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Abstract: Monitoring urban area expansion through multispectral remotely sensed data and other
geomatics techniques is fundamental for sustainable urban planning. Forecasting of future land use
land cover (LULC) change for the years 2034 and 2050 was performed using the Cellular Automata
Markov model for the current fast-growing Epworth district of the Harare Metropolitan Province,
Zimbabwe. The stochastic CA–Markov modelling procedure validation yielded kappa statistics above
80%, ascertaining good agreement. The spatial distribution of the LULC classes CBD/Industrial
area, water and irrigated croplands as projected for 2034 and 2050 show slight notable changes.
For projected scenarios in 2034 and 2050, low–medium-density residential areas are predicted to
increase from 11.1 km2 to 12.3 km2 between 2018 and 2050. Similarly, high-density residential areas
are predicted to increase from 18.6 km2 to 22.4 km2 between 2018 and 2050. Assessment of the
effects of future climate change on potential soil erosion risk for Epworth district were undertaken
by applying the representative concentration pathways (RCP4.5 and RCP8.5) climate scenarios, and
model ensemble averages from multiple general circulation models (GCMs) were used to derive
the rainfall erosivity factor for the RUSLE model. Average soil loss rates for both climate scenarios,
RCP4.5 and RCP8.5, were predicted to be high in 2034 due to the large spatial area extent of croplands
and disturbed green spaces exposed to soil erosion processes, therefore increasing potential soil
erosion risk, with RCP4.5 having more impact than RCP8.5 due to a higher applied rainfall erosivity.
For 2050, the predicted wide area average soil loss rates declined for both climate scenarios RCP4.5
and RCP8.5, following the predicted decline in rainfall erosivity and vulnerable areas that are erodible.
Overall, high potential soil erosion risk was predicted along the flanks of the drainage network for
both RCP4.5 and RCP8.5 climate scenarios in 2050.

Keywords: land use land cover (LULC); Cellular Automata Markov model; representative
concentration pathways; climate scenarios

1. Introduction

Soil erosion by water has become a global threat undermining environmental sustain-
ability [1]. This is attributed to various controlling factors related to Land Use and Land
Cover (LULC) changes influenced by population growth, rising economic activities, unsus-
tainable agricultural practices and climate change [2,3]. LULC change has been reviewed
as one of the main driving forces of global environmental change, making it an important
factor to assess at different spatio-temporal levels [4,5]. The LULC changes at both local and
global levels are dynamic processes [2] and their drivers correspond to complex systems
with dependent characteristics and interactions having a wide array of implications for the
future ecological balance and environmental sustainability. Urbanization, as one among
the major drivers of LULC change, depends on population growth, migration and desires
to change the current state of the Earth. These actions could be for the betterment of
livelihoods and in turn could be detrimental to the environment and humankind [6,7]. The
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resulting ramifications include the modification of the landscape due to the sprawling of
unplanned urban built-up areas, development of urban heat islands and over-exploitation
of natural resources as direct impacts, and collateral land degradation, climate change, soil
erosion and siltation [7–9].

The United Nation’s World Urbanization Prospects reveal that the global urban pop-
ulation increased from about 30% in 1950 to approximately 54% in 2014, with almost
2.5 billion urban dwellers expected by 2050 [10]. For India, approximately 50% of the popu-
lation have been projected to be living in cities by 2050 as a result of rural–urban migration
due to increased economic activities in the urban areas, which have become a strong pulling
factor [11]. Rapid urbanization in Africa has been reported due to population growth and
it has been projected to almost triple by 2030 [11]. However, according to information
from the World Economic Forum, in 2020 56.2% of the global population already lived in
cities [12], with highly variable rates between regions, ranging from 81.2% urban dwellers
in Latin America and the Caribbean to 43.5% in Africa [13]. Breaking these data down
to Zimbabwe, about a quarter of the country’s population lives in urban areas. Focusing
on the case study of Epworth district, being part of the Harare Metropolitan Province,
approximately 47% of the population increase was registered between 1992 and 2012 [14],
with a triplication of built-up areas from about 19.5% in 1984 to 61.3% in 2018 [15]. Such
trends in urban population growth directly impact the ecosystem of the urbanizing area, in-
cluding the peri-urban area. This earmarks a gap which requires monitoring of the impacts
driven by rampant LULC changes through urban expansion on the ecosystem as a basis to
implement a proper spatial policy to enable effective decision-making processes [16,17].
This implies a rich understanding of the trends of urban expansion and development, and it
requires the integration of spatially differentiated data, applying geomatics to quantify and
predict future spatial distributions [18,19]. By the case study of the Epworth district in the
Harare Metropolitan Province, it will be demonstrated that future land use models provide
a valuable basis for foresight spatial planning to ensure environmental sustainability.

The LULC changes occurring at unprecedented levels threaten multiple ecological
processes such as surface runoff, soil erosion, siltation and agricultural non-point source
pollution, resulting in landscape degradation, habitat loss and inaccessibility to prop-
erties [20,21]. Focusing on sub-Saharan metropolitan areas, the example of the Harare
Metropolitan Province documents a rapid transformation of urban agricultural land and
shrub lands to built-up areas and other sealed settlement areas over the past decades [9,22].
For example, Epworth district, as part of the Harare Metropolitan Province, has witnessed
an increase in built-up areas linked with high soil erosion risk due to increased impervious
surfaces and construction activities which facilitate surface runoff [23]. This results in
accelerated soil loss in sensitive areas mostly within active built-up areas. The radical
LULC changes in this area also include the loss of water bodies due to siltation resulting
from sand mining and brick moulding along the river banks; encroachment of wetlands
by construction activities; and grading of unpaved roads which later facilitate accelerated
surface runoff due to compaction [24].

Furthermore, climate change is reiterated to be heavily associated with locally increas-
ing rainfall intensity, frequency and extent, resulting in increasing rainfall erosivity [25].
The Fifth Assessment Report (AR5) of the IPCC (Intergovernmental Panel on Climate
Change) highlights that global mean precipitation and surface temperatures have signif-
icantly changed with reference to observed changes between 1850 and 1900, and these
changes are likely to continue to be experienced in the 21st century [26]. Several studies
point out that accelerated soil erosion by water due to climate change accentuates processes
that alter soil physiochemical and biological properties [27–29]. This entails the need to curb
soil erosion through minimizing the removal of vegetation cover, improving surface rough-
ness to facilitate infiltration capacity and reducing rainfall-runoff processes [30]. Climate
change also inevitably triggers a shift in land use, forcing the adoption of new management
practices and planting new crops in order to mitigate detrimental impacts [31,32].
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The sketched interrelations between LULC change and climate change and its possible
environmental impacts emphasize the need to investigate future potential impacts of
LULC change and climate change on potential soil erosion risks caused by water. For
the coming decades, for wider areas, the increasing intensity of the hydrological cycle
is projected by multiple global circulation models (GCMs), pronouncing more intense
rainfall events that directly influence rainfall erosivity [26]. We want to investigate these
interrelations using the example of Epworth district, a fast-growing urban area of the
Harare Metropolitan Province. Soil erosion by water has been repeatedly investigated in
different regions of Zimbabwe, focusing on either catchments or arable areas [33–35]. There
is limited knowledge regarding estimated future soil loss rates and potential soil erosion
risk in Zimbabwe as impacted by future climate change and land use changes, knowledge
indispensable for future policy decision-making processes. The current study examines
the potential future effects of land use change as well as of climate change on soil erosion
risk. Overall, climate change scenarios as provided by the IPCC [26] and forecasts of LULC
change were applied for the assessment of future potential soil erosion risk for the years
2034 and 2050.

1.1. Modelling Land Use Changes in Urban Areas

Multiple studies on future soil erosion focus mainly on the dynamics of climate vari-
ables such as temperature and rainfall [32,36], while land use changes are rarely considered
regardless of the high awareness of processes such as population growth, immigration and
urbanization occurring at alarming rates. There is a wide range of spatial models able to
simulate and predict land use changes based on the application of remote sensing tech-
niques [37,38]. The spatial transition model and statistical description model are the two
major models widely used for the assessment and monitoring of land use changes [8,37,39].
Furthermore, the Markov chain model is widely applied to simulate urban growth due to its
capability of quantifying land use changes, their trends and their dimensions [9,22,40–43].
Markov chain models correspond to stochastic processes [44] that summarize changes by
developing a transition probability matrix of land use change, indicating that the probabil-
ity of a system being in one state at a given time can be determined if the state at an earlier
period is known [40,45]. The Cellular Automata (CA) are simple and flexible dynamic
spatial systems able to integrate complex urban systems in order to simulate future urban
growth patterns [46–48]. The CA are based on the supposition that land use change for any
given location (grid cell) can be explained by its present state and the transformations in
its neighbouring cells [49]. Therefore, the inability of the Markov chain model to simulate
spatial changes over time is superseded by integrating it into the CA to enhance the spatial
predictive accuracy of the urban land use dynamics [47,50–53].

Previous studies have adopted simulation models that apply GIS and remote sensing
techniques for land use change modelling and monitoring of dynamic urban growth
patterns [40,46,50]. In the case of Harare Metropolitan Province, due to the dynamic nature
of urban growth, some parts of its districts were simulated using the CA–Markov model
in order to predict the impact of urban land use change on future microclimate [9], while
Sibanda and Ahmed [52] predicted the future LULC and their impacts on wetland areas in
the Shashe sub-catchment of Zimbabwe. According to Mushore et al. [9], accelerated urban
growth without the conservation of green spaces and adherence to mitigation policies
contribute to locally increasing microclimate temperatures, causing thermal discomfort in
urban areas. The CA–Markov model was also applied to project future LULC scenarios
for Arasbaran biosphere reserve in Iran [54]. Future LULC distribution patterns were also
simulated with high accuracy using the CA–Markov model for Jordan’s Irbid governorate,
with built-up areas predicted to increase from about 19.5% to approximately 64.6% between
2015 and 2050 [55]. Due to the plausible outcomes, recommendations indicate that the
CA–Markov model is an effective tool in monitoring and assessing future land use patterns
for policy and decision-making processes [40,51–53].
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1.2. Climate Change Emission Scenarios

The establishment of the Representative Concentration Pathways (RCPs) as future
climate change mitigation scenarios followed a response call on the effectiveness of climate
policy inclusion in future climate change modelling and research [26,56,57]. The RCPs
illustrate how the future climate may evolve, considering a range of variables which
encompass socio-economic changes, technological advancement, energy, greenhouse gas
emissions and land use changes [26]. Most precipitation projections from GCMs have been
widely used on land surface processes for the assessment of climate change impacts and
adaptation [1,58,59]. However, uncertainties in GCMs primarily exist on biases of raw
outputs, resulting in either over or underestimation of climate variables due to erroneous
assumptions in the model’s development [60,61]. As such, many studies have embarked
on the use of multi-modelling techniques to minimize the uncertainty of future predictions
in order to obtain plausible future projections [62–66].

The climate change emission scenarios approximate radiative forcing levels of green-
house gas concentrations, aerosols, and tropospheric ozone precursors by 2100 [57]. The
RCP8.5 scenario is characterized by increasing levels of greenhouse gas concentrations [67].
Further, the RCP8.5 is a highly energy-intensive scenario attributed to high population
growth and a lower rate of technology development; this is a scenario with little to no
climate policy, making it possible to represent all future climatic possibilities [26,57]. For
the RCP4.5 scenario, historical emissions and land cover information are integrated in order
to follow a cost-effective pathway through stabilization of anthropogenic components to
reach the target radiative forcing [56,68]. The RCP4.5 considers technological advances
such as combining bioenergy production with CO2 capture and geologic storage to enhance
more energy production with negative carbon emissions [68,69].

2. Materials and Methods
2.1. Study Area

The Harare Metropolitan Province is the capital city of Zimbabwe, with Epworth dis-
trict 17◦40′–18◦00′S, 30◦55′–31◦15′E located approximately 12 km southeast of the Central
Business District (CBD) (Figure 1). Epworth district is a high-density residential suburb of
Harare Metropolitan Province and the smallest in terms of area-wide coverage among the
four districts which comprise the Harare Metropolitan Province, occupying an estimated
area of 35 km2; the area is characterized by the densification of built-up structures and
overcrowdings [70] and an above-average increase in informal urban development in com-
parison to other urban districts in Zimbabwe [71,72]. There has been rampant population
growth and mushrooming urban built-up structures due to rural–urban migration which
dates back to the pre-and post-independence phase (1980) in search of better livelihoods,
employment and a hive of economic activities in the capital city [14,72,73]. Since then,
Epworth district has grown from about 500 families recorded in 1950, to a total population
of approximately 114,047 in 2002, to a total population of 167,462 in 2012 [14,73,74].

The Harare Metropolitan area is located on the Highveld at an elevation between
1455 m and 1556 m a.s.l., with a general topography characterized by undulating to
slightly rolling terrain in the plateau areas. Annual precipitation in Harare Metropolitan
Province varies between 470 mm and 1350 mm, falling mainly during the four months
of the rainy season between mid-November to mid-March. Daily temperature ranges
between 13 ◦C and 28 ◦C during the hot-dry season (September to mid-November) and
low temperature averages between 7 ◦C and 20 ◦C are experienced during the cool-dry
season (mid-May to August) [22]. Dominating soil types in Epworth district are the widely
spread Paraferrallitic soils (coarse grained) covering the high-altitude areas and clayey
Fersiallistic soils developed predominantly from dolerite in the central plateau [75]. Both
soil types are largely influenced by nutrient loss through moderately to strongly occurring
leaching processes [75,76].
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Figure 1. Study site—Epworth district of the Harare Metropolitan Province. (a) Zimbabwe provincial boundaries including
the Harare Metropolitan Province. (b) Elevation and district boundaries of the Harare Metropolitan Province. (c) Epworth
district with hydrological network, retrieved from OSM data (OSM-Geofabric).

2.2. Urban Land Use Change Modelling Using CA–Markov

The CA–Markov analysis was adopted to predict land use future scenarios. The CA–
Markov model is embedded into the IDRISI software (Clarks Lab), an image processing
software useful for improved digital image display and spatial analysis [77]. The Markov
chain analysis describes the probability of LULC changes from one state to another at
given times t1 and t2 by developing a transition probability [49,78,79]. The Markov chain
model simulates land use changes and generates a transition probability matrix, which
indicates the probability of each LULC to change from one state to another, and this is
obtained by cross tabulation of the earlier and later LULC maps. The proportional changes
become the transition probability, indicating that each land use class will change to other
categories using Equation (2). The conditional suitability maps are produced and display
the probability that each land use category might be found at each pixel, with values
standardized between 0 and 255 [9,42,80–82]. The transition probability of converting the
current state of a system to another state in the next time step is determined using the
mathematical expression Equation (1) [80,83]:

P = (Pij) =

∣∣∣∣∣∣∣∣
P11 P12 . . . P1n
P21 P22 . . . P2n
. . . . . . . . .
Pn1 Pn2 Pnm

∣∣∣∣∣∣∣∣ (1)

where Pij is the probability from state i to state j and Pn is the state probability of any time.
Equation (1) must satisfy the following conditions:

n

∑
j=1

Pij = 1 (i, j = 1, 2, 3 . . . . . . . . . , n) (2)

0 ≤ Pij ≤ 1 (i, j = 1, 2, 3 . . . . . . . . . , n) (3)
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These steps are performed to obtain the Markov chain model’s primary matrix and
the matrix of the transition probability (Pij). The Markov prediction model is expressed as:

P(n) = P(n − 1) Pij = P(0)P
n
ij (4)

where Pn refers to the state probability of any time and P(0) stands for the primary matrix.
High transitions have probabilities near 1, while low transitions attract probabilities near
0 [80,84].

The Markov chain probabilities of change represent all multi-directional LULC changes
between land use classes [82]. The Markov chains were selected as a result of their simplic-
ity, robustness and capability in mapping LULC transitions in complex urban areas [9,81].
Despite forecasting transition probabilities per land use category and their growth trends,
the major limitation of the Markov chain model is its inability to simulate the spatial
distribution of each land use category’s occurrence [42,79,82]. Due to the heterogeneity of
urban systems and structures, historical information is essential for a better understanding
and interpretation of simulated future spatial trends [19]. The subsequent limitations of the
Markov chains can be addressed by combining their outputs with other models that have
open structures, including the Cellular Automata (CA), Multi-Layer Perceptron (MLP) and
the Stochastic Choice [77,84]. In the present study, we integrated the Cellular Automata
(CA) into the Markov chain approach to address the spatiality limitations of the Markov
chain model and the probable spatial transitions occurring in the study area over the given
time [40,47,54,81].

The CA have high spatial resolution and computational efficiency, enabling the predic-
tion of future urban growth trends based on the supposition that the state of each cell at the
present time depends on the previous state of cells within the neighbourhood [46,85,86].
Thus, the CA models are based on four major attributes, which include the cell, the state,
the neighbourhood, and the transition rule [47,87]. The cell element of the CA signifies
spatial shapes and sizes on the ground, while real characteristics of the area (land use) at a
discrete time, represented as grid cells, show the state [47,48,87]. The neighbourhood cells
are the immediate adjacent cells that form the kernel, and the transition rules theoretically
code for the transformation from one cell state to another state resulting from the changes
in neighbouring cells at a discrete time and state [39,47]. Despite being a powerful and
simple tool in modelling urban growth patterns, the CA models have a limited capability
for quantifying aspects, and the simulation processes do not include urban growth driving
forces [50,51].

The CA–Markov modules embedded in the IDRISI GIS software were used to simulate
LULC distribution patterns for the year 2018 and to predict future LULC for the years
2034 and 2050. Primarily, the simulation phase of the 2018 LULC scenarios applied the
Markov chain to generate a transition probability matrix, and transition suitability images
between 1990 and 2008 using the LULC maps of the same period were generated using
support vector machines (SVMs) by Marondedze and Schütt [15]. A proportional error of
15% was set during the modelling of the transition probability matrix [77]. The Markov
chain analysis outputs from 1990 and 2008 formed the basis of input parameters for the
probable simulation of LULC spatial characteristics and their occurrence in the CA for the
prediction of LULC patterns for 2018 (Figure 2). The contiguity filter specified the spatial
characteristics applied by the CA modelling approach [40,77]. For this study, a contiguity
filter of 5*5 pixels was applied to define the kernel due to higher spatial characterization
when applied to determine the occurrence or position of the simulated LULC category
compared to 3*3 or 7*7 [88,89].
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Figure 2. Conceptual framework for the prediction of future LULC and soil erosion risk for Epworth district. LULC: land
use and land cover. RCPs: representative concentration pathways, GCMs: global circulation models.

The spatiality characteristics in the CA approach were developed in a spatially explicit
weighting that enabled the transformation of single and random grid cells in areas closer
to the existing and widely spread land use [54,90]. This is further simplified by assuming
that a pixel that is near one specific land cover class is more likely to be transformed to
that category than pixels farther apart [78]. This assumption was used to initially test the
predictive capability of the CA–Markov model set of the LULC distribution patterns for
2018. The cross validation of the 2018 simulated LULC patterns was performed applying the
LULC patterns as provided by a support vector machines (SVMs) supervised classification
map [15]. Finally, the CA–Markov techniques were applied between the LULC patterns
of 2000 and 2018 for the prediction of future LULC distribution patterns for 2034, whilst
the LULC distribution patterns of 1984 and 2018 were applied for the future prediction of
2050 LULC patterns. A 5*5 contiguity filter was applied for the prediction of future LULC
patterns for the years 2034 and 2050.

2.3. Cellular Automata–Markov Chain Validation

The simulated LULC distribution patterns for 2018 were compared with the SVMs
classified map for the same year to test the level of agreement. A two-phase validation ap-
proach was performed, which includes visual inspection and quantitative evaluation [9,91].
Visual inspection allowed close comparison and the agreement assessment between the
simulated 2018 LULC map and the SVMs supervised classification LULC map. The kappa
index of agreement (KIA) was used to assess the prediction accuracy for the 2018 actual
map and the simulated LULC maps [54,91,92]. In general, kappa is referred to as a member
of a family of indices with the properties (a) kappa = 1, when the level of agreement is
perfect, and (b) kappa = 0, when the observed agreement is equal to the expected propor-
tion due to chance [18]. Considering the model validity and performance in predicting
LULC patterns for 2018, the LULC patterns for 2000–2018 and 1984–2018 were used in the
prediction of 2034 and 2050 LULC spatial trends in the CA–Markov model. This introduces
kappa indices to assess the performance and agreement of the model: the traditional kappa,
which measures a simulation’s ability to attain perfect classification, that is, the closer to 1
the values are, the higher the level of agreement (Kstandard); the improved general kappa
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statistic, which is described as kappa for no ability (Kno); followed by the sophisticated
kappa statistics (Kquantity and Klocation) used for distinguishing placement accuracies in
both the quantity and location [54,92]. The Kno denotes the proportion classified correctly
relative to the expected proportion classified correctly by a simulation without the ability
to accurately specify quantity or location [18,92].

2.4. Predicting Future Soil Erosion Risk

The empirical RUSLE model was used to predict the spatially differentiated risk
of long-term average annual soil loss. The selection of the empirical RUSLE model to
assess future potential soil erosion risk considered the availability of data, robustness,
complexity of the landscape and calibration [93,94]. The RUSLE model is widely used
and a powerful tool to quantitatively assess spatial interactions of land use, topographic
characteristics, climate, and soil characters in order to predict the spatial distribution of soil
erosion [31,34,95–97]. The wide use of the empirical RUSLE model is based on its simplicity
and easy accessibility of data compared to complex physical models [1,98]. Unlike other
physical and process-based soil erosion models, the stochastic RUSLE model does not
address soil deposition but mainly displays areas of sheet and rill erosion processes [98],
allowing land managers to direct limited resources for landscape management [99]. The
estimation of spatial soil erosion risk by the RUSLE model makes use of the factors soil
erodibility (K), rainfall erosivity (R), slope length and steepness (LS), land cover and
management (C) and the support practices (P) [97]. The RUSLE model calculates the risk
of long-term average annual soil loss rates by multiplying the different factors:

A = K∗ R∗ C∗ LS∗ P (5)

where A: annual average soil loss (t ha−1 yr−1), R: rainfall erosivity factor (MJ mm ha−1

h−1 yr−1), K: soil erodibility factor (t ha h ha−1 MJ−1 mm−1), C: cover-management factor
(dimensionless), LS: slope length and slope steepness factor (dimensionless) and P: support
practices factor (dimensionless).

The RUSLE factors harmonized at 30 × 30 m spatial resolution for the compatibility
of data from different sources [100] are multiplied to predict the soil erosion risk for the
district using raster calculator in ArcGIS® 10.2. The computation of the RUSLE model
integrates remote sensing and GIS techniques to analyse factors and geostatistics for the
graphical interpretation [97,101].

Soil erodibility factor (K). The soil erodibility factor (K) represents the susceptibility
of the soil to detachment due to rainfall erosivity (R) [97]. The soil erodibility factor varies
corresponding to soil properties such as soil texture, type and size of aggregates, shear
strength, soil structure, infiltration capacity, bulk density, soil depth, organic matter and
other chemical constituents [97,102]. Based on the RUSLE model, the estimated K-factor
values range between 0 and 1, indicating the degree of soils’ susceptibility to erosion [97].
Thus, soils being highly susceptible to erosion have soil erodibility values near 1, whereas
the corresponding values close to 0 designate the resistive ability of a particular soil to
erosion processes [103]. For this research, available data for the computation of the K factor
were retrieved from ISRIC (International Soil Reference Information Centre), available
at 250 m spatial resolution [104]. The estimation of the K factor was performed using
the equation by Sharpley and Williams [105], which excludes soil structure and profile
permeability due to the unavailability of experimental based information.

Slope length and slope steepness factor (LS). The RUSLE model considers the ef-
fects of topography on soil erosion, including slope length (L) and slope steepness (S).
The Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) with a
spatial resolution of 30 × 30 m (https://earthexplorer.usgs.gov/SRTM1Arc; accessed on
19 September 2020) was used for the computation of the LS factor using the Hydrology
module (field-based), embedded in SAGA 2.3 software [106,107].

https://earthexplorer.usgs.gov/SRTM1Arc
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Land cover and management factor (C) and support practice factor (P). The land
cover and management factor of the RUSLE model represents the effects of vegetation
cover on soil erosion rates [97]. The C factor ranges from 0 for high-density vegetation
to 1 for barren land; bare land is frequently used as the reference land use for C factor
calibration [108,109]. The vegetation cover plays a vital role in dissipating raindrop energy
before reaching the surface, thereby reducing the harsh effects posed by raindrop impact
on the soil surface [101,108]. The C factor values in Table 1 result from the weighted
field-based observations, and additional biophysical characterizations were adopted [23].
The support practice factor (P) was assigned to be 1, corresponding to the lack of support
practice all over the study area [23].

Table 1. The weighted C factor values.

Land Use Class Weighted C Factors

CBD/industrial areas 0.017
LMD (less concentrated residential area) 0.066

HD (concentrated residential area) 0.083
Irrigated cropland 0.166
Rainfed cropland 0.239

Green spaces 0.03
Water 0

Rainfall erosivity factor (R) estimation: The R factor describes the soil loss poten-
tial triggered by rainfall [97,102,110]. As such, the analysis of the spatial distribution
of rainfall erosivity was computed following the empirical relations developed by El-
Swaify et al., [111] Equation (6), as cited [34,112],

R = 38.5 + 0.35×M (6)

where R = rainfall erosivity factor (MJ mm ha−1 h−1 yr−1), and M = mean annual rainfall.
The further analysis highlights the likely potential effects of climate change on the

R factor. The representative concentration pathway (RCP) 4.5 and 8.5 climate scenarios
projected by multiple general circulation models (GCMs) were selected for the assessment
of future climate change, primarily variations in precipitation magnitudes on soil erosion
risk (downloaded from https://earthobservatory.nasa.gov/images/86027/; accessed on 2
October 2020). These climate change scenarios constitute a set of greenhouse gas concen-
tration and emission pathways to facilitate decision and policy makers in the crafting of
sustainable climate policies due to their plausibility [57,68]. To predict future rainfall erosiv-
ity, future RCP 4.5 and 8.5 climate scenarios proposed by the Intergovernmental Panel on
Climate Change [26] were applied (Table 2). Annual rainfall, as required for Equation (6),
was the sum of mean monthly rainfall data retrieved from the NASA Exchange Global
Daily Downscaled Projections (NEX-GDDP), as listed in Table 2, which was statistically
downscaled to a 0.25◦ by 0.25◦ spatial resolution [62,113]. The NEX-GDDP general circula-
tion models grid point data locations do not match with the Harare Meteorological gauging
points, as the spatial coverage of station data is not uniform; to cope with the varying
spatial resolutions, annual averages were interpolated using the inverse distance-weighted
methods [2].

https://earthobservatory.nasa.gov/images/86027/
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Table 2. Global circulation models (GCMs) used for data retrieval.

Global Circulation Model Source Original Resolution

(Lat × Lon) ◦

ACCESS1-0 Commonwealth Scientific and Industrial Research Organization/Bureau of
Meteorology, Australia 1.875 × 1.25

BNU-ESM College of Global Change and Earth System Science, Beijing Normal
University, China 2.8 × 2.8

CanESM2 Canadian Centre for Climate Modeling and Analysis, Canada 2.8 × 2.8
CCSM4 National Centre for Atmospheric Research, United States 1.25 × 0.94

CNRM-BGC National Centre for Meteorological Research, France 1.4 × 1.4
GFDL-ESM2G NOAA/Geophysical Fluid Dynamics Laboratory, United States 2.5 × 2.0
GFDL-ESM2M NOAA/Geophysical Fluid Dynamics Laboratory, United States 2.5 × 2.0

IPSL-CM5A-MR L’Institut Pierre-Simon Laplace, France 2.5 × 1.25

MIROC-ESM
Japan Agency for Marine-Earth Science and Technology, Atmosphere and
Ocean Research Institute (The University of Tokyo), and National Institute

for Environmental Studies
2.8 × 2.8

MIROC-ESM-CHEM
Japan Agency for Marine-Earth Science and Technology, Atmosphere and
Ocean Research Institute (The University of Tokyo), and National Institute

for Environmental Studies
2.8 × 2.8

MIROC5
Atmosphere and Ocean Research Institute (The University of Tokyo),
National Institute for Environmental Studies, and Japan Agency for

Marine-Earth Science and Technology, Japan
1.4 × 1.4

MPI-ESM-LR Max Planck Institute for Meteorology, Germany 1.9 × 1.9
MPI-ESM-MR Max Planck Institute for Meteorology, Germany 1.9 × 1.9
MRI-CGCM3 Meteorological Research Institute, Japan 1.1 × 1.1
NorESMI-M Norwegian Climate Center, Norway 2.5 × 1.9

General circulation models’ performance was assessed, comparing their average an-
nual rainfall data as provided per grid cell between 1980 and 2005 with the observed data
from Harare gauging stations. This evaluation was processed by applying the interpolated
GCMs average rainfall data from six available grid points within the Harare Metropolitan
Province in parallel with observed average precipitation from the Harare Meteorological
stations (Table 3) using the standard statistical metrics [114]. The evaluation of the GCMs
performance was assessed using the standard metrics to outweigh GCMs that are not rep-
resentative: the coefficient of determination (R2), relative root mean square error (rRMSE)
(%), correlation coefficient (r), and index of agreement (d) [63,115,116]. With values ranging
between 0 and 1, the lower the values of the rRMSE, the better the model’s performance,
while the higher the value for R2, the better the goodness of fit of the model [115–117].
For the index of agreement (d), the closer values are to 1, the better they document the
increasing goodness of the fit of the model, ascertaining that there is good agreement
between the simulated and observed annual precipitation [63,118,119].

Table 3. Location of Harare Metropolitan Province gauging stations.

Rain Stations Coordinates Altitude (m.a.s.l)
Mean Annual Precipitation (mm)

1980–2005

Kutsaga 17◦55′S, 31◦08′E 1488 825.3
Belvedere 17◦50′S, 31◦01′E 1474 862.6

Airport 17◦55′S, 31◦06′E 1502 798.2

Separate runs of the GCMs ensemble averages from 2019 to 2034 and 2035 to 2050
were used for the assessment of climate variability and its impact on future soil erosion
risk under RCP4.5 and RCP8.5 climate scenarios. Estimations of future climate change
scenarios from single GCMs relay limited information required for the direct calculation
of the R factor [120,121]. Therefore, the application of multi-GCM ensemble averages
decreases individual model errors and provides more robust predictions for future climate
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change [61,63,64,122,123]. Accordingly, empirical relations were used between monthly
and annual precipitation in order to analyse GCM outputs relative to R factor changes [120].
Thus, long-term model ensemble averages were analysed for trends in rainfall erosivity
factor (R) using suitable empirical relations [97,121,124].

3. Results
3.1. Land Use Land Cover Changes

The LULC maps (1990–2008, 2000–2018 and 1984–2018) generated by supervised clas-
sification applying SVMs [15] were used to simulate LULC distribution patterns for 2018;
simultaneously, they were used as the reference for the simulation accuracy and to forecast
future land use for 2034 and 2050 (Figure 3). The adopted supervised classification maps of
the years 1984–2018 [15] show seven distinct classes (Table 4). The overall classification of
each LULC map for 1984, 1990, 2000, 2008 and 2018 was estimated to be 90.1, 85.1, 88.9,
87.6 and 89.7%, respectively. The overall Kappa coefficient values produced were 0.87, 0.82,
0.86, 0.85 and 0.87 [15]. The data reveal that spatial LULC patterns will significantly change
during the forecasted periods, indicating that the expansion of the built-up areas will be
at the expense of green spaces and croplands (Figure 3). The built-up areas will continue
to grow towards the peripheries and into the southward direction of the Epworth district
(Figure 3).

Figure 3. Land use and land cover maps for Epworth district from the support vector machines supervised classification,
simulated and predicted using the CA–Markov chain model: (a) actual 2018 supervised classification [15], (b) simulated
2018, (c) projected 2034 and (d) projected 2050. CBD: central business department, LMD: low–medium density, HD: high
density.
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Table 4. Description of LULC classes for the study (source: [15]).

LULC Class Description

CBD/industries
Industries and central business district defined with high fraction of

impervious surfaces, mainly buildings, and a low proportion of
vegetation

LMD residential Leafy and well-established low- and medium-density suburbs
surrounded by high vegetation

HD residential High-density residential areas with low vegetation cover or clustered
settlements with areas undergoing developments and bare exposed land

Irrigated cropland Cultivated land under irrigation schemes

Rainfed cropland Cultivated land or land with crop residues after harvesting

Vegetation All wooded areas, shrubs and bushes, riverine vegetation and
grass-covered areas

Water Areas occupied by water, rivers, wetlands, reservoirs and dams

Comparison of LULC areas for 2018, resulting from the supervised classification ap-
plying SVMs, with 2018 simulated LULC classes shows that the land use land cover classes
CBD/industrial, croplands, green spaces and water (Figure 3a,b) fit reasonably when
comparing each class category, while slight differences between mapped and simulated
distribution patterns occur for low–medium density and high-density residential areas
(Figure 4). To summarize, for the period 2018 to 2050, the LULC class of CBD/industrial
areas are estimated to remain stable, with an area expansion of +/−0.5–0.6% (Table 5). The
spatial distribution of the LULC classes CBD/industrial area, water and irrigated croplands
as projected for 2034 and 2050 widely correspond to those as mapped for 2018 (Figure 4).
For both projected scenarios 2034 and 2050, the low–medium residential areas are predicted
to increase slightly from 11.1 km2 to approximately 11.9 km2 between 2018 and 2034 and
up to 12.3 km2 in scenario 2050. Similarly, high-density residential areas are predicted to
increase from 18.6 km2 to 20.3 km2 between 2018 and 2034, and to reach 22.4 km2 in 2050
(Figure 4).

Low–medium-density residential areas (LMD) are predicted to increase in coverage
from 31.5% to 34.8% between 2018 and 2050, while high-density (HD) residential areas are
predicted to increase in coverage from 52.6% to 63.3% between 2018 and 2050 (Table 5).
During the period 2018–2050, the spatial distribution of croplands is predicted to decrease
from 9.5% to 1.1% of the total Epworth district area, while green spaces will shrink from
5.8% to 0.1%, largely due to the spatial expansion of built-up areas.

Table 5. Relative proportions of LULC classes by area extent (km2) and percentage (%) for the
adapted 2018 and the projected 2034 and 2050.

LULC Class
2018 2034 2050

Km2 % Km2 % Km2 %

CBD/industrial 0.2 0.5 0.2 0.6 0.2 0.6
LMD residential 11.1 31.5 11.9 33.7 12.3 34.8
HD residential 18.6 52.6 20.3 57.3 22.4 63.3

Irrigated cropland 0.1 0.4 0.1 0.2 0.1 0.1
Rainfed cropland 3.2 9.1 1.6 4.6 0.3 1.0

Green spaces 2.1 5.8 1.2 3.5 0.1 0.1
Water 0.01 0.04 0.01 0.03 0.01 0.03

CBD: central business department, LMD: low–medium density, HD: high density.



Remote Sens. 2021, 13, 4360 13 of 30

Figure 4. The spatial area extent of different land use land cover classes for Epworth district: the depiction shows the
variation between actual 2018 support vector machines (SVMs) supervised classification and the simulated 2018 LULC
classes, including the predicted area LULC class extent for 2034 and 2050. CBD: central business department, LMD:
low–medium density, HD: high density.

The summary of the probability matrix for major LULC conversions that occurred
in Epworth district between 1990 and 2008 is documented in Table 6. The probability of
change for CBD/industrial areas to remain CBD/industrial areas between 1990 and 2008
was 96.5%, displaying that built-up areas widely remained stable and will remain stable
(Table 6). In contrast, irrigated croplands had a probability of change of 19.1%, that is,
to remain irrigated cropland between 1990 and 2008, while the probability of change of
irrigated cropland to rainfed cropland was 7.3% and to high-density residential areas was
47.2%. For green spaces, the probability to remain as green spaces between 1990 and 2008
was as low as 18.3%, while the probability of the change of green spaces to low–medium-
density residential areas was 18.5%, to high-density residential areas was 40.8% and to
croplands was 13.9% (Table 6).

Table 6. Markov chain transition probability matrix from LULC maps between 1990 and 2008.

Changing from: Probability of Changing to Another Land Use Class by 2008: Total

1990 CBD/Industrial LMD HD Irrigated
Cropland

Rainfed
Cropland

Green
Spaces Water

CBD/industrial 0.9650 0.0183 0.0129 0.0033 0.0000 0.0005 0.0000 1.000
LMD residential 0.0062 0.9716 0.0150 0.0051 0.0000 0.0005 0.0016 1.000
HD residential 0.0071 0.0138 0.9712 0.0027 0.0052 0.0000 0.0000 1.000

Irrigated cropland 0.0708 0.1630 0.4721 0.1910 0.0725 0.0273 0.0033 1.000
Rainfed cropland 0.0416 0.2110 0.4357 0.0574 0.2041 0.0502 0.0000 1.000

Green spaces 0.0850 0.1848 0.4080 0.0412 0.0976 0.1834 0.0000 1.000
Water 0.0295 0.0838 0.0521 0.1121 0.0000 0.0213 0.7012 1.000

CBD: central business department, LMD: low–medium density, HD: high density.

The Markov chain transition probability matrix computed LULC maps between 2000
and 2018 for the prediction of 2034 future LULC distribution patterns (Table 7), which
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indicates that in 2018 the built-up area classes have a probability of more than 95% to remain
as built-up areas in the future, documenting a stable distribution at least until 2034. For
the irrigated croplands, a probability of 10.1% is indicated to remain as irrigated croplands
until 2034, while at the same time 24.1% of the irrigated croplands have a probability to
be converted into low–medium-density residential areas, and even 40.4% of the irrigated
croplands underly a probability to be converted into high-density residential areas until
2034. For rainfed cropland, a probability of 33% is indicated to remain as rainfed cropland
until 2034, while there is a 42.8% probability that rainfed cropland will be converted into
high-density residential areas. There is a probability of 14.1% that rainfed cropland will
be converted into low–medium-density residential areas by 2034, while at the same time
there is an 8.3% probability that the rainfed croplands will be converted into green spaces.
Similarly, green spaces have a probability of 24.7% to remain as green spaces until 2034,
while for the same period, green spaces have a 30.6% probability to be converted into high-
density residential areas, and a 16.1% probability to be converted into low–medium-density
residential areas.

Table 7. Markov chain transition probability matrix from LULC maps between 2000 and 2018.

Changing from: Probability of Changing to Another Land Use Class by 2018: Total

2000 CBD/Industrial LMD HD Irrigated
Cropland

Rainfed
Cropland

Green
Spaces Water

CBD/industrial 0.9523 0.0109 0.0186 0.0081 0.0043 0.0058 0.0000 1.000
LMD residential 0.0000 0.9507 0.0212 0.0164 0.0000 0.0102 0.0015 1.000
HD residential 0.0064 0.0185 0.9694 0.0000 0.0057 0.0000 0.0041 1.000

Irrigated cropland 0.0500 0.2405 0.4036 0.1011 0.1310 0.0697 0.0033 1.000
Rainfed cropland 0.0000 0.1405 0.4282 0.0183 0.3297 0.0833 0.0000 1.000

Green spaces 0.0370 0.1606 0.3062 0.0641 0.1852 0.2469 0.0000 1.000
Water 0.0026 0.1332 0.1071 0.1290 0.0000 0.0000 0.6281 1.000

CBD: central business department, LMD: low–medium density, HD: high density.

Based on the period 1984–2018, the transition probability matrix for the prediction
of 2050 LULC distribution patterns was calculated (Table 8). The results indicate that
built-up areas have probabilities higher than 90% to remain as built-up areas until 2050. In
contrast, irrigated croplands have only a probability of 15% to remain as irrigated croplands
until 2050, while they simultaneously have a probability of 41% to be transformed into
high-density residential areas and a 21.4% probability to be transformed into low–medium-
density residential areas. The rainfed croplands have a probability of 22.3% to remain as
rainfed cropland until 2050; simultaneously, a 5.1% probability occurs that rainfed cropland
will be transformed into irrigated croplands, a 5.3% probability occurs that rainfed cropland
will be transformed into green spaces and a 42.5% probability occurs that rainfed cropland
will be transformed into high-density residential areas.

Table 8. Markov chain transition probability matrix from LULC maps between 1984 and 2018.

Changing from: Probability of Changing to Another Land Use Class by 2018: Total

1984 CBD/Industrial LMD HD Irrigated
Cropland

Rainfed
Cropland

Green
Spaces Water

CBD/industrial 0.9240 0.0308 0.0404 0.0000 0.0017 0.0031 0.0000 1.000
LMD residential 0.0000 0.9467 0.0251 0.0162 0.0000 0.0103 0.0017 1.000
HD residential 0.0064 0.0191 0.9621 0.0041 0.0060 0.0000 0.0023 1.000

Irrigated cropland 0.0612 0.2140 0.4104 0.1501 0.1268 0.0363 0.0012 1.000
Rainfed cropland 0.0640 0.1813 0.4251 0.0534 0.2229 0.0513 0.0002 1.000

Green spaces 0.0454 0.2102 0.4305 0.0313 0.0904 0.1922 0.0000 1.000
Water 0.0142 0.0965 0.1013 0.1199 0.0500 0.0000 0.6181 1.000

CBD: central business department, LMD: low–medium density, HD: high density.
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3.2. Validation of CA–Markov Model

A two-stage model validation approach was performed, including the visual inspec-
tion and quantitative assessment. The visual inspection shows that there is close agreement
between the 2018 LULC distribution patterns derived from the support vector machines
supervised classification (actual) and the 2018 LULC patterns simulated using the CA–
Markov model (Figure 3). The computed kappa statistics recorded a kappa for a no ability
Kno of 0.8893, a kappa for quantity accuracy KlocationStrata of 0.8943, a traditional kappa
Kstandard of 0.9044 and a kappa for location accuracy Klocation of 0.925. To summarize,
the kappa index of agreement values indicates that there is good agreement between the
actual and simulated 2018 LULC maps. Therefore, the model can be applied with a high
confidence in its reliability to forecast LULC maps for 2034 and 2050 (Table 9).

Table 9. Kappa indices computed between the actual and simulated 2018 LULC maps.

K Indices 2018

Kno 0.8893
Klocation 0.9251
Kstandard 0.9044

Klocationstrata 0.8943

3.3. Future Climate Data Analysis

The predicted meteorological data, as provided by the global circulation model ensem-
ble, show slightly diverging data in terms of precipitation regimes by the different climate
scenarios for the observation period 2019–2050. Comparing annual rainfall predictions as
provided by the RCP8.5 climate scenario and RCP4.5 climate scenario (Figure 5) indicates
similar trends with varying magnitude. In climate scenario RCP4.5, the predicted annual
rainfall oscillates with an overall decrease until 2050; the maximum predicted annual pre-
cipitation reaches around 950 mm in the years 2022, 2025, 2029 and 2031 and then decreases,
reaching 855 mm in 2041 and around 785 mm in 2045 and 2050 (Figure 5). Underlying the
same overall decline in precipitation, the minimum annual precipitation as predicted by
climate scenario RCP4.5 varies between 814 mm in 2027 and 770–780 mm in 2034 and 2046.
In climate scenario RCP8.5, the predicted annual rainfall also oscillates but does not show
a distinct decrease during the forecasted period until 2050, as shown by the outcomes of
RCP8.5. Maximum predicted annual precipitation varies between 800 and 900 mm and
minimum predicted annual precipitation varies between 705 and 740 mm. The years of
maximum predicted annual precipitation in RCP4.5 and RCP8.5 widely concur, but offsets
can also be repeatedly observed (Figure 5).

3.4. Model Performance Evaluation

The performance evaluation carried out for each of the 15 statistically downscaled
global circulation models’ outcomes with in situ historical observations from the Harare
gauging stations varied, as displayed in Table 10. The global circulation model performance
evaluations show that fourteen GCMs (ACCESS1-0, BNU-ESM, CanESM2, CNRM-BGC,
GFDL-ESM2G, GFDL-ESM2M, MIROC-ESM, MIROC5, MPI-ESM-LR, MPI-ESM-MR and
NorESM1-M, CCSM4, IPSL-CM5A-LR, MIROC-ESM-CHEM) have sufficient performance
when evaluated against observations (d > 0.7, r > 0.7 and R2 > 0.5). The least successful
performance in terms of accuracy when evaluating historical observations and global
circulation models’ average precipitation data was observed for MRI-CGCM3 (R2 < 0.5),
but the results show that the model has a strong positive correlation (r > 0.7) with a high
index of agreement (d > 0.7), and an rRMSE below 20% (Table 10). As such, there is
confidence to apply the GCM data for future soil erosion risk estimation for Epworth
district (Table 10).
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Figure 5. Annual rainfall variations for Epworth district, 2019–2050, based on global circulation model ensemble climate
scenarios RCP4.5 and RCP8.5.

Table 10. The GCMs’ performance evaluation against the observed precipitation dataset from 1980 to
2005.

GCM RRMSE (%) d r R2

ACCESS1-0 15.64 0.84 0.77 0.60
BNU-ESM 16.36 0.79 0.78 0.62
CanESM2 16.49 0.80 0.78 0.61
CCSM4 18.70 0.75 0.71 0.51

CNRM-BGC 16.34 0.85 0.78 0.61
GFDL-ESM2G 17.65 0.82 0.79 0.61
GFDL-ESM2M 17.73 0.80 0.79 0.62
IPSL-CM5A-LR 17.43 0.77 0.71 0.51

MIROC-ESM 18.69 0.78 0.78 0.61
MIROC-ESM-CHEM 17.82 0.77 0.71 0.55

MIROC5 15.38 0.80 0.79 0.64
MPI-ESM-LR 16.55 0.80 0.77 0.60
MPI-ESM-MR 16.43 0.81 0.78 0.61
MRI-CGCM3 18.10 0.75 0.69 0.47
NorESMI-M 14.45 0.87 0.79 0.63

3.5. RUSLE Model Factor Maps

To be able to later assess the impact of future climate change on the future long-term
potential soil erosion risk for Epworth district, the analysis of future predicted precipitation
was split into two time intervals, 2019–2034 and 2035–2050; applying the RCP4.5 climate
scenario between 2019 and 2034, annual rainfall averages 886 mm, and for the time interval
2035–2050, annual rainfall averages 839 mm; applying the RCP8.5 climate scenario between
2019 and 2034, annual rainfall averages 827 mm, and for the time interval 2035–2050
annual rainfall averages 799 mm. For the time period 2019–2034, rainfall erosivity factor
(R) values, as derived from RCP4.5 model ensemble, are on average between 333 and
338 MJ mm ha−1 h−1 yr−1 and significantly exceed the values of the R factor based on
the RCP8.5 model ensemble of 318–324 MJ mm ha−1 h−1 yr−1 (Figure 6). For the period
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2035–2050, the R factor calculated on the basis of the RCP4.5 climate scenario varies between
321 and 328 MJ mm ha−1 h−1 yr−1, again exceeding the R factor derived from the RCP8.5
model ensemble, which varies between 313 and 318 MJ mm ha−1 h−1 yr−1. The variation
in the R factor values dictates the temporal variation in annual rainfall for different climate
scenarios. High R factor values were recorded from the RCP4.5 model ensemble averages
for both future periods considered, the highest R factor being predicted for the period
2019–2034.

Figure 6. The rainfall erosivity factors (R) for Epworth district for the time periods: (Top right) 2019–2034 (RCP4.5);
(Top left) 2019–2034 (RCP8.5); (Bottom right) 2035–2050 (RCP4.5); and (Bottom left) 2035–2050 (RCP8.5).

The soil texture in Epworth district corresponds largely to sand, sandy loam and
clayey loam; only along the alluvial plains do predominantly sandy loams occur. Cor-
respondingly, soil erodibility factor values (K) range between 0.06 and 0.09 (Figure 7b).
The topography of Epworth district is undulating to gently rolling, with steep sloping
areas along the river banks and at the intersections of tributary channels into the major
receiving streams. Related topographic factor values (LS) range from 0 in the plateau areas
up to approximately 22 on the steep sloping areas (Figure 7a). The width of the weighted
land cover and management factor values (C) range between 0 and 0.239, with different
distribution patterns in 2034 and 2050 (Figure 7c,d). Major differences in land cover and
management relate to shifts in land use over time, as predicted by the CA–Markov model
(Figure 3). Due to the lack of support practices in the study area, the support practice factor
values (P) are set as 1.
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Figure 7. RUSLE input factors for modelling potential soil erosion risk for Epworth district. (a) Topographic factor (LS); (b)
soil erodibility factor (K); (c) the crop cover and management factor (C) for 2034; (d) the crop cover and management factor
(C) for 2050.

3.6. Potential Soil Erosion Risk

Potential soil erosion risk mapping was performed independently for the years 2034
and 2050 as selected time slices, considering the two climate scenarios RCP4.5 and RCP8.5.
The predicted average soil erosion risk, applying precipitation data as provided by RCP4.5
for the period 2019–2034, totals 1.2 t ha−1 yr−1 for 2034 and 1.1 t ha−1 yr−1 for the period
2035–2050. Applying the R factor based on the annual precipitation data, as provided
by climate scenario RCP8.5, the predicted average potential soil erosion risk amounts
to 1.1 t ha−1 yr−1 in 2034 and 1.0 t ha−1 yr−1 in 2050. The estimated soil loss rate for
the climate scenario RCP4.5 in 2034 varies between 0 and 69.3 t ha−1 yr−1 and 0 and
48.9 t ha−1 yr−1 in 2050. Applying the R factor based on the annual precipitation data, as
provided by climate scenario RCP8.5, soil loss rates ranged between 0 and 62.4 t ha−1 yr−1

in 2034 and 0 and 42.3 t ha−1 yr−1 in 2050. Future potential soil erosion risk predictions
for climate scenarios RCP4.5 and RCP8.5 were significantly different (p < 0.05) for each
time interval, 2034 and 2050, highlighting that the presented changes can be attributed to
various predicted factors, including land use and rainfall erosivity changes.
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High potential soil erosion risk areas are predicted for the south-eastern periphery
of Epworth district and along the tributaries, as well moving downwards in the south
direction along the stream, as depicted in Figure 8. The predicted spatial patterns of
potential soil erosion risk applying annual precipitation data, as provided by the RCP4.5
and RCP8.5 climate scenarios for the time slices 2034 and 2050, reveal in all cases high
potential soil erosion risk along the flanks of the major rivers and along the flanks of steep
tributaries (Figure 8). The displayed potential soil erosion risk maps in Figure 8 reveal
that the predicted decrease in the R factor in the long term, corresponding to decrease
in annual rainfall averages, reduces soil erosion processes, which simultaneously is on
the rise in some localized parts of the district, and this is purportedly triggered by land
use changes. Environmental characters, predominantly topography and soil properties
(Figure 7), control the overall vulnerability of the area to soil erosion, finally displayed as
potential soil erosion risk, including rainfall and land use.

The area-wide potential soil erosion risk predicted for the year 2034, applying R factors
derived from the RCP4.5 climate scenario, indicates that 62.0% of the Epworth district will
be exposed to low potential soil erosion risk and 27.9% to moderate potential soil erosion
risk, while 8.1% will be exposed to high potential soil erosion risk and 2.0% to very high
and extreme potential soil erosion risk (Table 11). The predicted results evidently show
that there is an extensive distribution of areas of low potential soil erosion risk across the
district, while high potential soil erosion risk is predicted predominantly along the channel
networks. Applying R factors from the same climate scenario, RCP4.5, for the year 2050,
approximately 74.3% of the entire district will be exposed to low potential soil erosion risk,
14.7% will be exposed to moderate potential soil erosion risk, 5.6% will be exposed to high
potential soil erosion risk and 5.4% to very high and extreme potential soil erosion risk.
The area-wide proportion of low potential soil erosion risk extended extensively across the
entire district in 2050, attributed to the decline in the average rainfall erosivity in climate
scenario RCP4.5. Applying R factors based on the RCP8.5 climate scenario in the year 2034,
about 66.7% of the Epworth district is predicted to be exposed to low potential soil erosion
risk, 24.6% to moderate potential soil erosion risk, 7.4% to high potential soil erosion risk
and 1.3% to very high and extreme potential soil erosion risk (Table 11). Furthermore, for
the year 2050, based on RCP8.5 climate scenario, the predicted area of Epworth district
exposed to low potential soil erosion risk will be 77.7%, 14.1% will be exposed to moderate
potential soil erosion risk, 4.6% to high potential soil erosion risk and 3.6% of the entire
district will be exposed to very high and extreme potential soil erosion risk (Table 11).
Applying climate scenario RCP8.5, similar to the application of climate scenario RCP4.5,
high-intensity potential soil erosion is predicted predominantly along channel networks
and predominates in the southern area of Epworth district (Figure 8).

Table 11. Predicted proportion of the spatial area of Epworth district exposed to potential soil erosion risk.

Soil Loss
(t ha−1 yr−1) Soil Erosion Risk

Area (%) in 2018 Area (%) in 2034 Area (%) in 2050
RCP4.5 RCP8.5 RCP4.5 RCP8.5

0–1 Low 59.5 62.0 66.7 74.3 77.7
1–2 Moderate 29.3 27.9 24.6 14.7 14.1
2–5 High 10.0 8.1 7.4 5.6 4.6
5–10 Very high 1.1 1.6 1.1 3.5 2.3
>10 Extreme 0.1 0.4 0.2 1.9 1.3
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Figure 8. Predicted spatio-temporal potential soil erosion risk for Epworth district. (a) Potential
soil erosion risk for 2034 applying R factors based on RCP4.5; (b) potential soil erosion risk for 2034
applying R factors based on RCP8.5; (c) potential soil erosion risk for 2050 applying R factors based
on RCP4.5; and (d) potential soil erosion risk for 2050 applying R factors based on RCP8.5.
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The average area-wide potential soil erosion risk in Epworth district predicted for the
time slices 2034 and 2050 shows extended areas exposed to low potential soil erosion rates
between 0 and 1 t ha−1 yr−1, considering annual precipitation as provided by the RCP8.5
climate scenario. In contrast, the average area-wide potential soil erosion risk predicted
for the time slices 2034 and 2050, considering annual precipitation as provided by RCP4.5
climate scenario, distinctively exposes a smaller area to low soil loss rates between 0 and
1 t ha−1 yr−1 compared to the respective predictions applying climate scenario RCP8.5.
In relation to the study on the present-day soil erosion risk in Epworth district [23], the
current area exposed to low soil erosion risk amounts to 59.5%; thus, it is predicted to
distinctly increase in the future (Table 11). In contrast, currently 10% of the Epworth district
is exposed to high soil erosion risk and up to 1.2% is exposed to very high and extreme
soil erosion risk (Table 11). Correspondingly, it is expected that in the future, the areas in
Epworth district exposed to high potential soil erosion risk with soil loss rates between
2 and 5 t ha−1 yr−1 will markedly decrease, and most likely will even halve by 2050.
Furthermore, areas exposed to very high to extreme potential soil erosion risk with soil loss
rates of more than 5 t ha−1 yr−1 will massively increase under future changes in land use
and climate, while in 2034, under the RCP8.5 climate scenario, areas exposed to very high
potential soil erosion risk will be widely stable compared to 2018 area coverage. By 2050,
the spread of this category will double and might even triple when applying R-factors
from the RCP4.5 climate scenario (Table 11). This development is even more distinctive
when focusing on areas exposed to extreme potential soil erosion risk compared to the
present-day situation until 2034, where areas exposed to extreme potential soil erosion risk
will steadily increase by doubling the area extent when applying R-factors resulting from
the RCP8.5 climate scenario, and up to 4 times the area extent when applying R-factors
resulting from the RCP4.5 climate scenario. In 2050, areas exposed to extreme potential soil
erosion risk will have increased by more than tenfold, independent of whether applying
R-factors resulting from the RCP8.5 or RCP4.5 climate scenario. However, the total area
exposed to extreme potential soil erosion risk remains small and predominantly will occur
along the river banks (Table 11).

4. Discussion

The predicted CA–Markov model results reveal an increase in the spatio-temporal
pattern of built-up area, with built-up area expected to cover over 95% in 2050 from an
approximated total of 84.5% in 2018 (Figure 3, Table 5). The forecasted results indicate
that green spaces and croplands will continue to decline at the expense of built-up area
(Table 5). Thus, the transition probability matrices for different periods reveal the prob-
ability of each class (n) in the LULC maps changing in the next distinct period (tn+1) in
respect of the surrounding cells [22,81]. These predictions of built-up area growth at the
expense of green spaces and croplands in the Harare Metropolitan Province concur with
the conversion rates predicted by Mushore et al. [9] using CA–Markov model analysis.
The same analysis agrees with the predicted urban growth and the development of Irbid’s
governorate of Jordan, with projected built-up area growth amounting to almost 65% in
total area from an estimated 14.5% between 2015 and 2050, at the expense of vegetation and
farmlands [55]. Therefore, such developments indicate the core principle of the CA mod-
els, which stipulates that the present state of development is a continuation of historical
changes induced by the neighbourhood interactions [40,49,81]. This predicted expansion
pattern is a result of the neighbourhood effect, which exhibits that the converted land use
is next or close to the existing dominant land use, and predominantly built-up area exists
for this scenario [39,47,49].

The predicted loss of green spaces and croplands may result in the detrimental loss of
urban agricultural land and areas of aesthetic value to the ecosystem, which provide envi-
ronmental protection. With the escalating socioeconomic woes and poverty in the city [70],
the loss of urban agricultural land to urban development will leave many poorly resourced
Epworth residents with detrimental food insecurities, threatening their livelihoods since
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many survive on market gardening and other urban farming activities [125,126]. The loss of
green spaces also results in the reduction in vegetation cover and biomass which dissipates
rainfall, reducing its direct impacts on the soil surface and facilitating percolation [101].
Further, with the current economic meltdown and population growth, the surge of urban
built-up area predicted by the CA–Markov model can be justified; the Epworth district will
be no exception in terms of absorbing more inhabitants from other spheres of the Harare
Metropolitan Province. This push could be exacerbated by unaffordable rental charges and
cost of living in other affluent suburbs of the Harare Metropolitan Province, resulting in
further densification and overcrowding in Epworth district. However, due to excessive
demand for shelter and anticipated population growth, the conversion of croplands and
green spaces to a built-up area will intensify impervious surfaces across the district [15,127].

The GCM ensembles were used to quantify the hydrological impacts of climate
change under different climate scenarios, RCP4.5 and RCP8.5, to obtain reliable projec-
tions [61,65,122,128]. Based on statistical metrics, the evaluation of the performance showed
that fourteen GCMs (Table 10) have sufficient performance when evaluated with obser-
vations from Harare Metropolitan gauging stations (d > 0.7, r > 0.7 and R2 > 0.5), with
the exception of MRI-CGCM3, observed to have the lowest determination coefficient of
0.47. This may suggest that the general circulation model could have other specific years
that were not properly simulated [63]; however, the analysis shows that most GCMs
displayed good simulation. Above all, the GCMs have an rRMSE below 20%, which is
reasonably acceptable [116,117,129]. Further, coarse grid resolutions from GCMs make it
difficult to match, with few in situ observations which are not uniformly distributed at-
tributed to increases in spatial variation and uncertainty to clearly define local precipitation
characteristics, therefore increasing the simulation bias [130–132].

For the RUSLE model, potential soil erosion risk maps were produced using the
geostatistical ArcGIS package (raster calculator) to multiply the RUSLE factor maps
(Figures 6 and 7). The predicted potential soil erosion risk averaged at 1.2 t ha−1 yr−1

in 2034 and 1.1 t ha−1 yr−1 in 2050 for the RCP4.5 climate scenario, while 1.1 t ha−1 yr−1

and 1.0 t ha−1 yr−1 were the predicted averages for 2034 and 2050 for the RCP8.5 climate
scenario. Meanwhile, studies on the influence of land use change or the impact of soil
erosion risk on crop productivity indicated that a tolerable soil loss rate at 1 t ha−1 yr−1 was
sustainable for the tropics [95,133–135]. Based on the slow rate of soil formation across the
tropics, including Europe and America (<1 t ha−1 yr−1) [95,133,136,137], the sustainable
soil loss tolerance at 1 t ha−1 yr−1 was considered across the entire Epworth district. The
resulting arguments around the proposed 10 t ha−1 yr−1 as the estimated soil erosion
tolerance threshold for tropical ecosystems showed that it was highly overestimated, con-
sidering threats to the landscape and impacts on crop productivity likely to occur at such a
high risk threshold [138]. Furthermore, other studies indicated that average soil loss rates
of 5 t ha−1 yr−1 may be sustainable soil loss rates in the tropics [139,140]. Nevertheless, an
estimated 1 t ha−1 yr−1 soil loss threshold subsisted for the current study and the predicted
area-wide averages were unsustainable in that they slightly surpassed the recommended
soil loss threshold, except for the RCP8.5 climate scenario in 2050. However, the slight no-
table deviation from the 1 t ha−1 yr−1 sustainable threshold can be justified as the averages
fall within the applicable tolerable range of c.a 1.4 t ha−1 yr−1 proposed for some parts of
the tropics, including America and Europe [137]. Thus, the estimated soil loss tolerance
threshold was used to describe a sustainable soil loss rate [141].

The integrated average annual precipitation between 2019 and 2034, based on the
climate scenario RCP4.5 results, shows high average annual soil loss rates ranging between
0 and 69.3 t ha−1 yr−1 and 0 and 62.4 t ha−1 yr−1 for the RCP8.5 climate scenario in 2034. In
contrast, applying average annual precipitation between 2035 and 2050, the R factor-based
values show a decline in soil loss rates for the year 2050 in both climate scenarios ranging
between 0 and 48.9 t ha−1 yr−1 for RCP4.5 and 0 and 42.3 t ha−1 yr−1 for RCP8.5. However,
these results show a continuous declining trend of soil loss rates when compared with the
baseline period that applied the R factor based on the average annual precipitation data
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derived from in situ observations between 1984 and 2000 for Epworth district, estimating
high soil erosion risk with average annual soil loss rates between 0 and 92.8 t ha−1 yr−1 in
2000 [23]. In summary, the soil loss rates for both the RCP4.5 and RCP8.5 climate scenarios
are observed to be decreasing in spatial coverage over the years 2034 and 2050. Regardless
of the high rainfall erosivity predicted between 2019 and 2034 in comparison with soil
loss rates estimated for the year 2000 [23], it is revealed that land use changes, including
the shrinking of croplands and disturbed shrublands, predominantly reduce the soil loss
impact due to increases in impervious surfaces across the Epworth district.

The increasing potential soil erosion risk predicted for Epworth district along the
channel networks has been attributed to the steep slopes along the streams in combination
with massive impervious surfaces, resulting in the accumulation of overland flow [142].
Correspondingly, high topographic factor values appear on valley flanks (Figure 7), expos-
ing surfaces to severe runoff and flooding resulting from the increased slope inclination and
reduced infiltration capacity [143,144]. Displayed soil loss rates exceeding 1 t ha−1 yr−1

for Epworth district will be considered unsustainable [95,137], and therefore, the need for
sound policy implementation to avoid detrimental environmental damage. Such estimates,
as indicated in Table 11, reveal that a larger proportion of the study area will be exposed
to tolerable soil loss rates [95,133,134]. Nevertheless, there is a predicted increase in soil
erosion risk in vulnerable areas, mainly downslope and low-lying areas along the flanks of
the channel networks [23,142,145].

The study results predict that soil loss rates vary with precipitation and land use
changes for all the climate scenarios. The results suggest that the soil erosion response with
regard to climate change could be complex, as it varies with time and on a climate scenario
basis [25]. Consequently, the proportion of area exposed to high potential soil erosion risk
with average soil loss rates between 2 and 5 t ha−1 yr−1 will markedly decline and most
likely will even halve by 2050, as opposed to the doubling and triplicating proportional
areas exposed to very high and extreme potential soil erosion risk for both climate scenarios
in 2050. This is linked with the increasing vulnerability to smaller proportional area
occupied by sparse green spaces and bare areas along channel networks. Such increasing
trends in potential soil erosion risks are primarily accelerated by concentrated overland
flow resulting from reduced infiltration processes across the Epworth district [99,143,146].
This vulnerability and response to rainfall impact and runoff processes with regard to
reduced spatial area exposed to direct soil displacement in 2050 underpins the effects of
land use changes and sloping topography along the channel network [114,147].

The decreasing rainfall erosivity for both scenarios over time concurs with the future
analysis that incorporated regional climate models (RCMs) by Hudson and Jones [130], in
which they highlighted the likelihood of increasing consecutive dry days in southern Africa;
however, with some increases in other parts of the region [148]. Additionally, interannual
high rainfall intensity impact is relatively expressed as this would be masked in annual
rainfall averages due to low rain-day frequency [148]. The contraction of the rainfall season
was projected following the observed late onset and early rainfall cessation in sub-Saharan
Africa, mostly in central Mozambique, large parts of Botswana and the northern and south-
ern parts of Zimbabwe [148]. Such responses to climate change tally with the predicted
decline in overall soil erosion risk in 2050, which, however, still require more robust regional
analysis on precipitation uncertainties to global climate change [130,148,149]. Nevertheless,
the use of model ensemble averages could have limited the impact of other predicted
extreme rainfall events [61,65,122]. Such changes and manipulations of rainfall intensities
could negatively impact the final soil erosion prediction outcome [150,151]. Furthermore,
the use of coarse grid resolutions and numerical methods reduces models’ data indepen-
dency, and therefore increases the bias and uncertainty range of the outcomes [61,122,123].
The empirical RUSLE model is also limited only to the predictive capacity of sheet, inter-rill
and rill soil erosion processes spanning over long periods, as it is not an event-based model,
which also does not consider gullying erosion processes [1,93,97,152,153]. Other data-
driven processes integrated in the empirical RUSLE technique increase the uncertainty of
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future soil erosion risk due to varying data sources applied without rigorous quantification
of their uncertainties and propagation [1,154].

Overall, high potential soil erosion risk displayed within the vicinity of Jacha river and
tributaries extending from the north and southeast parts of the district draining southwards
continue to increase, as predicted by the RUSLE model widely in 2050. This is attributed to
the increasing sealed surface area and the sloping topography contributing to increased
overland flow and surface runoff [143,155]. Taking into account human activities, previous
studies reiterated that sand poaching activities along riverbanks are associated with heavy
trucks ferrying sand to construction sites, contributing to high soil compaction on unpaved
roads [23,24,142], reducing the infiltration capacity, and hence increasing surface runoff
processes. For Epworth district, activities such as sand poaching and extraction along the
riverbanks will be inevitable due to the predicted built-up area expansion and due to the
fact that for many locals, informal activities provide employment for the sustenance of
their livelihoods. Therefore, there is a need to implement sound policies and sustainable
environmental management approaches in order to curb environmental damage and the
future extinction of water bodies and their ecosystem services. Uncertainties exist in
this study about policy amendments regarding the functionality of the Local Boards and
Authorities in regulating developmental plans. This, in turn, will affect LULC changes in
the Epworth district of the Harare Metropolitan Province. However, this was held constant
in the prediction of future LULC distribution patterns for Epworth district.

5. Conclusions

The study uses LULC distribution patterns between 1990 and 2008 to apply a Markov
chain model which allows the development of a transition probability matrix and suitability
maps, and later defines the complex dynamic spatial patterns of urban area by the flexible
Cellular Automatons. The validation of the simulated 2018 LULC distribution patterns
and the actual 2018 LULC map displayed strong spatial agreement, both quantitatively
and through visual inspection. The strong agreement and consistency of the LULC spatial
patterns from the cross validation displayed the reliability and usability of the CA–Markov
model to predict 2034 and 2050 future LULC distribution patterns for Epworth district. The
predicted findings show a continuous increase in urban built-up area over the years 2034
and 2050 at the expense of croplands and perturbed green spaces, predominantly with the
expansion of high-density residential areas towards Epworth district peripheries.

Further, future potential soil erosion risk was predicted for the years 2034 and 2050
using the RUSLE model, which integrated R factors based on the average annual precipita-
tion between 2019 and 2034 and 2035 and 2050, as provided by climate scenarios RCP4.5
and RCP8.5. The goodness of fit measures highlighted that the general circulation models
(GCMs) are useful for the assessment of future soil erosion risk, following the evaluation
of GCMs performance with gauged observations, which showed a good performance,
ascertaining their feasibility. As such, ensemble average outcomes from multiple GCMs
under both the RCP4.5 and RCP8.5 climate scenarios were incorporated in the regional
statistical relations equation to derive the rainfall erosivity factor for use in the RUSLE
model.

Future trends in climate variability reveal that the projected high rainfall for the
RCP4.5 climate scenario between 2019 and 2050 compared to the RCP8.5 climate scenario
will contribute to high localized soil erosion risk in vulnerable areas, including perturbed
green spaces, agricultural land and stream banks. High soil loss rates were predicted
in 2034 for both climate scenarios RCP4.5 and RCP8.5, in comparison with low soil loss
rates in 2050 for both climate scenarios, and this is largely attributable to the predicted
dynamic land use changes resulting in the reduction in surface area exposed to soil erosion
processes over time. The predicted results also indicate that average annual soil loss rates
will approximately halve in 2050 from an estimated 0–93 t ha−1 yr−1 in 2000, independent
of whether the RCP4.5 or RCP8.5 climate scenario is applied. Nevertheless, for 2050,
increasing soil erosion risks have been predicted along the flanks of the drainage networks.
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Overall, this study highlights the application of the CA–Markov model in combination
with the RUSLE model to derive useful simulations for predicting future LULC and soil
erosion risk. In addition, based on the stipulated IPCC policy recommendations from the
Fifth Assessment Report (AR5), governments and policy makers need to implement sound
climate policies in order to curtail and curb environmental degradation and landscape
fragmentation at the local scale.
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