
remote sensing  

Technical Note

Integrating EfficientNet into an HAFNet Structure for Building
Mapping in High-Resolution Optical Earth Observation Data

Luca Ferrari 1, Fabio Dell’Acqua 1,*,† , Peng Zhang 2 and Peijun Du 2

����������
�������

Citation: Ferrari, L.; Dell’Acqua, F.;

Zhang, P.; Du, P. Integrating

EfficientNet into an HAFNet

Structure for Building Mapping in

High-Resolution Optical Earth

Observation Data. Remote Sens. 2021,

13, 4361. https://doi.org/10.3390/

rs13214361

Academic Editors: Antonio

Robles-Kelly, Ajmal Mian, Jun Zhou,

Naveed Akhtar, Pedram Ghamisi and

Tat-Jun Chin

Received: 18 August 2021

Accepted: 25 October 2021

Published: 29 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 CNIT, Pavia Unit, Department of Electrical, Computer and Biomedical Engineering, University of Pavia,
27100 Pavia, Italy; luca.ferrari11@universitadipavia.it

2 Department of Geographic Information Science, University of Nanjing, Nanjing 210093, China;
pzhangrs@smail.nju.edu.cn (P.Z.); peijun@nju.edu.cn (P.D.)

* Correspondence: fabio.dellacqua@unipv.it; Tel.: +39-0382-985664
† F.D. is also with Ticinum Aerospace, a spin-off company from the University of Pavia, 27100 Pavia, Italy.

Abstract: Automated extraction of buildings from Earth observation (EO) data is important for
various applications, including updating of maps, risk assessment, urban planning, and policy-
making. Combining data from different sensors, such as high-resolution multispectral images (HRI)
and light detection and ranging (LiDAR) data, has shown great potential in building extraction.
Deep learning (DL) is increasingly used in multi-modal data fusion and urban object extraction.
However, DL-based multi-modal fusion networks may under-perform due to insufficient learning
of “joint features” from multiple sources and oversimplified approaches to fusing multi-modal
features. Recently, a hybrid attention-aware fusion network (HAFNet) has been proposed for building
extraction from a dataset, including co-located Very-High-Resolution (VHR) optical images and light
detection and ranging (LiDAR) joint data. The system reported good performances thanks to the
adaptivity of the attention mechanism to the features of the information content of the three streams
but suffered from model over-parametrization, which inevitably leads to long training times and
heavy computational load. In this paper, the authors propose a restructuring of the scheme, which
involved replacing VGG-16-like encoders with the recently proposed EfficientNet, whose advantages
counteract exactly the issues found with the HAFNet scheme. The novel configuration was tested on
multiple benchmark datasets, reporting great improvements in terms of processing times, and also in
terms of accuracy. The new scheme, called HAFNetE (HAFNet with EfficientNet integration), appears
indeed capable of achieving good results with less parameters, translating into better computational
efficiency. Based on these findings, we can conclude that, given the current advancements in single-
thread schemes, the classical multi-thread HAFNet scheme could be effectively transformed by
the HAFNetE scheme by replacing VGG-16 with EfficientNet blocks on each single thread. The
remarkable reduction achieved in computational requirements moves the system one step closer to
on-board implementation in a possible, future “urban mapping” satellite constellation.

Keywords: attention mechanism; building mapping; data fusion; EfficientNet; HAFNet; high-
resolution imagery (HRI); light detection and ranging (LiDAR); mapping; urban areas

1. Introduction

Building information extraction from Earth observation data is key to a wide range of
applications, including map generation, urban sprawl monitoring, risk mapping, and urban
planning. In this framework, the joint use of high resolution imagery and LiDAR data
has been proposed, to produce comprehensive results by exploiting the complementary
information given by the two data types. Several fusion techniques have been proposed
that combine data both at the feature level [1–5] and at the decision level [6,7]; despite the
range of solutions available, however, a few unresolved issues remain. In feature-level
fusion, some methods use only cross-modal features, which provide good discriminative
power most of the times but fail in specific edge cases. On the other hand, individual

Remote Sens. 2021, 13, 4361. https://doi.org/10.3390/rs13214361 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-0044-2998
https://orcid.org/0000-0002-2488-2656
https://doi.org/10.3390/rs13214361
https://doi.org/10.3390/rs13214361
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13214361
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13214361?type=check_update&version=3


Remote Sens. 2021, 13, 4361 2 of 15

features combined only at the decision level are often not discriminative enough to produce
proper building extraction. However, they can still be useful in cases where a single data
source would mislead the classifier because it contains noisy or corrupted information.
Therefore, it is necessary to build a system that utilizes both individual and cross-modal
features. Moreover, the fusion strategy should be such that useful discriminative features
are highlighted, whereas irrelevant or noisy ones are suppressed. The Hybrid Attention-
aware Fusion Network (HAFNet) [8] offers a solution to these problems by introducing the
Attention-Aware Multi-modal Fusion Block (Att-MFBlock), a computational module used
to adaptively re-weight individual and cross-modal features. The proposed model achieves
state-of-the-art-segmentation accuracy and provides great performance even in specific
edge cases where either data type introduces noise and potentially harmful information.
Consider the example in Figure 1, where the DSM dataset suggests that the right half of
the building visible on the bottom of the RGB image is not there. The information fed by
the DSM dataset is clearly wrong and can negatively impact local results, but the HAFNet
structure, and specifically the attention mechanism, can detect it and filter it out.

Figure 1. Harmful information in input data. (a) RGB patch containing discriminative information.
(b) DSM patch containing incorrect information. (c) Ground truth map. (d) Segmentation result.
The Att-MFBlock re-weights the RGB and the DSM input so that RGB information is highlighted and
the damaged DSM information is suppressed.

The high performance of the HAFNet model, however, comes at the cost of an enor-
mous number of parameters. Such over-parametrization of the model conveys disadvan-
tages both at the development level and at the deployment level, including slow training,
long inference time, and massive memory footprint. All the mentioned consequences can
pose problems in a time when AI applications are moving on the edge, and models are
expected to work with very limited computing and memory resources.

As pointed out by researchers in Reference [9], the reason why AI models are still
confined to offline data processing is that their weights and topology are often too large
to fit into the available resources onboard Earth Observation satellites. At the same time,
inference of DL systems is computationally intensive, and this can be a problem in a low-
power-budget environment. New networks need to be engineered taking into account the
different computation restrictions related to memory usage, training, and inference time
cost. On-board data processing in spaceborne Earth Observation systems is gaining rele-
vance, and methods for different Remote Sensing applications are being developed [9–13].
This trend is substantially accelerated by the recent joint effort of multiple Deep Learn-
ing research studies of providing new implementations of efficient network architectures
that limit the overall number of parameters while achieving state-of-the-art performances.
These networks [14–16] are built out of custom-designed operation modules that fulfill
this task.

A careful reorganization of existing architectures and introduction of efficient modules
can solve the previously described problems and accelerate the transformation of AI-driven
systems from offline processing tools to powerful dynamic edge applications. Motivated by
these considerations, in this paper, we propose an efficient implementation of the HAFNet
model called HAFNetE that exceeds state-of-the-art, fusion-based building extraction
performances while, at the same time, affording a 92% reduction from the original number
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of network parameters. This substantial cut in requirements makes it possible to directly
deploy the model as an on-board spaceborne urban mapping system.

2. Building Blocks

In this chapter, the core elements of the proposed method are presented and described.

2.1. EfficientNet

EfficientNet [16] is a convolutional neural network (CNN) architecture and scaling
method that scales the network dimensions (depth, width, resolution) using a compound
coefficient. The basic building block of the network is the inverted bottleneck residual
block (previously introduced with MobileNetV2 [15]), a custom convolutional module
that provides a good compromise between performance and memory footprint. The Effi-
cientNet family of models is specifically designed for cases where computational resources
are limited. However, even with a limited number of parameters, the network can still
provide great performance. EfficientNet reaches state-of-art transfer accuracy on multiple
benchmark datasets with one order of magnitude fewer parameters. EfficientNet has been
used in applications from different domains. Although some of such domains were com-
pletely unrelated to Earth Observation (e.g., path prediction in autonomous driving, image
classification in the mobile framework), a handful of researchers started also using this
family of models for Remote Sensing. Because of their efficiency and capability of extracting
highly discriminative features, EfficientNet models have been widely employed as Re-
mote Sensing scene classifiers [17–19]. For example, in Bazi et al. [17], Lasloum et al. [19],
EfficientNet-B3 networks are used for scene classification. Alhichri et al. [18] enriched
the EfficientNet-B3-based model by adding an Attention module to further increase the
classification performance. Salas et al. [20] used EfficientNet-B3 to map satellite images
to census data in order to characterize vulnerable communities at the residential block
level and, therefore, localize poor areas where poverty reduction policies can be imple-
mented. According to the published papers, no instance of EfficientNet used as encoder
for a segmentation model has yet been proposed.

2.2. Attention-Aware Multi-Modal Fusion Block

The Attention-Aware Multi-modal Fusion Block is a computational module introduced
in Reference [8] to adaptively re-weight feature channels from different modalities, therefore
highlighting discriminative features and suppressing irrelevant ones. The module is based
on the Attention mechanism [21] that produces significant performance improvements.
The module is comprised of multiple stages. In the first stage, a global average pooling
operation is performed to abstract global spatial information of each channel. Pooled
features are then processed in a bottleneck where linear and non-linear operations are
applied in order to learn the interactions between channels. The concatenated channel-
wise statistics are then multiplied by the corresponding input features. The final fused
features are obtained by an element-wise summation of the re-weighted features. The
Attention mechanism has been extensively used in Remote Sensing applications; however,
there exist only a small number of scenarios where the Attention block has been used
as a way to fuse the features extracted from models’ encoders [22–25]. Zheng et al. [22]
developed a multilevel attention mechanism through adversarial learning to detect oil
palm trees. Cai and Wei [23] created a new method to fuse hyperspectral images with
attention. Huang et al. [24] used a attention-based fusion block to better detect different
remote sensing objects. Shi et al. [25] introduced a multilevel features fusion method with
attention to improve the segmentation accuracy of pixels near object boundaries. As shown,
something similar to the previously proposed Attention-Aware Multi-modal Fusion Block
is presented; however, major differences exist between the proposed solutions, and only
the core idea of fusing and enhancing features with attention is preserved.



Remote Sens. 2021, 13, 4361 4 of 15

3. HAFNet and HAFNetE

In this section, we introduce HAFNetE, an efficient hybrid attention-aware fusion
network for building extraction, starting from its predecessor HAFNet or Hybrid Attention-
aware Fusion Network. HAFNet is a multi-modal building extraction segmentation net-
work that utilizes cross-modal and individual features to perform builiding footprint
extraction, and it accepts HRI RGB images and LiDAR data as its inputs. The overall
architecture is comprised of three streams: RGB, DSM, and cross-modal. All the streams
are built as parallel SegNets [26], where the encoder part is characterized by a VGG-16
structure. The RGB and DSM streams are designed to learn individual modal features.
These features are then fused together after each set of convolutional operations with
an Attention-Aware Multi-modal Fusion Block (Att-MFBlock) in the cross-modal stream.
The extracted features from each stream are decoded in their respective decoder stream
and finally combined at the decision stage using again an Attention-Aware Multi-modal
Fusion Block to produce the final segmented output. By using both individual and cross-
modal streams, it is possible to learn more discriminative features and, therefore, achieve a
comprehensive building extraction result. Starting from this existing scheme, HAFNetE
preserves the three-stream network concept but utilizes both a completely different single
stream architecture and encoder structure. The model architecture is shown in Figure 2.

Figure 2. Scheme of the HAFNetE network.

The network is comprised of three subnetworks (streams): the RGB stream, the DSM
stream, and the cross-modal stream. RGB HRI images and LiDAR-derived DSM data are
fed as input to the model where features are extracted, respectively, by the RGB stream
encoder and the DSM stream encoder. The extracted features are then combined in the
cross-modal stream encoder by using the previously discussed Attention-aware multi-
fusion block. The cross-modal specific stream is added to combine different modalities
at an early stage and, therefore, to learn more discriminative cross-modal features [27].
After the decoding phase, predictions coming from the three streams are fused using
the Att-MFBlock [8] to provide a comprehensive building extraction result. Unlike the
previous HAFNet model, whose architecture was based on three parallel SegNet-like
streams using VGG16-style encoders in each of them, HAFNetE introduces modifications
both at the encoder level and at the single stream level. VGG-16 encoders are substituted
with EfficientNet encoders. This family of models is specifically designed for good encoding
performance even with limited available resources. This translates to simple networks
with fewer parameters. Small models yield multiple advantages: faster training, shorter
inference times, and bearable memory footprint on the system where the model is deployed.
Multiple networks characterized by these features exist (MobileNet, MobileNetV2, etc.);
however, an EfficientNet-B0-type encoder was selected across the candidates because it
offers a good compromise in the performance/computational cost trade-off. As a matter
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of fact, by reducing the number of parameters in the model, performance is likely to
decrease. However, EfficientNet, by scaling the number of parameters according to the
Compounding Scaling method [16], attains high performances with approximately 11×
fewer parameters than classical models, such as ResNet-50 [28]. An efficiency comparison
between EfficientNet models and classical models is reported in Table 1.

Table 1. Comparison of image classification efficiency based on the ImageNet dataset [29]: Efficient-
Net models [16] versus classical models.

Model Top-5 Acc #Params #FLOPs

EfficientNet-B0 [16] 93.3% 5.3 M 0.39 B
EfficientNet-B2 [16] 94.9% 9.2 M 1.0 B
EfficientNet-B4 [16] 96.4% 19 M 4.2 B

VGG-16 [30] 91.9% 138 M 19.6 B
ResNet-50 [28] 93.0% 26 M 4.1 B

SENet [21] 96.2% 146 M 42 B

At the individual stream level, the SegNet structure is substituted with a U-Net
network [31]. U-Net has a similar architecture to the previously utilized SegNet and
offers a suitable alternative to it, thanks to its effective feature re-localization capability.
The conceptually simple architecture of U-Net makes it easy and elegant to implement.
Moreover, one objective of the research is to assess whether the previously proposed
HAFNet three-streams network can be generalized and effectively being employed using
different base models, such as U-Net. For these reasons, U-Net was selected as the single-
stream subnetwork.

To summarize, HAFNetE is a complete overhaul of the original HAFNet model.
VGG16 encoders are substituted with EfficientNet encoders, and the SegNet architecture
at the individual stream level is replaced with a U-Net. The only aspects retained from
the previous version are the idea of combining features extracted in the HRI-RGB and
LiDAR-derived DSM streams into a new cross-modal stream and the method used to
fuse the encoded information. The substituted encoders and the restructured network
architecture provide a completely new and, most importantly, efficient way of extracting
and processing information from data. As it will be discussed thoroughly in Section 5, even
though the HAFNetE model provides an improvement at an application level in terms
of segmentation capability, the most remarkable and actionable result with respect to the
previously proposed HAFNet is the advanced and carefully designed, efficient architecture,
that translates into a massive enhancement of computational efficiency.

A part from a few models, most of the newly proposed networks are designed to score
highest in segmentation performances largely disregarding the associated computational
cost. This latter can make the model impossible to use in most of real-world scenarios,
where end users do not have enough computational resources, or, even if they do, the final
application does not permit the use of related technologies (e.g., on-board spaceborne
systems). Memory footprint, training time, and inference time are aspects that cannot be
overlooked when deploying a system in production. HAFNetE is engineered taking all
these details into account and with the explicit goal of making the network deployable in a
on-board spaceborne system.

4. Experiment Design
4.1. Dataset

The datasets used to train and evaluate the model come from the publicly available
data repository of the ISPRS 2D Semantic Labeling Challenge [32], in the German city
of Potsdam, and it is composed of high-resolution true-color orthophoto images and the
corresponding normalized DSM data. The dataset also includes a smaller dataset on the
German city of Vaihingen, but this part has not been included in our experiments. As it will
be explained later in this paper, in terms of ortophotos, the Vaihingen dataset contributes
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false-color IRRG images only, whose radiometric behavior does not match what was learnt
on RGB images by the pre-trained networks used in the proposed method.

In the original dataset, each parcel of land was classified into six common land cover
classes, and this classification is distributed as Ground Truth (GT) to support the supervised
learning procedure. The problem addressed in this paper, i.e., basic building mapping,
only uses two labels, namely “building” and “non-building”. Therefore, binary thematic
maps containing only the desired classes were created by merging previous classes into the
two relevant ones using simple image processing techniques. In Figure 3, an example of an
image patch with the corresponding binary thematic map is presented.

Figure 3. (a) RGB image patch. (b) DSM patch. (c) Corresponding binary thematic map. Building
pixels are displayed in white, whereas non-building pixels are displayed in black.

The organizers of the Challenge also defined a partition of the dataset into training and
testing images. Since our research involved a Deep Learning method and, consequently, the
need for hyperparameter tuning, the dataset was split into three subsets: one for training,
one for validation, and one for testing. The Potsdam dataset contains 38 images that
were randomly assigned to one of the three subsets so that the training subset contained
≈80%, validation ≈10%, and test ≈10% of the original images. It is to be noted that visual
inspection of orthophoto images revealed noticeable geometrical distortions in some places,
as in the example of Figure 4.

Figure 4. Example of visible distortion in RGB input images.

These are probably due to stitching of multiple images in the production phase,
and such distortions are not reflected in the ground truth, thus creating a mismatch
between optical data and reference. Although the phenomenon is not very frequent
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across the dataset, this must be taken into account in evaluating results as it can lead to a
underestimation of the actual capability of the model in segmenting the input. The model
was trained using a subsection of the Potsdam dataset. The True OrtoPhoto (TOP) in such
dataset come as TIFF files in different channel compositions, namely IRRG, RGB, and
RGBIR. Since the model was initialized with pre-trained EfficientNet-B0 weights tuned on
RGB-coded images, the RGB version of the TOP images offered in the Potsdam dataset was
used. On the other hand, the Vaihingen dataset provides only IRRG TOP images; because
of this mismatch, only the Potsdam section of the ISPRS 2D Semantic Labeling Challenge
was used to train, validate, and test the model. It should be noted that, in any case,
the Potsdam dataset contains most of the images of the entire ISPRS dataset, and, because
of its dimensions in terms of number of images and single image size, the data covers
a great range of variability and diverse edge cases that make the sole Potsdam section
suitable for the standard training, validation, and testing Deep Learning model procedure.

4.2. Model Performance Metrics

For sake of completeness, various standard metrics were used to evaluate the model
performance, namely the overall accuracy (OA), the F1 score, and the intersection over
union (IoU). For the readers’ convenience, the definition of the first three metrics are
reported below.

precision =
tp

tp + f p
; recall =

tp
tp + f n

; Fscore = 2 · p · r
p + r

. (1)

In the expressions above, tp, fp, fn refer to the number of true positive, false positive,
and false negative cases, respectively. The IoU metric is defined as:

IoU =
target ∩ detected
target ∪ detected

. (2)

Here, target represents the set of building pixels from the ground truth, and detected
represents the set of pixels assigned to class “building” by the classifier. It is important
to note that the number of building pixels is about one order of magnitude smaller than
non-building pixels in the average considered image patch. In a segmentation setting
with strong class imbalance, IoU is probably slightly more representative than the other
measures, since it gauges the overlap rate of the detected target pixels and the labeled
target pixels.

4.3. Training Procedure
4.3.1. Data Processing

The Potsdam dataset contains images the size of 6000× 6000 pixels, too big to fit
entirely into the GPU memory; thus, they were partitioned into multiple non-overlapping
224× 224 tiles. This latter is the size of images in the ImageNet dataset [29] and was indeed
selected to maximize the encoding capabilities of the RGB and DSM encoders that were
pre-trained on such standard dataset. However, this setting is not binding, and the model
is flexible on the size of the input images. As previously noted, the dataset is extremely
unbalanced, and most of the patches extracted from the images do not contain any building
pixel. By training the model on this dataset, the net will be biased towards the non-building
class, and, in the evaluation phase, the performance metrics may stay high simply because
the model is most of the time correctly predicting that the examined patch does not contain
buildings. Thus, a data-balancing strategy is required to avoid the network to settle on a
fairly high accuracy by simply ignoring the comparatively few building pixels altogether,
which results into a useless trained network. Two different approaches can be used to
tackle the problem. The first method implies using a weighted loss function during training
(e.g., Weighted Binary Cross Entropy) that assigns a larger weight to samples containing
buildings and, therefore, induces stronger changes in the net parameters when a building
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is being processed. The second method [33] suggests training the model only on positive
examples, i.e., patches containing more than a pre-set number or percentage of building
pixels in our case. This second approach was selected because it is expected not to affect
the generalization capabilities of the network. The method was implemented by filtering
the extracted patches so that only patches containing at least 5% of positive pixels (building
pixels) survived. In the end, the number of effective training patches was 8800.

4.3.2. Model Training

The proposed HAFNetE was implemented using the PyTorch framework and follow-
ing the design patterns of the PyTorch library Segmentation Models PyTorch (SMP) [34].
Training and evaluation phases were conducted using a NVIDIA GeForce RTX 1080Ti
GPU (11 GB memory). Since data had been previously balanced during the preprocessing
phase, a simple non-weighted version of Binary Cross Entropy loss was used. Multiple
experiments were carried out to choose the best optimizer for minimizing the loss function
(Stochastic Gradient Descent (SGD), Adagrad, Adam). Table 2 shows validation metrics
using the different optimization strategies.

Table 2. Validation metrics using different optimization strategies.

Optimizer Validation IoU Validation F1-Score Validation Accuracy

SGD 85.56% 92.15% 92.07%
Adagrad 89.76% 90.32% 91.98%

Adam 91.58% 95.59% 96.41%

Of all the optimizers, Adam converged to the highest performance metrics, as visible
from the percentages reported in Table 2. The observed training curves are shown in
Figure 5.

Figure 5. Training (blue) and validation (orange) curves obtained using the Adam optimizer.
From top-left, clockwise, the four graphs represent the measures of loss, fscore, IoU, and accu-
racy, respectively.

As stated earlier, the model encoders were initialized with the pre-trained EfficientNet-
B0 weights, so a small learning rate lr = 1× 10−3 was used to optimize loss. The learning
rate was modulated using different learning rate schedulation strategies, including Cosine
Annealing Warm Restart and Multi-step LR. In the end, the simplest one (Multi-step
LR) was selected, with learning rate reduced by a factor of γ = 0.1 at epochs 2 and 5.
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The selected γ factor is a standard setting in learning schedulation, while the milestones
selected to perform the schedulation steps were found by experiments. The model was
trained for 10 epochs for a total time of 50 min/run. A batch size of 20 was selected
by a trial-and-error procedure in order to saturate the GPU and, therefore, achieve the
maximum training speed given the available hardware acceleration. In order to further
increase the overall model performance, the net was fine-tuned for 10 more epochs on a
small, augmented subset of the original training set starting from the saved weights of
the previous run and continuing the optimization process with a very small learning rate.
Results are reported in Table 3.

Table 3. Quantitative validation results after the main training phase and after fine-tuning.

Training Mode Validation IoU Validation F1-Score Validation Accuracy

Main training 91.58% 95.59% 96.41%
Fine-tuning 93.64% 96.68% 97.55%

5. Discussion of Results

In this section, we show the results of the HAFNetE model presented in Section 3
trained according to the procedure illustrated in Section 4.3, discuss its features, and
highlight the advancements it permits.

5.1. Segmentation Performance Assessment

The first aspect to be evaluated is the overall capability of the model of completing
the segmentation task. In particular, it is important to assess whether the newly introduced
architecture provides at least the same model performance offered by the original HAFNet.
The following results are presented after running the model both in the validation phase
and in the test phase. After 1.5 training epochs, the model reached the same performance
of the original HAFNet, probably thanks to a combination of:

• the pre-trained encoders already providing good basic encoding power, plus
• the reduced overall model size speeding up training.

These first training steps set a solid starting point; however, we needed to assert that
specific characteristics of the previous model were preserved, as confirmed through several
experiments: SegNet-like re-localization capability and re-weighting of decision-level
features. As stated in Zhang et al. [8] regarding adaptability of the scheme to different
networks, we can confirm this applies to the HAFNetE model where a U-Net network in
each thread replaces the previously proposed SegNet. Moreover, the highly discriminative
power granted by the attention fusion block at the decision level remains intact. To give
the reader a visual sense of typical results from the proposed method, Figure 6 shows the
final classification results on a set of test patches. Figure 7 shows, instead, the classification
results on a larger scale, providing examples on two entire sample tiles.

Although the biggest advancement from the previous model can be measured in terms
of computational efficiency, a segmentation performance improvement can be noticed
thanks to the fine-tuning procedure that further enhanced the model’s segmentation
capabilities, raising the F1-score to 96.68% and IoU to 93.64%. Refer to Table 3 for further
details. For the reader’s convenience, F1-scores for other state-of-the-art methods on the
Potsdam dataset (building) are presented in Table 4.

Performance metrics show that transfer learning is a suitable technique for achieving
great segmentation results also in the Earth Observation domain and that the EfficientNet-
B0 encoder is highly capable of extracting discriminative features, even from the very
beginning of the training process. In the next paragraph, the benefits of the EfficientNet
structure will be presented.
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Figure 6. (a) Input RGB patches. (b) Input DSM patches. (c) Model soft predictions. (d) Thresholded
predictions. (e) Label patches. Please note that the corrupted DSM input (b) is adaptively re-weighted
by the Att-MFBlock, thus suppressing misleading information. Thanks to this mechanism, a final
correct segmentation result is produced.

5.2. Novelties Introduced

As discussed in Sections 1 and 3, HAFNet provides a very powerful tool to solve the
building extraction problem, yet it involves a huge number of parameters translating into
long training and inference times and a bigger memory footprint. The introduction of
the Efficientnet-B0 structure in the model architecture conveys two simultaneous benefits,
one at the application level and the other at the computational level, as discussed in
the following.

5.2.1. Application Level

Features extracted with EfficientNet-B0 encoders are highly discriminative and in-
crease the model segmentation performance from the previously proposed HAFNet. Eval-
uation metrics show a significant increase in the net capability in detecting and relocating
buildings as measured with IoU. Table 5 shows a performance comparison between the
HAFNetE and the HAFNet model.
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Figure 7. Two examples of results obtained on two entire 6000 × 6000 pixel tiles from the Potsdam
dataset. (a) RGB TOP image of Tile 1. (b) HAFNetE classification result on Tile 1. (c) Ground Truth
map for Tile 1. (d) RGB TOP image of Tile 2. (e) HAFNetE classification result on Tile 2. (f) Ground
Truth map for Tile 2.

Table 4. F1-scores for state-of-the-art methods on the Potsdam dataset (building).

Method F1 Score

DeepLab v3 + [35] 95.8%
MANet [36] 95.91%

DSMFNet [37] 96.0%
DP-DCN [38] 95.36%
REMSNet [39] 96.17%
MMAFNet [40] 96.26%

HAFNetE 96.68%

Table 5. HAFNetE and HAFNet performance comparison.

Model IoU F1-Score Accuracy

HAFNet [8] 90.10% 98.78% 97.96%
HAFNetE 93.64% 96.68% 97.55%

5.2.2. Resource Level

EfficientNet-B0-based streams architecture led to remarkable achievements not only at
the application level but also at a purely computational level. By substituting the VGG16-
like encoders in the HAFNet model, the number of parameters shrunk dramatically from
88.978 M to 6.982 M. This size reduction brought multiple benefits that make the HAFNetE
model production-ready:

• Reduction of training time: the number of weights in a network is directly correlated
with the number of gradients updates that the GPU needs to operate to optimize the
loss function. A 92% parameters reduction coupled with an extra pre-trained stream
translates to a 80% reduction in training time to reach the same model performance.
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• Reduction of inference time
• Reduction of memory footprint: the model weights are encoded as 32-bit floating

point variables. To further speed up the inference procedure and limit the overall
model size, weights are usually converted to 16-bit floating point. This conversion can
sometimes affect the model performance, but, in most cases, the impact is negligible.
Under these assumptions, we can estimate the final model size:

HAFNet: 88.978 (Millionso f parameters) ≈ 360 MB

vs.
HAFNetE: 6.982× 16bits/8 ≈ 14 MB.

The used memory can be further compressed to a 8-bit fixed point systolic array in
order to make the model directly deployable to dedicated AI platforms, such as Intel’s
Myriad 2 or Google’s Google Coral 28-nm Tensor Processing Unit (TPU) that features
8 MB of on board memory. The memory footprint of the proposed model is much
smaller than that of the reference one. Moreover, its computational and power demand
are small; all these factors make it suitable for on-board processing in spaceborne
Earth observation platforms.

As we could assess from the recorded metrics, the HAFNetE model can reach state-of-
the-art classification performance. However, the most noticeable and relevant advancement
from the previously proposed HAFNet model is the efficiency of the overall network.
As described in Reference [9], EO Deep Learning applications are currently relegated to
offline processing because models are not properly designed for operating at the edge.
In most of the cases, model topology and effective number of parameters are too large to
comply with satellites memory and power consumption requirements and that strongly
limits the impact that Deep Learning can give to Earth Observation systems. HAFNetE
has been engineered taking into account all these requirements and with a deployment-
oriented approach. Classical models often disregard memory and computing limitations
and, therefore, generally end up not being suitable for deployment as on-board spaceborne
systems. HAFNetE represents an example of what DL can provide as an effective tool in
real-world EO applications that can work directly on satellites and, consequently, empower
new industrial possibilities.

6. Conclusions

In this paper, we considered the problem of mapping buildings in urban areas using
an AI-based fusion approach on two different and coordinated data sources, namely high-
resolution visible optical data and LiDAR data. In this context, we introduced HAFNetE,
a modified version of the previously proposed HAFNet model, which is among the most
effective models for the considered tasks, albeit at the expense of computational require-
ments. The proposed network preserves all the powerful features that characterized the
HAFNet model and takes a step forward by achieving better segmentation performance,
while drastically reducing the number of parameters. HAFNetE achieved a IoU figure of
93.64% on the popular benchmark dataset of ISPRS 2D Semantic Labeling Challenge [32].
These features pave the way to new possibilities for real-world exploitation of the devised
Attention-aware block scheme. Faster training, shorter inference time, limited compu-
tational demand, and limited memory footprint open up possibilities for an on-board
AI-powered urban mapping application. The model segmentation performance can proba-
bly be pushed to the limit by changing the EfficientNet-B0 encoders with a bigger-sized
encoder from the same family, therefore paying a price in terms of training/inference time
and memory footprint. Future research plans include incorporation of new state of the art
efficient networks in the HAFNetE model, such as, for example, EfficientNetV2 [41], which
has just been released.
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