and reliability.

Following this trend, many works have emerged on research and development to-
ward comprehensive service systems. For example, in [13], the differentiation factors and
influences between systems, time interoperability, coordinate interoperability and core
positioning algorithms are comprehensively and systematically investigated to promote
research on GNSS interoperability technology. Ref. [17] summarizes the worldwide de-
velopment status of low earth orbit (LEO) navigation enhancement constellations, which
possess high signal strength, strong anti-interference capabilities and adaptability to fast ge-
ometric changes on the ground. Accordingly, LEO constellation can complement medium-
and high-orbit GNSS constellations to significantly enhance the positioning accuracy, in-
tegrity, continuity, and availability of GNSS. However, due to the low satellite orbits and
small single-satellite ground coverage, a multibeam antenna is required to ensure the signal
gain in the coverage area, which increases the burden of signal acquisition on the receiver
and reduces the signal acquisition speed. In addition, the air resistance in low orbit is high,
and the satellite speed and orbit height will gradually decrease, necessitating frequent
startup to maintain such an orbit. Hence, due to their limited capacity for carrying fuel
resources, these satellites have a short service life. In [18], the unavoidable inherent short-
comings of purely visual navigation algorithms were clarified; specifically, they depend
on the texture characteristics of the scene, are easily affected by lighting conditions, and
have difficulty dealing with fast rotating motion. Therefore, to improve the stability of a
navigation system, the introduction of inertial information was considered, and research
progress on the integration of inertial navigation systems (INSs) with visual integrated
navigation technology was comprehensively summarized.

In a combined GNSS and radio communication system, the high-precision integration
of 5G and BDS can further promote the precise coordination of object in space. For
example, [19] studied the integration of the characteristics of the 5G network base station
and the GNSS-based enhancement system, to exploit the advantages of 5G network in
terming of positioning coverage and data broadcasting in order to expand the scope of
GNSS positioning services; to this end, the integration of 5G terminals and high-precision
terminals was realized, and the prospects of integrating of 5G and GNSS high-precision
positioning were analyzed. In [20], the positioning performance of an integrated system
combining 5G base stations and GNSS technology under multipath interference was
studied in detail. However, with the explosive growth in the number of terminal devices
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currently being encountered in many applications, especially in the contexts of UAVs, the
Internet of Things and the Internet of Vehicles, the centralized aggregation of terminal
signals to a base station for forwarding greatly increases the occupancy rate of frequency
band resources and, thus, increases the network load. Therefore, we consider using
device-to-device (D2D) communication technology, one of the key technologies of 5G
network, to indirectly realize the high-precision integration of 5G and BDS. The most
obvious advantage of D2D technology is that users can build a self-organizing network
(SON), play the roles of server and client simultaneously, and directly connect to the
network without forwarding through a base station, thereby avoiding occupying frequency
band resources reserved for cellular wireless communication. Thus, they can realize
self-coordination, self-configuration, and self-optimization, reduce the network load and
improve the operation efficiency.

Relying on D2D-SON technology, this paper proposes an integrated BDS/SON navi-
gation and positioning system for 5G based on onboard sensors. The SON information is
used to enhance and supplement the BDS location service which can not only effectively
expand the positioning coverage area and improve the positioning accuracy of BDS but
also effectively supplement the blind spots of the BeiDou signal to enable continuous navi-
gation and positioning with the help of the SON system even when the signal is blocked
or disturbed. This real-time and higher precision integrated positioning technology can
also be extended to multi-frequency and multi-constellation GNSS and applied to many
fields, such as autonomous driving, military, and public safety. This is a new application of
sensors cooperative work in the field of navigation and positioning.

This paper aims to propose an effective filter estimation technique to improve the
performance of carrier navigation and positioning. The traditional Kalman filtering (KF)
algorithm offers high real-time performance and high estimation accuracy based on a
small amount of data but is suitable only for linear scenarios. Extended Kalman filtering
(EKF) is the most common non-linear filtering method and has a very fast calculation
speed. It is of great application significance in the fields of target tracking and real-time
state estimation. Unscented Kalman filtering (UKF) is suitable only for low-dimensional
non-linear state problems. Particle filtering (PF) offers high accuracy and is suitable for use
in environments affected by non-Gaussian noise, but as the number of particles increases,
the filtering complexity also increases, and the filtering speed decreases significantly [21].

Therefore, for the static positioning scenario to be addressed by the proposed in-
tegrated BDS/SON system, this paper starts from the common EKF algorithm and, to
overcome the observation anomaly problem for a single system, first proposes a robust
adaptive fading filtering (RAF) algorithm to perform local optimal estimation for the BDS
and SON subsystems to suppress gross errors and filtering divergence. Furthermore, an
improved federated filtering algorithm is constructed to account for the limited applica-
tion scope and insufficient performance of BDS alone, an adaptive information allocation
strategy is implemented, and the positioning results of the SON subsystem are integrated
to improve the service performance. Finally, the positioning accuracies of the RAF and
federated filtering algorithms are verified and compared, and the effectiveness of the
algorithms is analyzed from the perspective of a significance test.

2. Materials and Methods
2.1. Integrated BeiDou Navigation Satellite System (BDS)/Self-Organizing Network (SON)
Positioning Model

The application scenario for the proposed integrated positioning system is illustrated
in Figure 1. Limited by the signal strength, there is only short-range communication
between the SON nodes. The terminal to be tested simultaneously receives multiple BDS
satellite signals and ranging signals from multiple SON terminals.
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Figure 1. Integrated positioning model. 
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Figure 1. Integrated positioning model.

Now, it is assumed that the node (x0, y0, z0) to be measured can receive N(N ≥ 4) BeiDou
satellite signals, where the satellite coordinates are (X1, Y1, Z1), (X2, Y2, Z2), · · · ,(XN , YN , ZN).
This node can also form a SON network with its surrounding anchor nodes for information
transmission to obtain the ranging values and the location information of these other nodes.
Each anchor node has realized separate BeiDou positioning separately, with coordinates
(x1, y1, z1),(x2, y2, z2), · · · , (xM, yM, zM).

2.2. Robust Adaptive Fading Filtering (RAF) Algorithm
2.2.1. Kalman Filtering (KF)

KF was first proposed by the American scholar R.E. Kalman in 1960 [22]. The algorithm
is recursive. The filter is designed in the time domain using the state space method. It is
an optimal autoregressive data processing method that is suitable for state estimation for
multidimensional random processes in linear systems. It has two variants: continuous and
discrete. In discrete KF, data are detected from the input signal, and a linear equation is
used to observe the system state. The system state can be estimated in recursive form from
data that contain various types of noise, and by updating and processing the collected data
in a timely manner, the amount of data that must be stored for in the estimation process
can be kept small, which is beneficial for rapid data processing and suitable for real-time
positioning. Hence, this algorithm has been widely used in engineering.

The discretized equations of state and observation equations of the system are as
follows [22,23]:

xk = Φk|k−1xk−1 + wk−1 (1)

zk = Hkxk + vk (2)

where xk is the n-dimensional state vector in time step k, that is, the predicted values for
coordinate correction; Φk|k−1 is the n × n-dimensional state transition matrix; zk is the
m-dimensional observation vector at time k; and Hk is the m× n-dimensional observation
matrix. The state noise wk and the observation noise vk are uncorrelated zero mean white
noise sequences that exhibit the following characteristics [23]:

E(wk) = 0 Cov
(

wkwT
j

)
= Qkδk,j

E(vk) = 0 Cov
(

vkvT
j

)
= Rkδk,j

Cov
(
wk, vj

)
= 0

(3)

δk,j =

{
1, k = j
0, k 6= j

(4)



Remote Sens. 2021, 13, 4261 5 of 17

The conventional KF algorithm can be applied to solve linear problems with Gaussian
noise, while the EKF algorithm is more commonly used for handling non-linear systems.
Similar to KF, EKF also consists of two recursive update processes. However, in the EKF
algorithm, the non-linearity of the problem needs to approximately described by means
of local linearization methods such as Taylor series expansion, leading to an observation
matrix of the form Hk =

∂H(xk)
∂xk

∣∣∣
xk=x̂k|k−1

.

The overall filtering process is described as follows:
Time update:

x̂k|k−1 = Φk|k−1 x̂k−1 (5)

Pk|k−1 = Φk|k−1Pk−1Φk|k−1
T + Qk−1 (6)

Observation update:

Kk=Pk|k−1Hk
T
[

HkPk|k−1Hk
T + Rk

]−1
(7)

x̂k = x̂k|k−1 + Kk

(
zk − Hk x̂k|k−1

)
(8)

Pk = (I − Kk Hk)Pk|k−1(I − Kk Hk)
T + KkRkKk

T (9)

2.2.2. Adaptive Fading Filtering

Accurate statistical error characteristics and filtering models are the basis for the
optimal estimation of the KF/EKF algorithm. Despite the simplicity of the EKF algorithm,
the interference caused by external factors in the motion process is usually unknown and
unpredictable, and model simplification, inaccurate modeling of the initial system state,
and real-time variations in the parameter noise can introduce strong uncertainty into the
filter model. In addition, historical data accumulate over time, which restricting the filter
estimate at the current moment and affecting the estimation accuracy. At the same time,
the KF/EKF algorithm cannot adjust the gain matrix online in response to the real-time
state because of the offline nature of its calculations, so it lacks the ability to track state
mutations in a challenging environment. As the measurement error increases, the filtering
accuracy decreases and may even diverge, leading to poor reliability and robustness.

To solve the above problems, Fagin [24] and Sorenson [25] proposed a filtering algo-
rithm using a fading factor to limit the filter memory length, but they did not consider the
optimality of the filter. Xia Qijun [26] proposed a new fading filtering algorithm for linear
systems, and Zhou Donghua [27] proposed a strong tracking filtering algorithm based on
the EKF algorithm and extended it to non-linear systems. As introduced in Formula (10), a
time-varying fading factor was introduced to adjust the prediction covariance matrix in
real time to improve the utilization of new data and enhance the filter performance [27]:

Pk|k−1 = λkΦk|k−1Pk−1Φk|k−1
T + Qk−1 (10)

where, λk ≥ 1 is the time-varying fading factor.
According to Formula (8), the predicted residual at a particular point in the KF or EKF

algorithm, that is, the innovation sequence, is

εk = zk − Hk x̂k|k−1 = zk − HkΦk|k−1 x̂k−1 (11)

A strong tracking filter keeps track of the actual state of the system by forcing the
innovation sequences at different times to remain orthogonal to each other. However,
whether the filter is in a stable state is judged based on whether the fading factor calculated
in accordance with the innovation covariance is greater than 1, which may lead to the
introduction of a fading factor when it is not necessary. Therefore, a new adaptive fading
factor is proposed based on filter convergence.
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If the filtering model is constructed accurately and the system noise and observation
noise are white noise and uncorrelated, the innovation follows a normal distribution with
a mean value of 0 and the covariance is

E
(

εkεk
T
)
= HkPk|k−1Hk

T + Rk = HkΦk|k−1Pk−1Φk|k−1
T Hk

T + HkQk−1Hk
T + Rk (12)

when the filtering model diverges, the actual value of the innovation covariance is much
greater than the theoretical value; hence, Formula (13) can be used to evaluate the conver-
gence of the filter:

εk
Tεk ≤ γtrace

[
E
(

εkεk
T
)]

(13)

where γ is a reserve coefficient greater than 1. When the above formula is satisfied, the filter
is working normally; otherwise, the filter has diverged. When the reserve coefficient is set
in advance, the ratio of the variance of the innovation sequence to the trace of theoretical
covariance is assumed as follows:

ak =
εk

Tεk

trace
(

HkΦk|k−1Pk−1Φk|k−1
T + HkQk−1Hk

T + Rk

) (14)

ak =

{
γ, ak ≥ γ

ak, ak < γ
(15)

The constructed fading factor is [28],

λk =

{
eak−1, ak ≥ 1
1, ak < 1

(16)

2.2.3. Robust Filtering

Although adaptive filtering is widely used to modify the state of a filter by introducing
the fading factor on the basis of the EKF algorithm to ensure that the state estimate conforms
to the convergence condition and improve the system robustness, the gross observation
error cannot be eliminated. In some practical application scenarios, the resulting filtering
effect is not ideal. In this paper, we classify the gross error into stochastic models using the
principle of robust estimation to make the filtering results resistant to the influence of the
gross observation error. Let the variance of the observation value zi be denoted by Rii; then,
the equivalent variance can be expressed as Rii =

1
ωi

Rii, with the equivalent measurement
noise covariance matrix Rk instead of Rk and a real-time-adjusted filtering gain matrix to
realize robust performance [29].

To construct the robust factor, we select the Institute of Geodesy and Geophysics (IGG)
three-segment function model [30]:

ωi =


1, |εi| ≤ c0
c0
|εi |

(
c1−|εi |
c1−c0

)
, c0 < |εi| ≤ c1

0, |εi| > c1

(17)

where c0 and c1 are set to 1.5 and 3.0, respectively, and |εi| is the standardized residue. The
corresponding filtering gain formula, as given in (7), can be rewritten as follows:

Kk = Pk|k−1Hk
T
[

HkPk|k−1Hk
T + Rk

]−1
(18)
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2.3. Integrated Positioning Model and Adaptive Federated Filtering
2.3.1. Federated Filtering Model

In navigation systems that rely on multisource information fusion, federated filters are
widely used due to their low computational cost, high precision, and strong fault tolerance
and reliability. The central idea is to perform decentralized processing before global fusion,
and the main filter possesses strong fault detection, isolation and recovery capabilities for
the subfilters.

In this paper, the BDS and SON positioning systems are regarded as two subfilters.
As in the RAF model above, the one-step predicted values are modified by using the
information of the measured values to obtain the local optimal estimates x̂k,BDS and x̂k,SON .
The federated Kalman filtering structure of the fusion-feedback mode is selected, the local
optimal estimate for each subfilter is input into the main filter for information fusion in
accordance with Equations (19) and (20), and finally, the state estimate and the optimal
solution for the covariance matrix are output [31].

x̂k,m = Pk,m

(
Pk,BDS

−1 x̂k,BDS + Pk,SON
−1 x̂k,SON

)
(19)

Pk,m
−1 = Pk,BDS

−1 + Pk,SON
−1 (20)

The federated filter is adjusted by means of information distribution coefficients [31]:
Pk,i = β−1

i Pk,m
Qk,i = β−1

i Qk,m
xk,i = xk,m

(21)

where the distribution coefficients βi > 0 satisfy the information conservation principle
βBDS + βSON = 1.

2.3.2. Information Distribution

As seen from the above discussion, the main filter controls and adjusts the subfilters
by means of distribution coefficients, as shown in Formula (21): βBDS = Pk,mPk,BDS

−1 and
βSON = Pk,m Pk,SON

−1. The information distribution coefficients control the weighting of
the local filters in the main filter. The determination of the coefficients, therefore, directly
determines the structure and performance of the filter.

The most intuitive method is to specify fixed distribution coefficients before filtering
on the basis of prior information; however, in an integrated navigation system relying
on multisource information, the observation quality and performance of each subsystem
will vary with time. For example, for the integrated system considered in this paper, the
observation quality of the BDS is good in open and unobstructed environments but poor
in complex spatial environments due to the occlusion and interruption of the satellite
signals. For the SON system, the availability of line-of-sight (LOS) signals based on
distance measurements is based on the premise that there are no obstacles between nodes;
hence, this system is vulnerable to multipath fading, shadowing effects and multiple access
interference, which make the observation quality uncertain. Therefore, it is necessary to
adaptively determine the information distribution coefficients by taking into account the
influence of the subsystem models and observation quality [32].

In estimation theory, the prediction residual reflects the magnitude of the model
error for most the kinematic models. Therefore, this paper presents an adaptive factor
solution based on the prediction residual. According to the distribution characteristics of
the residuals in Formula (13), statistics are constructed as follows.

bi,k =
εk

Tεk

trace
(

HkPk|k−1Hk
T + Rk

) (22)
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Because robust filtering is used in the subfilters, only a two-segment structure is used
to estimate the adaptive information distribution coefficients. When the statistics satisfy∣∣bi,k

∣∣ ≤ c, the system state model is considered to be accurate, meaning that the observa-
tion information is effective, and the performance of the local filter is good; otherwise,
observation anomalies may occur.

β′ i,k =

1,
∣∣bi,k

∣∣ ≤ c
c
|bi,k| ,

∣∣bi,k
∣∣ > c (23)

where c is an empirical constant with a value in the range of 0.85 to 1. Finally, the adaptive dis-
tribution coefficients should be normalized to satisfy the information conservation principle.

This section has discussed the principle of the adaptive federated filtering algorithm,
which uses a robust adaptive filtering algorithm in the subfilters to improve positioning
accuracy and to suppress gross errors and filtering divergence. In the main filter, the coeffi-
cients are assigned in accordance with the a posterio residuals, and the global estimation
results are fed back to the subfilters to ensure the filtering performance.

3. Results

To verify the performance of the federated filtering algorithm in the proposed inte-
grated system based on RAF in each subsystem, a set of BDS/SON data collected on the
football field at the Xi’an National Time Service Center, Chinese Academy of Sciences, was
used for testing. The BDS-related data were collected using from a multisystem multi-
frequency high-precision GNSS receiver with UR4B0-D model, and six SON positioning
terminals were used to collect the precise real-time kinematic (RTK) coordinates of five
anchor nodes and the distance between each anchor node and an unknown node; then,
all observation information was transmitted to the unknown node for the positioning
calculation. The sampling rate and sampling time were 1 Hz and 1000 epochs, respectively,
and all SON terminals have realized time synchronization characteristics. In this paper,
the positioning solution is expressed in the BeiDou coordinate system (BDCS) [33]. By
introducing the RTK technology, the mean value of the positioning result with centimeter
accuracy obtained by the SON equipment of the node to be tested within the sampling
time on one day, is taken as the true value for reference. The final positioning error results
are presented and compared in an ENU coordinate system with the true reference RTK
coordinates as the origin. The data processing model and the parameters of the system are
shown in Table 1.

Table 1. Model and parameter settings for data processing.

Parameter Model

Device of unknown node GNSS receiver and SON terminal
Equipment of anchor node SON terminal

Observations Pseudo and range observations
Sampling rate 1 Hz

Satellite system BDS
Coordinate system BDCS

Signal BDS B1I + BDS B3I + SON
Satellite ephemerides Broadcast ephemeris

Cutoff elevation 15 degrees
Ionospheric delay correction Ionosphere-free combination
Ionospheric delay correction Dual frequency correction

SON clock difference Time synchronization
Station displacement Fixed; estimated for static positioning

True station coordinates
B = 34.3691911165060
L = 109.2222237032327

H = 477.0780838084403 m
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3.1. BDS and SON Single-System Tests

Positioning was performed for the individual BDS and SON systems using the
weighted least squares (WLS) algorithm, the EKF algorithm and the RAF algorithm pro-
posed in this paper, and the processed results were compared with the true values for
reference. The pseudo-range observation noise of the initial BDS was set to 5 m and the
distance observation noise of the SON system was set to 1 m.

The comparison and verification of the three solution methods were carried out for
each of the three directions: east, north, and up. The positioning error results are shown in
Figures 2 and 3, where the WLS method is based on the height angle and the measurement
distance in the BDS and SON systems. Tables 2 and 3 present comparisons of the errors of
the different positioning algorithms in the BDS and SON systems, respectively.
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Table 2. Statistical results for the mean and root mean square positioning errors of the BDS under
different solution strategies.

Algorithm
Mean Value (m) RMSE (m)

E N U E N U

BDS_WLS −11.03 4.35 −5.92 63.65 41.20 136.77
BDS_EKF −10.05 1.12 −1.50 44.23 27.01 72.21
BDS_RAF −8.30 −0.21 1.13 8.33 0.96 1.63

Improvement RAF-WLS — 86.91% 97.67% 98.81%
RAF-EKF 81.17% 96.45% 97.74%
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Table 3. Statistical results for the mean and root mean square positioning errors of the SON system
under different solution strategies.

Algorithm
Mean Value (m) RMSE (m)

E N U E N U

SON_WLS 1.20 0.47 1.81 1.41 0.66 2.91
SON_EKF 1.18 0.47 2.16 1.38 0.65 2.80
SON_RAF 1.16 0.48 2.17 1.36 0.65 2.79

Improvement RAF-WLS — 3.55% 1.52% 4.12%
RAF-EKF 1.45% 0 0.36%

For the BDS individually, according to Figure 2 and Table 2, the WLS algorithm can
obtain effective positioning results; however there is no correlation between the solutions
for previous and subsequent epoch, the amount of calculation is large, and the uncertainty
of the observation quality leads to large positioning fluctuations and instability. Due to its
iterative characteristics, the amount of computation in the EKF algorithm is much less than
that in the WLS algorithm, and its robustness and accuracy after convergence are improved
compared with those of the WLS algorithm; however in the first 200 epochs, under the
influence of abnormal observations, the positioning results are seriously distorted, and the
robustness and availability are poor. Consequently, the EKF algorithm has great limitations
in practical application. In contrast, the RAF algorithm inherits the epoch correlation
characteristics of the EKF algorithm and requires only a small amount of calculation.
At the same time, the introduction of the robust factor and the adaptive fading factor
allows the algorithm to effectively resist gross observation errors and suppresses filter
divergence, especially in the first 200 epochs. In the east, north, and up components, the
root mean square error (RMSE) of the RAF algorithm is improved compared to that of
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the WLS algorithm by 86.9%, 98.0%, and 98.8%, respectively, while the corresponding
improvements compared with the EKF algorithm are 81.2%, 96.4%, and 97.7%, respectively.
Hence, the positioning accuracy, effectiveness, and robustness in all three directions are
significantly improved.

Similarly, Figure 3 and Table 3 present the positioning error comparison for the
individual SON system. Because the original observation signals are a short-range LOS
distance signals with few errors and good observation quality, the overall positioning
accuracy of the SON system is much higher than that of the BDS. Because of the lack of
correlation between epochs, the positioning accuracy of the WLS algorithm shows distinct
changes in certain epochs with high or low observation quality. The EKF algorithm uses
all the historical data in the solution process to offset the errors caused by epochs with
poor observation quality, but this approach also degrades the higher precision performance
that could be achieved on the basis of high-quality observations; hence, although its
performance is more stable situation than that of the WLS algorithm, and the overall error
level is basically the same. Meanwhile, the RAF algorithm exhibits characteristics similar
to those of the EKF algorithm, with little variation in performance.

By analyzing and comparing the positioning results of the three positioning methods
between the two individual subsystems, we can see that the RAF algorithm proposed in this
paper has an inhibitory effect on the influence of gross observation errors, especially for the
positioning results of the BDS in the first 200 epochs. Compared with the WLS algorithm,
it can improve the positioning accuracy and enhance the reliability and robustness of each
single positioning system, especially in harsh environment.

3.2. Test of the Integrated BDS/SON Positioning System

It is clear from the above analysis that the positioning accuracy and robustness of
the SON system are better than those of the BDS; however, the range of the SON system
is short, and its navigation and positioning performance depends on the accuracy and
strength of the internode distance measurements. For nodes in complex and dynamic
environments, non-line-of-sight (NLOS) interference and other factors seriously affect the
distance observation quality. Moreover, the SON needs to be frequently reconstructed to
meet the positioning requirements as the nodes move, increase the positioning complexity
while also reducing the positioning reliability and availability. Consequently, the SON
system is not suitable to be applied as an independent positioning system. Therefore, we
integrate the BDS and SON systems, combine the communication signals and positioning
signals, and use the SON system to assist the BDS in realizing continuous navigation and
positioning in complex environment, to expand the positioning coverage area and improve
the positioning accuracy relative to BDS positioning alone.

Figure 4 shows the positioning results obtained by applying the federated Kalman
filter (FKF) algorithm in the dual system based on the two subsystems with RAF to compare
and verify the positioning results of the BDS and SON subsystems in the east, north, and
up directions. Table 4 shows the positioning error statistics. With the introduction of the
adaptive information distribution coefficients, the RMSE of the federated filter in the east
and north components are increased by 33.9% and 17.7%, respectively, compared to those of
the BDS subsystem, while the RMSE in the up component is decreased relative to that of the
BDS subsystem but is increased by 17.6% compared to that of the SON subsystem. Hence,
the positioning accuracy of the dual system lies between those of the two subsystems.
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Figure 4. Positioning error of the dual system with federated filtering based on single systems with
RAF: (a) East component; (b) North component; (c) Up component.

Table 4. Comparison of the positioning algorithm errors between the dual system with federated
filtering and the single systems with RAF.

Algorithm
Mean Value (m) RMSE (m)

E N U E N U

SON_RAF 1.17 0.48 2.17 1.36 0.65 2.79
BDS_RAF −8.30 −0.21 1.25 8.33 0.96 1.63

BDS/SON_FKF −5.49 −0.70 2.05 5.50 0.79 2.30

Improvement FKF-BDS_RAF — 33.97% 17.71% —
FKF-SON_RAF — — 17.56%

Figure 5 shows the positioning error trajectories of the individual BDS system with
the RAF algorithm (in red) and dual system with the federated filter (in blue), as well as
their projections all in three planes. The BDS alone always shows a large deviation in the
east direction, about 7–8 m, which is caused by the poor observation quality due to the
interference from trees, tall buildings and many antennas in the east-west direction at the
experimental site; however, the positioning accuracy of the BDS in the east direction can
be significantly improved after the integration of the SON system. Based on the further
analysis in Table 4, the RMSE in the north component is smallest in the SON system,
intermediate in the dual BDS/SON system and largest in the BDS, therefore, the integrated
system also effectively improves the positioning accuracy of the individual BDS in the
north direction. In contrast, the RMSE in the up component is smallest in the BDS, followed
by the dual BDS/SON system, and the up-direction RMSE of the SON system is the largest.
This is due to the constraints of the experiment, in which the nodes of the SON system
all lay in the approximately same horizontal plane, with only small height differences;
consequently, the ranging error between nodes had a greater impact on the up component,
and at the same time, the positioning error of each anchor node in the up direction was
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superimposed. Thus, the positioning results for the measured node fluctuated greatly in
this direction. As a result, after the integration of the two systems, the overall positioning
results show fluctuations in the up component that are larger than those of the BDS alone,
and the positioning accuracy is slightly reduced.
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From the above results, it can be seen that joint positioning based on the proposed
dual system can balance the error impacts of the errors of two individual subsystems,
effectively suppressing the errors caused by a single inaccurate model and resulting in
good robustness and reliability.

4. Discussion

To reduce the influence of the randomness of the experimental samples and further
analyze the positioning effectiveness of the FKF algorithm in the proposed dual system
compared with that of the RAF algorithm in the BDS alone, the significance test method
is adopted. At a significance level of α = 0.05, three test models are established based
on the mean and variance of the positioning errors, as illustrated in the following, taking
the variance as an example: (1) two-sided test: the null hypothesis is H0 : σ1

2 = σ2
2,

and the alternative hypothesis is H1 : σ1
2 6= σ2

2; (2) Left-sided test: the null hypothesis
is H0 : σ1

2 ≥ σ2
2, and the alternative hypothesis is H1 : σ1

2 < σ2
2; (3) Right-sided test:

the null hypothesis is H0 : σ1
2 ≤ σ2

2, and the alternative hypothesis is H1 : σ1
2 > σ2

2.
For the variance, the test statistic F = S2

1/S2
2 is constructed and judged, where σ1

2 and
σ2

2 are the variance estimates of the two solution methods and S2
1 and S2

2 are the uni-
formly minimum variance unbiased estimates (UMVUEs). The mean value is determined
using the Aspin–Welch test method, and the test statistic for the mean is calculated as

T =
(
X1 − X2

)
/

√
S2

1
n1

+
S2

2
n2

.

Figure 6 shows the significance test results for the differences in the variance and
mean, with red asterisks indicating the values of the test statistics, and blue areas indicating
the rejections for the hypothesis tests. When the result for a test statistic lies within the
rejection, this indicates that the null hypothesis of the test is rejected, that is, its alternative
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hypothesis is accepted. For the east, north and up components, Figure 6a presents the
results of left-, left-, and two-sided tests, respectively, and Figure 6b shows the results of
right-, left-, and right-sided tests, respectively. According to the test results in Figure 6 and
Table 5, the mean value of the north-component positioning error of the dual system with
the FKF algorithm is significantly less than that of the individual BDS, while the mean error
values in the east and up components are significantly greater than those of the individual
BDS with the RAF algorithm. This is because the error sample data for the east component
used in this test have a negative form, and the actual physical significance indicates that the
error of the FKF algorithm in the east component is significantly reduced. The significant
increase in the up component is due to the influence of the SON system. At the same time,
the variances of the positioning errors of the dual system with the FKF algorithm in the
east and north components are significantly less than those of the individual BDS with
the RAF algorithm, indicating that the error dispersion is reduced and the positioning
robustness is further improved; however, the overall difference between the two methods
is not statistically significant because the difference in the up component is not significant.

Remote Sens. 2021, 13, x FOR PEER REVIEW 15 of 18 
 

 

 

Figure 6. Significance tests of the differences in the means and variances of the errors, with red 

asterisks indicating the values of the test statistics. 

Table 5. Significance test results for the error differences. 

Significance Test 
Variance Mean 

E N U E N U 

Two-sided 
2 2

1 2   2 2

1 2   2 2

1 2 =  
1 2   

1 2   
1 2   

Left-sided 
2 2

1 2   2 2

1 2   2 2

1 2   
1 2   

1 2   
1 2   

Right-sided 2 2

1 2   2 2

1 2   2 2

1 2   
1 2   

1 2   
1 2   

5. Conclusions 

In summary, in a positioning system that relies on BDS signals alone, when abnormal 

observations occur, the results of the WLS algorithm are relatively stable; however there 

is no correlation between the previous and subsequent epochs, the amount of calculation 

is large, and the accuracy is low. Meanwhile, the results of the EKF algorithm fluctuate 

greatly and continue to affect the positioning results in subsequent epochs, indicating that 

the influence of gross errors and filter divergence cannot be well controlled. To address 

these shortcomings, a robust factor and an adaptive fading factor are developed on the 

basis of the innovation sequence and used to formulate a RAF algorithm that has a good 

ability to resist gross errors and mitigate divergence. The calculation is simple and takes 

into account the performance and solution efficiency of the system. 

Additionally, the experimental analysis shows that the overall positioning perfor-

mance of the SON system is better than that of the BDS, however, the SON system is 

greatly affected by NLOS interference and other factors. Therefore, in complex dynamic 

scenarios, the nodes to be tested need to frequently reconstruct the SON network, which 

not only increases the positioning complexity, but also reduces the reliability and availa-

bility of positioning. Consequently, as a standalone positioning system, the applicability 

of the SON system is limited. 

Therefore, based on the use of the RAF algorithm in each individual subsystem, we 

propose a dual BDS/SON system federated that relies on a FKF algorithm, in which 

Figure 6. Significance tests of the differences in the means and variances of the errors, with red
asterisks indicating the values of the test statistics.

Table 5. Significance test results for the error differences.

Significance Test
Variance Mean

E N U E N U

Two-sided σ1
2 6= σ2

2 σ1
2 6= σ2

2 σ1
2 = σ2
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Left-sided σ1
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2 σ1
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Right-sided σ1
2 ≤ σ2

2 σ1
2 ≤ σ2

2 σ1
2 ≤ σ2

2 µ1 > µ2 µ1 ≤ µ2 µ1 > µ2

After verification and analysis of this experiment, although the up-component po-
sitioning accuracy of the dual system with the FKF algorithm is lower than that of the
individual BDS, the influence of the ranging error on the up component could be reduced
by increasing the height differences among the nodes in the SON system in practical ap-
plication, to improve the positioning accuracy. Therefore, it is considered that the dual
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BDS/SON system with the FKF algorithm based on individual subsystems with the RAF
algorithm proposed in this paper can improve the overall positioning accuracy, suppress
gross BDS observation errors and filter divergence, and offer improved positioning system
robustness, availability, and reliability.

5. Conclusions

In summary, in a positioning system that relies on BDS signals alone, when abnormal
observations occur, the results of the WLS algorithm are relatively stable; however there
is no correlation between the previous and subsequent epochs, the amount of calculation
is large, and the accuracy is low. Meanwhile, the results of the EKF algorithm fluctuate
greatly and continue to affect the positioning results in subsequent epochs, indicating that
the influence of gross errors and filter divergence cannot be well controlled. To address
these shortcomings, a robust factor and an adaptive fading factor are developed on the
basis of the innovation sequence and used to formulate a RAF algorithm that has a good
ability to resist gross errors and mitigate divergence. The calculation is simple and takes
into account the performance and solution efficiency of the system.

Additionally, the experimental analysis shows that the overall positioning perfor-
mance of the SON system is better than that of the BDS, however, the SON system is greatly
affected by NLOS interference and other factors. Therefore, in complex dynamic scenarios,
the nodes to be tested need to frequently reconstruct the SON network, which not only
increases the positioning complexity, but also reduces the reliability and availability of
positioning. Consequently, as a standalone positioning system, the applicability of the SON
system is limited.

Therefore, based on the use of the RAF algorithm in each individual subsystem,
we propose a dual BDS/SON system federated that relies on a FKF algorithm, in which
adaptive information distribution coefficients are adopted to improve the BDS positioning
performance. We evaluate the performance of this integrated system on the basis of
error estimation theory, considering significance tests of the differences in the means and
variances of the positioning errors. The results indicate that the positioning accuracy and
robustness of the dual system with the FKF algorithm in the north and east directions
are significantly better than those of the individual BDS with the RAF algorithm. Due to
the small height differences among the SON nodes in the experimental environment, the
ranging error has a great impact on the up component, which significantly reduces the
positioning accuracy of the dual system in this direction, while the difference in robustness
is not significant. Combined with the anti-gross error and anti-divergence capabilities of
the RAF algorithm for the BDS, overall, it is considered that the dual system with the FKF
algorithm proposed in this paper can improve the accuracy, robustness, reliability, and
availability of the ordinary BDS.

Therefore, considering that D2D-SON technology is a key technology for 5G commu-
nication, we believe that BDS/SON integration is a feasible technical means to achieve the
deep integration of 5G and BDS. Taking the BDS information as the core and based on the
coordinate datum and time datum corresponding to BDS, the importance of the integrity of
a single system will be weakened, and the fault tolerance and error compensation capabili-
ties based on the fusion of multisource information will be improved. In addition, through
the auxiliary function of the SON system, it can even supplement the signal blind spots of
the BDS in some sheltered areas, and finally support greater region, accuracy, robustness,
reliability and availability of location services. This technology can also be extended to
multi-frequency and multi-constellation GNSS.

In addition, the influence of atmospheric effect on GNSS signal propagation is the main
interference parameter in navigation and positioning applications. Due to different physical
characteristics, its research is usually divided into ionosphere and troposphere. Compared
with the low temporal and spatial resolution of traditional atmospheric parameter detection
methods, parameter retrieval through GNSS observation has obvious advantages. For
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example, the time resolution of observation is high; It has the characteristics of all-day and
all-weather continuous operation, so there has high research value.

Starting from the research results of this paper, with the help of the high-precision time
synchronization and positioning characteristics between terminals, it provides a solution
for the subsequent distributed multi-station joint retrieval of the parameter characteristics
of the atmospheric puncture point above the observation area. Compared with single
reference station PPP technology, retrieving atmospheric parameters through distributed
multi-station joint GNSS observation can improve the spatial and temporal resolution of
observation and realize the monitoring of small- and medium-scale spatial environmental
changes. Through appropriate parametric modeling strategies, we can build regional total
electron content modeling and accuracy measures and forecast models, tropospheric gradi-
ent models, detect the characteristics of atmospheric water vapor change and assimilate it
into numerical weather prediction models, and even can provide valuable information on
many applications, such as natural disaster detection and climate research. Additionally,
accurate tropospheric and ionospheric data can also be fed back to the terminals in the re-
gion through the established regional model, which can further enhance GNSS positioning,
especially for users with single frequency receivers or areas without ionospheric detection
stations, with remarkable effects. This will make a new contribution to the application of
remote sensing in geoscience, with abundant sensing data provide good external conditions
for the development of this new method and new application.
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