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Abstract: In recent years unmanned aerial vehicles (UAVs) have emerged as a popular and cost-
effective technology to capture high spatial and temporal resolution remote sensing (RS) images for a
wide range of precision agriculture applications, which can help reduce costs and environmental
impacts by providing detailed agricultural information to optimize field practices. Furthermore,
deep learning (DL) has been successfully applied in agricultural applications such as weed detection,
crop pest and disease detection, etc. as an intelligent tool. However, most DL-based methods place
high computation, memory and network demands on resources. Cloud computing can increase
processing efficiency with high scalability and low cost, but results in high latency and great pressure
on the network bandwidth. The emerging of edge intelligence, although still in the early stages,
provides a promising solution for artificial intelligence (AI) applications on intelligent edge devices
at the edge of the network close to data sources. These devices are with built-in processors enabling
onboard analytics or AI (e.g., UAVs and Internet of Things gateways). Therefore, in this paper,
a comprehensive survey on the latest developments of precision agriculture with UAV RS and
edge intelligence is conducted for the first time. The major insights observed are as follows: (a) in
terms of UAV systems, small or light, fixed-wing or industrial rotor-wing UAVs are widely used in
precision agriculture; (b) sensors on UAVs can provide multi-source datasets, and there are only a
few public UAV dataset for intelligent precision agriculture, mainly from RGB sensors and a few
from multispectral and hyperspectral sensors; (c) DL-based UAV RS methods can be categorized
into classification, object detection and segmentation tasks, and convolutional neural network and
recurrent neural network are the mostly common used network architectures; (d) cloud computing is
a common solution to UAV RS data processing, while edge computing brings the computing close to
data sources; (e) edge intelligence is the convergence of artificial intelligence and edge computing,
in which model compression especially parameter pruning and quantization is the most important
and widely used technique at present, and typical edge resources include central processing units,
graphics processing units and field programmable gate arrays.

Keywords: precision agriculture; remote sensing; unmanned aerial vehicles; deep learning; high
performance; mobile devices; edge intelligence; model compression

1. Introduction

Agriculture is the foundation of society and national economies, and one of the most
important industries in China. Acquiring timely and reliable agriculture information such
as crop growth and yields is crucial to the establishment of related policies and plans for
food security, poverty reduction and sustainable development. In recent years precision
agriculture (PA) has developed rapidly, which refers to a management strategy that gathers,
processes and analyzes temporal, spatial and individual data in agricultural production.
This data is combined with other information to support management decisions with
estimated variability for improved resource use efficiency, productivity, quality, profitability
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and sustainability of agricultural production according to the International Society of
Precision Agriculture (ISPA) [1,2]. It can help to reduce costs and environmental impacts
by providing farmers with detailed spatial information to optimize field practices [3,4].

The traditional way to get the prerequisite knowledge for PA depends on labor-
intensive and subjective investigation, which consumes a large amount of human time and
financial resources. Since remote sensing (RS) allows for a high frequency of information
gathering without making physical contact at a low cost [5], it has been widely used
as a powerful tool for rapid, accurate and dynamic agriculture applications [6,7]. RS
data are mainly collected by three kinds of platforms, i.e., spaceborne, airborne, and
ground-based [5]. Spaceborne includes satellite RS and can provide large-scale spatial
coverage, but can suffer from fixed and long revisit periods and cloud occlusion, limiting
its application for fine-scale PA [8,9]. Additionally, relatively low spatial and temporal
resolution and high equipment costs become critical bottlenecks [10]. Ground-based remote
sensors (onboard vehicles, ships, fixed or movable elevated platforms) are suitable for
small scale monitoring. In comparison, airborne platforms can collect data with high
spatial resolution and flexibility in terms of flight configurations such as observation
angles, flight routes [7]. An unmanned aerial vehicle (UAV) is a powered, aerial vehicle
without any human operator, which can fly autonomously or be controlled remotely with
various payloads [11]. Due to their advantages in terms of flexible data acquisition and
high spatial resolution [12], UAVs are quickly evolving and provide a powerful technical
approach for many applications in PA, for example, crop state mapping [13,14], crop
yield prediction [15,16], diseases detection [17,18], weed management [19,20] rapidly
and nondestructively.

Compared with traditional mechanism-based methods, machine learning (ML) meth-
ods have long been applied in a variety of agriculture applications to discover patterns
and correlations due to their capability to address linear and non-linear issues from
large numbers of inputs [7,21]. For example, Su et al. [22] proposed a support vector
machine-based crop model for large-scale simulation of rice production in China, and
Everingham et al. [23] utilize a random forest model to predict sugarcane yield with sim-
ulated and observed variables as inputs. An ML pipeline typically consists of feature
extraction and a classification or regression module for prediction, and its performance
heavily relies on the handcrafted feature extraction techniques [24,25]. In the past years,
with the development of computing and storage capability, deep learning (DL), which
is composed of “deep” layers to learn the representation of data with multiple levels of
abstraction and discovers intricate structure in large datasets by using the backpropagation
algorithm [26], has improved the state-of-the-art in a variety of tasks. This includes com-
puter vision, natural language processing, speech recognition etc. In the RS community,
even for typical PA applications with UAV data (e.g., weed detection [27], crops and plants
counting [28], land cover and crop type classification [29]), DL has emerged as an intelligent
and robust tool [30].

DL has achieved success with high accuracy for PA, for instance, the DL model in [27]
provides much better weed detection results than ML methods in the bean field with a
performance gain greater than 20%, and more PA applications boosted by DL have shown
similar promising superiority. However, the successful implementation of DL comes at
the cost of high computational, memory and network requirements at both the training
and inference stages [31]. For example, the VGG-16, an early classic convolutional neural
network (CNN) used for classification contains around 140 million parameters, consumes
over 500MB of memory and has 15 billion floating point of operations (FLOPs) [32]. It is
challenging to deploy deep neural network models in scenarios onboard mobile airborne
and spaceborne platforms with limited computation, storage, power consumption, and
bandwidth resources [33]. To meet the computational requirements of DL, a common way
is to utilize cloud computing, where data are moved from the data sources located at the
network edge such as smartphones and internet-of-things (IoT) sensors to the cloud [31].
However, the cloud-computing mode might put great pressure on network bandwidth
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and cause significant latency when moving massive data across the wide area network
(WAN) [34]. Besides the above, privacy leakage is also a major concern [35]. The emerging
of edge computing fulfills the above-mentioned issues.

According to the Edge Computing Consortium (ECC), edge computing is a distributed
open platform at the network edge, close to the things or data sources, and integrating the
capabilities of networks, storage and applications [36]. In this new computing paradigm,
data does not need to be sent to a Cloud or other remote centralized or distributed systems
for further processing. The combination of edge computing and artificial intelligence (AI)
yields edge intelligence, the next stage of edge computing. It aims to use AI technology to
empower the edge. Edge is a relative concept, which refers to any resource, storage, and
network resource from the data source to the cloud-computing center. The resources on
this path can be regarded as a continuous system. Currently, there is no formal definition
of edge intelligence internationally. Most organizations refer to edge intelligence as the
paradigm of running AI algorithms locally on an end device, with data created on the
device [34]. It enables the deployment of AI algorithms on intelligent edge devices with
built-in processors for onboard analytics or AI (e.g., UAVs, sensors and IoT gateways)
that are closer to the data sources [34,37]. However, more researchers consider that edge
intelligence should not be restricted to running AI models on edge devices or servers. A
broader definition divides edge intelligence into AI for edge (intelligence-enabled edge
computing) and AI on edge. The former tries to provide optimal solutions to key problems
in edge computing with AI technologies, while the latter focuses on the way to carry out
the entire process of building AI models, i.e., model training and inference, on the edge [38].
Zhou et al. further present a definition of six levels to fully exploit the available data
and resources across end devices, edge nodes, and cloud datacenters, thus optimizing the
performance of training and inferencing an AI model [34].

There already exist many reviews for agriculture with UAVs [2,8,9,39–41] and
DL [24,42–44]. However, the research and practice of edge intelligence are still in an
early stage, and to the best of our knowledge, there is a literature gap to review the ad-
vances combining edge intelligence and UAV RS in the PA area. Therefore, in this paper we
attempt to provide an in-depth and comprehensive survey on the latest development of PA
with UAV RS and edge intelligence. The main contributions of this paper are as follows:

1. The most relevant DL techniques and their latest implementations in PA are
reviewed in detail. Specifically, this paper gives a comprehensive publicly available UAV-
based RS datasets for intelligent agriculture, which attempts to facilitate the validation of
DL-based methods for the community.

2. The cloud computing and edge computing paradigms for the UAV RS in PA are
discussed in this paper.

3. The relevant edge intelligence techniques are thoroughly reviewed and analyzed
for UAV RS in PA for the first time to the best of our knowledge. Particularly, this paper
gives a compilation of the UAV intelligent edge devices and the latest development of edge
inference with model compression in detail.

The remainder of this paper is structured as follows. Section 2 presents the application
of UAV RS technology in PA, including the relevant fundamentals of UAV systems, RS
sensors and typical applications in PA. Section 3 gives the DL methods and publicly
available datasets used in PA. Section 4 emphatically analyzes the edge intelligence for
UAV RS in PA, including the cloud and edge computing paradigms, basic concepts and
major components of edge intelligence, network model design and edge resources. Future
directions are given in Section 5 and conclusions are drawn in Section 6.
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2. UAV Remote Sensing in Precision Agriculture
2.1. UAV Systems and Sensors for Precision Agriculture

UAV systems differ in size, weight, load, power, endurance time, purpose etc., and
there are many kinds of taxonomic approaches. According to the Civil Aviation Adminis-
tration of China, UAVs mainly serve for military and civilian fields. Agriculture belongs
to the latter. In terms of the operational risk, mainly including the metrics of size, the
weight of UAVs and the ability to carry payloads when performing missions, civilian UAVs
can be divided into mini UAV, light UAV, small UAV, medium UAV, and large UAV [45].
Their major characteristics are listed in Table 1. In addition, according to the aerodynamic
features, UAVs are usually classified into fixed-wing, rotary-wing, flapping-wing and
hybrid UAVs shown in Table 2 [9,46,47]. For fixed-wing UAVs, the main wing surface that
generates lift is fixed relative to the fuselage, and the power device generates the forward
force. Rotary-wing UAVs possess power devices and rotor blades that are rotating relative
to the fuselage for generating lift during flight, and further mainly include unmanned
helicopters and multi-rotor UAVs, for instance, tricopters, quadcopters, hexacopters and
octocopters, which can take off, land and hover vertically. Flapping-wing UAVs obtain
lift and power by flapping wings up and down like birds and insects, and are suitable for
small, light and mini UAVs. The hybrid layout UAVs consists of a combination of basic
layout types, mainly including tilt-rotor UAVs and rotor/fixed UAVs. Figure 1 shows the
examples of typical UAVs.

Table 1. Categories and characteristics of UAVs according to operational risks [45].

Category Major Metrics

mini UAV empty weight < 0.25 kg, flight altitude ≤ 50 m, max speed ≤ 40 km/h
light UAV empty weight ≤ 4 kg, max take-off weight ≤ 7 kg, max speed ≤ 100 km/h
small UAV empty weight ≤ 15 kg, or max take-off weight ≤ 25 kg

medium UAV empty weight > 15 kg, 25 kg < max take-off weight ≤ 150 kg
large UAV max take-off weight > 150 kg

Table 2. Categories and characteristics of UAVs according to aerodynamic features [9,46,47].

Category Advantages Drawbacks

fixed wing long range and endurance, large load, fast
flight speed

high requirements for take-off and
landing, poor mobility, no

hovering capability

rotary wing unmanned helicopter long range, large load, hovering capability, low
requirement for lifting and landing

slow speed, difficulty in operating,
high maintenance cost

multi-rotor UAVs small in size, flexible, hovering capability, almost
no requirement for lifting and landing

short range and endurance, slow
speed, small load

flapping-wing flexible, small in size slow speed, single drive mode

hybrid flexibility in vertical take-off and landing, fast
speed, long range

complex structure, high
maintenance cost

In the agriculture RS field concerned in this paper, UAVs used are less than 116 kg
in general, and most belong to the “small” (≤15 kg) or “light” (≤7 kg) categories, and
fly lower than 1 km, i.e., at a low altitude of 100 to 1000 m or ultra-low altitude of 1 to
100 m [9,45]. On the other hand, flapping-wing UAVs and hybrid UAVs are not often
used; fixed-wing UAVs and industrial rotor-wing UAVs are the mainstream currently.
Specifically, since multi-rotor UAVs are more cost-effective than the other types, and are
generally more stable than unmanned helicopters during flight, they are the most widely
used in the PA field [8].

Besides, UAVs can be equipped with a variety of payloads for different purposes.
To capture agriculture information, UAVs used in PA are generally with remote sensors
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including RGB imaging, multispectral and hyperspectral imaging sensors, thermal infrared
sensors, light detection and ranging (LiDAR), and synthetic aperture radar (SAR) [9,48,49].
Their major characteristics and applications in PA are summarized in Table 3.
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Figure 1. Examples of typical UAVs: (a) A fixed-wing UAV “AgEagle RX60” from AgEa-
gle (https://ageagle.com/agriculture/# (accessed on 17 October 2021)); (b) An unmanned heli-
copter “Shuixing No.1” from Hanhe (http://www.hanhe-aviation.com/products2.html (accessed
on 17 October 2021)); (c) A flapping-wing UAV from the Drone Bird Company “AVES Series” (https:
//www.thedronebird.com/aves/ (accessed on 17 October 2021)); (d) A hybrid UAV “Linglong” from
Northwestern Polytechnical University (https://wurenji.nwpu.edu.cn/cpyf/cpjj1/xzjyfj_ll_.htm
(accessed on 17 October 2021)).

Table 3. The major characteristics and applications of sensors mounted on UAVs in PA.

Sensors Major Characteristics Typical Applications

RGB imaging obtain images in visible spectrum, with advantages
of high-resolution, lightweight, low-cost, easy-to-use

crop recognition, plants defects and greenness
monitoring [8,49–51]

Multispectral imager high spatial resolution at centimeter-level RS data
with multiple bands from visible to near infrared

leaf area index (LAI) estimation [52], crop
diseases and weeds monitoring and
mapping [18,53], nutrient deficiency

diagnosis [54]

Hyperspectral imager
provide a large continuous narrow wavebands

covering from ultraviolet to longwave
infrared spectra

crop species classification with similar spectral
features [55], soil moisture content

monitoring [56], crop yield estimation [57]

Thermal sensors

use the information at the emitted radiation in the
thermal infrared range of electromagnetic

spectrum [58], and provide measurements of energy
fluxes and temperatures from the earth’s surface [59]

monitoring of water stress, crop diseases and
plant phenotyping, estimation of crop yield [2],

support decision making for irrigation
scheduling and harvesting operations [60]

LiDAR

use laser as a radiation source, and works at the
wavelength of infrared to ultraviolet spectrum

generally, with advantages of narrow beams, wide
speed measurement ranges, and strong resistance to

electromagnetic and clutter interference [61]

detect individual crops [13], measure canopy
structure and height [62], predict biomass and

leaf nitrogen content [63]

SAR provide high-resolution, multi-polarization,
multi-frequency images in all weather and all day

crop identification and land cover mapping [64],
crop and cropland parameter extraction such as

soil salt and moisture [65], crop yield
estimation [66]

https://ageagle.com/agriculture/#
http://www.hanhe-aviation.com/products2.html
https://www.thedronebird.com/aves/
https://www.thedronebird.com/aves/
https://wurenji.nwpu.edu.cn/cpyf/cpjj1/xzjyfj_ll_.htm
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2.2. Application of UAV Remote Sensing in Precision Agriculture

The major objectives of PA are to increase crop yields, improve product quality, make
efficient use of agrochemical products, save energy and protect the physical environment
against pollution [47]. With the advantages of cost-effective, high-resolution imagery [67],
UAVs have now been commonly used in the PA area, mainly for monitoring [12,68–70]
and spraying [71–73]. For the former, different sensors onboard UAVs capture RS data,
which are utilized to identify specific spatial features and time variant information of crop
characteristics; for the latter, UAV systems are used to spray accurate amounts of pesticides
and fertilizers, thus to mitigate possible diseases and pests and increase crop yields and
product quality [47]. RS provides an effective tool for UAV-based PA monitoring, and the
most common related applications are as follows.

• Weed detection and mapping: As weeds have been responsible for most agricultural
yield losses, the utilization of herbicides is important in the growth of crops, but the
unreasonable use will cause a series of environmental problems. To fulfill precision
weed management [19,74], UAV RS can help to accurately locate weed areas, analyze
weed types and weed density etc., thus using herbicides at fixed points quantitatively
or applying improved and targeted mechanical soil tillage [27]. Weeds detection
and mapping tries to find/map the locations of weeds in the obtained UAV RS im-
ages, and is achieved generally based on the different spatial distribution [27,75],
shape [76], spectral signatures [53,77–79], or their combinations [80] of weeds com-
pared to normal crops. Accordingly, the most important sensors as UAV payload
are mainly RGB sensors [27,76,77,80], multispectral sensors [53,78] and hyperspectral
sensors [79] ADDIN.

• Crop pest and disease detection: Field crops are subjected to the attack of various
pests and diseases at stages from sowing to harvest, which affects the yield and quality
of crops and become one of the main limits to agricultural production in China. As
the main part of pest and disease management, early detection of pests and diseases
from UAV RS images allows efficient application of pesticides and an early response
to the production costs and environmental impact. Crop pest and disease detection
tries to locate the possible pest or disease infected areas on leaves from observed UAV
RS images, and the detection basis is mainly their spectral difference [81]. To obtain
more details of pests and diseases on leaves, UAVs are usually with low flight height
for observations with high spatial or spectral resolution [82–84]. Commonly mounted
sensors are RGB sensors [83,85–87], multispectral sensors [88], infrared sensors [89]
and hyperspectral sensors [82,84].

• Crop growth monitoring: RS can be used to monitor group and individual characteris-
tics of crop growth, e.g., crop seedling condition, growth status and changes. Crop
growth information monitoring is fundamental for regulating crop growth, diagnosing
crop nutrient deficiencies, analyzing and predicting crop yield etc., and can provide
decision-making basis for agricultural policy formulation and food trade. Crop growth
monitoring is to build a multitemporal crop model to allow for comparison of differ-
ent phenological stages [90], and UAV provides a good platform for obtaining crop
information [91]. The crop growth is generally quantified by several indices, such
as LAI, leaf dry weight, leaf nitrogen accumulation, etc., in which multiple spectral
bands are usually needed. As a relatively more comprehensive task, sensors onboard
UAVs are usually multispectral/hyperspectral ones [91,92] or the combination of RGB
and infrared [93] or LiDAR [63].

• Crop yield estimation: Accurate yield estimates are essential for predicting the volume
of stock needed and organizing harvesting operations. RS information can be used as
input variables or parameters to directly or indirectly reflect the influencing factors in
the process of crop growth and yield formation, alone or in combination with other
information for crop yield estimation. It tries to estimate the crop yield by observing
the morphological characteristics of crops in a non-destructive way [16]. Similar to the
task of crop growth monitoring, crop yield estimation also relies on multiple spectral
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bands for better and richer information. Therefore, UAVs are usually equipped with
multimodal sensors, for example, hyperspectral/multispectral [15,16,94–97], thermal
infrared [95], and combination with RGB [15,16,94–97] or SAR [66].

• Crop type classification: Crop type maps are one of the most essential inputs for
agriculture tasks such as crop yield estimation, and accurate crop type identification
is important for subsidy control, biodiversity monitoring, soil protection, sustainable
application of fertilizer etc. There exist practices to explore the discrimination of
different crop types from RS images in complex and heterogeneous environments.
Crop type classification task tries to discriminate different types of crop into a map
based on the information captured by RS data, and is similar to land cover/land
use classification [98]. According to the demands of different tasks, it can be imple-
mented from different spatial scales. For larger scale classification, SAR sensors are
used [64,99,100], and for smaller scale, RGB images from UAVs can be utilized [101],
or with SAR data fused [102].

3. Deep Learning in Precision Agriculture with UAV Remote Sensing
3.1. Deep Learning Methods in Precision Agriculture

DL is a subset of artificial neural network (ANN) methods in machine learning. DL
consists of several connected layers of neurons with activations like ANNs, but with
more hidden layers and deeper and more complex combinations, which is responsible for
obtaining better learning patterns than a common ANN. The concept of DL is proposed in
2006 by Hinton et al. [103] in which key issues for deep ANN training are solved. With
the advance of computational capacity of computer hardware and the availability of large
amounts of labeled samples, the massive training and inference of DL become possible and
efficient, which makes DL outperform traditional ML methods in a variety of applications.
In the last decade, DL methods have gained increasingly more attention, and become the
de facto mainstream of ML. More fundamental details of DL models such as the activation
functions, loss functions, optimizers, basic structures are referred to [26].

According to the data type processed and the type of network architectures, different
types of DL models are designed and representative ones are CNN, recurrent neural
network (RNN), and generative adversarial network (GAN) etc. These three types of
network architectures are the most widely used in agriculture applications, especially for
the UAV RS. CNNs are designed to deal with grid-like data, such as images, and it is
therefore very suitable for supervised image processing and computer vision applications.
It is usually composed of three distinct hierarchical structures, such as convolutional layers,
pooling layers, and fully connected layers. Typical CNN architectures are AlexNet [104],
GoogleNet [105], and ResNet [106] etc. RNNs, as supervised models, have also been
applied to deal with time-series data via modeling time-related features. One typical RNN
architecture is long short-term memory with its basic unit remembering information from
arbitrary time intervals. Another network architecture that is popular and successful in
recent years is GAN [107]. A GAN model consists of two sub-networks, one is generative
network and the other is discriminative network. Its main idea comes from Zero-Sum
Game, in which the generative network tries to generate samples as vivid as possible and
the discriminative network tries to discriminate the fake ones and real ones. GANs have
also been applied to image-to-image translation [108,109], sample augmentation [110,111]
in the field of RS.

In UAV RS scenarios, most applications utilize images captured by cameras as their
data inputs, i.e., they are computer vision related tasks. In this way, UAV RS tasks in
PA that uses DL methods (mainly CNN) can be divided into three typical and principal
computer vision tasks: classification, detection and segmentation [112].

• Classification tries to predict the presence/absence of at least one object of a particular
object class in the image, and DL algorithms are required to provide a real-valued con-
fidence of the object’s presence. Classification methods are mainly used to recognize
crop diseases [86,113,114], weed type [27,115,116], or crop type [117,118].
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• Detection tasks try to predict the bounding box of each object of a particular object
class in the image with associated confidence, i.e., answer the question “where are
the instances in the image, if any?” It means that the extracted object information is
relatively more precise. Typical applications are finding the crops with pests [119]
or other diseases [120], locating the weeds in the images [121,122], counting the crop
number for yield estimation [123–125] or disaster evaluation [126], etc.

• Segmentation is a task that predicts the object label (for semantic segmentation) or
instance label (for instance segmentation) of each pixel in the test image, which can be
viewed as a more precise classification for each pixel. It can not only locate objects, but
also obtain their pixels at a finer-grained level. Therefore, segmentation methods are
usually used to accurately locate features of interest in images. Semantic segmentation
can help locate crop leaf diseases [127,128], generating weed maps [76,78,129], or
assessing crop growth [130,131] and yields [132], while instance segmentation can
detect crop and weed plants [133,134], or conduct crop seed phenotyping [135] at a
finer level.

Overall, the three principal kinds of computer vision techniques have played a crucial
role in UAV-based RS for PA and support various typical applications as mentioned in
Section 2.2, mainly including crop pest and disease detection, weed detection and mapping,
crop growth monitoring and yield estimation, crop type classification etc. Table 4 shows a
compilation of typical examples in PA using DL methods.

3.2. Dataset for Intelligent Precision Agriculture

The sensors integrated with a UAV depend on the purpose, size, weight, power
consumption etc. A number of reviews discuss the sensors on UAVs in the PA field, and
to the best of our knowledge, only Zhang et al. [158] listed some datasets in agricultural
dense scenes, but whether these datasets can be publicly available are not indicated. Hence,
in this paper we give a compilation of publicly available UAV dataset with labels for the
PA applications together with their descriptions including the platform, data type, major
applications and links in Table 5, which attempt to facilitate the development, testing and
comparison of relevant DL methods. We also summarized the available datasets with
labels for related tasks from sensors onboard satellites, which may be used to obtain a
pre-trained model.
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Table 4. DL-based methods for typical UAV RS applications in PA.

Area Task Specific Application Type Model Reference

Crop pest and disease
detection

Classification
Soybean leaf diseases recognition CNN Inception, VGG19, Xception, Resnet-50 [86]

Classifying fusarium wilt of radish CNN VGG-A [113]
Detection of helminthosporium leaf blotch disease CNN Customize CNN [114]

Object
detection

Detection for pine wilt disease CNN YOLOv4 [120]
Identification of fruit tree pests CNN YOLOv3-tiny [119]
Recognition of spraying area CNN Customize CNN [136]

Semantic
segmentation

Quantitative phenotyping of northern leaf blight CNN Mask R-CNN [127]
Vine disease detection CNN VddNet [128]

Field weed density evaluation CNN Modified U-Net [129]

Weed detection and
mapping

Classification

Mapping of weed species in winter wheat crops CNN Modified Resnet18 [115]
Weed detection in line crops CNN Resnet18 [27]

Mid-to late-season weed detection CNN MobilenetV2 [122]
Weed classification CNN Resnet50 [116]

Detecting rumex obtusifolius weed plants CNN AlexNet [121]
Object

detection Mid-to late-season weed detection CNN SSD, Faster R-CNN [122]

Semantic
segmentation

Large-scale semantic weed mapping CNN Modified SegNet [78]
Weed mapping CNN FCN [76]

Real-time weed mapping CNN FCN [137]
Identification and grading of maize drought CNN Modified U-Net [138]

Crop growth
monitoring and crop

yield estimation

Classification

Yield assessment of paddy fields CNN Inception [139]
Rice grain yield estimation at the ripening stage CNN AlexNet [16]

Identification of citrus trees CNN Customize CNN [134]
Count plants and detect plantation-rows CNN VGG19 [140]

Counting and geolocation citrus-trees CNN VGG16 [141]

Object
detection

Strawberry yield prediction CNN Faster R-CNN [124]
Yield estimation of citrus fruits CNN, RNN Faster R-CNN [123]

Growing status observation for oil palm trees CNN Faster R-CNN [142]
Plant identification and counting CNN Faster R-CNN, YOLO [143]

Crop detection for early-season maize stand count CNN Mask Scoring RCNN [144]

Semantic
segmentation

Predict single boll weight of cotton CNN FCN [132]
Segmenting purple rapeseed leaves for nitrogen

stress detection CNN U-Net [131]

Counting of in situ rice seedlings CNN Modified vgg16 + customize
segmentation network [145]
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Table 4. Cont.

Area Task Specific Application Type Model Reference

Crop type
classification

Classification
Automatic classification of trees CNN GoogLeNet [117]
Identifying heterogeneous crops CRF SCRF [118]

Rice seedling detection CNN VGG16 [146]

Object
detection

Augmenting bale detection CNN, GAN CycleGAN, Modified YOLOv3 [147]
Phenotyping in citrus CNN YOLOv3 [148]

Detection of banana plants CNN Customize CNN [149]
Automatic tobacco plant detection CNN Customize CNN [150]

Detection of maize tassels CNN Tassel region proposals based on
morphological processing + VGG16 [151]

Detection of maize tassels CNN Faster R-CNN [152]
Frost management in apple orchard CNN YOLOv4 [153]

Semantic
segmentation

Soil and crop segmentation CNN Customize CNN [154]
Vegetable mapping RNN Attention-based RNN [155]
Crop classification CNN SegNet [156]

Semantic segmentation of citrus orchard CNN FCN, U-Net, SegNet, DDCN,
DeepLabV3+ [130]

UAV scouting for rice lodging assessment CNN EDANet [157]

Table 5. A compilation of publicly available datasets with labels for PA applications.

Source Dataset Platform Data Types Applications Dataset Links

UAV

WHU-HI [159] DJI Matrice 600 Pro &
Leica Aibot X6 V1 hyperspectral Accurate crop classification and

hyperspectral image classification
http://rsidea.whu.edu.cn/resource_WHUHi_

sharing.htm (accessed on 17 October 2021)

RiceSeedlingDataset [146] DJI Phantom 4 Pro & DJI
Zenmuse X7 RGB Rice object detection, rice

seedling classification

https:
//github.com/aipal-nchu/RiceSeedlingDataset

(accessed on 17 October 2021)
Purple rapeseed leaves

dataset [131] Matrice 600 RGB Segmentation of purple rapeseed leaf https://figshare.com/s/e7471d81a1e35d5ab0d1
(accessed on 17 October 2021)

Stewart_NLBimages_2019 [127] DJI Matrice 600 s RGB Northern Corn Leaf Blight detection
https://datacommons.cyverse.org/browse/iplant/
home/shared/GoreLab/dataFromPubs/Stewart_
NLBimages_2019 (accessed on 17 October 2021)

Field images of maize annotated
with disease symptoms [160] DJI Matrice 600 s RGB Corn disease detection https://osf.io/p67rz/ (accessed on 17 October 2021)

http://rsidea.whu.edu.cn/resource_WHUHi_sharing.htm
http://rsidea.whu.edu.cn/resource_WHUHi_sharing.htm
https://github.com/aipal-nchu/RiceSeedlingDataset
https://github.com/aipal-nchu/RiceSeedlingDataset
https://figshare.com/s/e7471d81a1e35d5ab0d1
https://datacommons.cyverse.org/browse/iplant/home/shared/GoreLab/dataFromPubs/Stewart_NLBimages_2019
https://datacommons.cyverse.org/browse/iplant/home/shared/GoreLab/dataFromPubs/Stewart_NLBimages_2019
https://datacommons.cyverse.org/browse/iplant/home/shared/GoreLab/dataFromPubs/Stewart_NLBimages_2019
https://osf.io/p67rz/
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Table 5. Cont.

Source Dataset Platform Data Types Applications Dataset Links

RSC [145] DJI S1000 RGB Rice counting
https:

//github.com/JintaoWU/RiceSeedingCounting
(accessed on 17 October 2021)

weedMao [78] DJI Inspire2 multispectral Weed mapping
https://github.com/viariasv/weedMap/tree/86bf4
4d3ecde5470f662ff53693fadc542354343 (accessed on

17 October 2021)

oilPalmUav [142] Skywalker X8 RGB Oil palm growth status monitoring https://github.com/rs-dl/MOPAD (accessed on
17 October 2021)

Spaceborne or
airborne platform

HRSCD [161] airplane RGB Land cover mapping, land cover
change monitoring

https://ieee-dataport.org/open-access/hrscd-high-
resolution-semantic-change-detection-dataset

(accessed on 17 October 2021)

CSIF [162] TERRA & AQUA multispectral Calculation of chlorophyll
fluorescence parameters

https:
//figshare.com/articles/dataset/CSIF/6387494

(accessed on 17 October 2021)

LEM+ dataset [163] Sentinel-2 multispectral Crop classification https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7
701344/ (accessed on 17 October 2021)

EYES IN THE SKIES [164] IKONOS multispectral Drug crop identification

https://ieee-dataport.org/documents/eyes-skies-
data-driven-fusion-approach-identifying-drug-

crops-remote-sensing-images (accessed on
17 October 2021)

BreizhCrops [165] Sentinel-2 multispectral Crop classification https://github.com/dl4sits/BreizhCrops (accessed on
17 October 2021)

Semantic Segmentation of Crop
Type in Ghana [166] Sentinel-2 & PlanetScope multispectral & SAR

& RGB
Semantic segmentation of

crop classification
http://registry.mlhub.earth/10.34911/rdnt.ry138p/

(accessed on 17 October 2021)
Semantic Segmentation of Crop

Type in South Sudan [167] Sentinel-2 & PlanetScope multispectral & SAR
& RGB

Semantic segmentation of
crop classification

http://registry.mlhub.earth/10.34911/rdnt.v6kx6n/
(accessed on 17 October 2021)

AgriculturalField-Seg [168] airplane RGB Cropland segmentation https://www.aic.uniovi.es/bremeseiro/
agriculturalfield-seg/ (accessed on 17 October 2021)

EarthExplorer [169] Sentinel-2 &
landsat-8 etc.

RGB &multispectral
&Lidar

Central pivot irrigation system
identification, paddy field segmentation,

crop classification

https://earthexplorer.usgs.gov/ (accessed on
17 October 2021)

Copernicus Open Access
Hub [170]

sentinel-1 & sentinel-2
& sentinel-3 SAR & multispectral

Nitrate and sediment concentration
estimation, paddy field segmentation,

early crop classification etc.

https://scihub.copernicus.eu/dhus/#/home
(accessed on 17 October 2021)

TimeSen2Crop [171] Sentinel-2 multispectral Crop classification https://rslab.disi.unitn.it/timesen2crop/ (accessed
on 17 October 2021)

https://github.com/JintaoWU/RiceSeedingCounting
https://github.com/JintaoWU/RiceSeedingCounting
https://github.com/viariasv/weedMap/tree/86bf44d3ecde5470f662ff53693fadc542354343
https://github.com/viariasv/weedMap/tree/86bf44d3ecde5470f662ff53693fadc542354343
https://github.com/rs-dl/MOPAD
https://ieee-dataport.org/open-access/hrscd-high-resolution-semantic-change-detection-dataset
https://ieee-dataport.org/open-access/hrscd-high-resolution-semantic-change-detection-dataset
https://figshare.com/articles/dataset/CSIF/6387494
https://figshare.com/articles/dataset/CSIF/6387494
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7701344/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7701344/
https://ieee-dataport.org/documents/eyes-skies-data-driven-fusion-approach-identifying-drug-crops-remote-sensing-images
https://ieee-dataport.org/documents/eyes-skies-data-driven-fusion-approach-identifying-drug-crops-remote-sensing-images
https://ieee-dataport.org/documents/eyes-skies-data-driven-fusion-approach-identifying-drug-crops-remote-sensing-images
https://github.com/dl4sits/BreizhCrops
http://registry.mlhub.earth/10.34911/rdnt.ry138p/
http://registry.mlhub.earth/10.34911/rdnt.v6kx6n/
https://www.aic.uniovi.es/bremeseiro/agriculturalfield-seg/
https://www.aic.uniovi.es/bremeseiro/agriculturalfield-seg/
https://earthexplorer.usgs.gov/
https://scihub.copernicus.eu/dhus/#/home
https://rslab.disi.unitn.it/timesen2crop/
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4. Edge Intelligence for UAV RS in Precision Agriculture
4.1. Cloud and Edge Computing for UAVs
4.1.1. Cloud Computing Paradigm for UAVs

Cloud computing is a computing paradigm that provides end-users with infras-
tructure, platforms, software and other on-demand shared services through integrating
large-scale and scalable computing, storage, data, applications and other distributed com-
puting resources over an Internet connection [172,173]. The main characteristic of cloud
computing is the change in the way resources are used. End-users normally run applica-
tions on their end-devices while the core service and processing are performed on cloud
servers. At the same time, end-users do not need to master the corresponding technology
or operation skills for device maintenance, but only focus on the required services. It
improves service quality while reducing operation and maintenance costs. The key services
that cloud computing offers include infrastructure as a service (IAAS), platform as a service
(PAAS) and software as a service (SAAS) [174]. The cloud-computing paradigm provides
the major following advantages:

• The number of servers in the cloud is huge, providing users with powerful computing
and storage resources for massive UAV RS data processing.

• Cloud computing supports users to obtain services at any location from various
terminals such as a laptop or a phone through virtualization.

• Cloud computing is a distributed computing architecture, and issues such as single-
point errors are inevitable. The fault-tolerant mechanisms such as copy strategies
ensure high reliability for various processing and analysis services.

• Cloud centers can dynamically allocate or release resources according to the needs of
specific users, and can meet the dynamic scale growth requirements of applications
and users. It benefits from the scalability of cloud computing.

There exist researches to construct cloud-based systems for UAV RS. Jeong et al. [175]
proposes a UAV control system that performs real-time image processing in a cloud system
and controls a UAV according to these computed results, wherein the UAV contains the
minimal essential control function and shares data with the cloud server via WiFi. In [176],
a cloud-based environment for generating yield estimation maps from apple orchards is
presented using UAV images. The DL model for apple detection is trained and verified
offline in the cloud service of Google Colab, along with the aid of GIS tools. Similarly,
Ampatzidis et al. [143] developed a cloud and AI based application, i.e., Agroview to accu-
rately and rapidly process, analyze and visualize data collected from UAVs. Agroview uses
the Amazon Web Service (AWS) that provides highly reliable and scalable infrastructure for
deploying cloud-based applications, a main application control machine as user interface,
one instance for central processing units (CPU) intensive usage like data stitching, and one
instance for graphics processing units (GPU) intensive usage like tree detection algorithm.

Current cloud-based applications generally follow the pipeline as shown in Figure 2a.
According to the pattern of cloud computing, it suffers from the following disadvan-
tages [177]. (a) With the growing quantity of data generated at the edge, the speed of
data transportation through network is becoming the bottleneck for the cloud-computing
paradigm. (b) The number of sensors at the edge of the network is increasing dramatically
and data produced will be enormous, making conventional cloud computing not efficient
enough to handle all these data. (c) In the cloud-computing paradigm, the end-devices
at the edge usually play as a data consumer. The change from data consumer to data
producer/consumer requires more function placement at the edge.
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4.1.2. Edge Computing Paradigm for UAVs

Edge computing fulfills the above-mentioned disadvantages by bringing the com-
puting and storage resources to the edge of the network, which is close to mobile devices
or sensors [177]. In the edge computing paradigm, the edge can perform computing of-
floading, data storage, caching and processing, as well as distribute request and delivery
service from cloud to end-users. In recent years, edge computing has attracted tremendous
attention for its low latency, mobility, proximity to the end-users and location aware-
ness, compared to the cloud computing paradigm [137,172,178] as shown in Figure 2b.
Compared with cloud computing, edge computing has the following characteristics:

• With the rapid development of IoT, devices around the world generate massive data,
but only a few are critical and most are temporary, which do not require long-term
storage. A large amount of temporary data are processed at the edge of the network,
thereby reducing the pressure on network bandwidth and data centers.

• Although cloud computing can provide services for mobile devices to make up for
their lack of computing, storage, power resources, the network transmission speed is
limited by the development of communication technology, and there are issues such
as unstable links and routing in a complex network environment. These factors can
cause high latency, excessive jitter and slow data transmission speed, thus reducing
the response of cloud services. Edge computing provides services near users, which
can enhance the responsiveness of services.

• Edge computing provides infrastructures for the storage and use of critical data and
improves data security.

For UAV-based RS applications in PA, edge computing is ideal for online tasks that
require the above promising features. There are ways to avoid massive data from trans-
ferring to the cloud. The first one is to implement a UAV on-board real-time processing
platform and delivery only the key information to the network, and the other one is to
deploy a local ground station for UAV information processing.

As the computing and storage resources are quite limited, the optimization of comput-
ing workflow and algorithms are therefore required. For example, Li et al. [120] developed
an airborne edge computing system for pine wilt disease detection of coniferous forests.
The images captured by an onboard camera are directly passed to the edge computing mod-
ule in which the lightweight YOLO model is implemented due to the limited processing
and storage resources. Similarly, Deng et al. [137] used a lightweight segmentation model
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for real-time weed mapping on a NIVIDA Jetson TX board. Camargo et al. [115] specially
optimized ResNet model and changed it from 32-bit to 16-bit to reduce computing on an
NVIDIA Jetson AGX Xavier embedded system. Many researchers [179,180] also exploited
the acceleration of traditional image processing algorithms for various RS data types on
UAV platforms.

4.2. Edge Intelligence: Convergence of AI and Edge Computing

Artificial intelligence methods are computationally and storage intensive. Although it
can achieve excellent performance in most applications, it also places high computing and
storage demands on resources, making it challenge for real applications. The emerging of
edge computing solves the above key problems in artificial intelligence applications on
edge devices. The combination of edge computing and artificial intelligence yields edge
intelligence [38]. Currently, there is no formal definition for edge intelligence internationally.
Edge intelligence is regarded as the paradigm of running AI algorithms locally on an
intelligent edge device [34]. Researchers also try to give a broader definition, which
mainly includes AI for edge and AI on edge. The former part solves the problems in
edge computing with AI, while the latter is the common definition [34] and the focus of
this paper. In edge intelligence applications, edge devices can reduce the amount of data
transferred to the central cloud and greatly save bandwidth resources. Meanwhile, running
DL models at edge devices has lower computing consumption, higher performance, and
can avoid possible privacy risks.

In the scope of this review, the combination of intelligent UAV RS and edge computing
results in more effective PA applications. To obtain better performance, DL models tend
to be designed deeper and more complex, which inevitably causes delays. Limited by
processing and storage resources, these complex DL models can hardly be directly applied
to UAVs. Much work needs to be fulfilled before implementing on the resources-limited
UAV edge platforms for efficient PA applications. According to existing work, the major
components of edge intelligence include: (a) edge caching, a distributed data system
near end users to collect and store the data produced by edge devices and surrounding
environments, and also the data received from the Internet; (b) edge training, a distributed
learning procedure that learns the optimal models with the training set cached at the edge;
(c) edge inference, which infers the testing instance on edge devices and servers using a
trained model or algorithm; and d) edge offloading, a distributed computing paradigm
that offers computing service for edge caching, edge training and edge inference [181]. As
for UAV RS in PA, the existing studies mainly focus on edge training and edge inference,
especially the inference onboard UAVs. On the other hand, for an edge intelligence system
and industrial ecosystem, algorithms and computing resources are the key elements. As a
result, we discuss the relevant developments from the perspectives of model design and
edge resources for the edge intelligence in PA with UAV RS in Sections 4.3 and 4.4.

4.3. Lightweight Network Model Design

To obtain higher classification, detection or segmentation accuracy, the deep CNN models
are designed with deeper, wider and more complex architectures, which inevitably leads
to computation-intensive and storage-intensive algorithms on computing devices. When it
comes to edge devices, especially UAVs, their limited computing, storage, power consumption
and bandwidth resources can hardly meet the requirements of intelligent applications.

Research has found that the structure of deep neural networks is redundant. Based
on this property, the compression of deep neural networks will therefore greatly ease the
burden of inference and accelerate computing to accommodate the usage on UAV platforms.
In recent years, researchers have made great efforts to compress and accelerate deep neural
network models from the aspects of algorithm optimization, hardware implementation
and co-design [182]. The work in [183] by Han et al. is widely considered to be the first
to systematically carry out deep model compression. Its main work includes pruning
network connections to keep the more important ones only, quantitating model parameters
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to reduce the model volume and improve the efficiency, and further compressing the
model through Huffman Coding. Through model compression, it is conducive to reducing
computing, memory and power consumption, which makes it easier to be deployed to the
UAV systems.

The mainstream deep model compression methods can be divided into the following
categories: (1) lightweight convolution design, (2) parameter pruning, (3) low-rank factor-
ization, (4) parameter quantization, and (5) knowledge distillation. Each tries to compress
the model from different aspects, and they are always used with the combination. Table 6
shows a compilation of lightweight inference applications onboard UAVs for PA. As shown
in Table 6, the research of the edge inference of UAV RS in the PA field is in the starting
stage yet, and there are only a few attempts at general model quantization and pruning
methods. Hence, we describe the categories and the corresponding development in details,
taking more domains in addition to agriculture for edge inference onboard UAVs into
consideration below.

Table 6. A compilation of lightweight inference applications onboard UAVs for PA.

Applications Task Model Compression
Techniques Performance Benchmark Platforms References

Tree species
classification Classification

Design a compact
CNN

model architecture

Average classification
accuracy of 92%, and

model size reduced from
25 million trainable

parameters to 2,982,484

12 Intel(R) Xeon(R) CPU
E5–1650 v4 units each

with 3.60 GHz and four
GeForce GTX TITAN X

graphics cards

[184]

Classification
of weed and
crop plants

Classification

Parameter
quantization of

ResNet-18 from FP32
to FP16 and

optimization to avoid
redundant

computations in
overlapping

image patches

The overall accuracy of
94% on the test data, and
the prediction pipeline
reached a performance

of 2.2 frames per second
(FPS) from 1.3 FPS

NVIDIA Jetson
AGX Xavier [115]

Plant seedling
classification Classification

Model pruning and
quantization to
LeNet5, VGG16,

and AlexNet

Compress the size of
models by a factor of 38
and to reduce the FLOPs
of VGG16 by a factor of
99 without considerable

loss of accuracy

unknown [185]

Tree crown
delineation

Semantic
segmentation

8-bit quantization is
performed on an

already-trained float
TensorFlow model and

applied during
TensorFlow Lite

conversion facilitating
the execution of the

trained U-Net

The quantized model is
0.1 times the size of the

original model; the most
efficient inference

procedure is achieved
with 28ms with

quantized-TPU model
executed on Coral Edge

Google Coral Edge
TPU Board [186]

Weed detection Semantic
segmentation

Parameter
quantization, apply

FP32 for training and
use FP16 for inference

An accuracy of 80.9% on
the testing samples and
its inference speed was
4.5 FPS on a NVIDIA
Jetson TX2 module

NVIDIA Jetson TX2 [137]
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4.3.1. Lightweight Convolution Design

Lightweight convolution design refers to the compact design of convolutional filters.
The convolutional filter is actually used for translation invariant feature extraction, and
makes up the majority of CNN operations. Therefore, lightweight convolution design has
been a hot research direction in DL.

It tries to replace the original heavy convolutional filters with compact ones. Specifi-
cally, it transforms the convolutional filter with large size into several smaller-sized ones
and concatenates their results to achieve equivalent convolution results, as smaller-sized
filters calculate much faster. Typical designs are SqueezeNet [187], MobileNet [188], and
ShuffleNet [189]. SqueezeNet designs a fire module composed of a squeeze layer with
1×1 filters to reduce the input channels, and an expanding layer with a mix of 1×1 and
3×3 filters. MobileNet adopts the idea of depthwise separable convolutions to reduce
the volume of parameters and computations, in which depthwise convolutions are used
for feature extraction and pointwise convolutions are deployed to build feature via lin-
ear combinations of input channels. ShuffleNet designs with group convolution and
channel shuffle to reduce parameters, and can obtain similar results compared with the
original convolutions.

In [190], a DL fire recognition algorithm is proposed for embedded intelligent forest
fire monitoring using UAVs. It is based on the lightweight MobileNet V3 to reduce
the complexity of the conventional YOLOv4 network architecture. With regards to the
model parameters, a decline of 63.91% from 63.94 million to 23.08 million is obtained.
Egli et al. [184] designs a computationally lightweight CNN with a sequential model design
with four consecutive convolution/pooling layers for tree species classification that uses
high-resolution RGB images from automated UAV observations, which outperforms several
different architectures on the available data set. Similarly, in order to accommodate the
real-time performance on UAVs, Hua et al. [191] designs a lightweight E-Mobile Net as the
backbone network of feature extraction for real-time tracking.

4.3.2. Parameter Pruning

In deep models, not all parameters contribute to the outstanding discriminative
performance, thus many of them can be removed from the network while having the least
effect on the accuracy of the trained models. Based on the principle, parameter pruning
tries to prune out the redundant non-informative parameters from convolutional layers
and fully connected layers for less computational operations and memory consumption.

There are several ways of pruning with different granularity. Some unimportant
weight connection can be pruned out with certain threshold [192]. Similarly, individual
redundant neurons, along with their input and output connections, can be pruned [193].
Furthermore, the filters composed of neurons can also be removed according to their
importance which is indicated by L1 or L2 norm [194]. With the coarsest granularity, layers
that are least informative can also be pruned, as shown in [185]. As for connection-level
and neuron-level pruning, they introduce unstructured sparse connections in the network,
which will also affect the computational efficiency. On the contrary, filter-level and layer-
level pruning does not interfere with the normal forward computing, which can therefore
compress the model and accelerate the model inference. Worth noting that pruning is
always accompanied with model fine-tuning.

Wang et al. [190] eliminated the redundant channels through channel-level sparsity-
induced regularization, and achieved a significant drop of model parameter number and
inference time by over 95% and 75% but with comparable accuracy, thus making it suitable
for real-time fire monitoring on UAV platforms. [185] adopts two ways of pruning, with one-
shot pruning to achieve the desired compression ratio in a single step and iterative pruning
to gradually remove connections until obtaining the targeted compression ratio. The model
is retrained to readapt the parameters after pruning iterations to recover the accuracy
drop. Aiming at secure edge computing for agricultural object detection application,
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Fan et al. [195] use layer pruning and filter pruning together to achieve a smaller structure
and maximize real-time performance.

4.3.3. Low-rank Factorization

Low-rank factorization tries to factorize a large weight matrix or tensor into several
smaller dimension matrices or tensors. It can be applied to both convolutional layer
and fully-connected layer. When convolutional filters are factorized, it will make the
inference process faster, and when applied to denser fully-connected layers, it will remove
redundancy and reduce the storage requirements.

Lebedev et al. [196] explore the low-rank factorization of deep network through
tensor decomposition and discriminative fine-tuning. Based on CP-decomposition, they
decompose the original convolutional layer into a sequence of four layers with smaller
filters, thus reducing the computations. Similarly, famous factorization methods like Tucker
decomposition [197], and singular value decomposition [198,199] are also widely applied
with low-rank constraints in the model training process to reduce the number of parameters
and speed-up the network.

To meet the severe constraints of typical embedded systems in the applications for grape
leaf disease detection, a low-rank CNN architecture LR-Net based on Tensor decomposition
is developed in [200] for both convolutional layer and fully-connected layer, and the obvious
performance gain is obtained compared with other lightweight network architectures.

4.3.4. Parameter Quantization

The intention of parameter quantization is to reduce the volume of the trained model
during storage and transmission. Generally, weights in deep models are stored as 32-bit
floating-point numbers. If their number of bits is reduced, it will lead to the reduction of
operations and model sizes.

In recent years, low-bit quantization is becoming popular for deep model compression
and acceleration. There are two types of quantization, one is parameter sharing for the
trained model, and the other is the low-bit representation for model training. Parameter
sharing designs a function that maps various weight parameters to the same value. In [201],
a new network architecture HashedNets is designed, in which the weight parameters are
randomly mapped to hash bucket through hash function and every parameter shares the
same weight value. [202] develops an approximation that quantizes the gradients to 8-bit
for GPU cluster parallelism. Further, [203] proposes incremental network quantization
method that lossless quantizes parameters to low 5-bit. The challenging binary neural
network [137] is also in the spot of researches.

To develop a lightweight network architecture for weed mapping tasks onboard
UAVs, [137] conducted optimization and precision calibration during the inference process.
The precision was reduced from 32-bit to 16-bit. Similarly, Camargo et al. [115] shifted
their ResNet-18 model from 32-bit to 16-bit and observed speed performance decline on
NVIDIA Jetson AGX Xavier. To be able to execute deep models efficiently in embedded
platforms, Blekos et al. [186] perform quantization on the trained U-Net model to 8-bit
integers with acceptable losses.

4.3.5. Knowledge Distillation

The main objective of knowledge distillation is to train a student network from the
teacher network while maintaining its generalization capability [204]. The student network
is lighter, i.e., having a smaller model size and less computation, but with the same or
comparable performance as the larger network.

Great efforts have been done to improve the supervision of student network by
different knowledge transferred. Romero et al. [205] proposed a FitNets model which
teaches the student network to imitate the hints from both middle layers and output layer
of the teach network. Instead of hard labels that are used, the work in [206] utilizes soft
labels as the representation from teacher network. Kim et al. [207] proposed a paraphrasing
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based knowledge transfer method which uses convolution operations to paraphrase the
teacher model knowledge and translate it to a student model. From the point of teacher
networks, student networks can also learn knowledge from multiple teachers [208].

In the field of UAV based deep model inference, knowledge distillation is a promising
direction. In [209], YOLO + MobileNet model acts as the teacher network, while the pruned
model functions as the student network, and knowledge distillation algorithm is used to
improve the detection accuracy of the pruned model. Qiu et al. [210] propose to distill
knowledge to a lighter distilled network through soft labels from trained teacher network
MobileNet. Similar applications using knowledge distillation for model compression can
be found in [211,212].

4.4. Edge Resources for UAV RS

The key idea of edge computing is that computing should be closer to the data sources
and users. It can avoid massive data transfer to the cloud and process data near the places
where things and people produce or consume data, thus reducing the latency, pressure on
network bandwidth and demand for computing and storage resources. Edge is a relative
concept to the network core. It refers to any resource, storage, and network resource from
the data source to the cloud-computing center. The resources on this path (from the data
sources to cloud centers) can be regarded as a continuous system. Generally, the resources
at the edge mainly include user terminals such as mobile phones and personal computers,
infrastructure such as WiFi access points, cellular network base stations and routers, and
embedded devices such as cameras and set-top boxes. These numerous resources around
users are independent of each other, which are called edge nodes. In this paper, we focus
on the scope of AI on edge among the edge intelligence, which is to run AI models on
intelligent edge devices. Such devices have built-in processors with onboard analytics
or AI capabilities, mainly including sensors, UAVs, autonomous cars, etc. Rather than
uploading, processing and storing data to a cloud, intelligent edge devices offer the ability
to process certain amounts of data directly, while reducing latency, bandwidth requirement,
cost, privacy threats, etc.

For the scenario of edge computing for UAV RS in PA, applications can be deployed
on the UAV intelligent edge devices with embedded computing platforms or edge servers.
Here in this paper we mainly discuss the former. To accelerate the processing of complex
DL models, a few types of onboard hardware accelerators are mainly included in UAV
solutions currently.

The following list the popular examples, which are divided into the general-purpose
CPU based solutions, GPU solutions and field programmable gate arrays (FPGA) solutions.
Very few studies also use microcontroller unit (MCU) [213] and vision processing unit
(VPU) [214] for UAV image recognition and monitoring.

• General-purpose CPU based solutions: Multi-core CPUs are latency-oriented archi-
tectures, which have more computational power per core, but less number of cores,
and are more suitable for task-level parallelism [215,216]. As for the general-purpose
software-programmable platforms, Raspberry Pi has been widely adopted as ready-
to-use solutions for a variety of UAV applications due to their weight, size and low
power consumption.

• GPU solutions: GPUs have been designed as throughput-oriented architectures, and
own less powerful cores than that of CPUs but have hundreds or thousands of cores
and significantly larger memory bandwidth, which make GPUs suitable for data-level
parallelism [215]. In recent years, the embedded GPUs especially from NVIDIA, for
example, the Jetson boards, standing out among the other manufacturers have been
widely used to provide flexible solutions compared with FPGAs.

• FPGA solutions: The advent of FPGA-based embedded platforms allows combin-
ing high-level management capabilities of processors and flexible operations of pro-
grammable hardware [217]. With the advantages of: a) relatively smaller size and
weight compared with clusters, multi-core and many-core processors, b) significantly
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lower power consumption compared with GPUs, and c) reprogrammed ability during
the flight different from application-specific integrated circuit (ASIC), FPGA-based
platforms such as the Xilinx Zynq-7000 family provide plenty of solutions for real-time
processing onboard UAVs [218].

Table 7 gives a compilation of edge computing platforms onboard UAVs for typical
RS applications with specific platform vendor, model, configurations and applications.

Table 7. A compilation of computing platforms onboard UAVs for typical RS applications.

Major
Computing
Component

Vendor Model Specification Applications Reference

CPU

AICSHTER ARK-1100

CPU: Intel Celeron J1900
Memory: 8 GB LPDDR3

Thermal design power: 10 W
Weight: 2.0 kg

Detection and spatial
localization
of insulators

[219]

Intel
Edison

CPU: Intel Atom Dual Core
500 MHz processor

Memory: 1 GB DDR3
Storage: 4 GB
Weight: 16 g

Identification of
faulty areas in
the plantation

[180]

Atom
processor board

CPU: 2× ARM7 micro processor
Memory: 1 GB RAM

Weight: 90 g
Object tracking [220]

Hardkernel Odroid XU4

CPU: Samsung Exynos5422
Cortex™-A15 2Ghz and Cortex™-A7

Octa core processor
GPU: Mali-T628 MP6

Memory: 2 GB LPDDR3 RAM

Cooperative
UAV tracking [221]

Texas
Instruments BeagleBone Black

CPU: ARM Cortex-A8
Memory: 512 MB DDR3

Storage: 4-GB 8-bit eMMC
Sensor data fusion [222]

Raspberry Pi
Foundation

Raspberry Pi
Model B

CPU: ARM (ARM1176JZF-S)
GPU: Broadcom VideoCore IV @

250 MHz
Memory: 512 MB

Moving objects
detection

and location
[223]

Raspberry Pi
Model B+

CPU: ARM (ARM1176JZF-S)
GPU: Broadcom VideoCore IV @

250 MHz
Memory: 512 MB

Object detection and
range measurement [224]

Raspberry Pi 2
Model B

CPU:4× Cortex-A7900 MHz
GPU: Broadcom VideoCore IV @

250 MHz
Memory: 1 GB

Object detection, air
quality data

collection and
transmission,

pedestrian detection,
object detection and

tracking

[225–228]

Raspberry Pi 3
Model B

CPU: 4× Cortex-A531.2 GHz
GPU: Broadcom VideoCore IV @

250 MHz
Memory: 1 GB

Soybean weed
detection,

agrochemical
spraying, face

detection, human
detection, land

use classification

[116,229–232]

Raspberry Pi 3
Model B+

CPU: 4× Cortex-A531.4 GHz
GPU: Broadcom VideoCore IV @

400 MHz/300 MHz
Memory: 1 GB

Face recognition and
object detection [233]

Raspberry Pi 4
Model B

CPU: 4× Cortex-A721.5 GHz
GPU: Broadcom VideoCore VI @

500 MHz
Memory: 4 GB

Fault location for
transmission line [234]
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Table 7. Cont.

Major
Computing
Component

Vendor Model Specification Applications Reference

GPU

NVIDIA

Tegra K1

CPU: quad-core, 4-Plus-1™ ARM®

GPU: low-power NVIDIA
Kepler™-based GeForce®

graphics processor
Memory: 2 GB DDR3L RAM

Storage:16 GB eMMC 4.51
Max power: about 15 W
Weight: less than 200 g

Object tracking and
automatic landing [235]

Jetson TK1

CPU: NVIDIA 4 Plus 1 quad core
ARM Cortex A15 CPU

GPU: NVIDIA Kepler GK20 with 192
SM3.2 CUDA cores

Memory: 2 GB
Storage: 16 GB eMMC 4.51

Vegetation
index estimation [179]

Jeston TX1

CPU: Quad-core ARM® Cortex®-A57
MPCore Processor

GPU: NVIDIA Maxwell™ GPU with
256 NVIDIA® CUDA® Cores

Memory: 4 GB LPDDR4
Storage: 16 GB eMMC 5.1

Object detection [236]

Jeston TX2

CPU: Dual-Core NVIDIA Denver 2
64-Bit CPU and Quad-Core Arm®

Cortex®-A57 MPCore processor
GPU: 256-core NVIDIA Pascal™ GPU

Memory: 8 GB 128-bit LPDDR4
Storage: 32 GB eMMC 5.1

Coarse-grained
detection of pine
wood nematode
disease, object

detection, pipeline
safety excavator
inspection, weed

detection,
pest detection

[119,120,137,237,238]

Jetson Nano

CPU: Quad-Core Arm® Cortex®-A57
MPCore processor

GPU: 128-core NVIDIA
Maxwell™ GPU

Memory: 4 GB 64-bit LPDDR4
Storage: 16 GB eMMC 5.1

Real-time
compression of

hyperspectral data
[239]

Jetson Xavier NX

CPU: 6-core NVIDIA Carmel
Arm®v8.2 64-bit CPU

GPU: 384-core NVIDIA Volta™ GPU
with 48 Tensor Cores

Memory: 8 GB 128-bit LPDDR4x
Storage: 16 GB eMMC 5.1

Real-time vehicle
detection and speed

monitoring, real-time
compression of

hyperspectral data

[239,240]

Jetson
AGX Xavier

CPU: 8-core NVIDIA Carmel
Arm®v8.2 64-bit CPU

GPU: 512-core NVIDIA Volta™ GPU
with 64 Tensor Cores

Memory: 32 GB 256-bit LPDDR4x
Storage: 32 GB eMMC 5.1

Weed and crop
classification [115]

FPGA

Terasic Altera DE2i-150

CPU: Intel® Atom N2600
FPGA: Altera Cyclone IV FPGA

Memory: 2 GB DDR3
storage: 64 GB SSD

Identification of
faulty areas in
the plantation

[180]

Maxeler MAX4
acceleration card

FPGA: Intel Altera Stratix-V FPGA
Memory: 48 GB DDR3

onboard tmemory
Tree crown detection [218]

Intel DE1-SoC

CPU: dual-core ARM
Cortex™-A9 processor
FPGA: Cyclone V SoC

5CSEMA5F31C6
Memory: 4450 Kbits
embedded memory

Weed classification [241]

Xilinx Zynq-7000

CPU: single-core ARM
Cortex™-A9 processor
FPGA: Artix-7 based
programmable logic

UAV hyperspectral
data compression [242]



Remote Sens. 2021, 13, 4387 21 of 31

5. Future Directions

Despite the great progress of DL and UAV RS techniques in the PA field, the research
and practice of edge intelligence, especially in PA is still in an early stage. In addition to
common challenges in PA, UAV RS and edge intelligence, here we list a few specific issues
that need to be addressed within the scope of this paper.

• Lightweight intelligent model design in PA for edge inference. As mentioned in
Section 4, most DL-based models for UAV RS data processing and analytics in PA
are highly resources intensive. Hardware with powerful computing capability is
important to support the training and inference of these large AI models. Currently,
there are just a few studies towards applying common parameter pruning and quanti-
zation methods in PA with UAV RS. The metrics of size and efficiency can be further
improved by considering the data and algorithm characteristics and exploiting other
sophisticated model compression techniques such as knowledge distillation and a com-
bination of multiple compression methods [183]. In addition, instead of using existing
AI models, the neural architecture search (NAS) technique [243] can be utilized to de-
rive models tailored to the hardware resource constraints on the performance metrics,
e.g., latency and energy efficiency considering the underlying edge devices [34].

• Transfer learning and incremental learning for intelligent PA models on UAV edge
devices. The performance of many DL models heavily relies on the quantity and
quality of datasets. However, it is difficult or expensive to collect a large amount
of data with labels. Therefore, edge devices can exploit transfer learning to learn a
competitive model, in which a pre-trained model with a large-scale dataset is further
fine-tuned according to the domain-specific data [244,245]. Secondly, edge devices
such as UAVs may collect data with different distributions or even data belonging to
an unknown class compared with the original training data during flight. The model
on the edge devices can be updated by incremental learning to give better prediction
performance [246].

• Collaboration of RS cloud centers, ground control stations and UAV edge devices. To
bridge the gap between the low computing and storage capabilities of edge devices
and the high resource requirements of DL training, the collaborative computing
between the end, the edge and the cloud is a possible solution. It has become the trend
for edge intelligence architectures and application scenes. A good cloud-edge-end
collaboration architecture should take into account the characteristics of heterogeneous
devices, asynchronous communication and diverse computing and storage resources,
thus achieving collaborative model training and inference [247]. In the conventional
mode, the model training is often performed in the cloud, and the trained model is
deployed on edge devices. This mode is simple, but cannot fully utilize resources. For
the case of edge intelligence for UAV RS in PA, decentralized edge devices and data
centers can cooperate with each other to train or improve a model by using federated
learning [248].

6. Conclusions

This paper gives a systematic and comprehensive overview of the latest development
of PA promoted by UAV RS and edge intelligence techniques. We first introduce the
application of UAV RS in PA, including the fundamentals of various types of UAV systems
and sensors and typical applications to give a preliminary picture. The latest development
of DL methods and public datasets in PA with UAV RS are then presented. Subsequently,
we give a thorough analysis of the development of edge intelligence in PA with UAV RS,
including the cloud computing and edge computing paradigms, the basic concepts and
major components (i.e., edge caching, edge training, edge inference and edge offloading)
of edge intelligence, the developments from the perspectives of network model design and
edge resources. Finally, we present several issues that need to be further addressed.

Through this survey, we provide preliminary insights into how PA benefits from
UAV RS together with edge intelligence. In recent years, the small and light, fixed-wing or
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industrial rotor-wing UAV systems have been widely adopted in PA. Due to the advantages
of easy-to-use, high flexibility, high resolution and being less affected by clouds during
flight at low altitudes, UAV RS has become a powerful manner to monitor agricultural
conditions. In addition, the integration of DL techniques in PA with UAV RS reached
higher accuracies compared with traditional analysis methods. These PA applications have
been transformed into computer vision tasks including classification, object detection and
segmentation, and CNN and RNN are the most widely adopted network architectures.
There are also a few publicly available UAV datasets for intelligent PA, mainly from RGB
sensors and very few from multispectral and hyperspectral sensors. These datasets can
facilitate the validation and comparison of DL methods. However, deep models generally
bring higher computing, memory and network requirements, hence cloud computing is a
common solution to increase efficiency with high scalability and low cost, but at the cost of
high latency and pressure on the network bandwidth. The emerging of edge computing
brings the computing to the edge of the network close to the data sources. The AI and edge
computing further yield edge intelligence, providing a promising solution for efficient
intelligent UAV RS applications. In terms of hardware, typical computing solutions include
CPUs, GPUs and FPGAs. From the perspectives of algorithm, lightweight model design
deriving from model compression techniques especially model pruning and quantization
is one of the most significant and widely used technique. The PA supported by advanced
UAV RS and edge intelligence techniques offers the capabilities to increase productivity
and efficiency while reducing costs.

The research and practice of edge intelligence, especially in PA with UAV RS is still in
an early stage. In the future, in addition to the general challenges of PA, UAV RS and edge
intelligence, there are issues within the scope of this paper that need to be addressed. These
directions can include designing and implementing lightweight models for PA with UAV
RS on edge devices, realizing transfer learning and incremental learning for intelligent
PA models on UAV edge devices, and efficient collaboration of RS cloud centers, ground
control stations and UAV edge devices.
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