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Abstract: Timber assortments are some of the most important goods provided by forests worldwide.
To quantify the amount and type of timber assortment is strongly important for socio-economic
purposes, but also for accurate assessment of the carbon stored in the forest ecosystems, regardless of
their main function. Terrestrial laser scanning (TLS) became a promising tool for timber assortment
assessment compared to the traditional surveys, allowing reconstructing the tree architecture directly
and rapidly. This study aims to introduce an approach for timber assortment assessment using TLS
data in a mixed and multi-layered Mediterranean forest. It consists of five steps: (1) pre-processing,
(2) timber-leaf discrimination, (3) stem detection, (4) stem reconstruction, and (5) timber assortment
assessment. We assume that stem form drives the stem reconstruction, and therefore, it influences
the timber assortment assessment. Results reveal that the timber-leaf discrimination accuracy is
0.98 through the Random Forests algorithm. The overall detection rate for all trees is 84.4%, and all
trees with a diameter at breast height larger than 0.30 m are correctly identified. Results highlight
that the main factors hindering stem reconstruction are the presence of defects outside the trunk,
trees poorly covered by points, and the stem form. We expect that the proposed approach is a starting
point for valorising the timber resources from unmanaged/managed forests, e.g., abandoned forests.
Further studies to calibrate its performance under different forest stand conditions are furtherly
required.

Keywords: timber assortment; roundwood; mixed-species; point cloud; stem modelling

1. Introduction

Roundwood represents one of the most important goods provided by forest ecosys-
tems worldwide, feeding the forest products supply chain. Roundwood can be classified
as industrial roundwood, such as raw logs (e.g., saw-log, pulpwood), and fuelwood for en-
ergy [1]. Despite the fact that roundwood production of Europe’s forests has been growing,
reaching about 550 million m3 annually [1], recognizing the European countries as some of
the main producers of industrial roundwood [2], uncertainties about timber assortment
and fuelwood estimates are still unsolved. These uncertainties might be associated with
the low performance of traditional surveys lacking for accurately depicting the trees’ archi-
tecture, since bark irregularities, such as bulges, holes, cavities, and other defects [3] are
often ignored.
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The tree characteristics such as stem tapering, stem curve, and stem diameter are
among the most important tree variables required for assessing the timber assortments from
standing trees [4,5]. Some studies proposed methods for extracting such tree characteristics,
e.g., stem tapering, stem volume [6], and geometry wood defects (i.e., stem straightness) [7],
from trees in coniferous and broadleaf forests. However, considering that most of the tree
characteristics are based on cylinders’ models, as stem diameters [6], their accuracy is
measured in function of the stem form and cross-sectional description. This means that
such accuracy decreases, as the sweep deflection of stem and the occurrence of bark
irregularities increase [3]. Measuring the tree characteristics on standing trees through
traditional surveys became challenging, especially in deciduous or mixed forest stands [8].
Therefore, innovative and accurate methods aimed at assessing the timber assortments
from standing trees could be useful for valorising the timber products from forests [9].
Moreover, its implementation can support the management of forests in light of Sustainable
forest management (SFM) criteria and indicators [10].

Over the last decades, Terrestrial Laser Scanning (TLS) technology depicts immediately
and accurately the tree architecture through georeferenced points [11]. The versatility of
laser scanning data allowed scientists to use it to face several issues in distinct topics, such
as forest biodiversity [12], forest ecology [13], forest productivity [14], and carbon stock [15],
as well as for analysing the performance of models conditioned by both operational (design
of sampling) and technical (i.e., aligning and assembling the scans) aspects, weather
conditions and forest stand conditions [16].

Some studies highlighted that the assessment of the tree characteristics, such as stem
diameter, using TLS data became easier to explore in forest plantations rather than in
natural forests [11,16]. A powerful approach for deriving these tree characteristics from
TLS data is named cylinder-fitting [16,17]. Practically, cylinder-fitting divides the TLS
data into several horizontal slices, then it detects and measures the cylinders within each
horizontal slice [18]. The stem position and stem curve for each stem are the main products
of the cylinder-fitting approach. The validation of the cylinder-fitting is based on the curve
length ratio (CLR) and the percent of the tree height covered (PHC) thresholds [16].

Despite several tools allow automatically extracting tree variables (i.e., tree height,
stem volume) from standing trees using TLS data e.g., TreeQSM [19], Simple-Tree [20],
Computree [14], and OPALS (Orientation and Processing of Airborne Laser Scanning
data) developed by the Vienna University of Technology staff (Vienna, Austria) (Available
from https://opals.geo.tuwien.ac.at; accessed on 15 August 2021), most of them fail with
small trees, consider neither the timber-leaf discrimination nor pre-processing of TLS data,
and are mainly focused on collecting forest inventory information from trees. However,
OPALS became promising for scientists because it provides modules for the stem form
reconstruction, such as a cylinder-fitting approach and pre-processing of TLS data [21], and
machine learning became promising for the timber-leaf discrimination [13].

A feasible and robust procedure aimed at gathering timber assortment information of
standing trees using the promising methods become highly needed to better use the timber
resources, as well as to take timely and appropriate SFM-based decisions. However, despite
the recent advances on timber productivity using TLS data, just a few studies used some
of these for assessing the timber assortments from standing trees and even less focused
on natural mixed forests [22,23]. This means that an approach including the promising
approaches, such as cylinder-fitting and machine learning approaches can be effective for
timber assortments assessment, even for supporting SFM. This study aims to introduce an
innovative procedure using the promising approaches for assessing timber assortments
from standing trees using TLS data in a natural mixed and multi-layered Mediterranean
forest. This is the first study that accurately assesses different types of timber assortment
from natural forests through a combination of timber-leaf discrimination and pre/post
processing of TLS-data. This procedure is consisting of five steps: (a) pre-processing,
(b) timber-leave discrimination, (c) stem detection, (d) stem reconstruction, and (e) timber
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assortment assessment. This approach could be a starting point for optimising the use of
forest resources, reducing timber waste, valorising timber, and fostering carbon storage.

2. Materials and Methods
2.1. Study Area

The study area is located in the Molise region (Central of Italy, 41◦42′N, 14◦12′E),
in a Mediterranean mixed forest called Bosco Pennataro (Figure 1). Bosco Pennataro is
characterized by a high tree species richness including Turkey oak (40%), European beech
(21%), Italian maple (9.6%) [24] and a heterogeneous forest structure. The forest of Bosco
Pennataro is classified as oak–hornbeam forest type [25], belonging to the Natura 2000
network, moreover, it is recognized as a core area of the Man and Biosphere (MaB) reserve
of Collemeluccio-Montedimezzo Alto Molise. Due to its ecological role, the forest was
historically managed for productive purposes as an even-aged forest with natural regen-
eration, while in the last 50 years the harvesting activities were very limited and mainly
focused on biodiversity conservation. As a result, currently, the forest is characterized
by a high structural heterogeneity including tree microhabitat structures as indicators of
biodiversity [26].

Figure 1. Study area. The geographic location of the study areas is in Italy (on the left), and in the
Molise region (at the top right). A picture of the Mediterranean forest study area was even showed
(at the bottom right).

2.2. Field Data

The field survey was carried out in 2016 within five square plots (hereafter ADS)
of 529 m2 (23 m × 23 m). All trees with a diameter at breast height (DBH) ≥ 0.025 m
were measured through the Field-Map tool (https://www.fieldmap.cz/, accesssed on
31 August 2021). The surveyed tree variables were DBH, tree height (TH), stem position,
canopy projection area (CPA), tree species, and tree vitality. Moreover, the stem volume
(TSv) was calculated using specific allometric equations for Italian tree species in the
National Forest Inventory [27].

2.3. Terrestrial Laser Scanning Data

Terrestrial Laser Scanning (TLS) data was collected in July 2018 through Leica ScanSta-
tion (hereafter LSS) P30/40 device (https://leica-geosystems.com/it-it/, accesssed on

https://www.fieldmap.cz/
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31 August 2021). LSS is a Laser 3D scanner suitable for collecting 1 million points per
second for a wide range of up to 270 m. The laser scanning system used for this device
was an Ultra-high-speed time-of-flight enhanced by Waveform Digitising technology. The
horizontal and vertical field-of-view of the LSS was 360◦ and 290◦, respectively. The dis-
tance measurement accuracy for objects was about ±2 mm. Several TLS scans (mean and
±SD = ~9 and ±1.4 scans) were taken in random positions within all five ADS, covering
178 single trees.

2.4. Data Analysis

The analysis of the TLS data consists of five steps: (1) pre-processing; (2) timber-
leaf discrimination; (3) stem detection; (4) stem reconstruction and (5) timber assortment
assessment (Figure 2).

Figure 2. Methodological approach for timber assortment assessment using Terrestrial Laser Scanning
(TLS) data. The raw TLS data is composing by several scans. TreeTLS representing the stem extracted
from TLS data. The subfigure (1) regards the co-registration and assembling of scans; the subfigure (2)
regards the classification of points into timber and leaf points; the subfigure (3) regards the detection
of one tree and the mensuration of its cylinder; the subfigure (4) regards the stem reconstruction; the
subfigure (5) regards the quantification and classification of each log.

2.4.1. Pre-Processing of the Raw TLS Data

As a pre-processing step, the collected raw TLS data was co-registered, aligned, and
assembled using Leica Cyclone 360 3DR V.1.7.1000 software (https://leica-geosystems.
com/, accesssed on 31 August 2021) and OPALS software version 2.4.0. e.g., opalsICP (https:
//opals.geo.tuwien.ac.at/html/stable/ModuleICP.html, accesssed on 31 August 2021).
The co-registration was however supported by a list of recorded geographic coordinates
taken in random positions through a GPS Trimble GeoXT mounted on a Hurrican Antenna.
The obtained point registration accuracy was both lower than 0.25 of the plane roughness
and 25◦ of the angle between the normal of corresponding points. The average distance
between two adjacent points ranged between 3.19 mm and 5.22 mm among the five TLS
data. To optimize tree crowns’ description and reducing the points for each ADS, we
vertically clipped the point cloud provided by each ADS using a bigger box dimension
equal to 729 m2 (27 × 27 m) than that used for field surveys (529 m2; 23 × 23 m). The full
processing was performed using a batch script including several OPALS modules, such as
opalsImport, OpalsICP, opalsAlgebra, and opalsExport (https://opals.geo.tuwien.ac.at/,
accesssed on 31 August 2021). The final files (LAS Format) produced by the pre-processing
consisted of geographic coordinates (i.e., x, y, z) and intensity features; these were used as
input data in the subsequent steps.

After the pre-processing, additional tree variables other than those surveyed during
the inventory campaign were manually measured in each point cloud from the TLS data
using the point picking tool embedded in CloudCompare software. Such variables allowed
us to describe the stems based on log measurements. The tree variables were taken in all

https://leica-geosystems.com/
https://leica-geosystems.com/
https://opals.geo.tuwien.ac.at/html/stable/ModuleICP.html
https://opals.geo.tuwien.ac.at/html/stable/ModuleICP.html
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trees with a DBH ≥ 0.20 m [7,16,28] Their measurements were taken in the trunk section
ranging between the tree height at 0.50 m (hereafter THbase) and the tree height at the
first attached branch (TH1). The tree variables were maximum-end diameter (Dmax),
minimum-end diameter (Dmin), and length of log (L). We calculated the log volume
(hereafter TTv.log) using these variables through the Smalian formula (Equation (1)).

TTv.log = (Dmin2 + Dmax2)/8 × π × L (1)

where: TTv.log is the log volume, (m3); Dmax is the maximum-end diameter of the log,
(m); Dmin is the minimum-end diameter of the log, (m); L is the length of the log, (m); and
π –3.1416.

In addition, the logs manually measured through CloudCompare software were
classified into merchantable (2.5 m ≤ x ≤ 3 m; length of the log) and non-merchantable
(2.5 m < x; length of the log) types [29] (Figure 3). Based on this assumption, trunk volume
(hereafter TTv. Trunk) was calculated by summing the TTv.log for both log types. After
the classification of logs, two tree characteristics e.g., straightness (STR; cm m−1; Equation
(2)) and tapering (TAP; cm m−1; Equation (3)), were extracted for the merchantable logs.
This is because the STR reports how the stem axis is straight/sweep and TAP reports the
changes of cylinders’ diameter along the length of the stem (Table 1) [7]. Both are useful
information for validating the timber quality of stems. For both two equations, Dmin and
Dmax variables were scaled from m to cm.

STR = h/L (2)

TAP = (Dmax − Dmin)/L (3)

where: STR represents the straightness of the log, (cm m−1); TAP represents the tapering
of the log, (cm m−1); L is the length of the log, (m); Dmax is the maximum-end diameter
of the log, (cm); Dmin is the minimum-end diameter of the log, (cm); and h represents
the perpendicular distance (90◦) between the highest convex curve and the straight line
between Dmin and Dmax (Figure 3).

Figure 3. A graphic representation for tree architecture and its corresponding merchantable log. “h”
is the perpendicular distance (90◦) between the highest convex curve and the straight line between
minimum-end (Dmin) and maximum-end (Dmax) diameters. The “h” for the tree architecture is
indicated by the space between the trunk centroid and the straight line.
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Table 1. Timber assortment characteristics. Stem straightness (STR, cm m−1) and Minimum-end diameter (Dmin, m) were
displayed. The requirements for STR and Dmin were highlighted by the “x” values. Logs with a Dmin ≥ 0.30 m were
assumed as “large”, with a Dmin between 0.2 m and 0.30 m were assumed as “medium” and with a Dmin ≤ 0.20 m were
assumed as “small”.

Timber Assortments

Assort
ments

Types Saw-log
Plus Saw-log Pulpwood Other Industrial

Roundwood Fuelwood

Classes A1 A2 A3 B1 B2 B3 C1 C2 C3 D1 D2 D3 Fuel
wood1

Fuel
wood2

Fuel
wood3

Require
ments

STR
(cm m−1) x ≤ 2 2 < x ≤ 3.4 3.4 < x ≤ 5 5 < x ≤ 6.6 x > 6.6

Dmin Large Medium Small Large Medium Small Large Medium Small Large Medium Small Large Medium Small

Based on the STR, and Dmin, merchantable logs were classified into 15 timber assort-
ment quality classes, belonging to five timber assortment types, described by [7].

2.4.2. Timber-Leaf Discrimination

To discriminate timber from leaf points, we followed a step-by-step approach consist-
ing of three sub-steps: (a) geometry-based calculation, (b) predictor variables selection and
(c) binary classification (Figure 4).

Figure 4. Overview of the sub-steps followed by the timber-leaf discrimination. From top left to
bottom right, the input TLS data, the geometry-based calculation (A), predictor variables selection
(B), binary classification (C), and the points classified as “timber” were displayed. The grey rectangles
report the output obtained for each sub-step.

Geometry-Based Calculation

Eighteen geometry-based features (i.e., roughness, mean curvature, Gaussian curva-
ture, Gaussian normal change rate, number of neighbours, surface density, volume density,
the sum of eigenvalues, omnivariance, eigenentropy, anisotropy, planarity, linearity, first
and second principal component analysis, surface variation, sphericity, and verticality)
were generated according to local neighbourhood radius approach (hereafter Ln). The
optimal “Ln” was set to 0.07 m [30]. The processing was automatically performed using the
“compute geometric features” tool embedded in CloudCompare v. 2.11.1 open-source soft-
ware (http://www.danielgm.net/cc/, accesssed on 31 August 2021) [31] (see Appendix A).
The eighteen geometry-based features joined to their geographic coordinates (.txt Format)
were used as input data in the subsequent sub-step.

http://www.danielgm.net/cc/
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Predictor Variables Selection

We implemented the variance inflation factor (VIF), using 5 as a score threshold [32],
for selecting the most explicative geometry-based features (hereafter predictors). The
VIF score allowed us to ponder the correlation, collinearity, and multicollinearity among
predictors, assessing their role in the precision of the binary classification model. To
estimate the VIF score of the predictors, we used the “vifstep” function available in “usdm”
R package [33]. The final product consisting of a list of eight predictors (i.e., anisotropy,
the sum of eigenvalues, Gaussian curvature, mean curvature, PCA2, roughness, verticality,
volume density) joined to their geographic coordinates (.txt Format) were used as input
data in the subsequent sub-step.

Binary Classification

To classify the points from TLS data as timber and leaf labels, we followed a binary
classification through Random Forest (RF) algorithm. RF algorithm is suitable to build
multiple decision trees from randomly input training data for classification analysis [34].
We chose RF because it was faster, easier, and more accurate than other machine learning
algorithms [13]. Before computing the RF, we prepared the training and testing input data
of a representative proportion of point cloud data for each ADS. In this respect, we manually
extracted the 10% of the point cloud for each ADS; then, we classified the points as timber
and leaf labels; subsequently, we used their predictor variables as input data for classifying
the remaining points of each TLS data. Thereafter, we computed the RF algorithm through
Weighted Subspace Random Forest for Classification (wsrf) R package, [35]. As regards the
“wsrf” customizing, the “Ntree” was set to 2500, the “Mtry” was set to 3–4, and the “node
size” was set to 5.

To efficiently discriminate the leaf from timber points, we removed the noise points
found in the points classified as “timber”. To reach this, first, we recalculated the eigenen-
tropy feature following the same previous procedure (Geometry-based calculation) [36].
Then, extreme eigenentropy values (0.03 ≤ x ≤ 0.75 ≡ 3th ≤ x ≤ 75th percentile; eigenen-
tropy values ranging between 0 and 1) were removed of “timber” points [31]. The binary
classification was validated through three statistic measurements: sensitivity, specificity,
and accuracy measurements [13]. The sensitivity represents the percentage of points cor-
rectly identified (true positive), the specificity represents the percentage of points correctly
excluded (true negative) and the accuracy represents the proportion of true positive values.
The validation approach was computed using the “pROC” R package [37]. The “timber”
points (.LAS Format) were used as input data in the subsequent step.

2.4.3. Stem Detection

This step aims to find the potential stem position and to measure the DBH of eventually
detected trees from “timber” points through a raster-based approach embedded in OPALS
modular program. OPALS, especially the opalsForest module (https://opals.geo.tuwien.
ac.at/html/stable/pkg_opalsForest.html, accesssed on 31 August 2021), is a suitable tool
for modelling the stems.

Before detecting the stem position, the topographic models Digital Terrain Model
(DTM; 0.05 m) and Digital Surface Model (DSM; 0.20 m), were generated for each ADS using
opalsDSM and opalsGrid modules. The normalization of the TLS data, using both the DTM
and the DSM, was done with the opalsAddinfo module. The stem detection was based on
TLS data of a horizontal slice between 1 m and 2 m above the ground. Using a voxel-based
analysis, stem positions were detected based on different statistical information (i.e., sum,
mean and maximum) related to voxel columns within the investigated horizontal slice. The
voxel size was set to 0.01 m3. Since the trade-off between filled and gap voxels simulate
many cylinders on the horizontal slices, the detection of trees was performed using such
information through a seed region growing algorithm (python script is available at https:
//opals.geo.tuwien.ac.at/html/stable/ModuleDBH.html, accesssed on 31 August 2021).

https://opals.geo.tuwien.ac.at/html/stable/pkg_opalsForest.html
https://opals.geo.tuwien.ac.at/html/stable/pkg_opalsForest.html
https://opals.geo.tuwien.ac.at/html/stable/ModuleDBH.html
https://opals.geo.tuwien.ac.at/html/stable/ModuleDBH.html
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The stem detection was validated through true-positive (TruePos; units) representing
the correctly identified trees; false-positive (FalsePos; units) representing the commission
error; false-negative (FalseNeg; units) representing the omission error, the detection rate
and completeness (DR and completeness; %) representing the relationship between TruePos
and observed trees and the correctness (correctness; %) representing the relationship
between TruePos and number of stems extracted from TLS point cloud (TreeTLS).

The DBH cylinders were performed using the detected trees through the least-squared
cylinder-fitting approach implemented in opalsDBH. The validation of the DBH was
performed through two linear regression models. The first model used all observations,
and the second used all observations without potential outliers. The potential outliers were
calculated using the Cook’s distance, considering as potential outliers those observations
overcoming a Cook’s distance of 3 times greater than the average distance values [38].
DBH regression models were built using “stats” (authors, R Core Team, and contributors
worldwide) and “car” R packages [39].

2.4.4. Stem Reconstruction

For reconstructing the trees, we tracing the measured cylinders along the stem x-axis
through the cylinder-fitting approach embedded in opalsDBH. OpalsDBH is a suitable
module to detect, measure and trace the cylinders along the trunk, allowing the stem
curve description [16]. Although the tracing of cylinders from OpalsDBH begins from
the bottom to the top along the stem, to ensure consistency, the DBH measurement was
used as an anchor point for accepting or rejecting the predicted cylinders’ measures. This
leads us to reconstruct the stem accurately. However, to run opalsDBH, some mandatory
parameters, such as trace, overlap, and patchLength, were required: “trace” representing
the option enabling the tracing of cylinders, “overlap” representing the percentage of
overlap patches between two traced cylinders, and “patchLength” representing the length
of a shift vector between two consecutive patches. In this study, the “trace” was set to 1–1,
the “patchLength” was set to 0.5 and the “overlap” was set to 0.8.

The validation of the stem reconstruction was performed using four different pa-
rameters: reconstructed stem from TLS data (RStem; units) representing the number of
reconstructed stems; RStem rates (TrueRStem; %) representing the relationship between
RStem and observed trees; curve length ratio (CLR, %) representing the relationship be-
tween the proportion of the stem length covered by the extracted stem curve from TLS
data and that obtained from observed data [16]; percent of the tree height covered (PHC,
%) representing the relationship between the proportion of the stem length covered by the
extracted stem curve from TLS point cloud and the tree height from observed data [16].
Since the PHC is strongly conditioned by the length of the TH1, we did not compare this
result with that obtained in other studies. We used the “stats” (authors, R Core Team and
contributors worldwide) and “usdm” [33] R packages in this processing. The stem curve
data (.shp and .txt Format) for each ADS was used as input in the subsequent step.

2.4.5. Timber Assortment Assessment

For extracting the timber assortment information from TLS data, first, we quanti-
fied the logs, then we characterized the merchantable logs, and then we classified the
merchantable logs.

The log quantification, which was based on the stem curve data, was performed
using R software. The extracted stem curve data for each tree, corresponding to infinite
cylinders, was divided into two group types of cylinders. The large group corresponds
to merchantable log (2.5 m < x < 3 m; length of the log) and the small group corresponds
to non-merchantable log (2.5 m < x; length of the log). To better simulate the strategy
for measuring the STR and TAP indicated by [7], we used three cylinders’ data for each
merchantable log (“first cylinder”, “second cylinder” and “third cylinder” representing
Dmax, central, and Dmin). Here, we used the mean, standard deviation (±SD) to validate
the accuracy of the log quantification. The validation of the TTv.log was performed
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using two linear regression models including and excluding potential outliers based on
Cook’s distance.

The log characterization, which was based on the equation for deriving the STR and
TAP, was adjusted and implemented in one mathematical R function [7]. The result was
validated by comparing predicted vs. observed STR and TAP values, specifically, the mean
and the standard deviation (±SD), the bias and the root mean squared error (RMSE) were
used for the validation.

The merchantable log classification, which was based on the timber quality (i.e., STR
and Dmin), was performed using a R function in R software version 3.6.2. Particularly, such
a R function uses the thresholds indicated in Table 1 for assigning one timber assortment
class to each merchantable log. The validation was done by comparing the predicted vs.
observed number of merchantable logs by type. Furthermore, the bias was used for the
validation. Overall, the R packages used for timber assortment assessment were “stats”
(authors, R Core Team, and contributors worldwide), “dplyr” [40] and “usdm” [33]. How-
ever, the regression models required the “stats” (authors, R Core Team, and contributors
worldwide) and “car” R packages [39].

3. Results

Results reveal that all five ADS have a huge tree species richness and structural
heterogeneity (Table 2). The abundance of tree species richness ranged between 5 and 9 tree
species; the most frequent tree species are European beech (28.7%), European ash (14%),
European hop-hornbeam (12.4%), and Turkey oak (11.8%) (Figure 5). However, observed
trees, belonging to twelve tree species, results in displaying by point clouds (Figure 6).

Table 2. Summary of the forest structure and Terrestrial Laser Scanning (TLS) data. Field plot (ADS), diameter at breast
height (DBH, m), tree height (TH, m), stem volume (TSv, m3), and tree species richness (TSR, units) are considered. The
mean, standard deviation (±SD) and total are indicated.

Forest structure TLS data

ADS Trees ADS−1

(Trees ha−1)

Stem
Density
(Level)

Mean (±SD) Total Point Density and
Spacing (pts m−2

and mm)DBH (m) TH (m) TSV (m3)
TSR

(Units)

1 33 (623) moderate 0.20 (±0.09) 18.52 (±5.16) 13.20 7 92,244; 3.19
2 36 (679) moderate 0.20 (±0.19) 13.28 (±8.19) 23.86 9 44,310; 4.75
3 52 (981) high 0.16 (±0.13) 13.72 (±6.79) 16.32 8 64,836; 3,92
4 33 (623) moderate 0.21 (±0.14) 21.27 (±8.97) 22.81 9 44,210; 4.76
5 24 (453) low 0.26 (±0.15) 23.1 (±10.22) 25.29 5 36,622; 5.22

Sum 178
Mean 36 (672)

Among the ADS, the different forest structure is supported by the DBH, ranging
between 0.16 m and 0.26 m, the TH, ranging between 13.28 m and 23.10 m, and the
TSv, ranging between 13.20 m3 and 25.29 m3 (Table 2). In contrast to these measure-
ments, the stem density can be divided into three difficulty levels among the ADS: low
(<500 trees ha−1), moderate (500–900 trees ha−1), and high (>900 trees ha−1). The structural
heterogeneity among ADS is even impacted on the point density and spacing of TLS data
varying between 36,622 pts m−2 and 5.22 mm and 92,244 pts m−2 and 3.29 mm. About
TLS data, the number of randomly distributed scans around the center ranging between
7 and 10 among the ADS allowed us to describe the vertical and horizontal profiles of trees
(Figure 5).
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Figure 5. Stem position and scan position within each field plot (ADS). The black squares represent
the ADS boundaries; yellow squares represent the scan positions; coloured dot points represent the
observed stem position classified by tree species.

Results show that more than one-third of the observed trees, corresponding to 70 out
of 178 observed trees, are suitable for timber assortment assessment, as the DBH is larger
than 0.20 m. Such large trees are consisting of European beech (32.9%; 23 trees), Turkey
oak (21.4%; 15 trees), European ash (14.3%; 10 trees) and Italian maple (11.4%; 8 trees), and
other four broadleaved species (20%; 14 trees). These large trees store 306 merchantable
and 79 non-merchantable logs (Table 3). Most of the merchantable logs are either slightly
or strongly contorted based on variable STR values, ranging between 1.4 cm m−1 and
2.9 cm m−1, and TAP, ranging between 1.1 cm m−1 and 1.8 cm m−1, measurements. The
merchantable logs accumulate 10 times more volume than non-merchantable logs.

Table 3. Tree characteristics for merchantable and non-merchantable logs. The straightness (STR,
cm m−1), the tapering (TAP, cm m−1), and the log volume (TTv.log, m3) of merchantable and non-
merchantable logs were displayed for each field plot (ADS). The mean, standard deviation (±SD),
and the sum were used for evaluating the accuracy. TOT, meaning total, reports either the sum (*1)
and the mean (*2) values.

Type of logs ADS N◦logs
(Units)

STR (cm m−1) TAP (cm m−1) TTv.log (m3)

Mean (±SD) Mean (±SD) Sum

Merchantable

1 88 2.9 (±1.9) 1.5 (±0.7) 7.2
2 45 1.6 (±1.3) 1.8 (±1) 10.9
3 35 1.4 (±1.1) 1.6 (±0.4) 6.7
4 56 1.8 (±1.4) 1.1 (±0.5) 12.9
5 82 1.6 (±0.9) 1.2 (±0.4) 12.4

TOT 306 *1 1.8 (±1.3) *2 1.4 (±0.6) *2 10.0 *2

Non-
merchantable

1 30 2.1 (±4) 1.3 (±2.6) 1.1
2 13 1.7 (±2.5) 0.9 (±1.3) 1.2
3 11 1.4 (±1.7) 0.5 (±1.2) 0.7
4 8 2.1 (±2.9) 1 (±1.4) 0.4
5 17 1.3 (±2.6) 1 (±1.3) 1.2

TOT 79 *1 1.7 (±2.7) *2 0.9 (±1.6) *2 0.9 *2
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Figure 6. Single tree species representation by georeferenced point clouds. Twelve tree species are
found among all five field plots (ADS).

3.1. Timber-Leaf Discrimination, Stem Detection, and DBH Estimation

Results show that the RF algorithm provided accurate timber-leaf discrimination in a
mixed and multi-layered forest. For all five ADS the accuracy is 0.98, the sensitivity is 0.98
and the specificity is 0.98.

We detected 151 out of 178 observed trees, reaching an average detection rate accuracy
equal to 84.4%, with a high uniformity/similarity among the ADS (standard deviation,
±SD = ±4.7%; Table 4). The results reveal that the stem detection approach is more
sensitive to the commission error (84 as the sum of FalsePos) than the omission error (27 as
the sum of FalseNeg), which is also supported by different patterns of completeness (84.4%)
and correctness (66.9%) accuracies (Table 4). All trees with a DBH higher than 0.30 m are
correctly detected.



Remote Sens. 2021, 13, 4265 12 of 25

Table 4. Stem detection results. Terrestrial Laser Scanning (TLS) data, trees observed from Field data (TR, units), trees
predicted from TLS data (TreeTLS, units), true positive (TruePos, units), false positive (FalsePos, units), false negative
(FalseNeg, units), detection rate (DR, %), completeness and correctness for each field plot “ADS”. Mean, standard deviation
(±SD), and sum were also displayed.

ADS TR (Units)

TLS results

TreeTLS TruePos FalsePos FalseNeg
DR (%) Completeness (%) Correctness (%)

(Units) (Units) (Units) (Units)

1 33 45 30 15 3 90.9 90.9 66.7
2 36 54 29 25 7 80.6 80.6 53.7
3 52 71 45 26 7 86.5 86.6 63.4
4 33 36 28 8 5 84.8 84.9 77.8
5 24 26 19 7 5 79.2 79.2 73.1

Sum 178 232 151 81 27
Mean
(±SD)

36
(±10)

46
(±17.2)

30
(±9.4)

16
(±9.0)

5
(±1.7)

84.4
(±4.7)

84.4
(±4.7)

66.9
(±9.3)

Results reveal that stem detection is more affected by point density than stem den-
sity. Particularly, the detection of trees is more accurate in ADS with a high point den-
sity (≥44,210 pts m−2; corresponding to moderate/high stem density levels) than those
with a low point density (36,622 pts m−2; corresponding to low stem density levels)
(Tables 2 and 4). Hence, the detection rate ‘DR’ increases as point density increases. We
found the lowest DR in the forest with a low stem density (<500 trees ha−1) accordingly.
Particularly, we detected 45 out of 52 observed trees of the ADS belonging to the high
stem density; we detected 87 (sum of true positive for ADS 1, 2, and 4) out of 102 (sum of
trees observed for ADS 1, 2, and 4) observed trees of the ADS belonging to the moderate
stem density; we detected 19 out of 24 observed trees of the ADS belonging to the low
stem density.

Results reveal that stem detection is even affected by tree species richness. Particularly,
the detection of trees is more accurate in ADS with high (ranged from 7 to 9 tree species)
than low (5 tree species) tree species (Table 4). Comparing the ADS with a similar number
of tree species (ADS 2 and 4; 9 tree species), we observed better DR accuracy in the ADS
with low (ADS 4 = 33 trees) than high stem density values (ADS 2 = 36 trees). Nevertheless,
among the 12 tree species, we found a better DR accuracy for Lobel’s maple, Wild service
tree, European ash, Turkey oak, Field maple and European beech (DR > 84.3%) (Figure 7).

The DBH detection is better (R-squared = 0.84; RMSE = 0.02 m) using all observations
without potential outliers, than those with outliers (R-squared = 0.67; RMSE = 0.08 m)
(Figure 8). The non-circular shape of the trunks, bark irregularities and the stem axis
profile negatively affect the DBH predictions, based on Cook’s distance (greater 3 times).
In total, Cook’s distance selects about 27 observations (∼15%) as outliers, these mainly are
overestimated values that come either from large or small stems.

3.2. Stem Reconstruction

We reconstructed 47 out of 70 observed trees reaching an average stem reconstruction
accuracy equal to 67.2%, with a low similarity/uniformity among the ADS (standard
deviation, ±SD = ±14.86%) (Table 5). The role of the point density in stem reconstruction
is less marked than that observed on stem detection (Table 5). Particularly, the stem
reconstruction accuracy of the ADS with highest (ADS 1; 92244 pts m−2) and lowest
(ADS 5; 36622 pts m−2) point density is rather similar (~70% of TrueRStem). The stem
reconstruction is better in ADS with low/moderate than high stem density (Table 5).
Nevertheless, the stem reconstruction becomes more accurate for Turkey oak, Italian maple,
and European ash tree species (see Appendix B, Figure A1).
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Figure 7. Detection rate (DR) findings for each tree species.

Figure 8. Predicted vs. observed diameter at breast height (DBH) values for two linear regres-
sion models.

Table 5. Stem reconstruction results. Trees observed from field data (TR, units), reconstructed
stem from TLS data (RStem; units), and rate of RStem (TrueRStem, %) are described for each field
plot (ADS).

Stem Reconstruction Results

Description ADS
TOTAL1 2 3 4 5

TR 13 14 13 13 17 70
RStem 10 7 7 11 12 47

TrueRStem 76.9 50 53.8 84.6 70.6 67.2 (14.9)

Results show that a large part of the trunk sections between THbase and TH1 is covered
by cylinders, based on high values of CLR (mean = 88.1%; ±SD = ±16.7%; Figure 9A). This
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outcome, however, highlighted that the section covered by the cylinder is small compared
to the total trunk section, based on the low values of PHC (mean = 35.4%; ±SD = ±11.3%)
(Figure 9B). However, about 80% of trunks (39 out of 47 reconstructed trees) are correctly
reconstructed (Figure 9A) until the TH1. Conversely, the PHC values show that about 75%
of trunks are partially described by cylinders (30% < PHC < 68.3%), and the remaining
ones are poorly described by cylinders (PHC < 29.9%; Figure 9B).

Figure 9. Bar graph of the curve length ratio (CLR; (A)) and the percentage of the tree height covered
(PHC; (B)) for each reconstructed tree (ID trees).

3.3. Timber Assortment Assessment

A total of 179 merchantable logs and 40 non-merchantable logs are available from
47 reconstructed trees. About 75% (134 out of 179 merchantable logs and 34 out 40 non-
merchantable logs) of logs are correctly quantified (Table 6). On the one hand, comparing
the predicted with the observed length of logs, more fitted predictions are found in mer-
chantable (2.50 m vs. 2.78 m) with respect to non-merchantable logs (1.35 m vs. 1.62 m)
(Table 6). On the other hand, our approach proved to be suitable to predict more than 70%
of the total merchantable logs for all reconstructed tree species (see Appendix C, Table A1).

Table 6. Log quantification results. We consider the number of logs (N◦logs, units) and the length of
log (m) for merchantable and non-merchantable logs. Mean, standard deviation (±SD), and sum are
also displayed.

Observed Data Predicted Data

Log
Section

Logs Length of Log (m) N◦logs Length of Log (m)
Mean (±SD) Sum Mean (±SD) Sum

Merchantable 179 2.50 (±0) 447.5 134 2.78 (±0.12) 372.51
Non-

merchantable 40 1.35 (±0.69) 53.9 34 1.62 (±0.57) 54.99

As concern the assessment of TTv.log, better accuracy is obtained excluding potential
outliers (R-squared = 0.92; RMSE = 0.03 m3) from the regression compared to the inclusion
of outliers (R-squared = 0.77; RMSE = 0.06 m3) (Figure 10). Slight overestimation of Dmin
and Dmax negatively affects the TTv.log calculation, therefore, the performance of the
model improves excluding potential outliers based on Cook’s distance (see Appendix D,
Figure A2). In total, Cook’s distance selects 12 (∼8%) observations as outliers, these mainly
belong to big logs (>0.33 m3).
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Figure 10. Predicted vs. observed values of the two linear models for the volume of logs (TTv.log).

Log characterization: most merchantable logs are contorted, based on STR patterns
(mean 1.68 cm m−1; ±SD = ±1.73 cm m−1). The characterization of logs proved to be more
accurate for STR than TAP measurements as confirmed by the different bias and RMSE
values (Figure 11) found for TAP (1.69 cm m−1; RMSE 2.49 cm m−1) and STR (0.77 cm m−1;
RMSE 1.88 cm m−1). Despite the validation of TAP showing a slightly low accuracy, we
observed a similar trend between predicted and observed data.

Figure 11. Comparison between observed and predicted straightness (STR) and tapering (TAP)
values for merchantable logs. The units of bias, root mean squared error (RMSE), mean, and standard
deviation (±SD) are expressed in cm m−1. The bars of the subfigure (A) show the STR trend for all
134 trees; The bars of the subfigure (B) display the TAP trend for all 134 trees.

Eleven out of 14 assortment types are accurately classified based on their estimated
low bias (−1.36 number of logs by assortment class) (Figure 12). The comparison between
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predicted and observed log classification revealed that 8 out of 11 assortment types, as A2,
A3, B1, B3, C3, D2, D3, and Fuelwood3, are better matched among the assortment classes.
The principal high-quality assortment, namely A1, is found to be strongly overestimated
(predicted = 67 vs. observed = 43), while three merchantable logs (C1, Fuelwood1, and
Fuelwood2), are not predicted.

Figure 12. Merchantable log classification. The negative bias value represents the number of logs by
type of assortment.

4. Discussion
4.1. Timber-Leaf Discrimination

Results display that occlusion factors as trees in the understory layers, shrubs, branches,
and leaves (crown closure) hinder the timber-leaf discrimination. Such occlusion effect
is however made worse by the occurrence of lianas, which are naturalness indicators of
the forest [24,41] Although the eigenentropy thresholds allowed us to remove the noise
points, the timber-leaf discrimination requires more efforts to better classify small branches
(<0.02 m), especially those situated in the upper layers of the canopy. [41,42] faced similar
challenges in the timber-leaf discrimination, and they associated these with the quality of
TLS data (i.e., point spacing, density, and incidence angle uncertainties); another study
indicated that these challenges can also be associated with the shaded effect from large
to small stems, derived in part from the pre-processing issues (i.e., assembling among
scans) [41]. In our study, the shaded effect from large to small trees, branches, and leaves
of the large trunks, and the distance between the top of tallest trees and TLS device can
have affected the depiction of the upper part of the canopy, which was further influenced
by the structural heterogeneity and edaphic conditions (i.e., slope and rockiness). Despite
the challenges found in the timber-leaf discrimination, our findings are in line with that
reported by some recent studies [13,41,42]. However, the two main differences between our
study and other studies were the number of predictor variables (our study = 8 predictor vs.
literature = optimal more than 10 predictors) and tree species richness (our study = 9 vs.
literature = less than 3 tree species) [13,41,42].

We observed that the fixed “Ln” value slightly influenced the geometry-based descrip-
tion of points, as highlighted by the low uncertainties in the timber-leaf discrimination
(the overall accuracy is 0.98). Even if it could be conditioned by the quality of TLS data
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(i.e., point density and spacing), we recommend performing the neighbourhood points
using variables “Ln” values [36]. Nevertheless, the combined use of the RF algorithm and
a filtering approach allowed us to discriminate the timber from leaf points two times and
to generate good input data for the stem detection and reconstruction. Similar combination
strategies were proposed to improve the performance of the binary classification approach,
for example, [41] proposed a stepwise approach for timber-leaf discrimination following
four steps: majority filter, feature filter, cluster filter, and path filter, while [43] proposed an
approach using the spatial distribution of the neighbourhoods points for separating the
leaf from timber points.

4.2. Stem Detection and DBH Estimation

It is worth highlighting that the current study is carried out in a mixed and multi-
layered Mediterranean forest, within which the main management aim is biodiversity
conservation through very limited harvesting activities in the last 50 years. The results
reveal that the point density, tree species richness, and forest structure slightly influenced
the detection of trees from TLS data, reaching an average DR accuracy equal to 84.4%
(Table 4). On the one hand, the stem detection accuracy increases, as the point density and
spacing increase, but on the other hand, enhanced detection accuracy is found in a forest
with more than 500 tree ha−1, consisting of more than six tree species (see Figure 7). The
results also reveal that the cylinder-fitting algorithm is less suitable for detecting small
trees, however, this challenge has even been found for 18 automatic and semi-automatic
algorithms [16], and in such a study a similar challenge is related to incomplete TLS point
cloud coverage, while in our case it can also be caused by the nearest trees growing from
coppice shoots. The main hindering factors influencing the incomplete definition of the
cylinder of stems are shadow effects from large to small trees, poor quality of TLS data,
assembling errors, branches, and leaves covering the main trunk, stem straightness, non-
circular shape of trunks, and tree species richness [16]. Along with these hindering factors,
we noted that some “missing” detected trees, as for example ADS 5, are trees closer to each
other, as they are trees that rapidly grew up from stump/root (European hop-hornbeam).
Nonetheless, secondary factors, such as lianas’ and shrubs’ occurrence, as well as the terrain
slope and its rockiness, could have affected the detection accuracy of small trees [44–46]
However, in our study, given that the commission error is higher than the omission error,
the assumption of a shadow effect from large to small trees and from branches to trunk,
and the stem straightness became plausible.

Despite the contrasting responses obtained in stem detection, our results are higher
and or in line with the results reported by other studies for different tree species. For
example, in forest characterized by Pine, Norway spruce, and Silver birch, Liang et al. [44]
reached to detect the 73% of observed trees in plots having between 509 and 1432 trees ha−1,
which is comparable with the ADS 1, 2, 3 and 4 (DR of 90.0%, 80.6%, 86.5% and 84.8%)
in our study. In forests including the Norway spruce, Pine and Silver birch [45] reached
to detect the 87% of observed trees in plots having between 358 and 1042 trees ha−1 (vs.
DR = 84.8% as for ADS 4). In mixed forest areas consisting of Hornbeam, European beech,
Douglas fir, Norway spruce, Oak and Scots pine, [47] reached to detect the 93% of observed
trees in plots having between 113 and 1344 trees ha−1 (vs. an overall DR of 84.4% among
the ADS).

We obtained a completeness accuracy of 84.4% that is similar to the accuracies obtained
with different algorithms as for example 76% and 88% of completeness [16]. Despite the
correctness was slightly lower (66.9%) it is also comparable with values obtained by [16]
obtained from 14 algorithms and ranging between 50% and 95%.

On one hand, the accurate measurement of the DBH is affected by the occlusion/shadow
effects provoked by the bark roughness, stem straightness, and non-circular cross-section
of trunks, liana’s and microhabitat’s occurrence. On the other hand, the accurate validation
of the DBH prediction is slightly affected by the different times of collection data (2016’s
year—surveyed field data and 2018’s year—TLS data). Therefore, The overall accuracy
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could be further improved if both field data and TLS data were collected in the same
year. This is despite the robustness of the cylinder-fitting algorithm for detecting and
measuring the trunk [16,48]. Such hindering factors are often triggered by pre-processing
and processing approaches, as well as operational aspects (distance between tree position
and TLS scanner, number of scans) [48,49]. However, all the above-mentioned assumptions
could be improved with experience and well-trained staff.

4.3. Stem Reconstruction

The tracing of cylinders along the stem axis performed by the cylinder-fitting approach
allowed us to characterise the trunk architecture over distinct tree species. We reconstructed
nearby 75% of detected trees from TLS data in a mixed and multi-layered Mediterranean
forest (see Table 5). Although the stem reconstruction is less affected by the point density
compared to the stem detection, an enhanced stem reconstruction is found in the forest
with lower than 900 trees ha−1, within which Turkey oak is the tree species most frequent.
This result is probably caused by the fact that most of Turkey oak were dominant large trees,
which capture more points from TLS data than small trees, despite the profile of Turkey
oak trees is sometimes curve, and even influenced by bark surface defects provoked by
insects [50]. We assumed that the large trees might be easily reconstructed than small trees
using the cylinder-fitting approach. This outcome could be triggered by the use of scans for
covering the trees and the large dimension of trunks allowing us to capture these points,
despite the hindering factors, such as the bark roughness, stem form, and irregularities in
the bark surface (i.e., knots, bulges) [46,51].

A good proportion of the trunk section from TLS data is reconstructed by cylinders, as
supported by the cylinder-fitting validation, CLR (88.1%), and PHC (35.4%) (see Figure 9).
In our study, the obtained accuracy for CLR and PHC is comparable with the results
reported by thirteen algorithms, which found overall CLR values ranging between 74%
and 87% [16] and PHC values ranging between 56% and 94%. Despite the potential of
used cylinder-fitting for tracing the cylinders, even for many tree species, the stem curve
description decreases in the upper part of the canopy, specifically after the TH1 height.
This effect is mainly caused by the difficulty to measure the cylinder of trunks including
branches using the cylinder-fitting approach, however, this measure becomes useless for
the objective in our study. Then, it could be even influenced by the bare coverage of
the treetop by points, caused by several hindering factors (i.e., distance between TLS
device and treetop) [16,52]. However, some secondary factors that could have affected
the coverage of treetop by points were the shrub’s occurrence, the edaphic condition,
and the period of collected TLS data (at the beginning of spring; leaf-on condition). We,
therefore, recommend collecting TLS data under leaf-off conditions and considering the
above-mentioned hindering factors.

4.4. Timber Assortment Assessment

Forty-seven detected trees have provided 219 logs, 179 merchantable logs, and 40 non-
merchantable logs. More than 75% of merchantable and non-merchantable logs are quanti-
fied using the stem curve description (see Table 6). We noted that some logs from observed
data are “missing”, especially those located in the upper part of trunks. Even if most
of these “missing” logs are produced by incomplete reconstruction of stems computed
using cylinder-fitting approach (CLR patterns; see Figure 9), this challenge for some logs
could be associated with the irregular stem form (i.e., sweep/straight), the irregulari-
ties on the bark (i.e., defects: knots, bulges, microhabitats) [3], and the limitations of the
cylinder-fitting algorithm.

Overall, we found four differences between the results of the proposed method and
that obtained from the simple cylinder-fitting into reconstructing the tree stem. First, the
results from the proposed method allowed the stem reconstruction using three fit cylinders
for each identified log, while that reconstruction from the cylinder fitting used infinity
cylinders spaced among them by 10 cm; second, the results from the proposed method
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displayed a most realistic description of the straightness of trees in comparison with those
provided by the cylinder fitting results; third, the suitability in using the fittest cylinder
between 2.5 m and 3 m of the length logs from the proposed approach allowed the accurate
assessment of log and trunk volume; fourth, the selected fit cylinder measurements from
the proposed method allowed to mitigate the effects of the irregularities of trunks on the
stem reconstruction (cylinder-fitting approach considers all cylinders). Concerning the log
volume (TTv.log), the best prediction is shown in the linear regression model excluding
the outliers (R-squared = 0.91; RMSE = 0.03 m3; Figure 10). However, the observations
selected for Cook’s distance as potential outliers amount to 8%. Given that the observations
classified as “outliers” are observations that negatively influenced the model based on
the leverage and residual of each observation, we assume that few removed observations
could be associated with stem diameter errors caused mainly by the forest structure
and naturalness characteristics as lianas, forked and twisted trees [12]. Nevertheless, the
accuracy obtained for TTv.log is comparable with the result obtained in pure stands, despite
the forest stand condition here are mixed and multi-layered. For example, our results are
comparable with the results reported for a study focused on Scots pine and Norway spruce,
in which the accuracy for stem volume through a cylinder-fitting approach was 0.83 (R-
squared) and a mathematical equation approach was 0.94 of R-squared [53]. Similarly, our
results are comparable with that obtained for Pine. and Norway spruce stems. Particularly,
for such species, the R-squared (RMSE) was 0.98 (RMSE = 0.02 m3) and for us it was 0.91
(RMSE = 0.03 m3) [54].

Field data highlights that most merchantable logs were crooked logs with several
bends, based on the STR and TAP measurements; however, their variability/uniformity
among the merchantable logs is high, especially for STR. This variability, affecting the
characterization of logs, could be influenced by the many tree species, and their morpho-
logical traits, provoked by the genetic and physiologic mechanisms [3,55] In addition, the
characterization of logs could be affected by some secondary factors e.g., the stem form,
stem density, edaphic condition [3,55] bark irregularities [56], as well as by the manual
approach implemented for characterising the logs [57].

We classified 134 out of 179 merchantable into 15 different assortment types. Eleven
out of 15 assortment types are correctly matched. The classification of merchantable logs is
more accurate for eight assortment types. These 8 assortment types including the “saw-log
plus”, “saw-log” and “other industrial Roundwood” mainly. Based on the fact that the
STR and Dmin are the requisites for classifying the merchantable logs. We assumed that
the uncertainties found in the stem reconstruction (i.e., cylinder measures) affected the
assignment of class to merchantable logs. As a result, the classification of merchantable
logs could be influenced by the over/underestimation of cylinder measures, provoked by
the stem form (i.e., sweep or straight), and shape (i.e., neiloidic or parabolic shapes), and
even by the irregularities in the bark surface (i.e., knots, bulges, microhabitats) [5,55,58]
Analysing the high-quality assortment (see Appendix C, Table A1), we assumed that the
overestimation could be associated with three hindering factors: (1) the different points
where we measured the cylinders (observed at “2.5 m” and predicted at “2.7 m” data);
(2) the stem diameter uncertainties provoked by the manual measurements and (3) the
occurrence of the lianas, bulges, and microhabitats. We thought that the first two above-
mentioned hindering factors could be calibrated and optimized using a feedback view
validation approach, after stem reconstruction and before timber assortment assessment.

Implementing the proposed approach results in more affordable regarding the tra-
ditional survey inventory. Because the cost of the traditional surveys can vary from
~60 € ha−1 (training “a full tree callipering survey”) to ~395 € ha−1 [59,60]. Conversely,
we didn’t spend money on the timber assortment processing, since the used software e.g.,
OPALS, R, and CloudCompare are free for research studies. However, the use of the full
OPALS modules for commercial purposes can cost ~2300 € per year. It is worth underling
that the cost of one TLS device can cost more than ~30,000 € according to the scanner (for
rental; the price is higher than 200 € per day). Another important aspect to consider in the
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general cost was the device used for processing the TLS. To do this, we used a personal
computer Intel®Core™ i7-10750H CPU @ 2.60GHz and 3200 GB RAM (Intel®, Santa Clara,
CA, USA).

5. Conclusions

This study introduces a procedure for quantifying and classifying the timber assort-
ments of standing trees using TLS data in a mixed and multi-layered Mediterranean forest.
Four conclusions may be drawn from this study. First, accurate timber-leaf discrimina-
tion allowed the detection and reconstruction of trees over distinct tree species; second,
the tree detection approach was suitable for detecting large trees, especially those with a
DBH higher 0.30 m; third, trunk defects (i.e., abundance of lianas and other structures as
deformation and growth forms, epiphytic foliose and fruticose likens), stem form and trees
poorly covered by points were the main hindering factors for accurate reconstruction of
trees; and fourth, our approach proved to be more accurate in quantifying and classifying
most of appreciated assortments types, such as saw-log plus, saw-logs and other industrial
roundwood. Technical consideration became useful to accurately implement this approach,
as we suggested collecting TLS data during leaf-off forest conditions to capture a point
density higher than 44,210 pts m−2 (to detect ≥80% of observed trees).

The proposed approach could be useful to characterise tree morphology for industrial
targets, making more efficient harvesting activities. Such a development might aid to
valorise the timber from productive forests and accurately quantify the carbon stored in
the unmanaged forest, as in old-growth forests or within protected areas, useful to mitigate
the negative effects of climate change. Since this approach is tested for the first time in
a Mediterranean forest, the comparison with other similar studies has not been possible
due to missing publications on this topic. Further studies to increase the knowledge about
the applicability of this approach in other forest conditions might be useful to assess the
performance of the cylinder-fitting algorithm.
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Appendix A

Material and Methods: Geometry-based calculation: to optimize the extraction of
information from the TLS data, an optimal local neighbourhood (hereafter Ln) was searched
using a tool, namely “compute geometric features”, embedded in CloudCompare software
(http://www.danielgm.net/cc/, accesssed on 31 August 2021). The “Ln” values allowed
us to characterize the local surface and local point density variation within TLS data,
optimizing and facilitating the description of the point cloud from TLS data [1]. The
“compute geometric features” is a CloudCompare tool. It is suitable to recognize and

http://www.danielgm.net/cc/
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describe the contours of several surface orientations using a specific “Ln” value, commonly
called geometry-based features [2,3].

To find the optimal “Ln” values for each point cloud, we clipped 10% of each point
cloud, then, we selected the “Ln” value explaining the most amount of points using
the verticality geometry-based feature as an indicator. To reach this, we calculated the
verticality geometry feature using four “Ln” values (3, 5, 7, and 9 mm) through the
“compute geometric features” tool and the results are compared among them. Here,
the value of 7 mm became promising [4].

At this point eighteen geometry-based features (i.e., roughness, mean curvature,
Gaussian curvature, Gaussian normal change rate, number of neighbours, surface density,
volume density, sum of eigenvalues, omnivariance, eigenentropy, anisotropy, planarity,
linearity, first and second principal component analysis, surface variation, sphericity and
verticality) were automatically generated, using the “Ln” threshold (0.07 m) through
“compute geometric features” CloudCompare tool [1]. The final product consisting of a list
of eighteen geometry-based features joined to their geographic coordinates (txt. Format)
was used in the subsequent sub-step.

Appendix B

Stem reconstruction results: despite the abundance of tree species reported by each
field plot, we found that most of Turkey oak, Italian maple, European ash, and European
beech (between 25.5% and 66.7% of observed trees correctly reconstructed) are more effort-
lessly reconstructed than other tree species, showing values lower than 20% of observed
trees correctly reconstructed (Figure A1).

Figure A1. Rate of the reconstructed stem from terrestrial laser scanning data (TrueRStem) for each
tree species.

Appendix C

Timber assortment results: analysing the results from log quantification by tree species,
we noted a more accurate assessment of non-merchantable than merchantable logs, based
on small values of bias 0.8 and 5.6, respectively (Table A1). However, our approach proved
to be suitable to predict more than 70% of merchantable logs in nearly all tree species
(Table A1).
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Table A1. Log quantification results for tree species.

Merchantable (Units) Non-merchantable (Units)

Tree Species Observed
Data

Predicted
Data Accuracy Observed

Data
Predicted

Data Accuracy

1 Turkey oak 62 43 10 11
2 European beech 42 36 12 10

3 European ash 45 34 10 6

4 Field maple 3 2 0 0

5 Italian maple 14 11 5 4

6 Small-leaf lime 8 4 1 1

7 European
Hop-hornbeam 4 3 1 1

8 Hornbeam 1 1 1 1

Sum 179 134 40 34

Bias * 5.6 0.8

RMSE * 8.3 1.7
* Bias and RMSE are represented by the number of logs by each tree species.

Appendix D

Maximum-end (Dmax) and minimum-end (Dmin) diameter: Predicted vs. observed
Dmin and Dmax values for each trunk were compared through linear regression models.
Similar to the diameter at breast height (DBH), we fit two linear regression models, one
using all observation and the other using all observation without outliers, based on Cook’s
distance. The statistic measurement applied to models were coefficient of determination (R-
squared; 0–1) and root mean square error (RMSE; m, m3). The validation processing used
the “stats” (authors, R Core Team and contributors worldwide) and “usdm” R packages.
The stem curve data for each ADS was used as input in the subsequent step.

Comparing predicted vs. observed Dmax and Dmin values from reconstructed trees,
corresponding to 47 reconstructed trees, we found better accuracy in the linear regression
model excluding outlier for both Dmax (R-squared = 0.86; RMSE = 0.03 m) and Dmin
(R-squared = 0.89; RMSE = 0.03 m), in comparison with the accuracy obtained in the linear
regression model including the outliers for both Dmax (R-squared = 0.60; RMSE = 0.08 m)
and Dmin (R-squared = 0.56; RMSE = 0.08 m) (Figure A2).

As expected, the results reveal that the Dmin and Dmax are more accurate in the linear
regression models excluding the outliers, which are often associated with large trees. These
findings could be supported by three assumptions: (1) the poor coverage of the whole
trunk by points; (2) the lianas’ and microhabitats’ and knots occurrence on trunks and non-
circular shape of trunks; (3) the uncertainties caused by the manual measurement of these
variables through CloudCompare software. The first and third latter could be improved
with experience and well-trained staff, while the second above-mentioned assumption is
strictly dependent on the forest structures.
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Figure A2. Predicted vs observed values of the two linear models for the maximum-end (Dmax) and
minimum-end (Dmin) diameters.
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