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Abstract: The transformation of the natural landscape into an impervious surface due to urbanization
has often been considered an important driver of environmental change, affecting essential urban
ecological processes and ecosystem services. Continuous forest degradation and deforestation due to
urbanization have led to an increase in atmospheric carbon emissions, risks, and impacts associated
with climate change within urban landscapes and beyond them. Hence, urban reforestation has
become a reliable long-term alternative for carbon sink and climate change mitigation. However,
there is an urgent need for spatially accurate and concise quantification of these forest carbon stocks
in order to understand and effectively monitor the accumulation and progress on such ecosystem
services. Hence, this study sought to examine the prospect of Sentinel-2 spectral data in quantifying
carbon stock in a reforested urban landscape using the random forest ensemble. Results show
that Sentinel-2 spectral data estimated reforested forest carbon stock to an RMSE between 0.378
and 0.466 t·ha−1 and R2 of 79.82 and 77.96% using calibration and validation datasets. Based on
random forest variable selection and backward elimination approaches, the red-edge normalized
difference vegetation index, enhanced vegetation index, modified simple ratio index, and normalized
difference vegetation index were the best subset of predictor variables of carbon stock. These findings
demonstrate the value and prospects of Sentinel-2 spectral data for predicting carbon stock in
reforested urban landscapes. This information is critical for adopting informed management policies
and plans for optimizing urban reforested landscapes carbon sequestration capacity and improving
their climate change mitigation potential.
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1. Introduction

Urbanization, typified by transformation of natural landscape into impervious built-up
surfaces, is considered a major driver of environmental change [1–3]. Such transformation
significantly affects the integrity of important ecological processes and ecosystem services
that include deterioration of water quality, increase in urban thermal heat, air and noise pol-
lution, loss of biodiversity, and acceleration of climate change [3–5]. Despite covering small
land-surface, urban areas account for the highest amount of global carbon emissions due
to higher energy and resource consumption [6]. Commonly, urban vegetation (especially
forest ecosystems) sequestrate the emitted carbon and regulate climate systems within
urban landscapes. However, deforestation and forest degradation that typifies urbanization
processes reduces urban areas’ carbon sequestration potential and increases greenhouse gas
accumulations [7–10]. In sub-Saharan Africa for instance, studies show that urbanization
exert enormous pressure on the spatial distribution of urban forest ecosystems, hence
decreasing substantial amount of sequestrated carbon and accelerate potential risks and
impacts of climate change [11,12].

Recently, the United Nations Framework Convention for Climate Change (UNFCCC)
established the Reducing Emissions from Deforestation and forest Degradation (REDD+)
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that requires countries to report their carbon emissions and sink estimates through national
greenhouse gas inventories (NGHGI) [13,14]. Furthermore, the REDD+ and Kyoto Proto-
col programs have identified reforestation initiatives as the most efficient, low-cost, and
long-term approach for reducing greenhouse gas emissions and climate change impacts,
especially in urban landscapes [3,4]. The emergence and recognition of reforestation as
the potential carbon sink in urban landscapes is expected to significantly influence the
global carbon cycle, improve urban environmental quality, and regulate climate systems.
Subsequently, an explicit investigation in the methods and procedures for quantifying
these carbon emissions and sinks is paramount.

Numerous studies have assessed regulating ecosystem services such as carbon stock or
sequestration and aboveground biomass [15–17]. However, existing assessments are biased
towards natural/indigenous and commercial forests. Despite the need for knowledge
on the contribution of urban reforestation on the global carbon cycle and climate change
regulation potential, information on carbon stocks in reforested urban areas remain largely
unknown. Hence, there is a need to establish affordable, spatially explicit and robust
techniques, as well as datasets to effectively quantify and monitor carbon stocks in urban
reforested landscapes.

Traditionally, field surveys have been used to determine aboveground carbon [18,19].
Whereas field surveys and observations are known to be highly accurate, their shortcom-
ings are widely documented in the available literature [16,20]. Meanwhile, among others,
the Inter-Governmental Panel on Climate Change Good Practice Guidance (IPCC-GPG) on
Land Use, Land Use Change, and Forestry has proposed remote sensing as a cost-effective
and reliable primary data source and technique for wall-to-wall mapping and estimation
of forest carbon dynamics, useful for long-term climate change regulations and policy
formulation [21]. Remote sensing techniques offer spatially-explicit spectral information
at a larger spatial extent, which is necessary for both local and regional prediction and
monitoring of the aboveground carbon stock in reforested areas [18,19]. Recently, new
generation commercial sensors such as the WorldView series have been widely used in
estimating aboveground carbon stock and biomass [22–24]. These sensors consist of fewer
but strategically positioned spectral wavebands, including unique band settings within the
red-edge region invaluable for enhancing vegetation spectral response [22,23,25]. However,
despite their effectiveness in modelling carbon stocks, they are costly and not readily
available. Such limitations hinder frequent quantification and monitoring of aboveground
forest carbon stocks in regions such as Southern Africa, where financial constraints limit
the availability of spatial data. Hence, improved and freely-available multispectral sensors
remain the most feasible sources of spatio-temporal data for predicting forest carbon stock.
Specifically, the emergence of cutting-edge freely available multispectral sensors such as
the Sentinel-2 offer better prospects for vegetation modelling and monitoring. The sensor is
characterised by improved spatial, spectral, and radiometric properties that offer unprece-
dented opportunities for estimating aboveground carbon stock at both local and regional
scales. Sentinel-2 is regarded as an intermediate spatial data source between medium spa-
tial resolution (e.g., Landsat series) and high spatial resolution sensors (e.g., Worldview-2
and RapidEye) due to its strategically positioned band settings in the red-edge region and
varying spatial resolution ranging from 10 to 60 m [26,27]. In addition, Sentinel-2 has a
higher (five days) temporal resolution, suitable for frequent quantification, monitoring,
and management of forest ecosystems and carbon stocks. Despite the recent popularity
of Sentinel-2 datasets in vegetation mapping, no study, to the best of our knowledge, has
used it to characterise an urban reforested landscape. In addition, new and unique indices
derived from red-edge region of Sentinel-2 multispectral image (MSI) for carbon stock
estimation in reforested urban landscapes have not been concisely explored. Such indices
optimise spectral reflectance that can significantly improve prediction accuracy of terres-
trial carbon stock. Studies that have evaluated red-edge indices (e.g., red-edge normalised
difference vegetation index, red-edge chlorophyll index and red-edge modified simple
ratio index) have particularly focused on leaf area index and biomass estimation [25,28,29].
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Thus, there is a need to test such unique indices derived from strategically positioned
red-edge bands of Sentinel-2 MSI for enhancing carbon stock estimation in reforested
urban landscapes.

Multiple linear regression approaches based on a range of variables are often used
for modelling aboveground vegetation biomass and carbon stocks [25,30]. However,
optimal prediction of carbon stocks in urban reforested areas requires robust machine
learning algorithms that do not have assumptions of data normality. For instance, non-
parametric ensemble techniques such as the random forest have proven to be successful
in modelling forest ecosystems properties with unprecedented performance [18,25,31].
Random forest is an algorithm known for its bootstrapping and creation of a subset of
explanatory variables that are randomly selected from the input dataset, hence overcoming
overfitting [22,32]. RF is also capable of addressing complex correlation problems existing
between predictor variables due to large volumes of data and noise [33]. Literature shows
that the random forest regression model performs better than other machine learning
algorithms in vegetation modelling [34–37]. Ghosh and Behera [34] for instance, established
that random forest regression model outperforms stochastic gradient boosting in estimating
forest aboveground biomass. Similarly, Safari et al. [36] found that random forest model
was robust in modelling forest aboveground carbon stock, compared to support vector
machine and boosted regression trees. In comparing the performances of random forest,
back-propagation neural network, and support vector regression in estimating wetland
aboveground biomass, Wan et al. [37] found that random forest performed better than
other regression algorithms. However, studies that have utilised random forest to estimate
aboveground biomass and carbon content have been restricted to natural and plantation
forests. For example, Dube et al. [22] used random forest ensemble to estimate above
ground biomass of Eucalyptus and pine species in a commercial forest. Similarly, Odebiri
et al. [9] adopted ensemble random forest model to predict soil organic carbon stock in
plantation forests, while Mutanga et al. [25] demonstrated that random forest model is
critical in predicting biomass in a wetland. Furthermore, it has been widely proven that
the integration of Sentinel-2’s spectral bands and vegetation indices in a robust machine
learning algorithm facilitates accurate determination of aboveground vegetation carbon
stocks [26,38–41]. Dang et al. [39] for instance, integrated spectral indices and bands
derived from Sentinel-2 MSI in the random forest algorithm to estimate aboveground
biomass of forest ecosystems in Yok Don Park, Vietnam. Likewise, Wang et al. [41] used
spectral indices derived from Sentinel-2 MSI bands to predict aboveground biomass and
leaf area index using robust algorithms such as support vector machine and random forest.
The study conducted by Baloloy et al. [38] also indicated that Sentinel-2 derived indices
and spectral bands are critical in modelling vegetation metric such as biomass and carbon.
In this regard, this study sought to examine the prospect of Sentinel-2 image spectral-data
in quantifying carbon stock within a reforested urban landscape.

2. Materials and Methods
2.1. The Study Area

This study was conducted in Buffelsdraai area, North of the Durban city centre in
KwaZulu-Natal province, South Africa (Figure 1). Buffelsdraai is a reforested area situated
between 30◦58′20.08′ ′E and 29◦37′55.17′ ′S and covers approximately 800 ha. The area
experiences average annual temperatures between 22–27 ◦C and average annual rainfall
ranging from 600–1000 mm. The area is characterized by uneven topography supported by
dwyka tillite geological formation [3]. The most dominant reforested tree species in the
area are Acacia (i.e., caffra and robusta), Syzygium cordatum (water berry), Bridelia micrantha,
Dalbergia obovate, Erythrina caffra, and Silver oak.
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In this study, the Trimble Global Positioning System (GPS) with 0.5 m accuracy was used 
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Figure 1. Location of Buffelsdraai reforestation site and sample points, within the eThekwini Munici-
pality in KwaZulu-Natal Province.

2.2. Field-Survey and Data Collection

Field survey and data collection were conducted between 21st and 25th of Febru-
ary 2020 during the summer season at peak biomass productivity. In this study, about
130 pre-determined random sampling points inserted in a global positioning system (GPS)
were used to access the sampling sites. From each random point, a plot-size window of
10 m ∗ 10 m was established and structural attributes such as height and diameter at breast
height of reforested trees recorded. A clinometer (Vertex IV Hypsometer) was used to
measure tree height, while diameter at breast height (DBH) was measured using a calliper.
In this study, the Trimble Global Positioning System (GPS) with 0.5 m accuracy was used
to record geographic location of each sampled tree.
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2.3. Allometric Modelling of Aboveground Biomass and Carbon Stock

The allometric relationship between the tree diameter and height can significantly
affect tree biomass, and hence their measurements could be effectively used for vegetation
biomass estimation [16,18]. A non-environmental destructive approach such as allometric
model for biomass estimation has been recommended by the Intergovernmental Panel on
Climate Change (IPCC) [42,43]. In this study, a field measured diameter at breast height
(DBH) and height (H) of individual reforested trees were integrated into the allometric
model to compute aboveground biomass using the following generic equation:

W = a
(

D2H
)b

where W is the aboveground biomass, D represents diameter at breast height (cm), H
indicates tree height (m), while a and b are regression coefficients [42].

Generally, the aboveground dry biomass holds about 50% of carbon, as such, a friction
factor of 0.5 is commonly used for converting dry mass into carbon concentration [43,44].
Therefore, in this study, we converted the computed biomass into carbon stock using a
factor of 0.5.

2.4. Image Acquisition and Pre-Processing

A multispectral Sentinel-2A satellite image was captured on the 26th of February
2020 during cloud-free day and freely downloaded on the 2nd of March 2020 through
the Quantum Geographic Information System (QGIS) portal. Sentinel-2 sensor acquires
images at 13 spectral channels (e.g., coastal-b1, blue-b2, green-b3, red-b4, red-edge-b5,
red-edge-b6, red-edge-b7, near infrared-b8, red-edge-b8A, water vapour-b9, cloud-b10,
shortwave infrared-b11 and shortwave infrared-b12) at varying spatial resolutions of 10,
20, and 60 m. This sensor covers strategically located red-edge region (i.e., b5, 6, 7 and 8A)
of the electromagnetic spectrum with unique band settings that are critical for vegetation
modelling [26]. Sentinel-2A data is readily available for frequent vegetation assessment
and monitoring. In this study, the spectral data was atmospherically corrected using Dark
Object Subtraction (DOS) embedded in QGIS software, which also converted spectral
radiances to reflectance. Furthermore, the spectral data were extracted from a series of
waveband combinations representing vegetation green biomass indices (Table 1). Indices
which were ideal for vegetation assessment and monitoring include; normalized difference
vegetation index (NDVI), enhanced vegetation index (EVI), green NDVI (GNDVI), trans-
formed vegetation index (TVI1), green chlorophyll index (Clgreen), modified simple ratio
index (MSRI), ratio vegetation index (RVI), triangular vegetation index (TVI2), advanced
vegetation index (AVI), modified triangular vegetation index (MTVI 1 and 2), and normal-
ize pigment chlorophyll ratio index (NPCRI). We also derived indices from a combination
of red-edge bands such as the red-edge normalized difference vegetation index (NDVIRE),
red-edge chlorophyll index (ClRE), and modified simple ratio red-edge index (MSRIRE).
In addition, the derived indices were combined with spectral data extracted from the
individual bands.



Remote Sens. 2021, 13, 4281 6 of 15

Table 1. Spectral indices derived from Sentinel-2 MSI and their formulae.

Indices Formulae References

NDVI NIR−Red
NIR+Red [45]

EVI 2.5 ∗ ( NIR−Red
(NIR+6∗Red−7.5Blue+1) ) [46]

TVI1
√
(NDVI) + 0.5 [47]

GNDVI NIR−Green
NIR+Green [48]

Clgreen
NIR

Green − 1 [49]
RVI NIR

Red [50]
MSRI

NIR
Red −1√

NIR
Red +1

[51]

TVI2 0.5 ∗ [120 ∗ (NIR− Green)− 200 ∗ (Red− Green)] [52]
AVI 3

√
[NIR ∗ (1− Red) ∗ (NIR− Red) [53]

MTVI1 1.2 ∗ (NIR− Green)− 2.5 ∗ (Red− Green) [54]
MTVI2 1.5∗(1.2∗(NIR−Green)−2.5∗(Red−Green)√

(2∗NIR+1)2−(6∗NIR−5∗
√

(Red)−0.5
[54]

NPCRI Red−Blue
Red+Blue [55]

NDVIRE
NIR−RE
NIR+RE [29]

ClRE
NIR
RE − 1 [49]

MSRIRE
NIR
RE −1√
NIR
RE +1

[51]

2.5. Statistical Analysis

In this study, random forest algorithm was used for regression analysis. Random
forest (RF) operates as an ensemble learning that creates multitude of decision trees (ntree)
and selects the final best tree based on the majority vote. RF uses a bootstrapping technique
to reduce model variance without increasing bias while enhancing accuracy and reducing
overfitting [32,56]. Such an ensemble model has a modified technique (e.g., feature bagging)
for selecting a random subset of features (mtry) in order to determine the split at each tree
node [56]. Each node in the model represents a predictor variable and all selected subset of
the data are used as response variables. Random forest first examines and tests all predictors
from each node before randomly selecting the best split from a set of predictors [22,56].
Furthermore, random forest permits model optimization for better results using two
parameters, namely ntree, based on large sets of decision trees and bootstrap training
sample, and mtry, based on the individual predictor variables selected from each tree
node [25,40]. Normally, the standard value of ntree is set at 500, while mtry takes the
square-root of the total number of an input predictor variable on a normal classification;
on the regression, it divides all predictor variables by a default factor of three [9,56]. The
optimal ntree and mtry values for best prediction performance are determined based on the
smallest out-of-bag error [56]. In this study, the ntree was adjusted between 100 and 500 at
the interval value of 100, whereas mtry was adjusted from 1 to 25 with interval value of 1.
The best ntree and mtry was determined at the interval value of 300 and 18 based on the
least root mean square error of the training dataset (n = 56).

2.6. Optimal Predictor Variables Selection

Commonly, regression analysis suffers a problem of multi-collinearity due to high
correlation or less variability between some input predictor variables [9,40]. Despite the
capability of an ensemble method such as random forest in dealing with strong correlation
between certain variables, it is necessary to select and utilize optimal predictor variables
which improve regression model performance. In this study, the out-of-bag (OOB) approach
based on backward elimination was used to determine a subset of predictor variables that
were ideal for the best regression model. Backward elimination is critical for removing
highly correlated variables, which are not important until a subset of ideal predictor
variables remain in the model. In addition, the values of carbon stock estimated from a
subset of predictor variables were used to generate a spatially varying map of carbon stock.
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2.7. Model Validation and Accuracy Assessment

Random forest effectiveness in predicting carbon stock within the urban landscape
was tested using 10-fold cross-validation. Initially, the total dataset (n = 80) was partitioned
into 70% (n = 56) as training sets and 30% (n = 24) as testing datasets. The RF model
performance was evaluated using the coefficient of determination (R2), root mean square
error (RMSE) and mean absolute Error (MAE).

3. Results
3.1. Carbon Stock of Reforested Trees

Based on the descriptive statistics, the minimum and maximum value of measured
carbon stock within reforested urban landscape are 0.244 and 10.20 t·ha−1 with the mean
value of 3.386 t·ha−1 and standard deviation of 2.475 t·ha−1.

3.2. Random Forest Model Optimization

Figure 2 shows random forest optimization parameters (Ntree and Mtry). In this study,
the Ntree value of 300 and Mtry value of 18 produced the lowest RMSE (0.125 t·ha−1) and
were selected for further carbon stock prediction.
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3.3. Variable Importance Selection

Results in Figure 3 show the predictive performance of individual variables used in
the model and their ranking in terms of importance based on the OOB error rate, which
increases with importance, while Figure 4 illustrates the number of variables selected for
optimal carbon stock prediction. Using the backward elimination approach, a subset of four
predictor variables (i.e., NDVI, EVI, MSRI and NDVIRE) with the smallest error rate was
selected for the final carbon stock model. The integration of this subset into one random
forest model produced the lowest OOB RMSE of 0.143 t·ha−1 and a 10-fold cross-validation
RMSE of 0.153 t·ha−1. The RMSE increased to 0.331 t·ha−1 and 0.345 t·ha−1 for both OOB
and 10-fold cross validation when using all 25 variables in the training dataset. Finally,
this study used four predictor variables (i.e., NDVI, EVI, MSRI, and NDVIRE) in the final
random forest regression model for predicting carbon stock within the study area.
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3.4. Random Forest Model Prediction Performance

Results in Table 2 show the overall mean carbon stock and prediction performance
of Sentinel-2’s spectral data and the random forest model. The integration of optimal
variables selected by random forest produced an overall mean carbon stock of 3.389 and
3.642 t·ha−1 using calibration (training) and validation (testing) datasets. The random
forest regression model obtained highest R2 (from 77.96 to 79.82%) with lowest RMSE (from
0.378 to 0.466 t·ha−1) and MAE (from 0.189 to 0.233 t·ha−1) when predicting carbon stock
using four selected indices combined together, compared to the use of individual indices
into the model. Figure 5 illustrates the relationship between predicted carbon stock with
allometric derived carbon stock and optimal variables that greatly improved the random
forest prediction model. Results in Figure 5 also show a strong correlation coefficient (r)
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of 0.951 to 0.978 between predicted and measured carbon stock. Furthermore, Figure 6
represent spatial variability of carbon stock across reforested urban landscape. Generally,
the spatial variability of carbon stock increases with increasing canopy cover and decreases
with the decrease in green biomass.

Table 2. Performance of random forest model in predicting reforested carbon stock using selected
subset of variables separated into calibration and validation datasets.

Prediction Dataset Mean C (t·ha−1) R2 (%) RMSE (t·ha−1) MAE (t·h−1)

Calibration 3.389 79.82 0.378 (11.15%) 0.189
Validation 3.642 77.96 0.466 (12.79%) 0.233
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4. Discussion

Concise estimation of climate regulating ecosystem services provided by reforested
urban trees such as carbon stock is key to understanding the role and value of reforestation
strategy in the global carbon dynamics and climate change regulation potential. Hence,
this study sought to test the utility of Sentinel-2 satellite data in quantitatively evaluating
the amount of carbon in an urban reforested landscape.

Results showed that Sentinel-2 spectral data could be used to estimate carbon stocks
in an urban reforested area. In this study, a mean carbon stock of between 3.389 and
3.642 t·ha−1, with high R2 (77.96 and 79.82%), low RMSE (0.378 and 0.466 t·ha−1), and
MAE (0.189 and 0.233) was obtained using calibration and validation subsets dataset.
This reasonable estimation performance can be explained by Sentinel-2’s strategically
positioned wavebands, particularly the red-edge region. The region records numerous
leaf properties such as chlorophyll concentration, leaf area index and green-biomass, nec-
essary for measuring forests services such biomass and carbon stock [21,22,57]. Hence,
its inclusion as an explanatory variable significantly improved carbon stock modelling
accuracy. Our results concur with the hypothesis that sensors (e.g., Sentinel-2 MSI) with
strategically located band settings such as red-edge, offer unprecedented spectral infor-
mation critical for measuring vegetation metrics and services such as biomass and carbon
uptake [22,25]. In addition to the red-edge, Sentinel-2’s near infrared (NIR) bands also
provide sensitive spectral reflectance capable of explicit estimation of vegetation metrics
such as biomass and carbon stock. The near-infrared region offers a refined narrow spectral
wavelength ranging between 850 and 880 nm and highly sensitive to the biophysical and
biochemical response of vegetation [20,58]. Biophysical (e.g., leaf area, biomass) and bio-
chemical (e.g., chlorophyll content) properties are critical for detecting vegetation health
and productivity (useful for determining carbon uptake by reforested trees).

Results of this study also showed a strong correlation (r: 0.95 to 0.98) between the
estimated aboveground carbon stock and measured carbon stock using calibration and
validation datasets. Such a strong relationship is associated with the consolidation of
optimal variables (i.e., NDVI, EVI, MSRI, and NDVIRE) selected by backward elimination
process for the final prediction model of carbon stock. Among the integrated vegetation
indices, NDVI was valuable in the estimation of carbon stock within reforested urban
landscape. This could be attributed to the fact that NDVI is an important indicator of
green-biomass, which can be effectively used for deriving and monitoring spatio-temporal
dynamics of aboveground carbon stock/sequestration [59–61]. The findings in this study
are consistent with those of Moumouni et al. [61] who predicted aboveground carbon stock
variability across different forest biomes to a R2 of 0.91 using an NDVI. Meanwhile, in a
related study, Bindu et al. [59] attained an R2 of 0.71 in estimating carbon stock of man-
groves trees using NDVI. Such a strong predictive performance of NDVI in carbon stock
estimation can be explained by the sensitivity of the near-infrared region to the internal leaf
mesophyll, which is a major indicator of vegetation health and is responsible for maximum
biomass productivity [62,63], and hence critical for simulating the amount of carbon stored
in forest ecosystems. NDVI contain robust spectral information derived from Red and
NIR bands, which are sensitive in detecting vegetation health and productivity, which are
valuable carbon accumulation indicators. According to Moumouni et al. [61], the spatio-
temporal variability in green-biomass reflectance as measured by NDVI is proportional to
the simulated carbon flux. Interestingly, the inclusion of new and unique red-edge indices
such as NDVIRE boosted the predictive performance of carbon stock within reforested
urban landscape. The robustness of red-edge indices (i.e., NDVIRE) lies with the ability to
provide spectral reflectance that have less atmospheric, soil background and water absorp-
tion influence or effects [25,29]. The findings in this study are congruous with previous
studies, which also established that red-edge indices are highly sensitive to vegetation
metrics (e.g., leaf area index and biomass) [25,28,29,64]. For instance, Xie et al. [64] found
that the red-edge derived spectral indices are better prospects for improving estimation
coefficient of leaf area index in agroecosystems. While Mutanga et al. [25] established that
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red-edge indices can significantly increase biomass estimation of wetland vegetation. These
studies suggested that red-edge indices could be effectively used to measure vegetation
productivity and health (which includes carbon sequestration and stock). Red-edge derived
indices are less prone to saturation that is common to standard NDVI [28,29], and hence
can be effectively applied in dense vegetation cover. In addition, red-edge indices contain
sensitive spectral data as red-edge wavebands record rapid variations in plants chlorophyll
content and leaf structure, hence critical for monitoring the spatial and temporal dynamics
of vegetation health and productivity [65,66]. Furthermore, the results on the carbon stock
map show the variability of carbon stock across the study area, which decreases with the
decrease in canopy density. This variability in carbon stock within the study area can
be attributed to the variations in landscape topographic characteristics, which influence
vegetation density and productivity. For example, studies have shown that slope, elevation
and aspect can significantly affect the spatial distribution of carbon stock across forest
landscapes [9,67,68]. Variations can also be triggered by forest species composition due
to the differences in biophysical (i.e., leaf area, stomata and canopy structure) and bio-
chemical (i.e., leaf pigments, lignin, and carotenoids) characteristics [69–71]. For instance,
deciduous trees (e.g., Acacia and Dalbergia) consist of large leaf stomatal properties which
increase plant productivity and carbon storage, whereas shrub trees such as Artemisia have
limited structural geometry, stem, and leaf biomass, thereby contributing to low carbon
stock [72,73].

In addition, the application of robust regression models such as random forest sig-
nificantly improved the prediction performance of carbon stock in the reforested urban
landscape. The robustness of the random forest algorithm is associated with the ability to
select important variables required for the best regression model [9,25]. For instance, the
consolidation of NDVI, EVI, MSRI, and NDVIRE derived from Sentinel-2 MSI as selected
by random forest model offers a remarkable methodology for predicting carbon stock in a
reforested urban landscape. Overall, this study presents a better and cost-effective option
for quantifying carbon stock in the reforested urban landscape using freely and readily
available new generation Sentinel-2 MSI. Moreover, the study demonstrates the significance
of the reforestation initiative in reducing atmospheric carbon emissions and regulating
climate systems within the urban landscape, hence suggesting effective management and
monitoring practices for reforested ecosystems and their services. The information pre-
sented in this study is useful for planning large-scale reforestation projects in order to
maximize sequestration capacity and improve climate change regulation potential within
urban landscapes. Our approach presents a concise methodology to monitor the progress
of urban reforestation projects locally and similar reforestation projects around the world.
In addition, although these results may benefit forest managers and decision makers,
multi-temporal information on aboveground carbon stock variability across seasons and
years and effect of topography on carbon sequestration within reforested urban areas still
requires investigation. Furthermore, the inaccessibility of high spatial resolution images
(e.g., Worldview-3, Quickbird etc.) and associated costs limited the opportunity to estimate
carbon stock at a species level.

5. Conclusions

This study sought to examine the prospect of Sentinel-2 image spectral-data for
predicting carbon stock in the reforested urban landscape. Based on the findings it is
concluded that:

• The spectral information derived from Sentinel-2 MSI can be effectively used to model
or predict climate regulating ecosystem services such as carbon stock in reforested
urban landscape.

• Spectral indices (e.g., NDVI, EVI, MSRI, and NDVIRE) are useful in enhancing predic-
tion performance of carbon stock in reforested urban environment.

The findings of this study are critical for understanding the contribution of refor-
estation strategy in the global carbon balance and climate change regulation potential as
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required by Kyoto-Protocol and Reducing Emissions from Deforestation and Forest Degra-
dation (REDD+). The study also provides information that is beneficial to decision-and
policy-makers and forest managers to design optimal management policies and increase
reforestation projects. Also, the study demonstrates the significance of the reforestation
initiative in reducing atmospheric carbon emissions and regulating climate systems within
the urban landscape, hence can be used to suggest effective management and monitoring
practices for reforested ecosystems and their services. Overall, we conclude that Sentinel-2
spectral information can be effectively used for predicting and monitoring carbon flux in
the reforested urban landscape. Furthermore, dataset and approaches adopted in this study
are easily transferable to similar initiatives globally due to S-2’s free availability and global
coverable. Also, the random forest ensemble has been proven to be robust in estimating
forest carbon.
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