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Abstract: Aquaculture has grown rapidly in the field of food industry in recent years; however,
it brought many environmental problems, such as water pollution and reclamations of lakes and
coastal wetland areas. Thus, the evaluation and management of aquaculture industry are needed,
in which accurate aquaculture mapping is an essential prerequisite. Due to the difference between
inland and marine aquaculture areas and the difficulty in processing large amounts of remote sensing
images, the accurate mapping of different aquaculture types is still challenging. In this study, a novel
approach based on multi-source spectral and texture features was proposed to map simultaneously
inland and marine aquaculture areas. Time series optical Sentinel-2 images were first employed
to derive spectral indices for obtaining texture features. The backscattering and texture features
derived from the synthetic aperture radar (SAR) images of Sentinel-1A were then used to distinguish
aquaculture areas from other geographical entities. Finally, a supervised Random Forest classifier
was applied for large scale aquaculture area mapping. To address the low efficiency in processing
large amounts of remote sensing images, the proposed approach was implemented on the Google
Earth Engine (GEE) platform. A case study in the Pearl River Basin (Guangdong Province) of China
showed that the proposed approach obtained aquaculture map with an overall accuracy of 89.5%,
and the implementation of proposed approach on GEE platform greatly improved the efficiency for
large scale aquaculture area mapping. The derived aquaculture map may support decision-making
services for the sustainable development of aquaculture areas and ecological protection in the study
area, and the proposed approach holds great potential for mapping aquacultures on both national
and global scales.

Keywords: multi-source remote sensing; aquaculture mapping; texture feature; Google Earth Engine;
Pearl River Basin

1. Introduction

Aquaculture has become one of the fastest-growing food industries [1], and the
fishery products of China play an important role in the international seafood market [2],
with over 60% of the fish farmed in the world [3]. However, according to the 2018 State
of World Fisheries and Aquaculture report (SOFIA 2018) by the Food and Agriculture
Organization of the United Nations (FAO), the proportion of marine fish resources within
a biologically sustainable level showed a downward trend in recent years [4]. In China,
many lakes and coastal wetlands were reclaimed in the past few years in order to support
the fast development of fisheries [5], putting tremendous pressures on environments and
hampering regional sustainable developments [6]. Accurately mapping aquaculture areas
is an important support to policy development and implementation at regional, national,
and global levels, and to measure progress towards sustainable developments [7].
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Traditional field survey for aquaculture mapping suffers from low efficiency, and
currently the satellite remote sensing technique is one of the most important methods
due to its many advantages, such as low cost, wide monitoring range, high efficiency,
and high repeated observations [8–10]. Optical and radar remote sensing images have
been increasingly utilized to delineate aquaculture areas [11,12], and many methods have
been developed for local [13], regional [14], and national scale [15] aquaculture mapping.
Meanwhile, due to the periodic repeated observations of satellites, remote sensing images
were used not only to map aquaculture areas at a single time [16], but also to map their
time series distributions [17].

Previous studies can be roughly summarized into two categories according to basic
mapping units: pixel-based and object-based approaches. The pixel-based methods are
widely applied to the images with low and medium spatial resolutions. For example,
artificially designed spectral and textural features were computed for each pixel, and a
supervised machine learning classifier was used to map large scale aquaculture areas [18];
Sakamoto et al. [19] applied a wavelet-based filter for detecting inland-aquaculture areas
from MODIS time series images, and deep-learning-based methods were used for aqua-
culture classification [20,21]. For the object-based classification method [22–24], images
are segmented into many homogeneous segments, which are further classified through
machine learning classifiers or classification rules derived from expert rules. For example,
Wang et al. [25] segmented Landsat images into objects using multi-resolution segmentation
method to extract raft-type aquaculture areas.

Considering data sources, most studies used only optical images for they are visually
intuitive and easy to be understood. For mapping aquaculture facilities over small areas,
high spatial resolution remote sensing images are frequently applied [26,27], whereas
medium resolution images are generally used for mapping aquaculture facilities at a
regional or national scale due to their wide coverage and better spectral resolution. For
example, Ren et al. [28] combined Landsat series images and an object-based classification
method to map the spatiotemporal distribution of aquaculture ponds in China’s coastal
zone. Synthetic aperture radar (SAR) images are also used for aquaculture mapping [14,29].
For examples, Hu et al. [29] detected floating raft aquaculture from SAR image using
statistical region merging and contour feature; Ottinger et al. [14] employed time series
Sentinel-1 images and object-based approach to map aquaculture ponds over river basins;
and Zhang et al. [30] mapped marine raft aquaculture areas using a deep learning approach
by enhancing the contour and orientation features of Sentinel-1 images.

Most studies applied satellite images at a certain time to map aquaculture areas,
which may affect the accurate mapping of aquaculture areas for their dynamics. Although
the influence of weather could be suppressed by carefully selecting images, other factors
may also affect the accurate mapping of aquaculture areas. For example, some paddy
fields are still water-dominated at the early stage of farming, and inland aquaculture
ponds are drained during harvest time. Previous studies demonstrated that more accurate
aquaculture maps could be obtained by using time series SAR images [31], and time series
optical images was also proved to be effective in improving mapping accuracy [32,33].
Therefore, time series images are an ideal and reliable data source for aquaculture mapping.

The Google Earth Engine (GEE) platform provides a series of free remote sensing
images, many kinds of image processing algorithms, and high-performance computing
capabilities, and it can process huge amount of time series remote sensing images over a
large-scale area [34–36]. Therefore, GEE has been widely used for mapping wetlands [37]
and agricultural lands [38], and it also has the potentials to map aquaculture areas [39–42].
For examples, Xia et al. [39] proposed a framework for extracting aquaculture ponds by
integrating existing multi-source remote sensing images on the GEE platform; Duan et al.
mapped aquaculture ponds over coastal area of China using Landsat-8 images and GEE
platform [41] and further analyzed their dynamic changes from 1990 to 2020 [42]. Existing
studies were mainly focused on designing artificial image features or training deep leaning
models to map a specific type of aquaculture area, such as aquaculture ponds. However,
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many different aquaculture types are found over a large area, and how to simultaneously
extract multiple types of aquaculture areas over a large area has not been well studied.

This study proposed a novel approach for mapping aquaculture areas with multiple
types over large areas. With the Pearl River Basin (Guangdong) of China as a case study,
time series Sentinel images were used as a data source to overcome the accidental factors of
single-time observation. The spectral indices (including normalized difference vegetation
index (NDVI), normalized water index (NDWI), and normalized built-up index (NDBI))
derived from Sentinel-2A multispectral images, the VV and VH polarized data of Setinel-1
SAR images, and their derived texture features were used to map aquaculture areas using
machine learning algorithms implemented in Google Earth Engine. The proposed method
holds great potentials in simultaneously mapping different types of aquaculture areas over
a large area.

2. Materials
2.1. Study Area

In this study, the Pearl River Basin (Guangdong) refers the part of the basin that lo-
cated in Guangdong Province. The study area (Figure 1) covers the Pearl River Basin
(Guangdong) and its 40 km buffer seaward from coastal line. The Pearl River with
2320 km long is the third-longest river in China, and it covers a region of subtropical
maritime monsoon climate. The Pearl River Basin has been one of the most economi-
cally dynamic regions of China since ancient times. Local sea reclamation and marine
aquaculture started very early, and especially the urbanization in the Pearl River Basin
(Guangdong) is very fast since the launch of China’s Reform Programme in 1979. Currently,
this specific region is one of the most developed regions in China; however, limited river
networks cannot meet the demands of aquaculture developments [43]. Therefore, the
expansions of aquaculture land are mainly concentrated in the ocean and coastal region.
With years of developments, this region has become one of the biggest aquaculture bases
with massive abundant inland aquaculture ponds and mariculture areas. The aquaculture,
including fish farming, shrimp farming, oyster farming, mariculture, algaculture (such as
seaweed farming) and the cultivation of ornamental fish, is well-developed in this region.

Remote Sens. 2021, 13, x FOR PEER REVIEW 3 of 24 
 

 

deep leaning models to map a specific type of aquaculture area, such as aquaculture 
ponds. However, many different aquaculture types are found over a large area, and how 
to simultaneously extract multiple types of aquaculture areas over a large area has not 
been well studied. 

This study proposed a novel approach for mapping aquaculture areas with multiple 
types over large areas. With the Pearl River Basin (Guangdong) of China as a case study, 
time series Sentinel images were used as a data source to overcome the accidental factors 
of single-time observation. The spectral indices (including normalized difference vegeta-
tion index (NDVI), normalized water index (NDWI), and normalized built-up index 
(NDBI)) derived from Sentinel-2A multispectral images, the VV and VH polarized data of 
Setinel-1 SAR images, and their derived texture features were used to map aquaculture 
areas using machine learning algorithms implemented in Google Earth Engine. The pro-
posed method holds great potentials in simultaneously mapping different types of aqua-
culture areas over a large area. 

2. Materials 
2.1. Study Area 

In this study, the Pearl River Basin (Guangdong) refers the part of the basin that lo-
cated in Guangdong Province. The study area (Figure 1) covers the Pearl River Basin 
(Guangdong) and its 40 km buffer seaward from coastal line. The Pearl River with 2320 
km long is the third-longest river in China, and it covers a region of subtropical maritime 
monsoon climate. The Pearl River Basin has been one of the most economically dynamic 
regions of China since ancient times. Local sea reclamation and marine aquaculture 
started very early, and especially the urbanization in the Pearl River Basin (Guangdong) 
is very fast since the launch of China’s Reform Programme in 1979. Currently, this specific 
region is one of the most developed regions in China; however, limited river networks 
cannot meet the demands of aquaculture developments [43]. Therefore, the expansions of 
aquaculture land are mainly concentrated in the ocean and coastal region. With years of 
developments, this region has become one of the biggest aquaculture bases with massive 
abundant inland aquaculture ponds and mariculture areas. The aquaculture, including 
fish farming, shrimp farming, oyster farming, mariculture, algaculture (such as seaweed 
farming) and the cultivation of ornamental fish, is well-developed in this region.  

 
Figure 1. Geographical locations of the Pearl River Basin (Guangdong) and study area (annual me-
dian images of sentinel-2A (2020) after cloud removal). 

  

Figure 1. Geographical locations of the Pearl River Basin (Guangdong) and study area (annual
median images of sentinel-2A (2020) after cloud removal).

2.2. Data

Sentinel series satellites are the important branches of the Copernicus Programme
satellite constellation conducted by the European Space Agency (ESA) and an essential part
of Global Monitoring for Environment and Security (GMES). Sentinel-1 satellite constella-
tion is the first of this specific program, and it carries C-band synthetic-aperture radar (SAR)
instrument with a temporal resolution of 6 days [44]. The Sentinel-2A/B satellites equipped
with Multispectral Instrument (MSI) are capable of acquiring high spatial resolution (up
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to 10 m) optical images in 13 spectral bands every 5 days [45]. The ESA and European
Commission’s policies makes Sentinel’s data easily accessible [46]. More detailed technical
specifications of both Sentinel-1 SAR and Sentinel-2A MSI data are available in previous
studies [47,48] and will not be repeated here.

The standard Level-1 (ground range detected, GRD) data product of Sentinel-1 in
Interferometric Wide Swath (IW) mode and the calibrated Bottom of Atmosphere (BOA)
products of Sentienel-2 used in this study were offered by GEE. Considering the data
availability, this study was only focused on 2020. One arc-minute global relief model of the
Earth’s surface that integrates land topography and ocean bathymetry (ETOPO1) dataset
was also collected to extract ocean bathymetry [49]. The Global Self-consistent, Hierarchical,
High-resolution Geography Database (GSHHG) that comprises World Vector Shorelines
(WVS) [50] was applied to extract shorelines of the study area. All these datasets were
re-projected to the uniform coordinate reference system (WGS_1984_UTM_Zone_50N) and
resampled to a same ground spatial resolution of 10 × 10 m.

3. Methods

The approach proposed in this study for large-scale aquaculture mapping with multi-
source remotely sensed images and the GEE platform includes seven main steps (Figure 2):
(1) data preprocessing, (2) feature extraction, (3) water surface extraction (including aqua-
culture land), (4) sample selection, (5) Random Forest classification in the GEE platform, (6)
morphological post processing, and (7) accuracy assessment. These steps were repeated
several times to find the optimal parameters.
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3.1. Data Preprocessing

A bitmask band with cloud mask information (QA60) for the Sentinel-2A image is
provided on the GEE platform. Cloud and cloud shadow affecting observation quality
were identified by the code based on the Function of Mask (CFMask) [51], and they were
marked in the QA60 band. The clear-sky pixels were selected according to QA60, and the
Sentinel-2A images in 2020 with less than 20% cloud and cloud shadow cover were used in
this study.
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3.2. Feature Extraction for Each Image Pixel
3.2.1. Image Features of Aquaculture Areas

Only aquaculture ponds show regular shapes and textures on the Sentinel-2A multi-
spectral images (Figure 3), because they are usually very large compared with medium-
resolution image pixels. The spectral signatures of water ponds are also clearly presented
in NDWI image, and texture features are clearly presented in all optical, spectral indices
and SAR images.
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Mariculture facilities do not show obvious signatures in Sentinel-2A multispectral
optical images, because they are relatively small compared with medium-resolution image
pixels, or some are submerged in water. However, these aquaculture types show signif-
icantly different characteristics in NDWI, NDVI and NDBI images, because normalized
difference image features amplify the differences. More specifically, the textures are very
clear in Sentinel-1 SAR images, because the backscatter signature of the radar is sensitive
to the roughness and structure of water surface.

Based on the above analyses, we found that NDVI, NDWI, and NDBI could better
highlight the differences between aquaculture areas and other water bodies and the textures
derived from index images; VV and VH images could further enhance the differences.

3.2.2. Normalized Difference Spectral Indices

In this study, NDWI, NDVI [52] and NDBI [53] were used as spectral features.
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Normalized Difference Water Index (NDWI) (Equation (1)): NDWI was proposed
by McFeeters [54], based on the fact of strong spectral absorption of water body in the
near-infrared (NIR) band, and it is a robust method for detecting aquaculture water surface
and has proved effective in segmenting muddy aquaculture ponds [39]. Correspondingly,
NDWI can be used to distinguish land and water bodies.

NDWI = (ρgreen − ρnir)/(ρgreen + ρnir) (1)

where ρgreen is the reflectance of green band (B3 of MSI), and ρnir represents the reflectance
of near-infrared band (B8 of MSI).

In this study, the images with annual cloud cover less than 20% in 2020 were used to
calculate a series of NDWI values. The NDWI series were sorted from small to large, and
the 25% maximum NDWI values (located in the 75–100% of the sequence) were selected
to calculate the average NDWI image. This preprocessing takes full use of all the image
features for the whole year and eliminates the seasonal differences of aquaculture areas.

Normalized difference vegetation index (NDVI) (Equation (2)): Generally, aquaculture
ponds usually have higher nutrients than natural water bodies, and the algae concen-
tration is also higher. The waterbodies with high algae concentration generally have
high reflectance in NIR spectrum compared with natural waters (without aquacultures).
Therefore, NDVI may separate aquaculture waters from natural waters at a certain degree.

NDVI=(ρnir − ρred)/(ρnir + ρred) (2)

where ρred represents the reflectance of red band (B4 of MSI), and ρnir represents the
reflectance of near-infrared band (B8 of MSI). Referring to the processing of NDWI,
we also sorted and filtered the NDVI values (75–100%) to compose the final average
NDVI image.

Normalized difference built-up index (NDBI) (Equation (3)): NDBI is originally de-
signed to detect built-up and barren areas. In practice, the extracted water mask often
contains shadow noise with low reflectivity, which may be caused by tall buildings over
built-up areas. The surrounding pixels of shadows usually have high NDBI values, and
thus it is able to distinguish building shadows by analyzing their surrounding pixels.

NDBI = (ρswir1 − ρnir)/(ρswir1 + ρnir) (3)

where ρswir1 represents the reflectance of the shortwave infrared band (B10 of MSI), and
ρnir represents the reflectance of the near-infrared band (B8 of MSI). To further reduce the
potential effects of shadow noise, we also sorted and filtered the NDBI values (75–100%)
to compose the final average NDBI image. The morphological operation is an effective
way to examine the neighbors of a pixel. Since a higher NDBI indicates a higher possibility
of a built-up pixel, an inflation operator was conducted on the NDBI image to eliminate
lathy and small building shadows, and a corrosion operator was further adopted to restore
the image.

3.2.3. Backscatter Features

A single Sentinel-1 SAR image is usually contaminated by speckle noises, and previous
studies demonstrated the effectiveness of SAR image enhancement using time series
images [55]. Following Xia’s work [39], we selected the mean values of the VV and VH
time series images of 75–100% in ascending order at the pixel level to form the final VV
and VH image over the whole study area.

3.2.4. Texture Features

Image texture provides relevant characteristics of spatial structures. In this study, the
aquaculture lands hold relative regular shapes and arrangements, which are reflected in
the regular change of gray levels of images pixels. Considering the results of previous
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studies, we combined different kinds of textures to address the problem of insufficient
accuracy and to reduce the interference of the surroundings.

Gray Level Co-occurrence Matrix (GLCM) [56] is a method to analyze texture character-
istics, and it calculates the correlation between two gray levels to reflect the comprehensive
information about directions, intervals, and the changes in magnitude and speed. Some
studies suggested that better recognition performance could be obtained by using extreme
values to calculate texture features in different directions than in any direction or average
direction. NDWI, NDBI, and backscattering coefficient of VV/VH were employed as input
images for calculating GLCM, with gray level of 16, 150 × 150 m sliding windows and four
directions (Figure 4). The NDVI image was mainly used to distinguish aquaculture ponds
and natural waters, and it was not applied to compute texture features in this study.
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Figure 4. Direction measure of GLCM calculation in this study.

Numerous texture feature bands (n = 18) can be generated using GLCM method in
GEE. Redundant textural measures are possibly complex and may reduce computing speed,
which may influence the performance of classification. Following Yu’s work [57], Angular
Second Moment, Contrast, Correlation, Variance, Sum Average, Inverse Difference Moment,
and Entropy were selected and computed from GLCM (Table 1), and their maximum and
minimum values in four directions (Figure 4) were analyzed. Therefore, for each input
image, a 14-dimension feature vector was obtained (7 measures × 2 values).

Table 1. Textural measures based on GLCM method in this study.

Parameter Detailed Description

Angular Second Moment Number of repeated pairs
Contrast Local contrast of within an image window

Correlation Correlation between pairs of pixels
Variance Dispersion of gray-level distribution

Inverse Difference Moment Homogeneity within window
Entropy Randomness of a gray-level distribution

Sum Average Sum Average of pixels within window

3.3. Water Surface Extraction

The pixels with aquaculture areas mainly show pure water or water-dominated
spectral responses, and the probability of water surface can be simply reflected by NDWI.
Inspired by [39], the water surface was first detected from NDWI image by that a pixel with
a NDWI value higher than a threshold was classified as water. The aquaculture facilities
in the sea, rivers, or lakes show different spectral signatures from pure water bodies. The
sizes of aquaculture facilities are relatively smaller than medium spatial resolution image
pixels and some aquaculture facilities are submerged in the water, and thus the pixels
with aquaculture facilities are mixed pixels. The NDWI values of pixels with aquaculture
facilities are usually lower than those of pure water pixels but higher than those of other
objects, and thus the mixed objects can be classified as water surface using a threshold.

3.4. Sample Selection

The aquaculture areas in the Pearl River Basin (Guangdong) hold regular spatial
morphological characteristics in remotely sensed images (Figure 5). In this study, the aqua-
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culture areas were roughly divided into inland aquaculture ponds and marine aquaculture.
Inland aquaculture ponds are mainly distributed in the junction zone between water body
(river, lake and sea) and land. The inland aquaculture ponds are formed through the
reclamation of coastal wetlands or inland lakes, and they are usually partitioned by em-
bankments and have regular and compact shapes (Figure 5b,c). Inland aquaculture pond
units are usually clustered together, showing regular texture structures.
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Marine aquaculture areas are often located in bays and inshore seawaters, and they
include raft aquaculture (Figure 5d,e) and cage aquaculture (Figure 5f). The raft aquaculture
facilities in neritic zone are composed of aquatic bamboo raft (for floating) and subaquatic
thick rope (for fixing aquatic products). Correspondingly, the raft aquaculture areas are
characterized by dull grey stripes (Figure 5d,e). The cage culture areas consist of aquatic
plastic frames and suspended net cages (Figure 5f). Comparing with water bodies, cage
aquaculture facilities appear as brighter colors in remotely sensed imagery, and their
distributions are more concentrated, with regular rectangles.

In this study, a total number of 8317 samples were selected for classifier training
(n = 7317) (Table 2) and accuracy assessment (n = 1000).
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Table 2. Classification system used in this study.

Class Description Reference Samples

Aquaculture Coastal ponds and marine aquaculture 4041
Water body River network, lakes, and tidal wetlands 3067

Other Building shadow and other small fragile patches
with low reflectivity 209

3.5. Random Forest (RF) Classification on GEE Platform

GEE provides a serial of classification algorithms, including Minimum Distance
(MD) [58], Random Forest (RF) [59], Support Vector Machine (SVM) [60], Regression
Trees (CART) [61] and Naive Bayes (NB) [62]. According to previous studies, SVM and
RF have better performance than other classification algorithms [63–65]. SVM algorithm
performs good with limited training samples, however, RF performs better as training
sets get larger [66]. RF is conceptually similar to tree-based learners, and they share same
advantages [67]. RF can exhibit higher accuracy and efficiency even facing the unfavorable
conditions of noise interference. Moreover, RF classifier shows better performance than
other classifiers in land cover mapping using long time series images [68,69]. Therefore, RF
classifier was employed in this study.

In this study, the composed NDVI, NDWI and NDBI products were also employed
as spectral attributes of each pixel, the GLCM features of NDWI, NDBI, VV and VH
were used as texture attributes, and the ETOPO1 value was applied as a topographic
attribute. A feature vector of 60 dimensions (3 spectral + 4 images × 14 measures/image
texture + 1 topographic) was obtained. A RF classifier on GEE platform was trained
according to existing reference [70], in which the number of trees (ntree) was set to 100, the
maximum depth was unlimited, the minimum sample number of each tree node was 1,
and the number of features for each tree was set as the square root of the variable number.

3.6. Morphological Post Processing

Based on the above process, the aquaculture areas in the Pearl River Basin (Guang-
dong) were obtained preliminarily. However, the texture difference between aquacul-
ture land and streamway were not clearly detected, which may cause misclassification.
Streamway is one of the equipped facilities of aquaculture ponds. The obvious morpho-
logical difference between open water and streamway can be observed, and thus the
compactness of each extracted aquaculture pond was calculated for modifying misclassifi-
cation with Equation (4), which reflects the geometric shape of the object. The threshold of
compactness was set as 11.5 through a trial-and-error process.

Compactness =
W×H
Area

(4)

where W and H are the width and height of the minimum enclosing rectangle, respectively,
and Area is the number of inner pixels of the object. The small holes (≤1000 pixels) within
aquaculture patches were filled, and the isolated small patches (≤3 pixels) were removed.
An illustration of post processes is presented in Figure 6.

3.7. Accuracy Assessment

A total of 1000 samples of aquacultures extracted from Google Earth images using
visual interpretation were used as ground-truth references. The confusion matrix was
first obtained, and then overall accuracy and Kappa coefficient were applied to assess the
accuracy of the proposed approach.
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3.8. Optimal Parameter Selection

Several key factors affect the final classification performance: feature combination,
window size to compute textures and threshold to extract water surface. The steps de-
scribed in Sections 3.1–3.7 were repeated, and the values of these key factors maximizing
overall accuracy were selected.

Feature Combination: Based on different types of features, including normalized
difference spectral indices, backscatter features and image textures derived from spectral
indices and SAR images, many kinds of feature combinations can be obtained. To investi-
gate the optimal feature combination, six groups of features (Table 3) were used to obtain
six aquaculture maps, respectively. The threshold T = 0.06 and texture window size with 15
were used. The determinations of T and window size are described in Sections 4.2 and 4.3,
respectively. The 1000 random selected samples were used to evaluate their performances.

Table 3. Classification performances using different feature combinations.

Feature Group ID ETOPO1 Indices SAR Textures of Indices Textures of SAR
Accuracy

OA (%) Kappa

A
√ √

81.5 0.609
B

√ √ √
83.1 0.639

C
√ √ √

88.2 0.748
D

√ √ √
86.9 0.719

E
√ √ √ √

89.5 0.776
F

√ √ √ √ √
89.0 0.765

Threshold to Extract Water Surface: Since aquaculture areas are first classified as a part
of a water body, the threshold separating water and non-water surfaces plays an important
role in the whole process. In this study, water surface was extracted by thresholding an
NDWI image, and only one parameter T was used. The spectral indices, textures from
indices and SAR images, as well as ETOPO1, were used. The window size was set at
15 × 15 pixels. The thresholds between −0.2 and 0.2 were tested, with a step of 0.02. The
accuracies were evaluated using 1000 samples.

Window Size to Compute GLCM Features: The window size of gray-level co-occurrence
matrix can directly affect the detection of aquaculture in a complex water environment.
According to [71], a texture window should cover at least the minimum detectable target.
Although inland aquaculture ponds have regular arrangements and clear textures, the
ponds can be properly separated by thresholding NDWI image. However, the detection of
mariculture facilities mainly depends on image textures. Based on our visual interpreta-
tion from Google Earth, the size of minimum detectable mariculture block is about 50 to
150 m. Therefore, a window size of 15× 15 pixels was preferred. However, the experiments
using a window of 5 × 5 pixels, 15 × 15 pixels, and 30 × 30 pixels were also carried out to
determine the optimal size.
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4. Results
4.1. Aquaculture Maps Obtained Using Multiple Features

Six maps were obtained using different feature combinations; their accuracies were as-
sessed with 1000 validation samples (Table 3), and four typical sites of the maps
were presented in Figure 7. The performances using only spectral indices were poor
(Figure 7A and Table 3), and many water pixels were wrongly classified as aquaculture
pixels, for some aquaculture facilities are submerged in waters and their spectral signatures
are not obliviously different from water. The combination of spectral indices and SAR
image features improved the performance (Figure 7B), especially for the second typical
site, for SAR images reflect the backscatter characteristics of aquaculture facilities, which is
totally different from a pure water body. However, many misclassifications still existed
near shorelines, and the overall accuracy and Kappa coefficient are not satisfactory. The use
of spectral indices and index-derived texture features greatly improved the classification
performance (Figure 7C and Table 3), and most aquaculture ponds and mariculture areas
were correctly detected, and an overall accuracy of 88.2% was obtained.

The results of combination D (Figure 7D) show the effectiveness of using SAR images
and their corresponding textures. Comparing the results on the second site with those from
combination C, it can be easily found that mariculture areas were better detected. However,
there are many commission errors along coastlines, resulting in a lower OA (86.9%). The
results in Figure 7 show that the combination of E and F obtained better performances
than the combination of A, B, C, and D. However, the results of combination E had less
holes, and the overall accuracy (89.5%) and Kappa coefficient (0.719) were both the highest
compared with other combinations. Therefore, the feature in combination E was applied to
obtain the final map.

4.2. Optimal Threshold for Water Body Segmentation

A total of 21 aquaculture maps were obtained using thresholds from −0.2 to 0.2; their
overall accuracies and Kappa coefficients are presented in Figure 8, and five maps over a
typical area are presented in Figure 9.

The overall accuracy and Kappa coefficient were low with a very small threshold
(T = −0.2), due to many misclassified land pixels. With a small threshold, many mixed
pixels containing waters were segmented as water surface, and further classified as aqua-
culture areas. As shown in Figure 9b, many embankment pixels were wrongly segmented
as water surface and further misclassified as aquaculture areas. As the threshold increased,
the misclassifications were gradually overcome (Figure 9b–d), the overall accuracy gradu-
ally increased, and finally the overall accuracy achieved the best result with T = 0.06. As
the threshold further increased, the accuracy decreased for many mixed pixels and even
some pure water pixels were segmented as land, and thus many aquaculture ponds were
missed (Figure 9f). Generally, the optimal threshold is a balance of the two misclassification
types, and the threshold 0.06 was preferred in our study.

4.3. Optimal Window Size for Texture Calculation

Figure 10 shows the maximum sum averaged texture derived from VH and the extracted
aquaculture with a window size of 5× 5 pixels, 15× 15 pixels, and 30× 30 pixels, respectively.
Some small misclassifications were observed along shorelines with the window size of
5 × 5 pixels. With 15 × 15 windows, the textures better delineated the existing aquaculture
areas, resulting in a satisfactory result (Figure 10f). With larger window size (30× 30 pixels),
the texture feature was over-smoothed. Moreover, the computational load dramatically
increased with the increase in window size. Therefore, the window size of 15 × 15 pixels
was used in this study.
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4.4. Aquaculture Map and Accuracy Assessment

With optimal feature combination, threshold, and window size, the final aquaculture
maps were obtained (Figure 11). The aquacultures in the Pearl River Basin (Guangdong)
had a total area of 1445.91 km2 in 2020. The inland aquacultures were concentrated in the
coast of bays, including Zhenhai Bay (Figure 11a), Yamen watercourse (Figure 11b), Pearl
River Estuary (Figure 11g) and Niwanmen watercourse (Figure 11h). The area along the
coast had the most concentrated aquacultures, which are mainly enclosed sea aquacultures.
Moreover, a great deal of inland aquacultures were widely distributed in the inland
river network.
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Figure 11. Aquaculture maps in the Pearl River Basin (Guangdong) in 2020: (a) Zhenhai Bay, (b)Yamen watercourse,
(c) Shenzhen Bay, (d) Baisha Bay, (e) Baisha lake, (f) Histogram of aquaculture area in major administrative regions, (g) Pearl
River Estuary, and (h) Niwanmen watercourse.

Marine aquacultures accounted for 22.8% of the total area of aquaculture in the Pearl
River Basin (Guangdong), and they were concentrated in the bays along the coast. The
raft cultures were mainly distributed in Yamen watercourse (Figure 11b) and Baisha Bay
(Figure 11d), and cage culture in Shenzhen Bay (Figure 11d) and and Baisha lake
(Figure 11e). The aquaculture areas of the major administrative regions in the Pearl River
Basin (Guangdong) in 2020 are shown in Figure 11h. Jiangmen City had the largest area
of aquaculture with about 443.56 km2, which accounts for about 30.7% of the total aqua-
culture area in the study area. The second was Zhuhai City, with an aquaculture area of
251.52 km2, accounting for 17.4% of the total aquaculture area.
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The validation of aquaculture area map with the validation samples held an overall
accuracy of 89.5% with a kappa coefficient of 0.776, a Producer’s Accuracy of 82.82%, and
a User’s Accuracy of 89.47% (Table 4). Some commission and omissions errors for the
proposed approach were still observed. Using a window of 150 × 150 m, some water
bodies and tidal flats adjacent to aquaculture were misclassified as aquaculture because
of their similar edge texture values. In addition, the aquacultures with high sediment
content have similar spectral characteristics with non-aqueous bodies, and they were
frequently misclassified.

Table 4. Confusion matrix of proposed approach using 1000 validation samples.

Aquaculture Others Classified User’s Accuracy (%)

Aquaculture 0.323 0.038 0.358 89.47
Others 0.067 0.572 0.642 89.51

Reference 0.390 0.610 1

Producer’s accuracy (%) 82.82 93.77
Overall Accuracy = 89.5%, Kappa = 0.776

The high user’s and overall accuracies indicated the satisfactory performance of the
proposed approach. However, the producer’s accuracy was slightly lower than user’s
accuracy, for some mixed pixels containing parts of ponds were classified as water bodies
at the stage of NDWI thresholding. This problem could be overcome by using sub-pixel
mapping or high spatial resolution images.

5. Discussion
5.1. Comparison with Other Aquaculture Maps

The proposed approach in this study was compared with the methods proposed by
Duan et al. [42] and Xia et al. [39]. The corresponding reference images were manually
labeled. The maps are presented in Figure 12, and the confusion matrixes are presented in
Tables 5–7. Duan et al. [42] adopted a spectrum, and spatial and morphological features
of 30 m resolution Landsat images to build a Random Forest classifier to implement an
automatic extraction of large-scale aquacultures. Xia’s et al. [39] extracted the water surface
from Sentinel-2A images using multiple thresholds, described the water patches using
geometric and spectral features, and finally applied a Random Forest classifier to classify
inland aquaculture ponds.

Table 5. Confusion matrix of Duan’s method in typical sites [42].

Duan’s Method Aquaculture Others Classified User’s Accuracy (%)

Aquaculture 0.231 0.168 0.400 57.92
Others 0.032 0.568 0.600 94.65

Reference 0.264 0.736 1

Producer’s accuracy (%) 87.81 77.16
Overall Accuracy = 79.97%, Kappa = 0.557

Table 6. Confusion matrix of Xia’s method in typical sites [39].

Xia’s Method Aquaculture Others Classified User’s Accuracy (%)

Aquaculture. 0.250 0.071 0.320 77.97
Others 0.014 0.666 0.680 97.94

Reference 0.264 0.736 1

Producer’s accuracy (%) 94.70 90.42
Overall Accuracy = 91.55%, Kappa = 0.796
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Table 7. Confusion matrix of proposed approach in this study in typical sites.

Proposed Method Aquaculture Others Classified User’s Accuracy (%)

Aquaculture 0.231 0.044 0.275 84.10
Others 0.032 0.693 0.725 95.54

Reference 0.264 0.736 1

Producer’s accuracy (%) 87.73 90.06
Overall Accuracy = 92.40%, Kappa = 0.867

The map provided by Duan et al. [42] presented a general distribution of aquaculture
ponds; however, almost all the details were missed (Figure 12b,j), for it was obtained us-
ing Landsat TM images with a spatial resolution of 30 m. Moreover, they conducted
morphological closing and erosion operations post process, which further smoothed
the details.

Xia’s method and the proposed approach in this study were applied to two typical
regions, and their derived aquaculture maps were compared. Xia’s [39] and the proposed
approach in this study produced similar aquaculture maps, and most of their details are
clearer than Duan’s map (Figure 12c,d,k,l) for Sentinel images of 10 m spatial resolution
were applied and the post processing did not eliminate the details. The proposed method
produced similar results to Xia’s method (Figure 12c,d,k,l); however, less embankment
pixels were misclassified. Therefore, the User’s Accuracy of aquaculture areas (92.40%) was
higher than that of Xia’s method (77.97%). The main problem of the proposed method is
that some isolated ponds were missed, resulting in a lower Producer’s Accuracy (Table 7).
However, the overall accuracy and Kappa coefficient indicated that the proposed method
performed better over the tested areas.

The proposed approach in this study achieved better performance than Duan’s and
Xia’s methods, which might be explained by that: (1) the texture features from normal-
ized difference spectral index images increased the distinguishability of aquaculture area
from other objects; and (2) radar images were integrated with optical ones, as they are
sensitive to the texture structure of aquaculture areas, resulting in further improvement
for aquaculture mapping. More important, the proposed approach was originally de-
signed to simultaneously map aquaculture ponds and mariculture areas, whereas Xia’s and
Duan’s methods can only map aquaculture ponds, and thus the proposed method has a
better generalizability.

5.2. Impacts of Mixed-Pixels

The aquaculture maps in the Pear River Basin (Guangdong) were obtained with
medium resolution Sentinel-1 SAR and Sentinel-2A multispectral images, and the results
showed the advantages of using medium resolution images for large-scale thematic map-
ping. However, the accuracy and generalization of the proposed approach might be affected
by mixed pixels of medium resolution images. The aquaculture pixels are often mixed
with embankment among ponds, which often results in ambiguous boundaries and some
inevitable errors. Thus, some parts of aquaculture ponds were classified as land, and
some embankments were classified as ponds. It is difficult to overcome such errors using
medium spatial resolution images, and very high spatial resolution images may easily
overcome this problem.

The step of extracting water surface mask in our proposed approach is also affected
by mixed pixels. Our method relies on the assumption that pixels covering mariculture
facilities are still water-dominated, because the sizes of these facilities are usually relatively
smaller than a pixel. Thus, they were first classified as waterbodies, and further been
detected at later stages. However, this assumption may be not appropriate when using
high spatial resolution images, because many pixels covering mariculture facilities are no
longer water-dominated mixed pixels. In such case, these pixels will be segmented into
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non-aquaculture, affecting the accuracy of final map. Object-based methods might be an
optimal solution for high spatial resolution images to overcome this limitation.

The proposed approach was designed for large scale aquaculture mapping using
medium spatial resolution images. Although the boundaries are not detected very accu-
rately, the aquaculture map over a large area can be efficiently obtained. In particularly, the
medium spatial resolution images acquired by many satellite sensors (such as Landsat TM
series and Sentinel-2A series) for several decades provide great convenience to monitor the
development of the aquaculture industry.
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5.3. Selection of Time Series Images

In this study, time series images for a whole year were used for aquaculture map-
ping in order to eliminate the influence of accidental factors, such as water-dominated
paddy fields and dry ponds during harvest period. Time series SAR images also are effec-
tive in suppressing speckle noise of radar image. Although there are many advantages,
two problems should be noted.

First, the seasonal characteristics of study areas may affect the selection of time series
images. For example, this study area is located in southern China, in which the temperature
is usually high, and the water does not freeze; thus, the images with good quality acquired
at any time can be used. However, in northern China, the pond water freezes in winter
and its optical properties will change. Therefore, the time series images should be selected
according to the specific seasonal characteristics of study areas.

Second, the assumption and basis of using time series images are that ground entities
are not changed suddenly. If some aquaculture ponds are converted into agricultural land
or built-up areas in winter, they may still be recognized as aquaculture areas. To improve
the ability to respond to such sudden changes, it is necessary to shorten the time interval of
time series images.

5.4. Limits and Future Works

An effective and efficient approach was proposed in this study for aquaculture area
mapping over large areas; however, some issues should be further investigated. Firstly,
some narrow rivers adjacent to aquaculture ponds were still misclassified. Thus, more
accurate classifier and post-processing methods are still worth investigating, and the
combination of post-processing and river vector boundaries may be a potential solution.
Secondly, the aquaculture areas were roughly classified into two types in this study:
aquaculture ponds and mariculture areas, and more specific aquaculture types are needed
to be investigated. Finally, only one global threshold was used to extract waterbodies
(containing aquaculture areas); it was not always optimal for different and complex image
scenes, and thus a locally adaptive thresholding approach is a potential solution to improve
the segmentation of the water surface. Only the aquaculture maps in 2020 were obtained
in this study, and they are not sufficient for more potential applications. With historic earth
observation images, it is necessary to analyze the long-time spatial–temporal changes of
aquaculture areas and their impacts on economy and ecological systems and further to
provide supports for the sustainable developments of the study area.

6. Conclusions

A novel approach was proposed in this study for simultaneously mapping multi-type
aquaculture areas over large scale areas by combining spectral and texture features from
optical (Sentinel-2A multispectral) and radar (Sentinel-1) images, and a case study in the
Pear l River Basin (Guangdong) showed its efficiency. The main contribution of this work
could be summarized as follows:

(1) We analyzed the spectral and textural features of aquaculture areas and demon-
strated the effectiveness of fusing multiple image features for aquaculture mapping. We
found that the use of textural features derived from the spectral indices can greatly improve
the mapping accuracy and the use of textural features derived from SAR images can further
improve mapping accuracy, as they are sensitive to marine aquaculture facilities.

(2) The proposed approach could generate a more accurate aquaculture map than
previous studies. Moreover, the proposed approach was implemented on the GEE platform,
and has great potential for national-scale and long-term aquaculture mapping.
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