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Abstract: Research on the forest structure classification is essential, as it plays an important role
in assessing the vitality and diversity of vegetation. However, classifying forest structure involves
in situ surveying, which requires considerable time and money, and cannot be conducted directly
in some instances; also, the update cycle of the classification data is very late. To overcome these
drawbacks, feasibility studies on mapping the forest vertical structure from aerial images using
machine learning techniques were conducted. In this study, we investigated (1) the performance im-
provement of the forest structure classification, using a high-resolution LiDAR-derived digital surface
model (DSM) acquired from an unmanned aerial vehicle (UAV) platform and (2) the performance
comparison of results obtained from the single-seasonal and two-seasonal data, using random forest
(RF), extreme gradient boosting (XGBoost), and support vector machine (SVM). For the performance
comparison, the UAV optic and LiDAR data were divided into three cases: (1) only used autumn
data, (2) only used winter data, and (3) used both autumn and winter data. From the results, the best
model was XGBoost, and the F1 scores achieved using this method were approximately 0.92 in the
autumn and winter cases. A remarkable improvement was achieved when both two-seasonal images
were used. The F1 score improved by 35.3% from 0.68 to 0.92. This implies that (1) the seasonal
variation in the forest vertical structure can be more important than the spatial resolution, and (2) the
classification performance achieved from the two-seasonal UAV optic images and LiDAR-derived
DSMs can reach 0.9 with the application of an optimal machine learning approach.

Keywords: forest vertical structure; multiseason; machine learning; classification

1. Introduction

Forests provide economic resources to humans and have a great influence on the
preservation of the global environment [1,2]. Owing to their importance, forests should be
maintained and protected, and hence, research on forests is conducted continuously for the
sustainable development of sound forest ecosystems [3]. The forest vertical structure is a
vital element representing the vitality and diversity of forests, important for identifying
the forest productivity and biodiversity [4,5]. Traditionally, forest vertical structures are
classified through field surveys [6]. Field surveys require considerable resources, such as
time, cost, and labor, especially in mountainous areas. Thus, the vertical structure data
could not be updated quickly and also could not be investigated for the whole area of
interest [7,8].

To overcome these drawbacks, we employed forest vertical structure classification
using remote-sensing images [9]. The remote sensing approach can obtain physical infor-
mation by imaging electromagnetic waves reflected or emitted from the surface without
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physical contact [10]. Since the approach indirectly acquires data, it generally shows a
lower accuracy than the field surveying approach [11]. However, it is a powerful tool to
obtain valuable information of a large and inaccessible area.

Additionally, machine learning techniques have been widely applied to remote sensing
data obtained from various sensors [3,12]. The machine learning technique trains a given
model, using the input data for detection or classification [13]. The performance is largely
dependent on the quality of the input data [14]. Thus, if the input data contain errors
or have a lower correlation with the ground truth, the performance is deteriorated [15].
Therefore, it is essential that the input data have good quality along with sensitivity to
ground truth [16].

Trees are affected by their surroundings, including the temperature, soil type,
atmospheric conditions, solar azimuth, and elevation angles; hence, the condition of trees
varies depending on the image acquisition time [17,18]. This indicates that remote-sensed
images acquired at different times can provide more valuable information when they are
used to classify the forest vertical structure. However, the effectiveness of multi-seasonal
data in the classification of the forest vertical structure was not analyzed and compared.
Additionally, the effectiveness of the high-resolution UAV LiDAR-derived DSM, with a
spatial resolution of 20 cm, was not analyzed for forest vertical structure mapping.

In this study, we investigated the effectiveness of multi-seasonal data and that of
high-resolution DSM data acquired from an unmanned aerial vehicle (UAV) platform
in the forest vertical structure classification using random forest (RF), extreme gradient
boosting (XGBoost), and support vector machine (SVM). For this, we acquired optic and
LiDAR data from Samcheok City, South Korea, from the UAV platform on 22 October 2018
and 29 November 2018. To apply the UAV optic and LiDAR data to the RF, XGBoost,
and SVM models, spectral index maps, such as the normalized difference vegetation index
(NDVI), green normalized difference vegetation index (GNDVI), normalized difference
red edge (NDRE), and structure insensitive pigment index (SIPI), were generated from
the UAV optic images, along with canopy height maps from the UAV LiDAR data. To test
the multi-seasonal effectiveness, we divided the input UAV data into three cases: (1) fall
optic and LiDAR data, (2) winter optic and LiDAR data, and (3) fall and winter optic and
LiDAR data. Finally, the performance of the forest vertical structure classification from the
accuracies calculated for the three cases was evaluated and compared.

2. Study Area and Data

The study area covers a forest of about 0.02 km2 on Samcheok-si, Gangwon-do,
South Korea, which is a city with a coast to the east and the Taebaek mountain to
the west. For the study, the forest vertical structure map was obtained from the field
survey-based forest inventory plots. For the study, a forest vertical structure map was
obtained, using a field survey. Figure 1 shows the RGB image and forest vertical structure
maps of the study area. The study area consists of one-, two-, and four-storied forests.
One-storied forests consist of a canopy and include Alnus japonica and Robinia pseudoaca-
cia. The canopy layer in two-storied forests includes Pinus densiflora, Robinia pseudoaca-
cia, and Platycarya, and the shrub layer includes Quercus serrata, Toxicodendron vernici-
fluum, Zanthoxylum piperitum, Rhododendron mucronulatum, and Quercus mongolica.
Three-storied forests do not exist in the study area, but a four-storied forest is present,
as shown in Figure 1. Four-storied forests consist of herbaceous, shrub, understory, and a
canopy. The herbaceous layer includes Festuca ovina; the shrub layer includes Zan-
thoxylum piperitum, Rhododendron mucronulatum, and Toxicodendron vernicifluum;
the understory includes Quercus serrata; and the canopy includes Pinus densiflora.

The data used in the study include two-seasonal optic images and LiDAR point clouds
obtained by an optic sensor mounted on a UAV platform. The first UAV data were obtained
on 22 October 2018 (fall), and the second UAV data were acquired on 29 November 2018
(winter). Temperatures were about 9.7 and 1.4 ◦C in the first and second acquisition
times, respectively. Between the two acquisition dates, a deciduous period is included [19].
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Deciduous trees have different characteristics before and after falling leaves. Of course, the
acquisition date can be changed. For example, the winter data can be obtained in January
or February. The reason why the November data are used is that the data used for forest
applications are usually acquired during fall and winter season in South Korea.

Figure 1. (a) Study area and (b) forest vertical structure map (ground truth).

The optical images were acquired using the RX02 camera that had five bands and was
mounted on a UAV, including the blue, green, red, red edge, and near infrared band (NIR)
(Table 1). The UAV flight height was about 200 m; the lateral and longitudinal overlaps were
about 80%; and the scanning time was approximately 46 min. The image obtained using the
UAV was acquired at a low altitude and has a high spatial resolution. The acquired optic
images were processed with geometric correction through automatic aerial triangulation.
Their spatial resolution was approximately 21–22 cm, and the orthorectified image was
resampled to 20 cm, using bicubic interpolation. Optic images are advantageous in that the
red edge band can be used. The red edge is normally used to monitor forest conditions.
The UAV LiDAR data were obtained using the Velodyne LiDAR Puck (VLP-16) having
an accuracy of 3 cm, and a two-seasonal DSM was generated by processing the LiDAR
point clouds. The spatial resolution of the DSM was approximately 2 cm, and it was
resampled to 20 cm. We attempted to create the DTM data from the point clouds, but the
created DTM was not adequately accurate for this study because the forest was dense.
Thus, DTM data created by the National Geographic Information Institute (NGII) were
used for this study. The DTM data were resampled to 20 cm from 5 m. The NGII DTM is
numerical topographic data generated through contour lines. The terrain height can be
generally approximated with a smooth surface, and hence, re-sampling to 20 cm does not
significantly affect model performance.

Table 1. Band characteristics of optic images acquired by the RX02 camera mounted on a UAV.

Band Center Width

Blue 475 nm 32 nm
Green 560 nm 27 nm
Red 668 nm 16 nm

Red Edge 717 nm 12 nm
Near infrared 842 nm 57 nm

3. Methodology

For the feasibility test on the effectiveness of the multi-seasonal data, the UAV optic
and LiDAR data were divided into three cases: (1) fall optic and LiDAR data (hereafter Case
1); (2) winter optic and LiDAR data (hereafter Case 2); and (3) fall and winter optic and
LiDAR data (hereafter Case 3). The comparison between Case 1 and Case 2 allows us to
analyze which seasonal data can increase model prediction accuracy. From case 3, it is
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possible to analyze how much the model prediction accuracy increases when using data
from two seasons. The detailed workflow of this study is shown in Figure 2. The workflow
is composed of three main steps: (1) normalized input data generation; (2) classification
using the RF, XGBoost, and SVM models for Cases 1, 2, and 3; and (3) performance
evaluation. In the first step, four spectral index maps, including the NDVI, GNDVI, NDRE,
and SIPI indices, were created from a UAV optic image; the median and standard deviation
maps of canopy heights were generated, using the UAV LiDAR-derived DSM, and the
maps were then normalized by min–max scaling. In the second step, the training and test
data were randomly selected from the normalized maps as 1% and 20% of the total pixels,
respectively. Thus, the number of training data was 5320, and the number of test data was
106,400. The training and test data were selected so that they do not overlap in the entire
study area. Subsequently, the training data were applied to the RF, XGBoost, and SVM
models. In the last step, the performance of the three models was estimated from the test
data, using the F1 score, which were then calculated.

Figure 2. Detailed workflow of this study.
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3.1. Generation of the Normalized Input Data

3.1.1. Spectral Index Maps

Spectral index maps are widely used to analyze the characteristics of the Earth’s
ecosystem by utilizing the spectral image characteristics, such as the vegetation and water
resources [20]. They are also used to mitigate optical image distortions, including the
topographic distortion and shadow effect. These distortions act as errors in quantitatively
assessing and analyzing the indicators [21]. Thus, the spectral index mapping, which can be
calculated by the pixel-based band ratio, is widely used to mitigate topographic distortion
and the shadow effect [22]. To strengthen the vegetation analysis, four spectral indices,
NDVI, GNDVI, NDRE, and SIPI, were selected and calculated from the UAV visible,
red edge, and NIR images using the DN (digital number) values. Table 2 presents the
formulas of the four spectral indices used in this study.

Table 2. Spectral indices used in this study.

Name Acronyms Equation

Normal Difference Vegetation Index NDVI NDVI = NIR−RED
NIR+RED

Green Normalized Difference Vegetation Index GNDVI GNDVI = NIR−GREEN
NIR+GREEN

Normalized Difference Red Edge Index NDRE NDRE =
NIR−RED Edge
NIR+RED Edge

Structure Insensitive Pigment Index SIPI SIPI = NIR−BLUE
NIR−RED

NDVI is used to determine the vitality and density of vegetation, using the red
and NIR band images. A high NDVI value indicates a high vitality and density of vegeta-
tion [23]. GNDVI uses green band images instead of red band images in the NDVI equation,
which indicates the sensitivity of the vegetation to chlorophyll changes [24]. NDRE was
used as an indicator of the health and vitality of vegetation [25]. The difference between
the NDRE and NDVI indices is the difference in wavelength bands. The NDRE index was
calculated using the red edge band, whereas the NIR index was estimated from the red
band. Red edge bands are known to be more sensitive than red to changes in the health
and vitality of vegetation. SIPI is used to analyze vegetation composed of multiple layers
and is obtained using the blue, red, and NIR band images (see Table 2). The SIPI index can
be used to estimate the ratio of carotenoid pigments in vegetation to determine the stress of
vegetation [26]. The NDVI, GNDVI, NDRE, and SIPI index maps were normalized using
the min–max scaling approach; hence, the pixel values of the index maps ranged from 0 to
1. Min–max scaling makes the minimum value to 0 and maximum value to 1. This is used
to ensure that every feature has equal significance during training [27].

3.1.2. Canopy Height Maps

In this study, we created canopy height maps, using the UAV-derived DSM and NGII
DTM. As aforementioned, the NGII DTM was obtained from contour lines by NGII, and the
UAV-derived DSM was created by filtering LiDAR point clouds into the grid. The DSM
data represent the surface height, including all the trees or artifacts on the Earth’s surface,
whereas the DTM data indicate a terrain height excluding them. Thus, subtracting the
DTM height from the DSM height can yield the height of the trees or artifacts. In this study,
canopy height maps were produced by subtracting the NGII DTM from the UAV-derived
DSM. The canopy height maps have a rough surface. This is because the UAV-derived DSM
had a spatial resolution of 20 cm. To statistically present the rough surface, the median and
standard deviation maps were extracted from the canopy height maps, using a moving
kernel of 51 × 51. The kernel size was determined in consideration of the area (10 m × 10 m)
used to classify the forest vertical structure. Therefore, the kernel size was determined
by considering the average tree size in the study area. The median canopy height maps
represent the central tendency of the canopy heights in the window kernel, whereas the
standard deviation height maps show the amount of canopy height dispersion in the
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window kernel. Thus, the standard deviation will be large if the canopy height is diverse.
More details on the median and standard deviation canopy height maps can be found
in [28]. The median and standard deviation canopy height maps were normalized using
the min–max scaling approach. The maps had pixel values ranging from 0 to 1.

3.2. Classification with Machine Learning Techniques

To classify the forest vertical structure in the study area, we applied three machine
learning methods to the normalized NDVI, GNDVI, NDRE, and SIPI index maps. The ma-
chine learning methods used in this study were RF, XGBoost, and SVM. These three
algorithms perform well in classifying images [29–31]. RF, XGBoost, and SVM are represen-
tative algorithms based on ensemble bagging, ensemble boosting, and kernel, respectively,
and are used to determine which machine learning algorithms are effective for forest
structure classification. More details are provided in the following sections.

3.2.1. Random Forest

RF is a machine learning technique proposed by [32]. He introduced the concepts of
decision tree and bagging to train a machine learning model, using bootstrap aggregating
(bagging) of the ensemble technique. This mitigated the overfitting problem in the decision
tree [33]. The RF method randomly duplicates the learning data through bagging and trains
multiple decision trees through the samples. It collects results, finds optimal characteristics,
and predicts the classification results. Employing this ensemble method ensures better
performance, compared to a single decision tree. Thus, the advantage of the RF method is
that errors can be ignored, even if overfitting or underfitting decision trees are present.

3.2.2. XGBoost

XGBoost uses decision tree–based ensemble techniques, and it complements the
drawbacks of the gradient boosting model [34]. The gradient boosting model gradually in-
creases the model performance by assigning weight through the gradient descent approach.
Although the gradient boost method has a good performance, overfitting problems may
occur, as it does not include slow performance time and overfitting regulatory factors.
Therefore, XGBoost was proposed to compensate for the drawbacks of the gradient boost-
ing method. The XGBoost method enables data processing in parallel and further improves
the performance of the model by including regulatory factors to prevent overfitting.

3.2.3. Support Vector Machine

The SVM method defines the criteria for classifying groups of samples, using a given
learning model. This method was proposed by [35]. The SVM assumes that the learning
data are within a vector space. The goals of this model are (1) to obtain a support vector to
classify the data into groups and (2) calculate the optimal decision boundary [36]. In the
SVM method, the support vector data are close to the decision boundary, and the margin
represents the distance between the decision boundary and support vector. The optimal
decision boundary maximizes the margin. SVM allows us (1) to classify data through simple
linear separation and (2) to classify nonlinear data by identifying a decision boundary that
can artificially increase the dimension of data using a kernel function, even in the case of
nonlinear data without linear classification.

The three machine learning methods were applied to the three cases. As mentioned
above, 1% of the total pixels were used for the training, whereas 20% of the total pixels
were used for the test (performance evaluation). Hyperparameters used in each machine
learning method were determined, using a random search cross-validation method to
determine the best performance hyperparameter value through a combination of random
variables within a certain range [37].
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3.3. Performance Evaluation

The performance of the trained model was evaluated by calculating the precision,
recall, precision–recall (PR) curve, false alarm rate (FAR), and F1 score. The precision is
the fraction of the actual true pixels among those classified as true by the trained model,
while recall is the fraction of the actual true pixels retrieved by the trained model. The PR
curve is a graph that shows the change in precision and recall values with respect to the
parameter adjustment of the algorithm. The PR curve has an average precision (AP) value
as an indicator of the model classification performance, which was calculated using the
area of the bottom line of the graph. Higher AP values indicate better model performance.
Precision and recall are defined as follows [38]:

Precision =
True Positive

True Positive + False Positive
(1)

Recall =
True Positive

True Positive + False Negative
(2)

FAR is an incorrect detection rate, and the F1 score is used as an indicator to evaluate
the model performance more exactly than the accuracy value when the number of labels is
unbalanced. FAR and F1 score are defined as follows [39]:

FAR = 1 − Precision (3)

F1 score = 2 ∗ Precision ∗ Recall
Precision + Recall

(4)

4. Results and Discussion

Figure 3 shows the true and false color composite images, LiDAR DSM, and NGII
DTM. The true-color composite images shown in Figure 3a,d are displayed using red, green,
and blue band images acquired on 22 October 2018 and 29 November 2018, respectively.
The false-color composite images shown in Figure 3b,e are displayed, using red edge, NIR,
and blue band images acquired on 22 October 2018 and 29 November 2018, respectively.
In comparison with the images taken in October, those taken in November are relatively
darker. Figure 3d,e is better identified for one-storied regions than Figure 3a,b. This is
because one-storied structures are more sensitive to seasonal changes than two- and four-
storied structures. Additionally, in the box of Figure 3c,f, the value of Figure 3f is smaller
than that of Figure 3c. This change is caused by the decline in the height of trees as the
leaves fall when the seasons change. Additionally, it is difficult to see a clear difference
between the two- and four-storied regions in the true-color composite and false-color
composite images.

Figure 4 shows the normalized NDVI, GNDVI, NDRE, and SIPI index maps, and the
standard deviation and median canopy height maps calculated using the min–max nor-
malization approach acquired on 22 October 2018. We normalized the pixel values within
the 0 to 1 range through the min–max normalization to ignore the range and unit of the
pixel values. The machine learning algorithms find patterns by analyzing and comparing
features among different data. Thus, significant differences in the range and unit of feature
for each data may prevent the model from being properly trained [40]. Thus, to avoid
this problem and improve the model performance, the index and canopy height maps
were normalized. The topographic effect of Figure 3a,b cannot be found in the normalized
index maps shown in Figure 4a–d. This is why the index maps were selected instead of the
original band images as the input data for the machine learning models. The brightness
value of the optical image represents the reflectivity of the forest canopy, and it is difficult
to find clear differences between one-, two-, and four-storied forests from Figure 4a–d.
However, among the index maps of Figure 4a–d, the NDRE index map of Figure 4c de-
scribes the forest vertical structure relatively well. As seen in Figure 4e,f, the LiDAR-derived
canopy height maps are correlated to classify the forest vertical structure. Nevertheless,
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because the canopy height map represents only the canopy height, there may be a clear
limit in describing the vertical structure of the forest.

Figure 3. (a) True-color composite image (R,G,B), (b) false-color composite image (red edge, NIR, B), and (c) LiDAR DSM
obtained on 22 October 2018; (d) true-color composite image (R,G,B), (e) false-color composite image (red edge, NIR, B),
and (f) LiDAR DSM obtained on 29 November 2018; and (g) NGII DTM.

Figure 4. (a) Normalized NDVI, (b) GNDVI, (c) NDRE, and (d) SIPI index maps; (e) normalized standard deviation and (f)
median canopy height maps extracted from UAV-based optical and LiDAR data acquired on 22 August 2018.
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Figure 5 shows the normalized NDVI, GNDVI, NDRE, and SIPI index maps, and stan-
dard deviation and median canopy height maps acquired on 29 November 2018. The index
maps of Figure 5a–d are significantly different, as they were obtained during different
seasons, compared to those of Figure 4a–d. The leaves of the broadleaf trees fell, thereby de-
creasing the index values in Figure 4a–d. If the index values of Figure 5a–d are lower
than those of Figure 4a–d, it is because of the distribution of broadleaf trees in the area.
The winter index maps have a clearer difference between one-, two-, and four-storied
forests than the fall index maps. We can find the same pattern in the LiDAR-derived
canopy height maps. Moreover, the four-storied forest have higher values in the standard
deviation canopy height maps, as seen in Figure 5e. This implies that a variety of trees exist
in the four-storied forest. Additionally, the topographic effect in the winter index maps is
slightly more severe than that the fall index maps. This is due to the different changes in
tree conditions with respect to the terrain slope and aspect.

Figure 5. (a) Normalized NDVI, (b) GNDVI, (c) NDRE, and (d) SIPI index maps; (e) normalized standard deviation and (f)
median canopy height maps extracted from UAV-based optical and LiDAR data acquired on 29 November 2018.

As mentioned above, the fall index and canopy height maps of Figure 4 were used as
input data for Case 1, the winter index and canopy height maps of Figure 5 were used as
input data for Case 2, and all the fall and winter maps were used as input data for Case 3.
Machine learning methods, including RF, XGBoost, and SVM, were applied to the input
data to classify the forest vertical structure. To determine the optimal hyperparameters for
each model, we applied a randomized search cross-validation approach to each model and
case. The randomized search cross-validation approach conducts the cross-verification of
randomly selected variables over a specified range of values. This method finds variables
that provide the best performance in a given model [37]. Table 3 presents the optimal
hyperparameters determined by the method for the three models in Cases 1, 2, and 3.
As presented in Table 3, the hyperparameters used were (1) the maximum depth of the
tree and the number of decision trees in the RF model, (2) the learning rate, tree depth,
and number of decision trees in XGBoost, and (3) error allowance, flexibility to draw
decision boundaries, and kernel function in SVM.

Using the determined optimal hyperparameters, the RF, XGBoost, and SVM models
were run by applying the input data for Cases 1, 2, and 3. Figure 6 shows the classification
maps estimated from RF, XGBoost, and SVM in three cases. The classification results
from the RF model for Cases 1, 2, and 3 are shown in Figure 6a–c; the XGBoost model is
represented in Figure 6d–f; the SVM model is shown in Figure 6g–i. The results of the
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SVM model for Cases 1, 2, and 3 are shown in Figure 6g–i, respectively. Through the visual
analysis of Figure 6, some of the results are summarized as follows. First, for all the three
models, the classification results for Case 1 are considerably worse than those of Cases
2 and 3. This is because it was difficult to find the clear differences between one-, two-,
and four-storied forests from the fall index maps and LiDAR-derived maps (see Figure 4).
Second, the classification performance in Case 3 is higher than that in Case 2. We identified
a synergy effect through two-seasonal data in the forest vertical structure classification.
Third, in all the cases, the classification performances of the RF, XGBoost, and SVM models
are not significantly different. The performance difference between the three models is
lower than that resulting from the input data. This implies that the data used are more
important than the model used.

Table 3. Hyperparameters used for the RF, XGBoost, and SVM models.

Model Hyperparameter Value

Case 1 Case 2 Case 3

RF
max_depth 962 137 979

n_estimators 319 465 292

XGBoost

learning_rate 0.13 0.39 0.10

max_depth 581 139 765

n_estimators 438 463 583

SVM

C 8506 5517 7030

gamma 0.97 0.86 0.90

kernel rbf rbf rbf

Figure 6. Classification result of the forest vertical structure using (a–c) the RF model in Cases 1, 2, and 3, respectively,
(d–f) the XGBoost model in Cases 1, 2, and 3, respectively, and (g–i) the SVM model in Cases 1, 2, and 3, respectively. Box A
represented the boundary of one-, two-, and four-storied, and Box B represented the center of one-storied.
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The significant difference between Cases 1, 2, and 3 can be found in boxes A and
B, as shown in Figure 6. The significant difference in box A is as follows: (1) In Case 1,
the boundaries between the one-, two-, and four-storied forests were not clear, and the
one- and two-storied forests were classified as four-storied forests in some areas. (2) The
classification results from Case 2 show that the classification of the one-storied forest was
considerably better than that of Case 1, and the boundary between the two- and four-
storied forests became clearer than that of Case 1. (3) In Case 3, the one-storied forest
identification and the boundary between the two- and four-storied forests became almost
perfect. Moreover, the identification of the one-storied forest significantly improved from
Cases 1 to 3, in box B.

Figure 7 shows the PR curve graphs estimated from the classification results of the
RF, XGBoost, and SVM models for Cases 1, 2, and 3. The yellow lines show the microav-
erage PR curves, and the blue, orange, and green lines represent those for the one-, two-,
and four-storied forests, respectively. In all cases, the curves of RF and XGBoost are similar,
whereas the SVM shows different curves. Moreover, the SVM curves are not smooth but
considerably distorted, as shown in Figure 7g–i. This indicates that the SVM model has
a lower classification performance. In most cases, the classification performance of the
two-storied forest is the highest, whereas that of the one-storied forest is the lowest. There is
almost no difference between the classification performance of one- and two-storied forests
in Case 3, whereas this is very large in Case 1 because the two-storied forest is dominant in
the study area, while the one-storied forest is distributed only in small areas.

Figure 7. Precision–recall curves from (a–c) the RF model in Cases 1, 2, and 3, respectively; (d–f) the XGBoost model in
Cases 1, 2, and 3, respectively; and (g–i) the SVM model in Cases 1, 2, and 3, respectively. Classes 0, 1, and 2 indicate one-,
two-, and four-storied forests, respectively.
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As shown in Figure 7a–c, the AP values estimated by the RF model are approximately
0.85, 0.94, and 0.97 for Cases 1, 2, and 3, respectively. The classification performance
of Case 3 is approximately 0.12 and 0.03 times better than Cases 1 and 2, respectively.
The AP values of the XGBoost model are approximately 0.86, 0.95, and 0.98 for Cases 1,
2, and 3, respectively. The AP values of the XGBoost model are similar to those of the RF
model. The XGBoost model is slightly superior to the RF model. In the XGBoost model,
the classification performance of Case 3 is the best, and that of the one-storied forest is the
worst in Case 1. The AP values of the SVM model are approximately 0.78, 0.84, and 0.92
for Cases 1, 2, and 3, respectively. The SVM AP values are worse than those of the other
models. Especially for Case 2, the SVM AP values are approximately 0.10 to 0.11 lower than
those of the RF and XGBoost models. In other words, based on the AP values, XGBoost
shows the best classification performance, that of RF is similar to XGBoost, and SVM shows
the worst performance.

Table 4 shows precision, recall, FAR, and F1 score for each model and case in this study.
Initially, in Case 1, the RF model is the best in terms of precision and FAR, whereas the
XGBoost model is the best in terms of recall and F1 score. The RF and XGBoost models are
better than the SVM model, and the best performing model is the XGBoost model; however,
the performance difference between them is not large (see Table 1). Secondly, Case 2 has
the same pattern as the Case 1 results; the best performing model is the XGBoost model,
and the performance difference between the models is not large. However, the performance
difference between Cases 1 and 2 is as large as ~0.16 in terms of the F1 score. Last, in Case
3, the XGBoost model performs best in all evaluation parameters, including the precision,
recall, FAR, and F1 score. The classification performance of Case 3 in terms of the F1 score
is improved by ~0.1 compared to Case 2 and by ~0.26 compared to Case 1. From the results,
we can conclude that (1) XGBoost is the best model among the RF, XGBoost and SVM
models; (2) two-seasonal input data have better performance than one-seasonal input data
in the machine learning techniques; (3) winter season input data are better than the fall
season input data for the forest vertical structure mapping using the RF, XGBoost, and SVM
models; (4) the performance difference between the models is not significant, whereas the
difference between the input data cases is very large; and (5) the classification performance
based on the F1 score is as high as 0.92 when the XGBoost model is applied to the two-
seasonal input data. In previous studies, Kwon et al. [41] had about 0.662 classification
accuracy and Lee et al. [42] showed approximately 0.657. It means that our results have
remarkably improved, compared to previous studies. In addiion, this result shows that
forest vertical structure maps can be generated with accuracy greater than 0.9 when the
XGBoost method is applied to multi-seasonal high-resolution optic and LiDAR data.

Table 4. Precision, recall, FAR, and F1 score based on the results from the RF, XGBoost, and SVM models.

Model Case Evaluation
Metrics One-Storied Two-Storied Four-Storied Macro Average

RF

Case 1

Precision 0.76 0.78 0.73 0.76

Recall 0.28 0.82 0.74 0.61

False Alarm Rate 0.24 0.22 0.27 0.24

F1 score 0.41 0.80 0.74 0.65

Case 2

Precision 0.82 0.89 0.84 0.85

Recall 0.63 0.87 0.87 0.79

False Alarm Rate 0.18 0.11 0.16 0.15

F1 score 0.71 0.88 0.85 0.81

Case 3

Precision 0.94 0.93 0.88 0.92

Recall 0.81 0.92 0.91 0.88

False Alarm Rate 0.06 0.07 0.12 0.08

F1 score 0.87 0.92 0.90 0.90
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Table 4. Cont.

Model Case Evaluation
Metrics One-Storied Two-Storied Four-Storied Macro Average

XGBoost

Case 1

Precision 0.68 0.79 0.73 0.73

Recall 0.40 0.81 0.75 0.65

False Alarm Rate 0.32 0.21 0.27 0.27

F1 score 0.50 0.80 0.74 0.68

Case 2

Precision 0.79 0.89 0.84 0.84

Recall 0.69 0.87 0.88 0.81

False Alarm Rate 0.21 0.11 0.16 0.16

F1 score 0.74 0.88 0.86 0.83

Case 3

Precision 0.94 0.94 0.91 0.93

Recall 0.90 0.93 0.92 0.92

False Alarm Rate 0.06 0.06 0.09 0.07

F1 score 0.92 0.94 0.92 0.92

SVM

Case 1

Precision 0.62 0.76 0.71 0.70

Recall 0.29 0.80 0.71 0.60

False Alarm Rate 0.38 0.24 0.29 0.30

F1 score 0.40 0.78 0.71 0.63

Case 2

Precision 0.68 0.88 0.81 0.79

Recall 0.69 0.84 0.86 0.79

False Alarm Rate 0.32 0.12 0.19 0.21

F1 score 0.68 0.85 0.83 0.79

Case 3

Precision 0.85 0.92 0.89 0.88

Recall 0.92 0.91 0.89 0.91

False Alarm Rate 0.15 0.08 0.11 0.12

F1 score 0.88 0.91 0.89 0.90

5. Conclusions

Forest vertical structure mapping using machine learning algorithms—RF, XGBoost,
and SVM models—was investigated in this study. Several studies have conducted feasibil-
ity tests for classifying the forest vertical structure, using remote-sensed data and machine
learning techniques, but the classification performance was lower than 0.8. They did not
analyze the effectiveness of the multi-seasonal data and that of the high-resolution UAV
LiDAR data in the forest vertical structure classification.

In this study, we investigated the effectiveness of multi-seasonal data and high-
resolution LiDAR data acquired from a UAV platform in the forest vertical structure
classification, using the RF, XGBoost, and SVM models. To apply the optical images and
LiDAR data to the machine learning methods, the NDVI, GNDVI, NDRE, and SIPI index
maps were generated, and the median and standard deviation canopy height maps were
created. The spectral index maps, and the median and standard deviation canopy height
maps were used as the input data for the three models. Moreover, to test the multi-seasonal
effectiveness, the input data were divided into three cases: (1) using fall optic and LiDAR
data, (2) using winter-optic and LiDAR data, and (3) using fall and winter optic and LiDAR
data. Finally, the performance of the forest vertical structure classification was evaluated
and compared among the accuracies calculated from the three cases.
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In all cases, the PR curves of the RF and XGBoost models were very similar but differed
from those of the SVM model. The SVM curves were considerably distorted rather than smooth.
The AP values from the RF, XGBoost, and SVM models, respectively, were approximately as
follows for Cases 1, 2 and 3, respectively: 0.85, 0.86, and 0.78; 0.94, 0.95, and 0.84; and 0.97, 0.98,
and 0.92. The performance of the XGBoost model was the best, but that of the RF model was
comparable. The SVM model was worse than the other models. The precision, recall, FAR, and F1
score from the RF, XGBoost, and SVM models were calculated for Cases 1, 2, and 3. In Cases 1 and
2, the RF model performed best in terms of the precision and FAR, whereas the XGBoost model
performed best in terms of the recall and F1 score. In Case 3, the XGBoost model performed
best in all evaluation parameters, and the F1 score in this case reached 0.92. The results show
that the XGBoost method enables us to create vertical forest structure maps with an accuracy
greater than 0.9 if multi-seasonal high-resolution optic and LiDAR data are used. This implies
that forest vertical structure maps can be produced by using machine learning techniques and
high-resolution UAV optic and LiDAR data instead of field surveys.

However, this study has a limitation. Since RF, XGBoost, and SVM are pixel-based models,
they cannot be learned by applying spatial characteristics. Therefore, further study should be
conducted, using the patch-based model, and performance comparisons between the patch-
based model and the current model should be performed.
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