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Abstract: Unmanned aerial vehicle (UAV) is one of the main means of information warfare, such as
in battlefield cruises, reconnaissance, and military strikes. Rapid detection and accurate recognition
of key targets in UAV images are the basis of subsequent military tasks. The UAV image has
characteristics of high resolution and small target size, and in practical application, the detection
speed is often required to be fast. Existing algorithms are not able to achieve an effective trade-off
between detection accuracy and speed. Therefore, this paper proposes a parallel ensemble deep
learning framework for unmanned aerial vehicle video multi-target detection, which is a global and
local joint detection strategy. It combines a deep learning target detection algorithm with template
matching to make full use of image information. It also integrates multi-process and multi-threading
mechanisms to speed up processing. Experiments show that the system has high detection accuracy
for targets with focal lengths varying from one to ten times. At the same time, the real-time and
stable display of detection results is realized by aiming at the moving UAV video image.

Keywords: drone video; multi-target detection; multiple focal lengths; deep learning; template matching

1. Introduction

UAVs have been widely used in photography due to their small size, fast movement
speed, wide coverage, etc. [1–8]. Among them, the use of unmanned aerial vehicles for
cruise, reconnaissance, and combat readiness warnings are the mainstream technical means
of modern intelligence operations. Real-time detection and recognition of ground-based
targets is the key problem that needs to be solved by UAV vision systems. Combining
image processing technology and pattern recognition methods to analyze drone videos
or images to achieve fast and stable target detection is the basis for advanced military
tasks, such as subsequent battlefield environment awareness, the guidance of individual
soldier operations, and rapid target targeting. Existing target detection datasets have
prominent target features and clear details. However, in practical applications, due to the
high shooting height, the target size is too small compared to the image, and the target
features are incomplete; the target incurs a certain degree of deformation affected by the
shooting angle and the relative motion between the target and the drone causes the target
background to change significantly, etc. This makes the task of drone image target detection
challenging [6–8].

In order to meet the above needs and solve the technical difficulties of UAV target de-
tection, in recent years, researchers have carried out a series of related research. Traditional
UAV image target detection methods include the frame difference method, background
subtraction method, sliding window-based feature extraction algorithm [9], mean-shift
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algorithm, edge detection algorithm, and recently, deep learning methods have been pro-
posed. For example, fast deep neural networks with knowledge-guided training and
predicted regions of interest [10], small unmanned aerial vehicles [11], object-based hierar-
chical change detection [12], application of unmanned aerial vehicles [13], and real-time
implementation using GPUs [14]. Traditional sliding window-based features are usually
artificially designed histogram of oriented gradient (HoG) features [15], scale-invariant
feature transform (SIFT) features [16], Haar-like wavelet features [17], etc. This method
for implementing features has high computational complexity and cannot be detected in
real-time. In 2012, S. Jan and others combined the multi-scale mean-shift algorithm with
the edge information of the target to solve the saliency object detection of images taken
with a drone [18]. In addition, there is various real-time moving object detection in aerial
surveillance algorithms such as local null space pursuit [19]. These methods are slow in
calculation and weak in robustness, and cannot meet the actual application requirements
of real-time detection [20]. In 2016, researchers used neural networks to detect rice field
weeds from aerial images of drones flying at a height of 50 m [21]. Zhang and others
searched regions of interest (ROIs) based on the characteristics of adjacent parallel lines [22]
and determined the final airport area through transfer learning on the AlexNet network.
Xiao and others used the new GoogleNet-LF model to extract multi-scale, deep integrated
feature combination SVM for detection and recognition [23]. In 2018, Wang and others used
CNN target detectors with RetinaNet [24] as the backbone network to perform pedestrian
detection on the Stanford drone dataset [25], and verified the targets of the CNN-based
target detector and the drone image advantages in detection.

In 2012, Alex [26] and others proposed that Alexnet won the championship of the
image classification challenge in that year by far surpassing second place in the Imagenet
image classification challenge. The error rate of its top five classification decreased by
10% compared with the classification champion in 2011. This excellent performance
makes the deep neural network return to the public eye again, and once again led to
an upsurge of deep neural network research. The neural network has a long history.
Psychologist McCulloch proposed the MCP neuron model as early as 1943 [27]. Its model
has many basic concepts in modern neural networks, such as input parameters, weights,
and activation functions. In 1998, Lynet [28], proposed by Yann Lecun was regarded as
the pioneering work of the convolutional neural network (CNN). The network contains
the basic components of the modern convolutional neural network structure such as the
convolution layer, pooling layer, and full connection layer, and the network has been
successfully applied to handwritten digit recognition. The deep neural network has
developed rapidly in recent years. In addition to the development and innovation of the
network structure, the rapid development of GPU, the great enhancement of hardware
computing power, and the explosive growth of network data in the internet era have
allowed the deep neural network to develop rapidly. In 2017, the last Imagenet challenge
ended, and the accuracy of the champion of object classification had reached 97.3%. The
excellent performance of a deep neural network makes it widely developed in other fields.
The performance of deep neural networks in classification tasks proves the excellent ability
of feature extraction and expression, so it has also attracted extensive research in the field
of target detection.

For the target detection task, the network needs to find the position of the object in
the input image and give its category. The early object detection based on deep learning
mostly uses the window drawing method to extract an ROI (region of interest). This
method is essentially an exhaustive image classification method, which has a large amount
of calculation, consumes a lot of computing resources, and has low efficiency. In 2013,
J. R. Uijlings et al. proposed an image selective search mechanism [29] which uses four
kinds of information such as image color, texture, size, and spatial overlap, and uses a
similar clustering method to divide the image into several regions to generate a candidate
region, greatly reducing the number of classification calculations. In 2014, Ross Girshick
et al. integrated the selective search method into the neural network and proposed the
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R-CNN network [30]. The proposal in the image was extracted by selective search, which
greatly improved the speed and accuracy of target detection. The R-CNN network has
also become a classic work of deep learning application in the field of target detection. In
the same year, some scholars proposed a target detection network [31] spp net based on
spatial pyramid pooling. The author applied the idea of a pyramid commonly used in
traditional image processing to CNN. The multi-scale feature detection in a convolutional
neural network is realized. In 2015, Ross Girshick’s team proposed an upgraded version of
fast R-CNN [32], which has greatly improved speed and accuracy compared with R-CNN.
In the same year, Ross Girshick’s team further improved the network and proposed a
faster R-CNN network [33]. In the network, a very classic RPN network was designed
to extract the proposal, which unified the ROI region extraction, feature extraction and
expression, candidate region classification, and location refinement into a deep network,
and accelerated the training time by 250 times compared with R-CNN; the target detection
speed reached a speed of 5 fps, which achieves the double improvement of speed and
accuracy. In addition to the R-CNN series, many excellent deep detection networks form
a situation in which a hundred flowers bloom. Redmon et al. proposed an end-to-end
detection network, YOLO [34], in 2016 to predict the location reliability and probability
of all categories of targets at one time, realizing real-time target detection. Kaiming He’s
team proposed an r-fcn network in the article [35] published by NIPS in 2016, which is
excellent in speed and accuracy. The map on VOC 2007 and 2012 data sets reached 83.6%
and 82% respectively, and each test image took only 170 ms. Tsungyi Lin et al. proposed a
characteristic pyramid type target recognition network FPN [36] in cvpr2017, which greatly
improved the problem of low accuracy of small target detection. At the beginning of 2018,
the author team of YOLO proposed an improved version of YOLO-v3 [37], which not only
improved its small target detection accuracy but also improved its speed. The excellent
performance of the deep neural network in various image recognition competitions proves
its good generalization and universality, as it can extract and describe the characteristics of
targets well.

Research on UAV image target detection has made some achievements, but it is
still in the initial stage of development. Rapid detection and accurate recognition of key
targets in UAV images are the basis of subsequent military tasks. The UAV image has
characteristics of high resolution and small target size, and in practical application, the
detection speed is often required to be fast. The above methods always fail to achieve a
balance between detection accuracy and speed for complex and changeable UAV image
targets. How to detect small targets under a drone quickly and accurately is still the focus
and difficulty of current research. From the perspective of practical applications, this
article designs and implements a target detection system for UAV ground stations. Fully
considering the advantages and disadvantages of deep learning in processing images,
combining template matching algorithms, and adding local and global joint detection
strategies achieves real-time stable and accurate detection and recognition of UAV ground
targets. Existing algorithms are not able to achieve an effective trade-off between detection
accuracy and speed. Therefore, this paper proposes a parallel ensemble deep learning
framework for unmanned aerial vehicle video multi-target detection, which is a global and
local joint detection strategy. It combines a deep learning target detection algorithm with
template matching to make full use of image information. It also integrates multi-process
and multi-threading mechanisms to speed up processing. Experiments show that the
system has high detection accuracy for targets with focal lengths varying from one to ten
times. At the same time, the real-time and stable display of detection results is realized by
aiming at the moving UAV video image.

2. Framework
2.1. Proposed Recognition Network

We optimized the recognition network as follows. The target recognition network
based on deep learning with good generalization is used to complete the target recogni-
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tion of airports, bridges, and ports under low resolution. The following introduces the
identification of the backbone structure of the network, candidate frame generation in the
network, calculation of the network loss function, and training strategies.

Step (1) Design of image target recognition backbone network
First, the basic structure of the remote sensing image target recognition network under

low resolution is introduced. The basic structure of the remote sensing target recognition
network used in this subject is shown in Figure 1. The basic network structure of the
VGG16 is continued on the network backbone structure. The first five layers still use the
five convolutional layers of the VGG16 network, discarding the fully connected layers of
the sixth and seventh layers of the VGG16 network, while using the dilated convolution [38]
method to construct two new convolution floors.
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Figure 1. Basic structure of low-resolution remote sensing image recognition network.

The conventional pooling layer in a deep neural network causes a decrease in res-
olution while increasing the receptive field, and the decrease in resolution causes a loss
of some feature information. The advantage of this dilated convolution is to avoid the
decrease in resolution caused by pooling [38]. The comparison between dilated convolution
and ordinary convolution is shown in Figure 2. It can be seen from Figure 2 that under
the same calculation parameters, a larger receptive field can be obtained by using dilated
convolution instead of ordinary convolution.

Remote Sens. 2021, 13, x FOR PEER REVIEW 4 of 25 
 

 

2. Framework 
2.1. Proposed Recognition Network 

We optimized the recognition network as follows. The target recognition network 
based on deep learning with good generalization is used to complete the target recogni-
tion of airports, bridges, and ports under low resolution. The following introduces the 
identification of the backbone structure of the network, candidate frame generation in the 
network, calculation of the network loss function, and training strategies. 

Step (1) Design of image target recognition backbone network 
First, the basic structure of the remote sensing image target recognition network un-

der low resolution is introduced. The basic structure of the remote sensing target recogni-
tion network used in this subject is shown in Figure 1. The basic network structure of the 
VGG16 is continued on the network backbone structure. The first five layers still use the 
five convolutional layers of the VGG16 network, discarding the fully connected layers of 
the sixth and seventh layers of the VGG16 network, while using the dilated convolution 
[38] method to construct two new convolution floors.  

The conventional pooling layer in a deep neural network causes a decrease in reso-
lution while increasing the receptive field, and the decrease in resolution causes a loss of 
some feature information. The advantage of this dilated convolution is to avoid the de-
crease in resolution caused by pooling [38]. The comparison between dilated convolution 
and ordinary convolution is shown in Figure 2. It can be seen from Figure 2 that under the 
same calculation parameters, a larger receptive field can be obtained by using dilated con-
volution instead of ordinary convolution. 

 
Figure 1. Basic structure of low-resolution remote sensing image recognition network. 

 

300

300

VGG-16
Through Conv5_3layer

38

38

19

19

19

19

10

10

5

5
3

3 1512 102
4

102
4 512 256 256 256

Conv4_3 Conv6 Conv7

Conv8_2 Conv9_2

Conv10_2

N
on

-M
ax

im
um

 S
up

pr
es

si
on

D
et

ec
tio

ns
:8

73
2 

pe
r c

la
ss

Classifier:Conv:3*3*(4*(Classes+4))

Classifier:Conv:3*3*(6*(Classes+4))

Conv:3*3*(4*(Classes+4))

Conv:3*3*1024 Conv:1*1*1024 Conv:1*1*256 Conv:1*1*128 Conv:1*1*128

Conv:3*3*512-S2 Conv:3*3*256-S2 Conv:3*3*256-S1

Image

Extra Feature Layers

GAP

Figure 2. Comparison of ordinary convolution (left) and dilated convolution (right).

After the newly added sixth and seventh convolutional layers, three more convolu-
tional layers (conv8, conv9, and conv10) are added, and a layer is added to the network
at the end to convert the output feature map of the previous layer into a one-dimensional
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vector. For the remote sensing targets studied in this subject, there is a large intra-class gap
for the same type of target, and there is still a problem of scale gap for the same type of
target. Therefore, multi-scale recognition is particularly important. Considering the scale
change of the target object, the network outputs feature maps of different scales at different
layers and send them to the detector to predict the degree of confidence and position coor-
dinate offset of each category. As shown in Figure 3, the front-most feature map is output
after the Conv4_3 layer. The feature maps of the first few layers in the network describe
the shallower features in the input image, and their receptive fields are relatively small.
In contrast, the deeper feature maps are responsible for describing the more advanced
composite features. Their lower-level feature maps of receptive fields are larger, and also
have stronger advanced semantic information. At the end of the network, in order to avoid
the result that the same target is detected by the multilayer feature detector at the same
time, a non-maximum suppression process is added, as shown in Figure 3. From this, the
final test result is obtained. The network backbone structure does not use a fully connected
layer. On one hand, the output of each layer can only feel the characteristics of the area
near the target, not the global information. On the other hand, it also reduces the number
of computing parameters in the network.
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Step (2) Candidate box generation in the network
The network adopts an idea similar to Anchor in Faster R-CNN [33] to generate

candidate regions, which is called the priority box here. For the aforementioned networks
and for the six sets of feature maps generated by the Conv4_3, Conv7, Conv8_2, Conv9_2,
Conv10_2, and global average pooling layers, the sizes are 38 × 38 × 512, 19 × 19 × 1024,
10 × 10× 512, 5 × 5 × 256, 3 × 3 × 256, and 1 × 1 × 256. For feature maps of different
scale output by different layers, different aspect ratio candidate regions of the target object
can be simulated by using different aspect ratios in each feature map. Figure 4 shows the
process of generating priority boxes during airport image training in the network. Specific
to the generation of each priority box, take the feature map of different scales. Taking
Conv9_2 as an example, the size of the generated feature map is 5 × 5 × 256. Set its default
box parameter to 6 in the network, that is, to generate 6 priority boxes with different
aspect ratios around the same point around each anchor point. Then for the feature map
of this layer, a total of 150 candidate priority boxes of 5 × 5 × 6 can be obtained for the
prediction of category confidence and 4 position coordinate scores. In this network, for the
output feature maps of each layer, the network generates 8732 priority boxes for prediction.
In the process of network training, the prediction of an input image is equivalent to the
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prediction of classification and position regression of the 8732 sub-images of the input
image at different scales.
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In the process of generating boxes with different aspect ratios, two parameters of scale
and ratio are used to control the generated boxes of different sizes. The scale parameter
varies with the number of layers.

During network prediction, the scale value of the lowest-level feature map is set to
0.2, that is, Smin = 0.2, and the scale value of the highest-level feature map is set to Smax
= 0.95. The ratio value interval is set to ar ∈

{
1, 2, 1

2 , 3, 1
3

}
, and this parameter is used to

control the aspect ratio of the candidate box around the anchor point. Use scale and ratio
to calculate the size of the priority box in each layer feature map. Let the width of each
priority box be wa

k and the height be wa
k. Then, the width and height of each priority box

can be calculated by:
wa

k = sk
√

ar (1)

ha
k = sk/

√
ar (2)

where Sk is a parameter of each layer, and its calculation formula is shown in:

Sk = smin +
smax − smin

m− 1
(k− 1), k ∈ [1, m] (3)

For a ratio of 1, that is, an aspect ratio of 1, two candidate boxes with an aspect ratio of
1 are generated around each anchor point, and use s′k =

√
sksk+1 extra to generate a box

with an aspect ratio of 1. In this way, for each anchor point, you can get 6 different boxes.
Step (3) Network loss function design
The network in this topic belongs to a supervised learning network. For supervised

learning, the target position and target category in the manually labeled labels are very
important. In training, it is important to correlate artificially labeled target position category
information with the boxes generated prior by the network. The first is about the definition
of positive and negative samples. The concept of IoU is introduced here. For the target
recognition task in this topic, as shown in Figure 5, the red dashed line on the left is the
priority box generated during training, and the solid green line box is the target position
manually labeled, where Soverlap is the overlapping area of the two boxes and Sunion is the
total area covered by the two boxes. Then, defining IoU is described as follows:

IoU =
Soverlap

Sunion
(4)
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During the training process, for several priority boxes generated by the network, if
there are artificially labeled targets near the priority boxes, that is, ground truth, and the
IOU of the box and ground truth is greater than 50%, the box is regarded as a positive
sample; otherwise, it is considered a negative sample. Each box will have a certain positive
and negative value. With this strategy, each ground truth corresponds to multiple positive
samples, which also alleviates the problem of imbalance of positive and negative samples
caused by too many negative samples during training.

During training, because there are two training purposes (category confidence and
score prediction of four position parameters), the corresponding objective function is
also divided into two parts. The objective function refers to the idea of multiBox loss
function [39] and calculates the classification confidence of the category to which the target
belongs and the regression accuracy of the target location. For the classification task for
each box, the confidence calculation in the network is calculated using a softmax-type
cross-entropy loss function. The specific calculation formulas are shown as:
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The position loss regression function uses the calculation method of smooth L1-loss,
and its loss function is shown as:

Lloc(x, l, g) =
N
∑

i∈Pos
∑

m∈{cx,cy,w,h}
xk

ijsmoothL1(lm
i −

∧
gm

j )

∧
gcx

j = (gcx
j − dcx

i )/dw
i

∧
gcy

j = (gcy
j − dcy

i )/dh
i

∧
gw

j = log(
gw

j
dw

i
)

∧
gh

j = log(
gh

j

dh
i
)

(7)



Remote Sens. 2021, 13, 4377 8 of 25

The total loss function in the network is the weighted sum of the above two loss
functions as shown as:

L(x, c, l, g) =
1
N
(Lcon f (x, c) + αLloc(x, l, g)) (8)

where N is the number of positive samples.
Step (4) Network training strategy
In response to the problem of insufficient data sets during the training process, this

topic expands the following data sets, so that the number of labeled data was doubled,
the expanded data set was trained, and the other training parameters were the same as
the environment. In the case of the target dataset, after multiple experiments on the target
data set, the data expansion improves the accuracy of target recognition by an average of
3 to 5 percentage points. Take airport training as an example: as shown in Figure 6, the
left is the test accuracy before expansion, and the right is the recognition accuracy after
data expansion.
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In the training process, because the priority boxes around each anchor point are
mostly negative samples, if the original positive and negative samples are directly trained,
the proportion of positive and negative samples is extremely imbalanced, and too many
negative samples will affect the accuracy of training network to a certain extent. Therefore,
the Hard Example Mining method is used in the training process to balance the positive
and negative samples to a certain extent. The priority boxes with an IOU greater than 50%
are regarded as positive samples, and during the training process, the Loss values of the
class loss functions of all boxes will be sorted for each type of target, and the one with the
largest Loss value will be selected. Some samples are used as negative samples, and the
ratio of positive and negative samples is finally controlled to 1:3.

In the initialization stage of training, for the convolutional layers other than the newly
added VGG16 convolutional layer, the initialization process of the weight in the convolution
kernel is performed using the Xavier initialization [40] method. During the training process,
Adam (Adaptive Moment Estimation) [41] was selected as the optimization method instead
of the commonly used stochastic gradient optimization (SGD) to optimize the model to
accelerate the speed of model convergence. The Adam optimization algorithm is a weight
update method based on a dynamic learning rate. It adaptively selects a suitable learning
rate for different parameter states during training, making the learning convergence process
more stable and faster. Among them, the initial learning rate, impulse, weight attenuation,
and other parameter values are slightly different according to different data sets in practice.
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In addition, in order to improve the training results of the algorithm, this topic
introduces transfer learning to improve the training recognition rate. Although the data
set has been greatly expanded, the amount of data is still insufficient for deep recognition
networks. For low-level feature extraction networks, the introduction of transfer learning
can greatly improve the training results. Transfer learning focuses on training problems
when there is insufficient data. The goal of transfer learning is to use the weight equivalents
learned from a task to accelerate the learning and convergence process of a new task. With
the help of transfer learning technology, a large number of existing data sets (such as the
Pascal VOC data set) are directly used for pre-training, and then the parameters are loaded
directly from the existing model during the training process. In the subject low-resolution
remote sensing image target recognition algorithm, when a new target recognition training
task is introduced, the existing model can be directly loaded to start training, thereby
speeding up the convergence speed and improving the correct recognition rate to a certain
extent. This method can also achieve the purpose of incremental learning of existing
models required by technical indicators.

During the test process, since more than 8000 candidate regions were obtained to
frame the same target for different priority boxes at different scales. For each output target
area, non-maximum suppression is used to merge the target bounding boxes, sort by
score, select the box with the highest score, and then calculate the other target boxes in
the surrounding area and the highest score of IOU. Delete all boxes larger than a certain
threshold, and then continue the previous process for all unbound bounding boxes until
the final target box is obtained.

2.2. Proposed Parallel Computation Framework

The overall architecture of the UAV target detection system for ground stations in this
paper is shown in Figure 7. The system can be divided into three parts: data transmission
to the ground station, deep learning local target detection, and global target stable display.
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Figure 7. Overall system flow.

The three parts of the system operate independently but the information is related
to each other, that is, the entire system is composed of four processes. Considering the
overall real-time requirements of the system, the processes communicate with each other
using shared memory. There are usually four ways of inter-process communication: pipes,
semaphores, message queues, and shared memory. Shared memory is designed to solve
the operational efficiency problem of inter-process communication, and is the fastest inter-
process communication method. The basic communication principle is shown in Figure 8.
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One of the methods used to realize the rapid transmission and sharing of data, images,
and other information between two independent processes is to use the same physical
address to store information, and each process accesses this address to obtain information
of the other process. The process and the physical address of the shared memory connect
their own virtual address space and actual physical space through a page table. As the data
is directly stored in the memory, the frequency of multiple data replication for ordinary
data transmission is reduced, thereby speeding up the transmission speed, and the time
it takes to store information is almost negligible. Considering the requirements of this
system, the writing and reading of information should be sequential, and only one process
can access shared memory at a time between processes. Therefore, a mutex variable lock
mechanism is added to achieve mutual access between processes.

A total of four shared memory methods were used for information transfer between
the four processes in this paper. First, the video data collected by the drone is shared with
the ground station in real-time using a memory space used to store the original video
stream data. Second, the initial position information and target slice information of the
original video after deep learning local detection are stored in the second shared memory,
which is different from the first shared memory, a shared memory for storing local target
information divided according to the image. The number of local areas is decomposed into
corresponding multiple sub-shared memory areas, as shown in Figure 9. Then, considering
the stability and long-term nature of the detection results, the information of each child
shared memory is used for subsequent further supplementation, screening, and fusion.
After the final processing, it is stored in the last complete shared memory area, which is
used to display the global target detection results.
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Through the design of the above framework, the entire process from data acquisition
and target detection processing to stable and real-time display of the final detection result
is realized. A complete system that can be applied to the target detection of actual UAV
ground stations is set up.

The time complexity determines the training/prediction time of the model. If the
complexity is too high, it will lead to a lot of time for model training and prediction, which
can not quickly verify the idea and improve the model, nor can it achieve rapid prediction.
The time complexity of this paper is defined as:

Time ∼ O

(
D

∑
l=1

M2
l · K

2
l · Cl−1 · Cl

)
(9)

The spatial complexity determines the number of parameters of the model. Due to
the limitation of the dimension curse, the more parameters of the model, the greater the
amount of data required to train the model. In contrast, the data set in real life is usually
not too large, which will make the model training easier to over fit. The spatial complexity
of this paper is defined as:

Space ∼ O

(
D

∑
l=1

K2
l · Cl−1 · Cl +

D

∑
l=1

M2 · Cl

)
(10)

3. Global and Local Joint Target Detection Method
3.1. Local Object Detection Method Based on Deep Learning

In view of the advantages of deep learning in the field of image processing and
the development of current target detection directions, this paper uses deep learning
algorithms for the preliminary processing of UAV image target detection.

At this stage, there are mainly two types of deep learning networks used for object
detection. One is a two-step target detection network R-CNN series that combines feature
extraction and classification. At present, the Faster R-CNN network has the best effect of
this type of network. The second is the single-step target detection SSD and YOLO [34]
series using regression thinking. The Faster R-CNN network innovatively replaces the
original brute force sliding window scanning methods such as selective search in the
candidate area with the RPN network. The basic algorithm flow is shown in Figure 10.
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Figure 10. Faster R-CNN algorithm flow.

The basic features of the image are extracted using the full convolutional network. The
RPN network constructed is then used to slide the window on the feature map for object
front and back classification and frame position regression, and then further refined ROI
pooling to obtain a more precise location of the frame. The Faster R-CNN network has a
good accuracy rate, but because of the large number of candidate frames and other factors,
the processing speed is very slow and cannot be applied to actual video-level processing.
Figure 11 shows the basic network structure of SSD. The SSD network uses anchor points
to output a series of discretized candidate frames. By combining feature maps at different
levels, it ensures that the SSD network fully extracts the features of the target; taking
different scales into consideration, and because the anchor points are designed with a
variety of different aspect ratios, the SSD network can adapt to targets of multiple scales.
This design of anchor points combined with feature pyramids improves the accuracy of
the network in detecting different targets, and the idea of regression greatly improves the
speed of network detection. It is a high-quality choice with a good compromise between
detection accuracy and speed.
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Figure 11. SSD network structure.

The YOLO network uses different ideas from the other two networks, and its al-
gorithms are more direct and simpler [34]. The position of the candidate box and the
corresponding category are directly returned in the output layer. The problem of target
detection is thoroughly solved by regression. YOLO integrates target area prediction
and target category prediction into a single neural network model to achieve fast target
detection and recognition with high accuracy. The YOLO network architecture is shown in
Figure 12. The YOLO network has a very high detection speed in object detection, but the
detection accuracy rate is lower than other deep learning networks.
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Table 1 lists the target detection results verified by the three networks on the PASCAL
VOC dataset, mainly considering the average accuracy and speed.

Table 1. Comparison of Deep Learning Object Detection Network Effects.

Network Average Accuracy(%) Speed(FPS/s)

Faster R-CNN 70.4% 17
SSD 75.8% 22

YOLO 69% 40

From Table 1, it can be seen that the recognition rate of Faster R-CNN is the best at
present, followed by SSD, and the recognition rate of YOLO is lower; the recognition speed
of YOLO is the fastest, in fact, and SSD and Faster R-CNN are the slowest. In order to verify
the effect of the three networks in actual application scenarios, this paper uses self-built
remote sensing image data to compare the three networks. The experimental platform is
shown in Table 2.

Table 2. Experimental platform.

Name Performance Index

Processor Xeon E5-2630V4, 2.2G10HE25M
Memory SamsungDDR4 RECC 2400MHz 32G

System disk INTEL SSD 3610 400G
Display card ASUSSTRIX-GTX1080TI O11G-GAMING

The specific detection results of the six types of targets tested on the above platforms
include ports, tanks, ships, aircraft, airports, and bridges, as shown in Table 3.
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Table 3. Verification of self-built dataset target detection network performance.

Target
Category

Total
Pictures

Training
Pictures

Test
Pictures

Recognition Rate Recognition Speed

Faster R-CNN SSD YOLO Faster R-CNN SSD YOLO

Port 1121 800 120 87% 85% 78% 480 ms 225 ms 180 ms
Oil tank 500 350 60 84% 80% 65% 650 ms 274 ms 210 ms

Ship 780 600 120 85% 84% 70% 520 ms 215 ms 174 ms
Aircraft 760 640 50 91% 88% 71% 540 ms 203 ms 194 ms
Airport 500 420 40 90% 85% 64% 600 ms 195 ms 178 ms
Bridge 828 740 60 88% 86% 72% 580 ms 240 ms 215 ms

As shown in Table 4, the experimental results show that Faster R-CNN obtains the
best recognition results. There are some misclassification cases, but the misclassification
categories are generally evenly distributed in other categories, and there is no error in a
particular category, indicating that the proposed feature is universal. However, its inference
speed is significantly slower than the SSD network.

Table 4. Confusion matrix-based Verification target detection network performance.

Port Oil Tank Ship Aircraft Airport Bridge

Port 102 9 0 0 9 0
Oil tank 0 54 0 3 3 0

Ship 0 9 103 0 8 0
Aircraft 2 2 1 45 0 0
Airport 1 2 2 0 35 0
Bridge 0 2 1 2 0 55

Comprehensive analysis shows that the SSD network has the best performance, which
not only ensures the accuracy similar to Faster R-CNN but also achieves the same speed
as the YOLO network. Therefore, this article chooses the SSD network as the detection
network of the UAV ground station target detection system.

The target size of the aerial drone is less than 40 × 40 pixels at the minimum magnifi-
cation. The SSD network has a limited effect on small target detection. The combination of
the convolutional layer and the pooling layer in the feature extraction network design and
downsampling the image multiple times will greatly reduce the image scale. The input
size of a classic SSD network is 300 × 300, and the images collected by a drone usually
have a higher resolution. The image size collected in this paper is 1920 × 1080 pixels, and
the target only occupies a very small part of the image. When using an SSD network, the
image must be scaled. The high-resolution image will lose a large amount of information
after scaling and cause serious deformation of the target. Then it will be down-sampled
multiple times by the network, resulting in loss of target features. Ultimately, there is very
little target feature information for detection and recognition, which seriously affects the
accuracy of detection. To this end, this article adopts the strategy of local detection of the
image, first scaling the image to 900 × 900 pixels, and then dividing the image from top to
bottom and left to right into nine subregions of 300 × 300. The SSD network processes only
a sub-region of the current video frame image and completes the entire image detection
after nine local processings. The specific process is shown in Figure 13.
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The SSD target detection network sequentially processes the local areas of each frame
of the image. For example, the first frame of image processing detects the target of the
first 300 × 300 area in the upper left corner, and the next frame sequentially processes the
second upper left local areas of the second frame. The process is looped in turn until the
local area detection of the ninth frame image is completed, and the next cycle is restarted.
That is, a global detection is completed in nine frames.

By using the local loop detection method, the information loss of the original image is
avoided from the input. This is especially of great significance for small target information
retention. The target position information and slice information detected in each local
area are stored in nine sub-shared memories corresponding to a shared memory, so as to
facilitate further integration of the detection results in the future. This strategy can greatly
improve the detection accuracy of local area targets, but it discards most of the global
information. When the detection results are integrated and displayed at the end of each
cycle, most target position and category information belong to historical frames. The drone
is highly mobile, and the relative speed between the target and the drone is large due
to its fast-moving speed, and the speed of the load acquisition image is higher than the
speed of one cycle processing. This makes the displayed target position information lag
behind the targets contained in the current frame image, and there is a large delay in visual
observation. In view of the above problems, this paper proposes a global target detection
information compensation strategy based on template matching.

3.2. Compensation of Global Target Detection Information Based on Template Matching

In order to meet the visual real-time requirements of drone video detection, a multi-
threading mechanism is added on the basis of the above research. At the same time, in order
to facilitate the operator to perform subsequent advanced command operations based on
the detection information, information such as the target position and category should be
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able to be displayed continuously and steadily. Therefore, further compensation detection
processing is required for the areas not detected in each of the above frames. Considering
the above two points, this paper combines the multi-threading mechanism and template
matching detection algorithm to fine-tune and compensate for the target information
detected by the SSD. The specific implementation process is shown in Figure 14.
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As shown in Figure 15, the main idea of template matching is with different scale-
based image matching. A template matching algorithm is the easiest and fastest specific
target matching technology in pattern recognition. Knowing the target matching template
allows for search and match within the specified area to get the highest similar target
position. The specific matching process is shown in Figure 15.
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Start n multi-threads to monitor n shared memories. In this paper, the image is divided
into nine local areas, so nine processes are started to manage shared memory. Each thread
is responsible for the information compensation of a local area and uses nine template
matchings to perform target detection on the local area. The multi-threaded template
matching process and the SSD local area target detection process run independently. How-
ever, information is shared through shared memory, which mainly includes target location
information, category information, target slices, etc.

The template image is T, the original image is I, the most similar area to the template T
is searched in the image I, and the final matched matrix is saved as R. The specific algorithm
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selected in this paper is the normalized correlation coefficient matching method. The image
matrix obtained by matching at position (x, y) is R(x, y):

R(x, y) =
∑x′ ,y′ (T′(x′, y′)I′(x + x′, y + y′))√

∑x′ ,y′ I′(x + x′, y + y′)2
(11)

Among them, the template image comes from two parts, one is the local area detection
result of the SSD; the other is the last matching result. The coordinates of the target
position detected in the local area are coordinates within the range of 300 × 300. In order to
determine the template matching search position range, the local coordinates are mapped
to the corresponding position of the original image of 1920 × 1080 pixels. The search area
for template matching is determined to be centered on the target global coordinate center
point position in the template, and the length and width are 5–8 times the range of the
original template. If the search range is set too large, it will increase the matching time. The
accumulation of time caused by multi-target matching will cause system delay; due to the
relative movement between the drone load and the target, the search range is too small, and
the target is not within the specified search range, the match will fail. The matching range
of this paper is determined by many experiments, and the matching similarity threshold is
set to 0.6.

Multi-process image templates are matched and synchronized without interference.
When the SSD performs local target detection, nine processes monitor the corresponding
changes in the corresponding nine shared memory sub-regions simultaneously. When the
local detection of the SSD is completed, the corresponding shared memory information is
updated to the newly detected target information, and the threads monitoring this shared
memory area synchronize and update the template to continue matching. Otherwise,
the template image and location information are unchanged, and template matching is
performed continuously. Regardless of whether the subsequent detection successfully
detects the target, once the first template matching starts, it will not end until the entire
system detection ends. The SSD local detection is only responsible for updating the
template for the corresponding thread template.

After this operation, the detection result of each frame of image includes the current
local detection target of the SSD and other regional target matching results after template
matching using the historical frame template. It makes full use of all the information of each
frame image to make the detection result more fine and stable, and uses the multi-thread
mechanism to improve the overall detection speed of the system, and achieves a balance
between detection accuracy and speed.

3.3. Global Information Integration and Ground Station Display

The detection and matching results between different local areas have a large number
of duplicates. After integrating the results of the nine threads, Non-Maximum Suppression
(NMS) processing is used to filter out multiple repeated boxes of the same target. This
sorts multiple positioning boxes of the same target according to the category confidence
and discards the positioning boxes whose IOU with the maximum confidence positioning
box is greater than 0.7. Then, the remaining frame information after filtering the duplicate
frames is sent to the shared memory. The ground station display system displays the target
detection results of the input video in real-time by accessing the shared memory. The
display interface design of this article is shown in Figure 16.
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Figure 16. Drone ground station display interface.

4. Experimental Verification of Algorithm Performance
4.1. Verification Conditions

(1) Data conditions
The data used in this article was obtained from an actual shooting at a test site in

September 2018. Using a small rotary drone with a field of view angle of 20 degrees at a
load field of view, a horizontal rotation speed of 5 degrees, and a vertical distance of 100 m
from the ground to the target, a high-resolution image with a size of 1920 × 1080 pixels
was obtained. The target to be tested in this paper is a cross-shaped target cloth with black
or red lines on a white background. The actual size of the target cloth is 3 m × 3 m, which
is uniformly identified as the target cloth. The relative motion between the target and
the drone is generated by the drone flying at a constant speed. The target scale change
is caused by the change in the distance of the drone load camera. This article contains
the target cloth data when the camera focal length is changed from one to ten times. The
specific target appearance is shown in Figure 17.
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(2) Operation platform
In order to verify the effectiveness of the method, the software and hardware platforms

used in this paper are: CPU: Intel(R) Core(TM) i7-6700 CPU @ 3.4 GHz; Memory: 16.0 GB;
GPU: GeForce GTX 980; Display memory: 8.0 GB; System version: Windows 7 Professional.
The deep learning framework is Caffe under Windows.

4.2. Experimental Process

The specific verification process of this paper is shown in Figure 18.
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The test is divided into two processes: SSD target detection network model training
and testing the entire system using this model. Among them, before training the model, a
training data set needs to be constructed. The training set samples are scaled to a size of
900 × 900 and then cropped into nine sub-region samples of 300 × 300 pixels arranged in a
uniform order. The sub-sample target category and position information are labeled. The
format of the labeled text is used by the standard Pascal VOC dataset (XML format). The
target category is “target”.

The experimental dataset contains 14,817 samples, which are randomly divided into
a training set and a validation set according to a ratio of 8:2. The number of training sets
is 11,854, and the number of validation sets is 2963. The data covers images with the
focal length of the camera ranging from one to ten times to adapt to target detection at
multiple scales. The stochastic gradient descent (SGD) optimization method is used to
solve the minimum loss function. The total number of training sessions is 80,000. Other
training hyperparameter settings are shown in Table 5. Among them, the initial value of
the learning rate is 0.001, and after 40,000 training sessions, the learning rate decays to 1/10
of the original.

Table 5. Hyperparameter settings.

Hyperparameter Learning Rate Batch Size Gamma Momentum

Initial value 0.001 16 0.1 0.9

The test uses video captured by the drone as input. A piece of video containing 1 to
10 times a constant-speed video for 1 min and a total of 15,000 frames was selected. After
starting four processes at the same time, the real-time video detection effect was observed
and the detection result was saved locally for subsequent result analysis.

4.3. Experimental Results and Analysis

The detection results of continuous video targets using the UAV downward-looking
ground station detection system designed in this paper are shown in Figure 19. Figures of
detection results under one to ten times focal length changes are shown.
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Figure 19. Target detection results under change of focal length.

From the detection results shown in Figure 19, when the field of view is 20 degrees in
non-vertical shooting, the shape of the target changes greatly. Before the focal length of the
load camera is enlarged to five times, the target has missed detection, especially in the case
of a large change in the appearance of the target, the missed detection is large. In addition,
the smaller the focal length, the larger the number of targets in the field of view, and the
more background interference objects, the greater the possibility of misdetection. After the
focal length is increased to five times, the target’s appearance becomes clearer, the features
become more prominent, the detection accuracy is relatively high, and the possibility of
missed detection and false detection is also low. The test results for each multiple are
shown in Table 6. Among them, the accuracy of target detection before five times the
distance is less than 80%, and the frequency of false detection is higher; the accuracy of
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target detection after seven times the distance is higher than 95%, and the detection effect
is better.

Table 6. Statistics of test results at different magnifications.

Double Distance Number of
Test Images

Number of
Test Targets

Number of
Detection Targets

Number of
False Detections

Detection
Accuracy

One 375 2005 1684 201 74.0%
Two 375 2670 2426 343 78.0%

Three 375 1850 1549 101 78.3%
Four 375 2280 1935 134 79.0%
Five 375 2133 1879 110 82.9%
Six 375 1170 1030 23 86.0%

Seven 375 938 892 0 95.0%
Eight 375 1175 1126 7 95.8%
Nine 375 873 847 1 96.9%
Ten 375 617 598 0 96.9%

The test time drawing of 3750 frames of images randomly selected is shown in
Figure 20. The calculation shows that the average time for a test is 56.6 ms. When the
system processing time fluctuates greatly, it is affected by multi-thread scheduling. The
processing time of most images is below 75 ms, which can meet the real-time requirements
of actual video detection.
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For airport targets, the test set is 100 test images containing airport targets. As can be
seen from Figure 21, after 30 epochs, the recognition accuracy of the system for the airport
in the test image reaches 86%; for bridge targets, the test set is 120 test images including
airport targets. As can be seen from Figure 22, after 30 epochs, the bridge recognition
accuracy reaches 86%; for bridge targets, the test set is 240 test images including airport
targets. As can be seen from Figure 23, after 30 epochs, the port recognition accuracy
reaches 87%.



Remote Sens. 2021, 13, 4377 22 of 25Remote Sens. 2021, 13, x FOR PEER REVIEW 22 of 25 
 

 

 
Figure 21. Airport target recognition accuracy. 

 
Figure 22. Accuracy of bridge target recognition. 

 
Figure 23. Accuracy of port target recognition. 

This section gives the comparison between the model designed in this paper and 
other popular target detection models and gives the acceleration effect of this model on 

Figure 21. Airport target recognition accuracy.

Remote Sens. 2021, 13, x FOR PEER REVIEW 22 of 25 
 

 

 
Figure 21. Airport target recognition accuracy. 

 
Figure 22. Accuracy of bridge target recognition. 

 
Figure 23. Accuracy of port target recognition. 

This section gives the comparison between the model designed in this paper and 
other popular target detection models and gives the acceleration effect of this model on 

Figure 22. Accuracy of bridge target recognition.

Remote Sens. 2021, 13, x FOR PEER REVIEW 22 of 25 
 

 

 
Figure 21. Airport target recognition accuracy. 

 
Figure 22. Accuracy of bridge target recognition. 

 
Figure 23. Accuracy of port target recognition. 

This section gives the comparison between the model designed in this paper and 
other popular target detection models and gives the acceleration effect of this model on 

Figure 23. Accuracy of port target recognition.

This section gives the comparison between the model designed in this paper and other
popular target detection models and gives the acceleration effect of this model on the actual
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hardware platform after pruning and quantization. The floating point model in this paper
is trained on the VOC dataset [37]; the number of training rounds was 80. Standard data
enhancement methods were used, including random clipping, perspective transformation,
and horizontal flipping. In addition, a mixup data enhancement method was used [42].
The Adam [41] optimization algorithm and cosine annealing learning rate strategy are
adopted. The initial learning rate is 4 × 10−3 and the small batch size is 16. As shown in
Table 7, the network at 512 × the input image size of 512, the VOC data set reaches 78.46%
of the test set map. The model calculation amount is 4.24 G Macs and the model parameter
amount is 6.775 M. See Table 7 for a comparison with other network models with regard to
accuracy, calculation, and parameters. The proposed algorithm has high accuracy and low
computation complexity.

Table 7. Comparison of accuracy, calculation, and parameters between this model and other network models.

Methods mAP Calculated Quantity (MACS) Parameter Quantity

YOLOv3 [37] 76.2% 49.8 G 59.25 M
Tiny YOLOv3 [37] 61.3% 8.36 G 8.5 M
YOLO Nano [43] 71.7% 6.92 G 1.1 M
Proposed 78.46% 4.24 G 6.775 M

As shown in Table 8, it can be seen from the confusion matrix that the categories of
the misclassified samples in the proposed algorithm are generally evenly distributed in
other categories. The experimental results show that the proposed features are universal
and do not specifically target the errors of a certain category.

Table 8. Confusion matrix of the proposed target detection network performance.

Port Oil Tank Ship Aircraft Airport Bridge

Port 96 9 0 6 9 0
Oil tank 3 48 4 2 3 0

Ship 0 9 95 7 8 0
Aircraft 2 2 1 40 3 2
Airport 1 2 2 2 32 1
Bridge 4 2 1 2 4 47

All model data in Table 7 are in a 512 × 512 input image size, indicators on the VOC
2007 test set. Through comparison, the accuracy of the network model proposed in this
paper is not much different from that of the YOLOv3 model, but the amount of calculation
and parameters are greatly reduced. Compared with the YOLOv3 and YOLO Nano, the
model in this paper still has great advantages in accuracy and calculation.

5. Conclusions

In this paper, aiming at the low accuracy of UAV video target detection and the
inability to meet timelines, a complete UAV target detection system can be designed
for ground stations. This system uses the combination of deep learning and traditional
template matching to fully mine the local and global information of the image, and cleverly
uses mechanisms such as multi-process and multi-thread to complete the rapid processing
of information synchronization. The average detection rate is 86.1%, and the average
detection time is 56.6 ms. Regardless of accuracy or processing speed, it can meet the actual
application requirements.
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