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Abstract: Point cloud classification plays a significant role in Light Detection and Ranging (LiDAR)
applications. However, most available multi-scale feature learning networks for large-scale 3D
LiDAR point cloud classification tasks are time-consuming. In this paper, an efficient deep neural
architecture denoted as Point Expanded Multi-scale Convolutional Network (PEMCNet) is developed
to accurately classify the 3D LiDAR point cloud. Different from traditional networks for point cloud
processing, PEMCNet includes successive Point Expanded Grouping (PEG) units and Absolute
and Relative Spatial Embedding (ARSE) units for representative point feature learning. The PEG
unit enables us to progressively increase the receptive field for each observed point and aggregate
the feature of a point cloud at different scales but without increasing computation. The ARSE
unit following the PEG unit furthermore realizes representative encoding of points relationship,
which effectively preserves the geometric details between points. We evaluate our method on both
public datasets (the Urban Semantic 3D (US3D) dataset and Semantic3D benchmark dataset) and
our new collected Unmanned Aerial Vehicle (UAV) based LiDAR point cloud data of the campus of
Guangdong University of Technology. In comparison with four available state-of-the-art methods,
our methods ranked first place regarding both efficiency and accuracy. It was observed on the public
datasets that with a 2% increase in classification accuracy, over 26% improvement of efficiency was
achieved at the same time compared to the second efficient method. Its potential value is also tested
on the newly collected point cloud data with over 91% of classification accuracy and 154 ms of
processing time.

Keywords: LiDAR; point cloud; classification; deep learning

1. Introduction

The advent of Light Detection and Ranging (LiDAR) technology provides an effec-
tive way to acquire 3D spatial data in the form of point clouds. The point cloud data
provide detailed geometric information that can be used to accurately and densely de-
scribe the structure of the object [1–3]. Since identification and analysis of a 3D LiDAR
point cloud is the basis for realizing scene understanding, the 3D semantic perception of
LiDAR point cloud data hold potential for many applications [4–10], such as topographic
mapping [11,12] and automatic driving [13–15]. Among the various applications with
respect to 3D point cloud processing, point cloud segmentation, which is a method to
divide the point cloud into different homogeneous regions such that the points in the same
isolated and meaningful region have similar properties, or point cloud classification aimed
to realize identification of the semantic label for each point, plays a significant role for the
interpretation of the LiDAR point cloud.
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In recent years, with the development of deep learning [16–18], various deep neural
networks for point cloud processing have become available and achieved impressive results
in classification tasks [19,20]. An early point cloud classification network [21,22] based
on a Convolutional Neural Network (CNN) used a voxelization technique to process the
point cloud data. Since the convolution operation requires a structured grid, it cannot be
implemented directly on point cloud data with irregular structure in 3D space. Voxelization
converts the point cloud data of a discrete structure into the form of a continuous domain
so that the voxelized point clouds can be directly processed by 3D convolution operations
and the deep learning methods can be applied to point cloud classification through indirect
means. Although this approach has shown good performance, it suffers from high memory
consumption due to the sparsity of the voxels. To address this, MVCNN [23] converts
3D point clouds into a collection of 2D images, which uses 2D convolution instead of 3D
convolution to reduce the number of parameters. Moreover, compared with 3D voxels, the
multi-view images contain texture information of objects, which leads to better classification
performance by extracting information in this way; however, this method also suffers
from inefficiency due to the large number of images to be processed. As the point cloud
classification technique becoming increasingly sophisticated, deep neural networks that
can be directly implemented to process raw point clouds has received increased attention.
PointNet [24] is a pioneering work that directly takes the unstructured point clouds. It
adaptively learns features from point clouds using multilayer 1D convolution. PointNet
conducts feature learning for each point without taking into account the local spatial
information; thus, the local structural relationship between points cannot be captured.
To overcome this issue, PointNet++ [25] applies a sampling and grouping strategy that
divides the point cloud into several small local regions and then abstracts the local point
cloud regions through the convolution operation layer by layer to generate a feature vector
of the regions. Specifically, PointNet++ proposes a Multi-Scale Grouping (MSG) strategy
to combine features from different scales of regions. Although multi-scale feature fusion
enables us to capture abundant geometric information from the neighborhood for feature
learning, it comes with a high computational cost; therefore, how to explore the local
information efficiently for point cloud classification represents a challenging problem.

To this end, an efficient multi-scale point feature learning network for point cloud
classification is proposed in this study. We developed a point cloud classification network
based on the traditional encoding–decoding structure. In the network, we make use of the
K-Nearest Neighbors (K-NN) approach and extend it with an expansion sampling strategy
to realize efficient multi-scale feature learning. Moreover, to better represent the spatial
relationship between those extracted neighboring points, both the absolute positions of
all neighboring points and the relative position between points are taken into concern in
feature learning.

2. Related Work

In concern of the local spatial information, available point cloud classification networks
can be categorized as ball query based or K-NN based feature learning networks. Below,
we briefly review the methods of each category and demonstrate the rationale for the
proposed method.

2.1. Ball Query Searching Based Feature Learning Networks

Ball query is a method that sets the radius concerning the center point and then finds
all points within the radius. PointNet [24] applies the ball query method to search the
neighboring points and then utilizes the max-pooling which samples the maximum value
in a local patch to abstract the neighborhood information as a high-level feature for the
input sample. As a follow-up, PointNet++ [25] uses ball query but with different radius
in searching of neighboring points. It introduces an abstraction layer to group points
hierarchically and combines multi-scale local geometric details which is able to deal with
the non-uniformity problem of point clouds. PointSIFT [26] is further developed based on
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PointNet++ and the 2D shape descriptor of Scale Invariant Feature Transform (SIFT) [27].
It proposed the Orientation-Encoding module to extract features. This module first utilizes
the ball query method to search the point set in each of the eight spatial directions (adopted
by SIFT descriptor) in the point cloud space, then three successive convolution layers are
deployed for furthermore feature mapping. Finally, the network connects those encoded
features from different spatial directions. PointConv [28] queries the neighboring points
and then replaces 3D convolution with matrix multiplication and 2D convolution to ensure
translation invariance and permutation invariance by sharing weights. LSANet [29] also
uses a ball query skill for local points searching and a Local Spatial Aware (LSA) layer
to learn the spatial distribution relationship between points and capture local geometric
structures.

2.2. K-NN Searching Based Feature Learning Networks

Apart from the ball query approach, K-NN is another strategy that searches for the
nearest K neighboring points for each input point to summarize its local information
for feature learning. For example, RandLA-Net [30] conducts K-NN to search for the
neighboring points after random sampling, and then a local feature extraction module is
adopted to aggregate point features. With the rise of attention mechanisms [31,32], there
have been many reported studies utilizing K-NN searching and attention mechanism
to capture the important local information for input point clouds [33,34]. Among them,
PCT [33] embeds transformer [35] into the framework to better capture local context
between point clouds. GACNet [34] defines a novel Graph Attention Convolution (GAC)
to focus on the most relevant parts of points by their dynamic learning characteristics.

For those mentioned point cloud networks, the adequate capture of 3D point local
contextual information often requires increasing the radius of the ball or constructing
larger K-neighborhood graphs. However, these operations make their networks inefficient
in terms of the processing time and memory consumed. Especially when the attention
mechanism is adopted, the amount of parameters has increased considerably though it
is beneficial for the improvement of the network performance. To conquer the inefficient
feature learning problem aroused by ball query or K-NN strategy when searching points
within larger receptive field, our study intends to develop an efficient network for large-
scale 3D LiDAR point cloud classification. Specially, a Point Expanded Grouping (PEG)
strategy is introduced to increase the receptive field for feature learning of each center
point and realize multi-scale learning by changing a point expansion rate efficiently. In
addition, to fully characterize the local spatial relationship between points, an Absolute and
Relative Spatial Embedding (ARSE) approach is adopted for comprehensive representation
of the spatial relationship. The combination of these two contributions makes our network
perform well on the large-scale 3D LiDAR point cloud classification task. In particular, to
testify the practical use of the proposed method, a new Unmanned Aerial Vehicle (UAV)-
based LiDAR point cloud dataset was collected in the Guangdong University of Technology
and a training set of this newly collected dataset was manually created for model training.
The proposed method is demonstrated potential value with promising classification results
on this practical data.

3. Methodology

In this section, we will introduce the network structure and provide details of the
feature learning process of the entire network.

3.1. Network Structure

Similar to the typical point cloud classification networks [24,25], we also adopt the
encoder-decoder architecture network as shown in Figure 1. Our PEMCNet includes
two efficient units of PEG and ARSE to learn multi-scale point features for 3D LiDAR
points. The main difference between our network and the most available point cloud
classification networks is in the encoding part. This part of our network, has three multi-



Remote Sens. 2021, 13, 4312 4 of 15

scale feature learning hierarchies (specifically, two scales are used in each hierarchy to
construct a lightweight network) and each of them enables extraction of different scale
point features through two PEG units. In addition, an ARSE unit follows each PEG unit
to better represent the spatial position relationship between points. Finally, all the point
features are concatenated for further feature learning. In the decoding part, it is mainly
constructed by FP [25] module which up-samples the feature map via interpolation [25]
and then renders fusion with the intermediate feature map from the decoding part. Finally,
the FC layers are utilized for classification.
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Figure 1. Illustration of the detailed architecture of PEMCNet for large-scale point cloud classification. The encoding part is
composed of PEG unit, ARSE unit and Shared MLP. The decoding components mainly consist of FP. Si(i = 1, 2, . . . , 24)
represents the obtained feature vectors of each function unit.

3.2. Feature Learning

As shown in Figure 1, the proposed PEMCNet has three main hierarchies in the
network to realize the multi-scale feature learning for the point cloud. Each hierarchy
of the PEMCNet in the encoding part consists of two feature learning branches. Each
branch consists of a proposed PEG unit, ARSE unit, and a commonly used Shared MLP [36]
module.

The PEG strategy adopted the network aim at finding neighboring points around the
centroid at given expansion rate e. This strategy conducts simultaneous K-NN searching
at different expansion rates, which prompts an efficient learning process and lightweight
storage space. The two PEG units in each hierarchy are assigned different expansion rates
which realize multi-scale feature learning. In each PEG unit, every input point is considered
to be the center point and sparsely sampling at an expanded step will be conducted to
find its neighboring points to be used for summarizing the local information. Specifically,
an expansion rate parameter e is needed to realize the sparse sampling. The principle
behind the PEG unit is illustrated in Figure 2. Suppose K = 3, it means that three nearest
neighboring point features Xe

qn =
{

xp1 , xp2 , xp3

}∣∣
e=1 of the nth center point q. Likewise,

the points set Xe
qn =

{
xp2 , xp4 , xp6

}∣∣
e=2 at the other scale e = 2 will be picked instead. In

this way, it can be clearly understood that the proposed PEG strategy enables enlargement
of the receptive field in dense point feature learning and realize multi-scale feature learning
by varying the expansion rate. It needs to be highlighted that this multi-scale searching
process is without additional computation. Therefore, this is what makes the proposed
network efficient.
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Figure 2. Working principle of PEG unit. pi(i = 1, 2, 3, 4, 5, 6) denotes the ith nearest neighboring point feature of the
centroid qn. The red boxes indicate the selected point features.

Given that the input point cloud set for classification is S0 =
{

x1, x2, . . . , xN1

}
and

S0 ∈ RN1×Cin , where N1 is the number of input points and Cin represents the dimension
of the original point feature which includes the x-y-z coordinates, pulse intensity and the
return number of each point. It can also include RGB information of each point (depends
on the specific dataset). Through a PEG unit, K neighboring points are sampled for each
input point at a specific expansion rate to acquire the local point features at one scale.
In each hierarchy, such as the first hierarchy, as illustrated in Figure 1, two sets of point
feature vectors S1 ∈ RN1×K×3 and S2 ∈ RN1×K×3 will be obtained as a two-scale set of
point features.

The ARSE strategy deployed in the classification network helps to better depict the
spatial relationship between each centroid and its neighboring points which increases the
point feature dimension of each point with more abundant spatial information. Embedding
the x-y-z coordinates (absolute position) of all neighboring points in feature learning of the
point cloud is argued not informative enough and the relative position between points is
also significant. Therefore, after extraction of neighboring points through the PEG units,
the ARSE unit works to unit information both of absolute position and the relative position
between points. As shown in Figure 1, the ARSE unit is deployed following each PEG
unit to encode the absolute and relative positions of the nth center point q and it’s the kth
neighboring point as follows:

Tθ

(
xqn , xe

pk

)
=

(
xqn ⊕

(
xqn − xe

pk

)
⊕

(∥∥∥xqn − xe
pk

∥∥∥)) (1)

where Tθ is the relationship evaluation function of the proposed ARSE unit, xqn denotes
the x-y-z positions of the nth center point q, ‖ · ‖ calculates the Euclidean distance and
⊕ is the feature concatenation operation which means that the dimension of the original
point feature vector is expanded by splicing the absolute position and relative position
information of each point. After this unit, the channel number of the point feature vector in
each hierarchy will increase by d dimensions. For example, the data flow of each branch in
the first hierarchy varies as: S1 ∈ RN1×K×Cin → S3 ∈ RN1×K×(Cin+d), S2 ∈ RN1×K×Cin →
S4 ∈ RN1×K×(Cin+d). This in fact will benefit the entire network to learn local spatial
structures better.

After local information learning through the PEG unit and ARSE unit, a three-layer
Shared MLP follows to realize further feature mapping. Through this module, the extracted
local point information is summarized with max-pooling operation. The number of 1D
convolution kernels in three layers of the Shared MLP in the first hierarchy are 32, 32,
and 64, respectively, thus the input point features through Shared MLP are learned as
S5 ∈ RN1×64. (same for S6 ∈ RN1×64 in the other branch). Then, the point features at two
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scales are spliced together and a Farthest Point Sampling (FPS) [25] algorithm is conducted
at the same time to implement down-sampling, the new point feature map is learned as
S7 ∈ RN2×128. The point feature learning process of the Hierarchy (2) and Hierarchy (3)
is the same as Hierarchy (1). The three-layer Shared MLP structure used in those two
hierarchies are {64, 96, 128} and {128, 196, 256}, respectively. A down-sampling operation
is performed between each hierarchy. Throughout the encoding process, the point feature
map obtained by each hierarchy is S7 ∈ RN2×128, S14 ∈ RN3×256, S21 ∈ RN3×512, where
Ni(i = 2, 3.) is the number of points after down-sampling. As can be seen that the feature
dimension of per-point is increased in each hierarchy to retain more information. For
the decoding part, the encoded features go through a couple of FP modules. In each FP
module, the weighted average of the inverse distance between points is first calculated
to find the nearest neighbor point for each centroid, so that the point feature set obtained
from the previous layer can be up-sampled utilizing the nearest neighbor interpolation [25].
The feature maps obtained via up-sampling are then concatenated with the intermediate
feature maps achieved with a corresponding encoding hierarchy (shown in Figure 1) for
further learning with a Shared MLP. Finally, the fused point features are processed through
the FC layers, where the output is a probability vector that has the length as the number of
categories of the specified task, to realize point cloud classification.

3.3. Loss Function

The cross-entropy loss function is used in the training of the developed PEMCNet.
This loss function is shown as follows:

ai = so f tmax(z) =
ezi

∑nlass
i=0 ezi

(2)

Loss = −
nclass

∑
i=0

y ∗ ln ai (3)

where ai indicates the probability that the point belongs to the ith category, and zi represents
the probability score of each point predicted by the network corresponding to the ith
category. nclass denotes the number of categories. This loss function takes the natural
logarithm of the probability value ai and multiplies it with the true label y. Then the sum
of the negative values of all products is the expected loss.

4. Experiment

In this section, we first evaluated the performance of our network on two public
datasets. Then, the efficiency of the proposed method was tested on our newly col-
lected UAV-based LiDAR point cloud dataset. Four state-of-the-art methods, Pointnet++
(MSG) [25], PoinSIFT++ [26], PointConv [28], and LSANet [29], were used as counterparts
to compare with our network. The performance of the point cloud classification is verified
on both aspects of accuracy and efficiency. The accuracy is evaluated in terms of mean
Intersection over Union (mIoU) and overall accuracy (OA). Intersection over Union (IoU)
is calculated as:

IoU =
lii

∑nlass
j=0 lij + ∑nlass

j=0 lji − lii
(4)

where IoU is used to evaluate the percentage of the intersection of the true value and
predicted value to their union. For the point cloud classification task, a larger value of IoU
means that more points are predicted as correctly classification labels. The mIoU is the
average of IoU of all the categories expressed as Equation (5).

mIoU =
∑nclass

i=0 IoU
nclass + 1

(5)
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OA describes the ratio of correctly predicted points to all the test points as shown in
Equation (6).

OA =
∑nclass

i=0 ∑nclass
j=0

(
lii + ljj

)
∑n

i=0 ∑nclass
j=0

(
lii + lij + lji + lij

) (6)

where nclass is the number of categories, lii denotes the number of samples correctly
determined as category i, lij indicates the number of samples incorrectly determined as
category j from true category i. The meanings of ljj and lji are the same as lii and lij.

As for efficiency evaluation, model size and forward time are utilized. The forward
time was recorded with a batch size of 4 on a single RTX 2080Ti GPU, which is the same
hardware environment for the implementations of other comparison approaches.

4.1. Experiments on the Public Datasets

We evaluated the proposed PEMCNet firstly on two public datasets. The first public
dataset is the Urban Semantic 3D (US3D) dataset [37], which is provided by the IEEE
Geoscience and Remote Sensing Society (GRSS) for the Data Fusion Contest in 2019. Each
point in this airborne LiDAR point clouds dataset is described with the x-y-z coordinates,
intensity, and return number. The point clouds have been manually marked as five classes
of ground, high vegetation, building, water, and elevated road. The other large-scale
benchmark LiDAR dataset is Semantic3D [38] which has 15 training scans and 15 test scans
from a variety of urban and rural scenes. This dataset consists of 8 classes, man-made
terrain, natural terrain, high vegetation, low vegetation, building, hard scape, scanning
artifact, and car. The five features of this point cloud dataset are the same as that of US3D.

In the experiments, each dataset was partitioned into a training set and a validation
set at the ratio of 9:1. We used the Adam optimizer for our network optimization and the
momentum was set as 0.9. As for the hyper-parameter settings, the initial learning rate of
our network was fixed as 0.001; the batch size was 4. The epoch was set as 201 for US3D
and 500 for Semantic3D, as the latter dataset is larger with over 4 billion labeled points.
The learning rate decays 0.7 for every 68720 steps on the former dataset and every 200,000
steps on the Semantic3D dataset. The number of input points in experiments with two
datasets was 8192. The main hyper-parameter K in our network was fixed as K = 16 in each
PEG unit, which means that 16 neighboring points of each center point were chosen for
each scale feature learning in each hierarchy. Two expansion rates in each hierarchy of the
encoding part were set as 1 and 2, respectively, in the experiments.

4.2. Classification Results

Table 1 presents the quantitative classification results of different approaches on
the first public datasets concerning both accuracy and efficiency. It is worth noting that
compared with other related neural network algorithms, our method performed the best
on both aspects. As for efficiency, PEMCNet demonstrates faster classification process
with fewer parameters. Specifically, the model size of our network was only 6.37 MB,
which was about 14 times smaller than LSANet; this led to the fastest processing time,
which is approximately a 26% increase in efficiency compared to that of the second efficient
method of PointNet++ (MSG). Concerning classification accuracy, the two accuracy metrics
of OA and mIoU were both observed with the highest values among all the results. The
mIoU of our method increased by 2% and OA increased by 1% upon that achieved by
the method ranked in second place. The improved accuracy could be observed from the
detailed increase in each category summarized in Table 2. It can be seen that every category
can be identified by our method with higher accuracy, the category of water was especially
better classified.

Figure 3 qualitatively illustrates the classification results achieved by five approaches
on the three test subsets of the US3D dataset. It clearly shows that our method achieved
smoother classification results, in particular, in the circle region of interest. In the in-
tersection region between different classes, our approach displays better results. Fewer
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misclassified points were observed with the proposed method than the other methods. For
example, the subfigures in the first row of Figure 3 show that the elevated road and water
were clearly classified with our method. This is in fact in accordance with the classification
results presented in Table 1.

Table 1. Quantitative classification performance of different networks on US3D dataset.

Method mIoU (%) OA (%) Model Size (MB) Forward Time (ms)

Pointnet++ (MSG) 88.83 95.89 10.38 226
PointSIFT 89.09 96.18 52.76 290
PointConv 90.16 96.21 81.93 4823

LSANet 90.22 96.93 92.54 5378

PEMCNet 92.34 97.95 6.37 168

Table 2. Classification accuracy of each class of different networks on US3D dataset in terms of
IoU (%).

Methods Ground High Vegetation Building Water Elevated Road

Pointnet++ (MSG) 96.06 93.30 86.89 92.74 75.85
PointSIFT 96.67 91.25 88.36 91.02 78.13
PointConv 96.23 94.38 89.17 93.42 77.62

LSANet 97.01 95.34 89.82 88.63 80.30

PEMCNet 97.86 96.12 90.52 95.70 81.56

Figure 3. Classification results of five different approaches on the test set of US3D dataset: (a) PointNet++ (MSG);
(b) PointSIFT; (c) PointConv; (d) LSANet; (e) PEMCNet.

Table 3 shows the quantitative classification result of different approaches on the
second public dataset of semantic3D. In accordance with what has been observed from
experimental results on the US3D dataset, the same conclusion can be drawn from the
results of this dataset. PEMCNet also achieves the best classification accuracy and effi-
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ciency. Over 26% improvement in efficiency was achieved compared to that of the second
efficient method of PointNet++ (MSG). Compared with LSANet, the classification accuracy
increased by over 2% in terms of both mIoU and OA. It is more pronounced than the 16% of
mIoU improvement that was obtained compared to PointNet++ (MSG) on the Semantic3D
(reduced-8) test set. In particular, it was much better than other methods in classifying
both “Scanning art” and “Cars” classes as shown in Table 4. The corresponding qualitative
classification result of PEMCNet is displayed in Figure 4. Compared with the other four
point cloud classification approaches, our network achieves fine classification results on
the 3D LiDAR point clouds.

Table 3. Quantitative classification performance of different networks on Semantic3D (reduced-8)
dataset.

Method mIoU (%) OA (%) Model Size (MB) Forward Time (ms)

Pointnet++ (MSG) 59.20 84.23 10.45 238
PointSIFT 62.89 86.53 54.09 312
PointConv 68.52 88.14 85.16 4996

LSANet 72.02 90.97 94.79 5523

PEMCNet 75.52 93.48 6.59 176

Table 4. Classification accuracy of each class of different networks on Semantic3D (reduced-8) dataset in terms of IoU (%).

Methods Man-Made Natural High Veg Low Veg Building Hard Scape Scanning Art Car

Pointnet++ (MSG) 87.46 60.29 74.28 40.05 90.97 24.01 63.23 33.33
PointSIFT 88.64 78.48 82.66 35.79 92.80 25.83 42.57 56.40
PointConv 89.32 62.53 87.92 60.01 94.32 41.21 42.98 69.92

LSANet 97.32 92.64 86.57 43.20 83.27 30.59 65.19 77.81

PEMCNet 82.87 54.27 91.25 69.02 97.67 34.91 86.41 87.73

4.3. Hyperparameter Analysis

There are two unique hyperparameters, e and K, which play significant roles in the
performance of our network. As a lightweight network is preferred, e was fixed in each
hierarchy to perform two-scale feature learning. In this study, four different configuration
couples of expansion rates were adopted to evaluate the classification performance varying
along with different K on both US3D and Semantic3D datasets. As shown in Figure 5a,b,
the best-performing configuration for the PEG units on both datasets are the same as
{e = 1, e = 2}, namely the two feature scales in terms of expansion rate e are better to be set
as 1 and 2 in each hierarchy. Concerning the number of extracted neighboring points, it can
be observed from each subfigure of Figure 5 that, with the same expansion rates, the mIoU
achieved on each dataset gradually increases before K arriving at 16. This implies that
the classification accuracy can be effectively improved by extracting more point features;
however, the mIoU starts to decrease after K = 16. The reduction in classification accuracy
on the Semantic3D dataset is more evident as shown in Figure 5b. It means that when K
increased to some extent, even though the receptive field of each input point increased and
enabled extraction of a larger range of point features, the increase in the receptive field may
include other wrong point features, in particular regarding those points of small targets.
This would result in the decrease in IoU on those small categories and the overall accuracy
in terms of mIoU would also fall as a result.
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Figure 4. Classification results of five different approaches on the reduced-8 test set of Semantic3D dataset: (a) PointNet++
(MSG); (b) PointSIFT; (c) PointConv; (d) LSANet; (e) PEMCNet.
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Figure 5. Classification performance varying with different parameter settings for the PEG unit. Accuracy variations of
PEMCNet along with changing K and different expansion rates in terms of mIoU score on US3D dataset (a), PEMCNet on
Semantic3D dataset (b).

4.4. Experiments on the UAV-Based Point Cloud Data

To better validate the robustness of the proposed network, our network was applied to
a new collected UAV-based LiDAR point cloud data. This point cloud dataset was acquired
at the University Town campus of Guangdong University of Technology (GDUT) on the
morning of May 15th, 2021. The point cloud dataset covers an area of about 0.26 km2

and is denoted as the GDUT Semantic3D dataset (GDUT-S3D). In total 8,318,3070 points
were collected by the light airborne LiDAR of RIEGL_VUX-1LR which was equipped on a
multicopter. The UAV flew at a height of 105 m along the planned route with the speed
set as 6 m/s. The LiDAR sensor in scanning was set at 100 rpm (rounds per minute). The
wavelength of the emitted laser is 940 nm. The laser frequency was set as 380 kHz. Its
ranging accuracy is 1.5 cm and with 16 bits of high-resolution intensity information per
echo. The collected data have a point density of over 100 points/m2. The software of LiDAR
360 was used for data inspection. The buildings are clear, while as for the particularity of
the structure (open-air design style of buildings) there are cavities that belong to the blind
area of airborne scanning. Further, high-resolution RGB images were collected at the same
time; therefore, the point cloud data were fused with the RGB image, and a point cloud
containing three RGB datapoints, shown in Figure 6a, was generated for study.

This point cloud dataset was artificially divided into eight categories, including bridge,
building, vegetation, water, road, square, grass, and playground. The point cloud data of
the whole scene were divided into nine regions, and 1 million points were taken from each
region as training data. Then, the CloudCompare software was used to manually label the
points according to the ground truth (high-resolution RGB image). With the labeled data
for training. Same parameter settings, such as those used for US3D dataset, were used in
this experiment. Finally, the point clouds of the whole scene were tested using the available
trained model to predict their labels.

Tables 5 and 6 show the quantitative classification results of PEMCNet on the test set
of the GDUT-S3D dataset. It can be seen that PEMCNet still behaved well on our practical
dataset. It achieved satisfactory classification results on those points of large targets, such
as building, vegetation, and playground. Figure 6b vividly displayed the classification
results. In accordance with the findings from the quantitative classification results, large
homogeneous regions such as buildings, vegetation, and playgrounds were predicted as
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smooth areas with the same labels. As for the ineffectiveness of the 940 nm laser on water,
the water in the lake was not well separated, which agrees with its specific classification
accuracy of 45.89% (IoU). The small category of the bridge was even worse. A small bridge
was missed from the classification results (see the indication of the red circle in Figure 6a,b).

Figure 6. (a) Point cloud data with RGB information. (b) The classification results of PEMCNet on the test set of the
GDUT-S3D dataset.

Table 5. Quantitative classification performance of PEMCNet on the test set of GDUT-S3D dataset.

Method mIoU (%) OA (%) Model Size (MB) Forward Time (ms)

PEMCNet 77.29 91.42 6.24 154

Table 6. Classification accuracy of each class of PEMCNet on the test set of GDUT-S3D dataset in terms of IoU (%).

Method Bridge Building Vegetation Water Road Square Grass Playground

PEMCNet 32.64 95.76 93.20 45.89 78.91 86.33 89.47 96.12

5. Discussion

Effective feature learning plays a vital role in the precise classification of point cloud
classification. Regarding the local information learning, it has been revealed that utilizing
the points information in a wider neighborhood by expanding the radius of spherical
queries or constructing larger K-neighborhood graphs in feature learning helps with the
improvement of point cloud classification accuracy [25,29,30]. However, these approaches
also consume more time relative to the effort in the searching within an enlarged local
searching area. In this study, a point expanded grouping strategy is deployed in the deep
neural network for the same sake to extract more neighboring point features in feature
learning, but without bringing extra computational burden. The point expanded grouping
processing can be regarded as a repetition of K-NN, but being conducted simultaneously.
With the distances between the center point and all the rest point samples prepared in
advance, PEG needs only one such computation accompanied with sequential storage.
Then, given different expansion rates, K neighbor points concerning each corresponding
expansion rate can be extracted at the same time, which prompts an efficient learning
process and lightweight storage space. The efficiency of our method in terms of both
processing time and model size indicated the priority of our method with Tables 1, 3, and 5.
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This strategy also works similar to the strategy of expanding the radius of spherical queries
to include more local points for feature learning [25,29]; therefore, it is reasonable for
our method to have merit similar to those approaches. The strategy used here in fact
realizes an enlarged conceptive field that enables us to summarize the local information
for feature learning. Of more importance, it renders multi-scale context information
retrieval in dense point clouds. Moreover, the spatial relationship between those extracted
point features is better represented for further learning by taking into consideration both
coordinates information and the relative position between points. It can be observed from
the experimental results that those especially competitive classification accuracy achieved
with our network (see Tables 2, 4, and 6) were corresponding to the class types associated
with large homogeneous areas. As seen from the corresponding classification maps, those
areas obtained much smoother classification results. Such facts are in accordance with the
above analysis. While for the relatively small targets (bridge in GDUT-S3D data) or small
heterogeneous areas (Man-made and Natural in Semantic3D data), the accuracies were
not promising in Tables 4 and 6, respectively. Accompanied with the parameter analysis
results, Figure 5 shows the most potential classification lies on proper parameter setting.
Regarding the remotely sensed point cloud datasets with different characteristics, too large
expansion rates cannot lead to promising results. The expansion rate couple is a potential
empirical choice that may be effective for more applications.

6. Conclusions

In this paper, we proposed an efficient PEMCNet to aggregate multi-scale local ge-
ometric details in feature learning for the classification of large-scale 3D LiDAR point
clouds. The multi-scale feature learning for the point cloud is realized by (1) introducing
a novel point grouping method—PEG unit to capture multi-scale point features of flexi-
bly varied receptive fields with an expansion rate without introducing more parameters;
(2) introducing an ARSE unit to effectively preserve the spatial relationship between each
centroid point and its neighboring points. The classification experiments on both US3D and
Semantic3D datasets demonstrate the excellent performance of our network. In summary,
our method not only achieves promising classification accuracy on both public and newly
collected practical datasets but also is efficient in terms of both time and memory. With
over 91% of classification accuracy and less than 200 ms of model forward time on all
the datasets, our network has demonstrated the potential priority in the classification
of especially large homogeneous areas; therefore, our architectures can be conveniently
applied in classification tasks of large-scale 3D LiDAR point clouds.
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