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Abstract: Differential interferometric synthetic aperture radar (DInSAR), coherence, phase, and
displacement are derived from processing SAR images to monitor geological phenomena and urban
change. Previously, Sentinel-1 SAR data combined with Sentinel-2 optical imagery has improved
classification accuracy in various domains. However, the fusing of Sentinel-1 DInSAR processed
imagery with Sentinel-2 optical imagery has not been thoroughly investigated. Thus, we explored
this fusion in urban change detection by creating a verified balanced binary classification dataset
comprising 1440 blobs. Machine learning models using feature descriptors and non-deep learning
classifiers, including a two-layer convolutional neural network (ConvNet2), were used as baselines.
Transfer learning by feature extraction (TLFE) using various pre-trained models, deep learning from
random initialization, and transfer learning by fine-tuning (TLFT) were all evaluated. We introduce a
feature space ensemble family (FeatSpaceEnsNet), an average ensemble family (AvgEnsNet), and a
hybrid ensemble family (HybridEnsNet) of TLFE neural networks. The FeatSpaceEnsNets combine
TLFE features directly in the feature space using logistic regression. AvgEnsNets combine TLFEs
at the decision level by aggregation. HybridEnsNets are a combination of FeatSpaceEnsNets and
AvgEnsNets. Several FeatSpaceEnsNets, AvgEnsNets, and HybridEnsNets, comprising a hetero-
geneous mixture of different depth and architecture models, are defined and evaluated. We show
that, in general, TLFE outperforms both TLFT and classic deep learning for the small dataset used
and that larger ensembles of TLFE models do not always improve accuracy. The best performing
ensemble is an AvgEnsNet (84.862%) comprised of a ResNet50, ResNeXt50, and EfficientNet B4. This
was matched by a similarly composed FeatSpaceEnsNet with an F1 score of 0.001 and variance of
0.266 less. The best performing HybridEnsNet had an accuracy of 84.775%. All of the ensembles
evaluated outperform the best performing single model, ResNet50 with TLFE (83.751%), except
for AvgEnsNet 3, AvgEnsNet 6, and FeatSpaceEnsNet 5. Five of the seven similarly composed
FeatSpaceEnsNets outperform the corresponding AvgEnsNet.

Keywords: machine learning; deep learning; transfer learning; artificial intelligence; remote sensing;
earth observation; DInSAR; change detection; space data science

1. Introduction

The European Space Agency’s Sentinel satellite missions and free remote sensing
satellite imagery data have supported an increase in wide-area monitoring and evaluation.
The Sentinel-1 constellation (Sentinel-1A and Sentinel-1B) provides C-band Synthetic
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Aperture Radar (SAR) data, is less affected by weather conditions, and can operate day and
night. SAR data allow for the generation of interferometric synthetic aperture radar (InSAR)
and the more advanced differential interferometric synthetic aperture radar (DInSAR)
products that have been used for monitoring infrastructure as well as other geological
phenomena [1–5].

For instance, Khalil and Haque [6] used a combination of Sentinel-1 SAR backscattered
intensity, backscatter difference, and InSAR coherence for land cover classification, using
a maximum likelihood classifier, and concluded that it was effective [6]. They note that
the temporal gap between images was detrimentally long. The resulting decrease in
coherence reduced discrimination between low and dense vegetated areas. Others, such
as Corradino et al. [7], mapped lava flows at the Mount Etna volcano using a k-medoids
unsupervised pixel-level classifier applied to Sentinel-2 multispectral imagery. A Bayesian
Neural Network is also applied since the unsupervised classifier does not allow recent and
older lava flow pixels to be differentiated. They indicate that if 0.02% of the lava flow field
is known, the algorithm can detect the primary area of the lava flow, and a low-quality
map of the flow can be obtained.

Sentinel-1 SAR data can be combined with Sentinel-2 optical imagery to improve
results in numerous applications. For example, Van Tricht et al. [8] used a random forest
to classify crops into several classes. They conclude that combining SAR backscatter data
with the Sentinel-2 normalized difference vegetation index (NDVI) improves classification
accuracy (82% with a kappa coefficient of 0.77) [8]. Gašparović et al. [9] fuse Sentinel-1
and Sentinel-2 data for flood mapping using a radial basis function (RBF) support vector
machine (SVM) for object-based image analysis. They note that the method is fast com-
pared to pixel-level techniques, and since it is an object/scene-based image classification,
additional features of an object/scene are included with the optical signature. They com-
pared the classification accuracy using varying sets of features. Using only the statistical
first-order histogram and the geometric VH and VV polarized images result in an accuracy
performance of 72.15% and 77.22%, respectively. Adding textural SAR images and optical
features result in an accuracy increase to 87.34%. Furthermore, adding vegetation indices
yields an accuracy of 89.87%. Finally, the optical bands’ statistical features are included
and result in an accuracy of 94.94% [9].

1.1. Deep Learning

The advent of deep learning has significantly improved the accuracy of object recog-
nition and image classification tasks [10,11]. Papadomanolaki et al. [12] applied it to
optical images from Sentinel-2 to detect changes in urban areas. They used a convolutional
neural network (CNN) for feature representation and a recurrent neural network (RNN)
in the form of long short-term memory (LSTM) for temporal modeling. They found that
the addition of fully convolutional LSTM layers to the U-net architecture improved accu-
racy and F1-score on the Onera Satellite Change Detection (OSCD) Sentinel-2 dataset [12].
Saha et al. [13] used an unsupervised deep learning-based method to detect a change in
Sentinel-2 optical imagery using all 13 bands; they concluded that it is a more effective
method of detecting change over using only the usual optical bands, with a disadvantage
being the longer computation time required for training and classification [13].

Deep learning is also applied to Sentinel-1 and Sentinel-2 fused imagery. Ienco et al. [14]
used a time series of Sentinel-1 SAR backscatter intensity data and Sentinel-2 optical data
fed into two identical pipelines in the TWINNS network. They noted that the sensitivity to
the noise, due to topography, in backscattering of the Sentinel-1 SAR intensity data resulted
in a classifier that uses only the Sentinel-2 data outperforming one that used only the
Sentinel-1 data. They did, however, find that fusing the datasets lead to better performance
over both the Reunion Island and the Koumbia datasets from 73.89% and 81.94% when
using only the Sentinel-1 data, respectively, and 84.26% and 81.99% when using only the
Sentinel-2 data, respectively, to 89.88% and 87.50%, respectively, when fusing the datasets.
This is since Sentinel-1 and Sentinel-2 data provide complimentary information [14]. A
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number of other experiments were also conducted applying a random forest classifier to
just the combined Sentinel-1 and Sentinel-2 data fused at feature level, two random forest
classifiers fused at decision level (late fusion), a random forest classifier applied to the
entire TWINNS network and a convLSTM model. The best average accuracy obtained over
the Reunion Island land cover classification task is 90.10% using the TWINNS network as a
feature extractor with a random forest classifier, which improved performance compared
to using just the TWINNS network (89.88%). However, no improvement was seen using
the Koumbia land cover classification dataset using these other experiments as the best
performing classifier is the TWINNS network (87.50%), whilst the second best performing
classifier, which uses the TWINNS network as a feature extractor with a Random Forest
classifier, only achieves 86.5% [14].

Gargiulo et al. [15] used multitemporal Sentinel-1 imagery combined with Sentinel-2
imagery over the Albufera Lagoon in Valencia to generate segmentation maps in areas
where cloud cover affects the land cover mapping. A deep learning CNN, named W-net,
is developed that results in an increase in performance at a lower computational cost
compared to just using the Sentinel-2 imagery [15].

Sun et al. [16] used deep learning with InSAR imagery for detecting dynamic spa-
tiotemporal patterns of displacement due to volcanic activity. They used it to efficiently
de-noise multitemporal displacements acquired from the InSAR generated time series with
a modified U-net CNN architecture. First, synthetic displacement maps are used to train a
CNN. The pre-trained CNN is then used on real world data [16].

1.2. Transfer Learning

The above-mentioned increased accuracy from deep learning comes at an expense
of requiring larger datasets and training times [10,11]. However, this limitation can to
some extent be overcome using transfer learning [17]. Applying transfer learning from
pre-trained models on large datasets benefits us by allowing for the increased accuracy
of deep learning without incurring the full computational cost of training a deep neural
network (DNN) from random initialization [1,4,18].

Transfer learning was previously applied to Sentinel-1 SAR and Sentinel-2 optical
imagery. For instance, Pomente et al. [19] extract deep features from Sentinel-2 imagery
acquired at different times using CNNs. A dissimilarity map with change probabilities
at a pixel level was then developed by using the Euclidean distance between pixels. The
areas where change occurred were indicated by bounding boxes and obtained by applying
clustering with an optimizing connected component labeling algorithm. They concluded
that the algorithm is effective [19].

Qiu et al. [20] used a ResNeXt DNN with multi-seasonal Sentinel-2 optical imagery to
map human settlements [1,20]. GoogLeNet and ResNet50 were applied by Helber et al. [21]
via transfer learning on optical images from Sentinel-2 for land use and land cover image
classification. Performance accuracies of 98.18% and 98.57%, respectively, are realized
with transfer learning with ResNet50 outperforming transfer learning with GoogLeNet. A
labeled georeferenced Sentinel-2 based dataset containing 27,000 images was developed
consisting of ten classes called EuroSAT [21]. Wang et al. [22] applied transfer learning
to Sentinel-1 SAR images to automatically classify the wave mode images over the ocean
into ten geophysical classes. They concluded that the algorithm is effective. They noted
the occurrence of images that contained a mixture of a number of air-ocean processes and
that were ambiguous [22]. Wang et al. [23] applied transfer learning with a Single Shot
MultiBox Detector (SSD) to Sentinel-1 imagery to detect ships in the ocean with difficult
surroundings, such as a mixture of islands and ocean. They found that the 512 × 512 pixel
version outperformed the 300 × 300 pixel input version [23].

Anantrasirichai et al. [24] used transfer learning from the AlexNet CNN to detect
volcanic ground motion in a large dataset of Sentinel-1 imagery containing more than
30,000 interferograms at 900 volcanoes. The system developed is able to detect rapid
large scale deformations, but cannot detect deformations that are slow or of a small scale
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nature [24]. Anantrasirichai et al. [25] and Brengman et al. [26] both used transfer learning
in other ground deformation applications [25,26]. Brengman et al. used a SarNet CNN with
transfer learning from a synthetic dataset to a real dataset. SarNet achieved an accuracy of
85.22% on a real interferogram dataset [26].

1.3. Aim and Contribution

Ensembles have been shown to increase accuracy and stabilize the results for varying
signal-to-noise ratios and deformation rates in previous work and in other domains [16,27].
Transfer learning was proven effective at bringing the increased accuracy of deep learning
to smaller data sets at reduced computational cost. Having an understanding of how these
techniques might be combined to improve change detection on a relatively small urban
change detection dataset is of practical and theoretical importance. Unfortunately, limited
(if any) research has been done to organize current approaches to ensemble leaning in a
transfer learning paradigm [16]. Furthermore, little empirical evidence has been created
to evaluate how these different methods might compare and how they stack up against
non-deep learning approaches.

This article evaluates binary classification for urban change detection and extends upon
previous work [1,4]. A novel dataset was developed comprising Sentinel-2 optical RGB im-
ages fused with the corresponding Sentinel-1 DInSAR coherence, phase, and displacement
maps [3] for binary classification for urban change detection. A blob detection algorithm
was used to detect change (either subsidence or uplift blobs) in the 2 July to 14 July, 2018,
Terrain Corrected Displacement Map (Line of Sight) over Gauteng, South Africa [1,3,4].

There is a high false-positive rate; an automated machine learning binary classification
approach improving upon previous work [1,4] was required. In this article, non-deep
learning machine learning models using feature extraction algorithms, such as histogram
of oriented gradients and local binary patterns were first evaluated as a baseline. A
convolutional neural network with two layers (ConvNet2) was also evaluated [4]. A
variety of DNN architectures as feature extractors were also analyzed. Transfer learning
by fine-tuning (TLFT) and deep learning from random initialization (DLRI) were also
evaluated using two models [1,4]. Ensembles of models used with transfer learning by
feature extraction (TLFE) were also evaluated using a family of models, called feature space
ensembles of TLFE neural networks (FeatSpaceEnsNets) and average ensembles of TLFE
Neural Networks (AvgEnsNets). Seven FeatSpaceEnsNets, seven AvgEnsNets, and five
hybrid ensembles of TLFE neural networks (HybridEnsNets) were defined and evaluated.

2. Materials and Methods

The methods used to generate the binary classification dataset as well as the classifica-
tion algorithms used are discussed below.

2.1. Baseline Machine Learning Methods

To quantify the benefit of deep learning and transfer learning models over other
approaches, some non-deep learning machine learning algorithms were evaluated as a
baseline [28]. These include SVM, random forest, multi-layer perceptron, and a two-
layer convolutional neural network (ConvNet2) discussed further below. The LBP and
HOG feature vectors, as well as their combination, were fed into these non-deep learning
classifiers. The Python [29] programming language was used with the Scikit-learn [30] and
Scikit-image [31] machine learning libraries.
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2.1.1. Linear SVM and Radial Basis Function (RBF) SVM

A linear support vector machine (Linear SVM) [32] classifier is a supervised machine
learning algorithm that calculates a hyperplane that separates the different classes with the
maximum separation between the hyperplane and the training data. In cases where the
data are not linearly separable, a kernel can be used to map to a higher dimensional space,
such as a radial basis function (RBF) kernel, i.e., RBF-SVM [32,33]. The regularization
inverse, C, hyperparameter of the linear SVM classifier, is grid searched using the following
values (0.001, 0.01, 0.1, 1.0, 10.0, 100.0) [4]. The regularization inverse, C, and the RBF
kernel coefficient, gamma, hyperparameters of the RBF-SVM classifier, were grid searched
both using the following values (0.001, 0.01, 0.1, 1.0, 10.0, 100.0) [4].

2.1.2. Random Forest (RF) and Multi-Layer Perceptron (MLP) Neural Network

A random forest (RF) [33–35] and multi-layer perceptron (MLP) neural network [32,33,36]
classifiers were also evaluated on the feature vectors. Models with each feature descriptor
alone and their combination were evaluated. A random forest is a supervised machine
learning algorithm that uses an ensemble of decorrelated decision trees, which use a random
set of features to split each node. In order to perform classification, the class that most trees
voted for is yielded as the result [33–35]. The number of trees in the forest, n_estimators,
hyperparameter of the random forest classifier was grid searched using the following values
(50, 100, 150, 200, 250, 300).

A multi-layer perceptron (MLP) is an artificial neural network trained by the super-
vised machine learning method called backpropagation. It has an input layer, hidden
layers with non-linear activation functions, and an output layer. It can be used to classify
non-linear data [32,33,36]. The regularization, alpha, hyperparameter of the MLP classifier
was grid searched using the following values (0.001, 0.01, 0.1, 1.0, 10.0, 100.0).

2.1.3. ConvNet2: Two Layer Convolutional Neural Network

A convolutional neural network (CNN) is an artificial neural network used for com-
puter vision (or object recognition and classification) based on convolutional kernels
applied to the input images to create feature maps instead of using feature descriptors [11].
A two-layer convolutional neural network (ConvNet2) was designed, which consists of
two CNNs in parallel, one for the DInSAR processed Sentinel-1 images phase, coherence
and displacement maps, and one for the Sentinel-2 optical images, as shown in Figure 1.
The design of the CNN is similar to the ResNet convolutional blocks with two convolu-
tional layers that have batch normalization and maximum pooling [11]. In the first 2D
convolutional layer, there are 32 filters. In the second 2D convolutional layer, there are 64
filters. The convolutional layers use a 3 × 3 filter kernel and a ReLU activation function.
A 2 × 2 filter kernel is used for maximum pooling. Thereafter, there is a Global Average
Pooling layer [37]. This is followed by a dropout layer to avoid overfitting and to improve
the model’s generalization [38]. The values, (0.2, 0.3, 0.4), are considered as the dropout
hyperparameter to fine tune the model. Averaging of the Softmax output layers yields
the ConvNet2’s output [4]. The two branches of the CNN were trained simultaneously in
parallel. The Keras [39,40] library was used for implementing the ConvNet2 model and
also for implementing the deep learning and transfer learning models.
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Figure 1. Architecture of ConvNet2, a 2-layer CNN [4].

2.2. Deep and Transfer Learning Methods

Deep learning models can have millions of parameters and require multiple GPUs and
significant time to train using extensive datasets. Often, a sufficiently large dataset is not
available for a DNN to achieve good performance. Transfer learning refers to transferring
the knowledge gained from training a model with a sufficiently representative dataset to
another task that may not have enough examples to train a DNN starting with random
initialization. In this manner, knowledge is transferred from a well trained, much larger
model, decreasing the computational cost required to train a DNN. This transfer is typically
done using a pre-trained DNN and then replacing the final layer with one suited to the
task at hand. A model with rich discriminative filters trained on the ImageNet dataset
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containing millions of images is often used as a pre-trained model in computer vision
tasks [1,41]. From the three types of transfer learning possible, i.e., feature extraction,
fine-tuning, and initializing with weights, the first two were implemented [1,4]. DLRI and
transfer learning from models pre-trained on the ImageNet dataset were also implemented
as part of this research.

2.2.1. Deep Learning and Transfer Learning using Fine-Tuning (TLFT)

Two pre-trained ResNet50 [42] models were combined, one for the stacked DInSAR
processed Sentinel-1 phase, displacement, and coherence maps, and one for the RGB three-
band image. This setup is used for classic deep learning (training from scratch, i.e., random
initialization) and TLFT, since the built-in models cannot be used on six-band input imagery.
The final Softmax predictive layer is removed from the built-in model. It is replaced with a
global average pooling 2D layer, a dropout layer, and a customized Softmax layer suited
to the number of classes, i.e., two classes for binary classification. These layers are added
for each of the two built-in models. The final output of the model takes the average in
the last layer. Early stopping is used for regularization to avoid overfitting the model to
the training data. Dropout layers are also used to avoid overfitting [1]. The models are
trained with the parallel branches of the networks trained simultaneously for a maximum
of 50 epochs. The dropout hyperparameter was tuned using the following values, (0.2, 0.3,
0.4), and ten-fold cross-validation. Data augmentation with the following operations were
applied to random images: zooming, shearing, height shifting, width shifting, horizontally
flipping, or rotating [11].

To implement TLFT, first, all of the layers are frozen, and only the predictive layer is
trained since the dataset is small [43]. Training is done with the parallel branches of the
networks trained together for 50 epochs and uses early stopping, set to a value of four
epochs of patience. After that, only the last convolutional layer is unfrozen in both of
the parallel branches of the networks to be trained simultaneously with the last Softmax
predictive layers in both branches of the network. Another round of training is done,
which is also for 50 epochs with early stopping at the same patience interval as before. An
optimizer (stochastic gradient descent) is used with a learning rate of 0.0001, which is slow.
The optimizer also uses a momentum of 0.9. These parameters are used for training for
both DLRI as well as TLFT [1,4].

2.2.2. Transfer Learning by Feature Extraction (TLFE)

In TLFE, the massive training cost associated with deep learning is eliminated. Nu-
merous DNN architectures were used to implement TLFE. These models have weights
pre-trained on the ImageNet dataset to generate feature maps and are used with the last
predictive layer removed. A logistic regression classifier was trained on the feature maps
that were generated using the pre-trained models. The regularization inverse hyperparam-
eter (C) was tuned with values, (0.001, 0.0005, 0.0001). The logistic regression model was
selected as it performed better than other linear models evaluated using the extracted fea-
tures [1,4]. The difference between TLFE and TLFT is that no model training was required
for the first method, i.e., the pre-trained model was directly applied to the new dataset to
generate the feature maps.

2.3. Ensemble Methods

The ensemble of models can improve performance across a number of domains compared
to single model performance if weak learners are aggregated by using voting [27,44–46]. Thus,
ensembles of models were also evaluated with transfer learning using features extracted to
generate feature maps. We then used Logistic Regression on the feature maps for classification.
The average performance accuracy on a hold-out unseen test dataset obtained with ten-fold
cross-validation was also measured [1,4]. Three types of ensembles were used: feature space
ensemble of TLFE neural networks, average ensemble of TLFE neural networks, and hybrid
ensemble of TLFE neural networks.
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2.3.1. Feature Space Ensemble Networks (FeatSpaceEnsNets)

A FeatSpaceEnsNet is an ensemble of TLFE models ’ensembled’ in the feature space
with one logistic regression classifier trained on the combined feature maps. Several
different FeatSpaceEnsNets were evaluated using a mixture of DNNs to generate feature
maps with only one logistic regression classifier applied to the combined feature maps.
The general form of the architecture of the FeatSpaceEnsNet family of networks is shown
in Figure 2 for pre-trained models 1 . . . n. The family of specific FeatSpaceEnsNets that
have been implemented is shown in Table 1.

2.3.2. Average Ensemble Networks (AvgEnsNets)

An AvgEnsNet is an ensemble of TLFE models ’ensembled’ in the output space
(decision level). Each model has its logistic regression classifier trained on only its feature
maps. Then the outputs of the models in the ensemble are averaged to arrive at the
final output of the AvgEnsNet. Several different AvgEnsNets were evaluated using a
heterogeneous mixture of DNNs. The general form of the architecture of the AvgEnsNet
family of DNNs is shown in Figure 3 for pre-trained models 1 . . . n. The family of specific
AvgEnsNets that have been implemented is shown in Table 1.

2.3.3. Hybrid Ensemble Networks (HybridEnsNets)

A hybrid ensemble family of TLFE neural networks (HybridEnsNet) is also defined
and evaluated as listed in Table 1. The HybridEnsNets include one FeatSpaceEnsNet model
(FeatSpaceEnsNet 3, which is fused at the feature level) fused with an AvgEnsNet and
single models (except HybridEnsNet 1) at the decision level. Thus, the HybridEnsNets
contain models with a mixture of feature level and decision level fusion and fuses these
models at the decision level.

Table 1. Ensemble definitions.

Ensemble Models

FeatSpaceEnsNet 1 ResNet50 + ResNeXt50
FeatSpaceEnsNet 2 ResNet50 + ResNeXt50 + EfficientNetB4
FeatSpaceEnsNet 3 ResNet50 + ResNet101
FeatSpaceEnsNet 4 ResNet50 + ResNet101 + ResNeXt50
FeatSpaceEnsNet 5 ResNet50 + ResNet101 + ResNet152
FeatSpaceEnsNet 6 ResNet50 + ResNet101 + Inception-ResnetV2
FeatSpaceEnsNet 7 ResNet50 + Inception-ResnetV2

AvgEnsNet 1 ResNet50 + Inception-ResnetV2
AvgEnsNet 2 ResNet50 + ResNet101
AvgEnsNet 3 ResNet50 + ResNeXt50
AvgEnsNet 4 ResNet50 + ResNet101 + ResNeXt50
AvgEnsNet 5 ResNet50 + ResNet101 + Inception-ResnetV2
AvgEnsNet 6 ResNet50 + ResNet101 + ResNet152
AvgEnsNet 7 ResNet50 + ResNeXt50 + EfficientNetB4

HybridEnsNet 1 FeatSpaceEnsNet 3 + AvgEnsNet 2
HybridEnsNet 2 FeatSpaceEnsNet 3 + AvgEnsNet 2 + IncResNetV2 + EffNetB0
HybridEnsNet 3 FeatSpaceEnsNet 3 + AvgEnsNet 4 + IncResNetV2 + EffNetB0 + EffNetB4
HybridEnsNet 4 FeatSpaceEnsNet 3 + AvgEnsNet 4 + IncResNetV2 + EffNetB0 + EffNetB4

+ ResNet152 + EffNetB7
HybridEnsNet 5 FeatSpaceEnsNet 3 + AvgEnsNet 4 + IncResNetV2 + EffNetB0 + EffNetB4

+ ResNet152 + EffNetB7 + ResNet50V2 + ResNet152V2
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Figure 2. General form of the architecture of the FeatSpaceEnsNet family of transfer learning by feature extraction neural
networks.
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Figure 3. General form of the architecture of the AvgEnsNet family of transfer learning by feature extraction neural networks.

2.4. Analysis of Methods

SVM performs well when data sets are small and dimensionality is high. SVM-RBF,
RF, MLP, and deep learning methods function well with non-linearity, whilst the linear
methods, SVM, make strong assumptions, which may not hold [32,33]. The deep learning
methods generally require larger amounts of data to train [10,11].

The advent of deep residual networks (ResNet) [42] has allowed significantly deeper
neural networks to be trained as they overcome the vanishing gradient problem by design-
ing the layers, such that they learn residual functions of the layer inputs as opposed to
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learning unreferenced functions. This lead to improvements in image recognition accuracy.
The ResNet50 has 50 layers, ResNet101 has 101 layers, and so on [1,4,42]. ResNet Version
2 (ResNetV2) [47] improved upon ResNet and is based upon a new residual unit that
makes training simpler and improves generalization by using identity mappings as the
skip connections and after-addition activation to improve accuracy [1,4,47].

An Inception [48] architecture uses multi-scale processing and its design keeps compu-
tational cost constant while expanding the depth and width of a DNN [48]. When residual
connections are added to an Inception architecture, the resultant DNN is an Inception-
ResNet architecture [49]. The residual connections drastically reduce the DNN training
time [1,4,49].

The ResNeXt [50] architecture expands a DNN in a different dimension, which is the
cardinality, i.e., the total transformations. It introduced the design of repeating a basic unit
that is aggregating a group of transformations with similar architecture which is called
“network in neuron” [1,4,50].

Tan et al. [51] noticed an increase in accuracy when scaling up the network depth,
width and resolution parameters. The notion of a compound coefficient which uniformly
scales each of these parameters was introduced. The EfficientNet [51] family of DNNs were
designed using neural architecture search to yield a baseline network which was scaled
up. EfficientNets are said to require less training time since they have less parameters
compared to other comparable DNN architectures [1,4,51]. The more layers in a DNN, the
more parameters it will have, and the more data it will require to be adequately trained.
Thus, deeper neural networks perform better when there are more data available, than
they do for smaller datasets [4].

2.5. Data

The European Space Agency’s Copernicus Open Access Data Hub [52] provides free
imagery from the Sentinel satellite missions. In this research, Sentinel-1B SAR data and
Sentinel-2 optical imagery were used. The Sentinel-1 satellites have a revisit frequency of
six days over Europe and 12 days over Africa and can achieve spatial resolutions of up
to 5 × 20 m [2]. Sentinel-2 provides optical RGB imagery data as well as multispectral
data. Sentinel-2 can achieve spatial resolution of 10 m in the optical RGB bands [53].
Differential interferometric synthetic aperture radar (DInSAR) processing [54–56] of the
interferometric wide swath mode SAR data were done using the Sentinel Application
Platform (SNAP) Sentinel-1 toolbox [57] to produce a differential interferogram from single
look complex (SLC) vertical–vertical polarized images over Gauteng, South Africa. Bursts
3 to 7 in IW swath 1 were used. To unwrap the differential interferogram, the statistical-
cost network-flow algorithm for phase unwrapping (SNAPHU) software was used [58].
A terrain-corrected displacement map was generated. To process the optical Sentinel-2
images from Level 1C (top of atmosphere) images to atmospherically corrected Level 2A
(bottom of atmosphere) images at a resolution of 10 m, the Sen2Cor software tool was
employed [59].

For change (either subsidence or uplift blobs) to be detected in the 2 July to 14 July,
2018, Terrain Corrected Displacement Map (Line of Sight), the Laplacian of Gaussian [60]
blob detection algorithm was used. There was a high false-positive rate due to the drop
in coherence over vegetated areas. To overcome this issue, we used the blob detection
algorithm as a candidate selection algorithm and we used a binary classification machine
learning model to fine tune the classification of the candidates. For each blob phase,
coherence and displacement maps were subsetted using the Geospatial Data Abstraction
Library (GDAL) [61] and re-projected to the Sentinel-2 Coordinate Reference System for
combination with the corresponding Sentinel-2 optical images obtained on 1 July 2018 and
16 July 2018. Effectively, each blob had 2 × 3 bands [1]. The resolution of the Sentinel-1
images was 28 × 34 m since 8 × 2 multi-looking (avg. pooling) was done to decrease the
noise in the interferogram. The images were resized to 224 × 224 for all the models except
for the InceptionResNetV2 [49], which used 299 × 299. After processing, qualitative visual
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verification of the blobs was done using optical RGB Sentinel-2 images. At least 574 blobs
required further verification using images from Google Earth [62] since the Sentinel-2
images alone were not sufficient to classify the blob (as false/true-positive) for manual
data labeling purposes [1,4].

2.6. Data Preprocessing

The DInSAR processed images (phase, displacement, and coherence) were scaled
to the RGB range from 0 to 255 for all of the models, excluding the non-deep machine
learning models, as they used feature descriptors. Mean image subtraction preprocessing
was used for the ResNet50 model. For the best performance to be obtained from transfer
learning the same input image sizes and preprocessing needed to be performed, as what
was performed when the model was trained on the original dataset [1,47]. Scaling the
features to unit variance and zero mean preprocessing was done for the logistic regression
models used when doing TLFE. The same scaling was also used for the support vector
machines, random forest, and multi-layer perceptron models used in the non-deep machine
learning models. This scaling helps to avoid skewing the model and caters for any features
that may have a larger scale or variance than the rest of the features [4].

LBP and HOG Feature Descriptors

For feature extraction, the histogram of oriented gradients (HOG) [63,64] as well as
the local binary pattern (LBP) [63] feature descriptors were used to generate feature vectors.
The HOG descriptor aims to capture coarse spatial structure and was used originally for
human pedestrian detection [64]. First, the image was normalized, then the image gradient
was computed. Thereafter, the image was divided into cells and a local 1D histogram of
gradients (edge orientations) for all of the pixels, which the cell contained, was computed.
Then normalization in the HOG space across the blocks was performed, followed by
flattening into a feature vector [63–65].

The LBP classifies textures and is commonly used in facial recognition algorithms. It
is based on determining whether the points that surround the central point are greater
than or less than it, and returning a result that is binary. This can then be converted into
an 8-bit number [63]. The same input image sizes as those used for deep learning and
used by ResNet [42] (224 × 224) are used for LBP. The two-dimensional uniform LBP is
calculated using the following parameters: 24 as the number of points, i.e., eight times the
radius, using a radius of three. A normalized histogram of the LBP image is generated.
The HOG feature descriptor requires the input images to be resized to a 1:2 aspect ratio. To
implement this, the images are resized to 112 × 224 pixels. The parameters of the HOG
feature descriptor used are as follows: an 8 × 8-pixel cell window, nine orientations, and
2 × 2 cells per block. The features are also normalized in the LBP space. Both feature
descriptors are applied to the phase maps, coherence maps, displacement maps, and the
RGB optical image, separately. The feature vector obtained from applying the respective
descriptor to each of these images, was also concatenated into a combined feature vector
for a combined model. An example of the LBP and HOG feature descriptors applied to
a positive blob at the location (−26.2204906351649, 28.0539217476939) are illustrated in
Figures 4 and 5, respectively.

2.7. Experimental Design

A balanced binary classification dataset comprising 1440 blobs (720 positive and
720 negative) was created, as described in previous sections, to compare model accuracy.
The binary classification was implemented using non-deep machine learning approaches
with feature extractors, classical deep learning using random initialization, and trans-
fer learning models. In order to assess and compare model generalization and to set
hyperparameters, the following protocol was followed.

Each of the sub-networks in the pair of networks use an independent neural network
with identical architecture and embedding feature space length. As a result, both the
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RGB and the SAR data were equally weighted in the final concatenated feature vector.
However, since the Sentinel-2 data contains significantly more information due to the
higher resolution pixels, these would contribute somewhat more to the final classification.
To this end, we performed some investigative analyses and found that the models did
perform better when the Sentinel-1 and Sentinel-2 data were combined.
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Figure 4. Local Binary Pattern of a positive blob in the dataset.
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Figure 5. Histogram of Oriented Gradients of a positive blob in the dataset.

The dataset was split into a training set of 80% and a completely held-out testing set
of 20%. The held-out set was only used for reporting the generalization accuracy and other
metrics. The 80% training set was used for both hyperparameter tuning and to replicate
the experiment by training multiple models for a more robust estimate of model accuracy.

For hyperparameter tuning, the parameters were obtained by using ten-fold cross-
validation on the 80% training set. Ten-fold cross-validation was also employed to replicate
the experiment to report expected accuracy and variance. For replication, we used nine
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of the ten folds from the 80% training set to fit a model and report the model accuracy on
the 20% held-out set. This process of selecting nine of the ten folds was repeated ten times,
with each iteration leaving out a different single fold. This process was repeated twice
using different seed values when choosing the data splits to ensure increased robustness in
estimating of model accuracy.

The average test accuracy results were measured. To quantify the classifier perfor-
mance, the average Precision (positive predictive value), recall, and F1 score were also
measured [4,66]. In order to control for family-wise error resulting from multiple com-
parisons, we employed the Holm Šidák correction, which has more power than other
approaches. We selected an alpha level at 0.05 for family-wise significance. This proto-
col for multiple testing correction was appropriate as we use a completely held-out set
for testing [67].

3. Results
3.1. Candidate Selection

The Laplacian of Gaussian [60] blob detection algorithm detected blobs that were
both true-positives as well as false-positive blobs. The blob detection algorithm detected
true-positive blobs due to changes in construction developments, quarries, highways,
mines, residential complexes, and factories with parking lots. Trees, grass, crops, and other
(vegetated areas) cause undesirably low coherence, which causes false-positive blobs. The
blob detection algorithm also detected false-positive blobs due to water bodies, such as
lakes, ponds, a green liquid at the top of mine dumps due to water having mixed with the
contents of the mine dump and other water bodies [1,4].

3.1.1. True-Positive Blobs

True-positive blobs are blobs where change was detected. Figure 6 shows two Sentinel-
2 optical images at a 10 m resolution of an example of a true-positive blob due to con-
struction having occurred at the coordinates (−26.1431583848774, 28.1765660900992) in
Germiston, Gauteng, South Africa.
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(a) Sentinel-2 image on 1 July, 2018.
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(b) Sentinel-2 image on 16 July,
2018.

Figure 6. Sentinel-2 images of a true-positive blob of a construction site in Germiston.

Figure 7 shows the corresponding Google Earth [62] image on 27 June 2018, confirming
that it is a construction site as the construction of the roof of the building is visible. Figure 8
illustrates the true-positive blob’s corresponding DInSAR processed phase, coherence, and
displacement maps with the corresponding Sentinel-2 RGB image.

Figure 9 shows the two Sentinel-2 optical images of a true-positive blob with construc-
tion at the coordinates (−26.106468326956, 28.1471985770085) in Thornhill Estate, Gauteng,
South Africa. Figure 10 shows the corresponding Google Earth [62] image in June 2018,
confirming that it is a construction site.
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Figure 7. Google Earth image of a Germiston construction site.
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Figure 8. True-positive blob of a construction site in Germiston.
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(b) Sentinel-2 image on 16 July, 2018.

Figure 9. Sentinel-2 images of a true-positive blob at a Thornhill Estates construction site.
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Figure 10. Google Earth image of a Thornhill Estates construction site.

Figure 11 illustrates the true-positive blob’s corresponding DInSAR processed phase,
coherence, and displacement images with corresponding Sentinel-2 RGB image. Figure 12
shows the two Sentinel-2 optical images of a true-positive blob at a gold surface mine dump
tailings retreatment facility (Elsburg Tailings Complex) at the coordinates (−26.2462588162865,
28.230965774735) in Boksburg, Gauteng, South Africa.

Figure 13 shows the corresponding Google Earth [62] image on 27 June 2018, confirm-
ing that it is a tailings mine dump retreatment facility. Figure 14 illustrates the true-positive
blob’s corresponding DInSAR processed phase, coherence, and displacement images with
corresponding Sentinel-2 RGB image.

Figure 15 shows the two Sentinel-2 optical images of a true-positive blob at a factory yard
containing trucks and containers at the coordinates (−26.2482935080064, 28.1374744753349)
in Alberton, Gauteng, South Africa. Figure 16 shows the corresponding Google Earth [62]
image on 27 June 2018, confirming that it is a factory yard with containers and trucks whose
movement would correspond to the change detected. Figure 17 illustrates the true-positive
blob’s corresponding DInSAR processed phase, coherence, and displacement images with
corresponding Sentinel-2 RGB image.
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Figure 11. True-positive blob of a construction site in Thornhill Estate.
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Figure 12. Sentinel-2 images of a true-positive blob at a tailings mine dump retreatment site.

Figure 13. Google Earth image of at a tailings mine dump retreatment site.
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Figure 14. True-positive blob of a tailings mine dump retreatment site.
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Figure 15. Sentinel-2 images of a true-positive blob of a factory yard in Alberton.

Figure 16. Google Earth image of a factory yard in Alberton.

0 10 20 30 40

0

10

20

30

40
50

100

150

200

250

(a) Sentinel-2 RGB image 1

0 10 20 30 40

0

10

20

30

40

0.019

0.018

0.017

0.016

0.015

0.014

(b) Displacement Image

0 10 20 30 40

0

10

20

30

40

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) Coherence Image

0 10 20 30 40

0

10

20

30

40 2

1

0

1

2

(d) Phase Image

Figure 17. True-positive blob of a factory yard in Alberton.
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3.1.2. False-Positive Blobs

False-positive blobs are blobs identified by the blob detection algorithm where indus-
trial change has not occurred, but are actually as a result of bad coherence due to artifacts
in the interferogram. These are used as the negative samples in binary classification.

Figure 18 shows the two Sentinel-2 optical images of a false-positive blob due to vege-
tation causing a blob as a result of the bad coherence at the coordinates (−25.5669752259105,
28.2160704977751) in Pretoria Rural, Gauteng, South Africa. Figure 19 illustrates the false-
positive blob’s corresponding DInSAR processed phase, coherence, and displacement
images with corresponding Sentinel-2 RGB image.
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(a) Sentinel-2 image on 1 July, 2018.
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(b) Sentinel-2 image on 16 July, 2018.

Figure 18. Sentinel-2 images of a false-positive blob of crops in Pretoria Rural.
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Figure 19. False-positive blob of crops in Pretoria Rural.

Figure 20 illustrates the DInSAR processed phase, coherence, and displacement images
with the corresponding Sentinel-2 RGB image of a false-positive blob that was caused by
trees (vegetation), causing undesirably low coherence at the coordinates (−26.1241380519143,
28.0437540461661) in an urban area in Hyde Park, Gauteng, South Africa.

The decision boundary between true-positive blobs (used as positive samples in binary
classification) and false-positive blobs (used as negative samples for binary classification)
is not distinctly defined, as both can occur when there is undesirably low coherence and
also when there is good coherence.



Remote Sens. 2021, 13, 4394 20 of 34

0 10 20 30 40

0

10

20

30

40

0

50

100

150

200

250

(a) Sentinel-2 RGB image 1

0 10 20 30 40

0

10

20

30

40

0.018

0.016

0.014

0.012

0.010

0.008

0.006

0.004

(b) Displacement Image

0 10 20 30 40

0

10

20

30

40

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c) Coherence Image

0 10 20 30 40

0

10

20

30

40

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(d) Phase Image

Figure 20. A difficult false-positive blob of trees in Hyde Park.

3.2. Binary Classification

Tables 2–7 contain the experimental performance results that were achieved [1,4]. We
highlight the best performing methods in bold. We also highlight, in gray, the methods that
are not significantly different from the best performing method using a two-sided t-test at
p ≤ 0.05 with the alternate hypothesis being that the best performing method is greater.

Table 2 contains the results of the deep learning and transfer learning single models.
ResNet50 has the best performance followed by ResNet101, which is not statistically
significantly different from ResNet50.

Table 2. Performance of the deep learning and transfer learning single models applied with the
corresponding number of parameters.

Model Method Acc. µ [%] Acc. σ2 F1 Score Precision Recall # Params
ResNet50 TLFE 83.751 1.503 0.838 0.838 0.838 26 m
ResNet101 TLFE 83.403 1.341 0.834 0.834 0.834 44 m
Inception-ResNetV2 TLFE 83.090 1.271 0.831 0.831 0.831 56 m
EfficientNet B0 TLFE 82.221 0.846 0.824 0.825 0.824 5 m
ResNeXt50 TLFE 81.441 1.285 0.814 0.815 0.815 25 m
EfficientNet B4 TLFE 81.041 1.310 0.811 0.812 0.811 19 m
ResNet50 DLRI 80.851 5.161 0.808 0.810 0.809 26 m
ResNet152 TLFE 80.677 2.355 0.807 0.807 0.807 60 m
EfficientNet B7 TLFE 79.688 2.954 0.796 0.796 0.796 66 m
ResNet152V2 TLFE 78.803 1.403 0.788 0.790 0.788 60 m
ResNet50V2 TLFE 78.802 1.579 0.786 0.791 0.789 26 m
ResNet50 TLFT 71.078 30.288 0.702 0.732 0.710 26 m
EfficientNet B4 TLFT 67.881 24.456 0.662 0.719 0.679 19 m
EfficientNet B4 DLRI 65.608 41.338 0.614 0.753 0.656 19 m

In Table 3 the results of the FeatSpaceEnsNets are contained. All of the FeatSpaceEn-
sNets, except for FeatSpaceEnsNet 5, outperform the best performing single model, ResNet50,
showing the value of the feature space ensembles. Table 4 presents the results of the AvgEn-
sNets, five of which have better performances than the best-performing ResNet50 model.
We note that the top five AvgEnsNets are not statistically significantly different.
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Table 3. Performance of the feature space ensemble models applied with the corresponding number of
parameters.

Model Acc. µ [%] Acc. σ2 F1 Score Precision Recall # Params
FeatSpaceEnsNet 2 84.862 1.108 0.849 0.850 0.849 70 m
FeatSpaceEnsNet 3 84.672 1.350 0.846 0.847 0.846 70 m
FeatSpaceEnsNet 4 84.585 0.501 0.845 0.845 0.845 95 m
FeatSpaceEnsNet 7 84.410 0.848 0.844 0.844 0.844 82 m
FeatSpaceEnsNet 6 84.255 0.802 0.842 0.842 0.842 126 m
FeatSpaceEnsNet 1 84.047 0.908 0.840 0.840 0.840 51 m
ResNet50 83.751 1.503 0.838 0.838 0.838 26 m
FeatSpaceEnsNet 5 83.595 0.811 0.836 0.836 0.836 130 m

Table 4. Performance of the average ensemble models applied with the corresponding number of
parameters.

Model Acc. µ [%] Acc. σ2 F1 Score Precision Recall # Params
AvgEnsNet 7 84.862 1.374 0.850 0.850 0.850 70 m
AvgEnsNet 4 84.723 1.690 0.846 0.847 0.846 95 m
AvgEnsNet 5 84.324 1.872 0.842 0.843 0.842 126 m
AvgEnsNet 1 84.063 1.739 0.841 0.842 0.841 82 m
AvgEnsNet 2 83.994 1.421 0.839 0.839 0.839 70 m
ResNet50 83.751 1.503 0.838 0.838 0.838 26 m
AvgEnsNet 3 83.751 1.667 0.838 0.839 0.838 51 m
AvgEnsNet 6 83.472 1.224 0.836 0.836 0.836 130 m

To evaluate if the use of a hybrid approach would further increase upon the FeatSpace-
EnsNet and AvgEnsNets, we turn to Table 5, which has the results of the HybridEnsNets.
The best-performing HybridEnsNets do not outperform the best AvgEnsNet, but none are
statistically significantly different.

Table 5. Performance of the hybrid ensemble models applied with corresponding number of parame-
ters.

Model Acc. µ [%] Acc. σ2 F1 Score Precision Recall # Params
HybridEnsNet 3 84.775 1.464 0.848 0.849 0.848 245 m
HybridEnsNet 2 84.706 0.794 0.847 0.847 0.847 201 m
HybridEnsNet 4 84.497 0.829 0.845 0.845 0.845 371 m
HybridEnsNet 1 84.272 1.219 0.843 0.843 0.843 140 m
HybridEnsNet 5 84.115 1.254 0.841 0.842 0.842 457 m
ResNet50 83.751 1.503 0.838 0.838 0.838 26 m

Finally, we compared the results of the best of each of the FeatSpaceEnsNets, AvgEn-
sNets, and HybridEnsNets against our ConvNet2, and some non-deep machine learning
approaches. From Table 6, we note that AvgEnsNet 7 is the best-performing model; how-
ever, it is not statistically significantly better than the other ensembles.
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Table 6. Performance of all models and methods applied with the corresponding number of parame-
ters.

Model Method Acc. µ [%] Acc. σ2 F1 Score Precision Recall
AvgEnsNet 7 TLFE 84.862 1.374 0.850 0.850 0.850
FeatSpaceEnsNet 2 TLFE 84.862 1.108 0.849 0.850 0.849
HybridEnsNet 3 TLFE 84.775 1.464 0.848 0.849 0.848
ResNet50 TLFE 83.751 1.503 0.838 0.838 0.838
ConvNet2 ML 82.640 1.700 0.828 0.831 0.828
LBP + RBF-SVM ML 70.522 4.619 0.705 0.707 0.705
LBP + RF ML 69.896 2.885 0.699 0.701 0.699
LBP + SVM ML 67.760 0.891 0.678 0.678 0.678
LBP + MLP ML 66.754 4.758 0.666 0.671 0.667
(HOG, LBP) + SVM ML 62.639 6.251 0.626 0.627 0.627
HOG + SVM ML 62.257 5.854 0.623 0.624 0.623
(HOG, LBP) + RF ML 62.241 5.768 0.621 0.625 0.623
(HOG, LBP) + MLP ML 61.928 8.143 0.615 0.622 0.619
HOG + MLP ML 61.563 7.716 0.611 0.622 0.614
HOG + RF ML 61.007 4.404 0.608 0.611 0.609
HOG + RBF-SVM ML 50.000 0.000 0.330 0.250 0.500
(HOG, LBP) + RBF-SVM ML 50.000 0.000 0.330 0.250 0.500

3.3. Effect of Varying Cross-Validation Folds

Table 7 contains the results of the best performing models from each class of method,
decision tree ensemble: LBP-RF, linear: LBP-SVM, non-linear-shallow: LBP-RBF-SVM, non-
linear-deep: ResNet50 and non-linear-deep-ensemble: AvgEnsNet 7 and FeatSpaceEnsNet
2 under ten, five and two cross-validation folds. The results when using five-fold cross-
validation indicate a slight drop in performance as compared to when using ten fold cross-
validation. The local binary pattern model with a radial basis function SVM classifier had a
more pronounced drop of 1.5% when using five-fold instead of two-fold cross-validation.
However, when using two-fold cross-validation most of the models evaluated have better
performance than when using five-fold or ten-fold cross-validation. This is due to there
being more training data when using two-fold cross-validation. Only the local binary pattern
model with a radial basis function SVM classifier has slightly worst performance when
using two-fold cross-validation compared to using ten-fold cross-validation. Ten-fold cross-
validation has a higher F1 score for all the models except for the LBP with a linear SVM
classifier model.

Table 7. Performance of best performing models under different cross-validation folds.

Model Method Folds Acc. µ [%] Acc. σ2 F1 Score Precision Recall
AvgEnsNet 7 TLFE 84.862 1.374 0.850 0.850 0.850
FeatSpaceEnsNet 2 TLFE

10

84.862 1.108 0.849 0.850 0.850
ResNet50 TLFE 83.751 1.503 0.838 0.838 0.838
LBP + RBF-SVM ML 70.522 4.619 0.705 0.707 0.705
LBP + RF ML 69.896 2.885 0.699 0.701 0.699
LBP + SVM ML 67.760 0.891 0.678 0.678 0.678
AvgEnsNet 7 TLFE

5

85.139 1.012 0.851 0.852 0.851
FeatSpaceEnsNet 2 TLFE 84.932 1.049 0.849 0.849 0.849
ResNet50 TLFE 83.507 1.774 0.835 0.835 0.835
LBP + RF ML 69.514 3.506 0.694 0.695 0.694
LBP + RBF-SVM ML 69.237 5.901 0.693 0.694 0.693
LBP + SVM ML 67.640 1.122 0.678 0.678 0.678
AvgEnsNet 7 TLFE

2

85.330 0.427 0.853 0.855 0.853
FeatSpaceEnsNet 2 TLFE 85.245 1.411 0.853 0.853 0.853
ResNet50 TLFE 83.423 2.764 0.835 0.835 0.835
LBP + RF ML 70.833 7.798 0.708 0.708 0.708
LBP + RBF-SVM ML 70.228 6.147 0.703 0.705 0.703
LBP + SVM ML 68.228 0.362 0.680 0.683 0.680
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3.4. Visualization of Results

Figure 21 shows the two Sentinel-2 optical images of four of the false-positive blobs
that the best performing classifier (AvgEnsNet 7) incorrectly classified. False-positives tend
to occur over vegetated areas containing crops, trees, etc.

Figure 22 shows the two Sentinel-2 optical images of four of the false-negative blobs
that the best performing classifier (AvgEnsNet 7) incorrectly classified. False-negatives
tend to occur where there are partial images of construction sites in the image together
with vegetated land, as in False-negative 1 and 2. False-negative 3 and 4 also show partial
images, which contain vegetated land, together with quarries in the images.
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(a) False-positive 1: Sentinel-2 image
on 1 July, 2018.
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(b) False-positive 1: Sentinel-2 image
on 16 July, 2018.
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(c) False-positive 2: Sentinel-2 image
on 1 July, 2018.
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(d) False-positive 2: Sentinel-2 image
on 16 July, 2018.
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(e) False-positive 3: Sentinel-2 image
on 1 July, 2018.
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(f) False-positive 3: Sentinel-2 image
on 16 July, 2018.

Figure 21. Cont.
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(g) False-positive 4: Sentinel-2 image
on 1 July, 2018.
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(h) False-positive 4: Sentinel-2 image
on 16 July, 2018.

Figure 21. Visualization of four of the false-positive blobs incorrectly classified by the best classifier.
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(a) False-negative 1: Sentinel-2 image
on 1 July, 2018.
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(b) False-negative 1: Sentinel-2 image
on 16 July, 2018.
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(c) False-negative 2: Sentinel-2 image
on 1 July, 2018.
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(d) False-negative 2: Sentinel-2 image
on 16 July, 2018.
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(e) False-negative 3: Sentinel-2 image
on 1 July, 2018.
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(f) False-negative 3: Sentinel-2 image
on 16 July, 2018.

Figure 22. Cont.
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(g) False-negative 4: Sentinel-2 image
on 1 July, 2018.
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(h) False-negative 4: Sentinel-2 image
on 16 July, 2018.

Figure 22. Visualization of four of the false-negative blobs incorrectly classified by the best classifier.

4. Discussion
4.1. Non-Deep Machine Learning: LBP and HOG with Linear SVM, Radial Basis Function (RBF)
SVM, Random Forest (RF), and Multi-Layer Perceptron (MLP) Neural Network

The average testing accuracy performances achieved when using the LBP and HOG
feature extractors on their own, and using their combination with a linear support vector
machine (SVM), radial basis function SVM, random forest, and multi-layer perceptron
classifiers are contained in Table 6. The models with LBP had better performance than
the models with HOG or their combination (HOG, LBP) used as a feature extractor. The
uniform LBP RBF-SVM (70.522%) outperforms all of the other classifiers that use the LBP,
HOG, and their combination feature extractors. All of the LBP classifiers also performed
better than the EfficientNet B4 model used with DLRI (65.608%) from Table 2. This result
can be attributed to the dataset being small and the fact that there are a large number
of parameters that DNNs require to be adequately trained for them to achieve high-
performance results when performing DLRI. However, ResNet50 with DLRI and TLFT
outperformed all of the non-deep machine learning models, so there is variation when
considering architecture. The LBP with RBF-SVM (70.522%) and LBP with random forest
classifiers (69.896%) also outperform the EfficientNet B4 model used with TLFT (67.881%).
However, all of the TLFE DNN architectures outperformed all of the non-deep machine
learning models considered [4].

4.2. ConvNet2

The two-layer CNN, ConvNet2, acquired an average test accuracy performance of
82.640%. Despite having a straightforward architecture, it performed better than most of
the single models. Only the ResNet50, ResNet101, and Inception-ResNetV2 architectures
with TLFE and the ensemble models performed better than ConvNet2. It achieved a
performance of only 1.111% less than the ResNet50 architecture using TLFE, which had the
best single model performance. This result can also perhaps be attributed to the dataset
being small. Due consideration must also be given to the fact that the ConvNet2 model
was trained from scratch on this dataset, which also included DInSAR processed band
images of phase, coherence, and displacement and Sentinel-2 optical imagery that are
not at all similar to any of the classes of images that the transfer learning models were
trained on in the ImageNet dataset. Despite this fact, transfer learning with the ResNet50,
ResNet101, and Inception-ResNetV2 single model architectures, and the ensemble models
outperformed the ConvNet2 and the classic ML baseline. ConvNet2 leverages modern
advancements in regularization to combat overfitting; thus, it is not similar to the classic
artificial neural networks (ANN) or CNNs that used fully connected layers and suffered
from overfitting and need large amounts of data to be trained. ConvNet2 has dropout,
batch normalization and global average pooling layers. These modern advancements
increase its ability to generalize and perform better on unseen data [4].
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4.3. Transfer Learning by Feature Extraction

From all of the single models, TLFE with the ResNet50 and TLFE with the ResNet101
both individually outperform all of the other single models, which includes newer archi-
tectures, such as ResNeXt50, EfficientNet, ResNetV2, and Inception-ResNetV2. The mean
test accuracy of TLFE with ResNet50 (83.751%) outperforms the mean test accuracy of
TLFE with ResNet101 (83.403%) by 0.348% despite ResNet101 being a deeper network
with 101 layers and ResNet50 having only 50 layers [1,4]. ResNet50 is the best performing
single model with an accuracy of 83.751%. ResNet50 used as a feature extractor for transfer
learning also outperformed all of the non-deep machine learning models, such as the LBP
and HOG feature descriptors and their combination with Linear SVM, RBF-SVM, RF, and
MLP classifiers. ResNet50 also outperforms ConvNet2 by 1.110% [4].

The power of ensembling, combined with TLFE, is demonstrated by the fact that all of
the ensembles evaluated using TLFE have a mean accuracy of at least 83.472% and an F1
score of at least 0.836. The EfficientNet family of models that were evaluated with TLFE
reaches its peak performance using the EfficientNet B0 architecture (82.221%). It has a
performance of 1.180% higher than the performance achieved by the deeper EfficientNet
B4 architecture (81.041%). Even though EfficientNet B0 is the shallowest network (5 m
parameters), it still attains a noteworthy performance (82.221%), which is also higher
than the much deeper EfficientNet B7 (79.688%) and also higher than the ResNet152’s
performance (80.677%). This result is observed even though these much deeper networks
have 13× and 12× more parameters, respectively.

FeatSpaceEnsNet 2 (comprised of ResNet50, ResNeXt50, and EfficientNet B4) outper-
forms all of the AvgEnsNet and HybridEnsNet models except for AvgEnsNet 7. FeatSpaceEn-
sNet 2 (84.862%) achieved a mean test accuracy percentage of only 0.087% more than what
HybridEnsNet 3 (84.775) achieved. Since FeatSpaceEnsNet 3 only contains three models
and is a much simpler ensemble model than HybridEnsNet 3 (which contains eight models
of different model types and also includes FeatSpaceEnsNet 3), but does not outperform
FeatSpaceEnsNet 2, this is a significant result. Considering the quantity of models con-
tained in the ensemble, FeatSpaceEnsNet 2 only has 37.5% of the number of models that
HybridEnsNet 3 has. FeatSpaceEnsNet 2 also only has effectively 70 m parameters com-
pared to HybridEnsNet 3, which leverages the benefits of effectively 245 m parameters.
Thus, FeatSpaceEnsNet 2 has a parameter size that is 28.571% of the parameter size of
HybridEnsNet 3 since the single models do not have the same number of parameters.
FeatSpaceEnsNet 2 also has a narrower mean accuracy variance than HybridEnsNet 3.
FeatSpaceEnsNet 2’s F1 score is 0.001 more than the F1 score of HybridEnsNet 3.

From the seven models, which achieved a mean test accuracy percentage greater than
84.5%, HybridEnsNet 2 has the most negligible variance (0.794), which is 57.787% of the
variance of AvgEnsNet 7. HybridEnsNet 2 achieved an F1 score of 0.847, which is 99.647%
of the F1 score of the top-performing model, which was 0.850. All of the AvgEnsNet models
evaluated outperform the best single model, ResNet50 with TLFE, except for AvgEnsNet 3
and AvgEnsNet 6. Five of the seven FeatSpaceEnsNets that have a similar composition to
the respective AvgEnsNets have a higher performance than the corresponding AvgEnsNet
models. FeatSpaceEnsNet 7, FeatSpaceEnsNet 3, FeatSpaceEnsNet 1, FeatSpaceEnsNet 4,
and FeatSpaceEnsNet 5 outperformed the corresponding similarly composed AvgEnsNets,
AvgEnsNet 1, AvgEnsNet 2, AvgEnsNet 3, AvgEnsNet 4, and AvgEnsNet 6, respectively.
Only AvgEnsNet 5 outperformed its corresponding FeatSpaceEnsNet, FeatSpaceEnsNet 6.
AvgEnsNet 7 has the same mean accuracy performance as its corresponding FeatSpaceEn-
sNet, FeatSpaceEnsNet 2, but has an F1-score that is higher by 0.001 and a variance that is
wider by 0.266. In general, AvgEnsNets are computationally simpler to train since the size
of the combined feature vector increases with an increase in the number of models in the
ensemble, which consequently increases the complexity and the training time it takes to fit
a single Logistic Regression model to the large combined feature vector.
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4.4. Transfer Learning by Fine-Tuning and Deep Learning from Random Initialization

The DLRI mean accuracy performance is 9.773% higher than the fine-tuning mean
accuracy performance for the ResNet50 model. Transfer learning via feature extraction
with ResNet50 outperformed both DLRI and TLFT with ResNet50 by 2.900% and 12.673%,
respectively. This result is probably due to there not being enough data to adequately
train the model, since both random initialization and TLFT need two models, which are
combined in the final layer. Transfer learning by feature extraction, on the other hand,
requires no actual training. EfficientNet B4 with TLFE (81.041%) performed better than
both DLRI (66.608%) and also better than fine-tuning (67.881%), respectively.

All of the single models that used TLFE outperformed classic deep learning and the
fine-tuning method of transfer learning with the EfficientNet B4 architecture. All of the
single models that used TLFE also outperformed fine-tuning with the ResNet50. This
observation correlates with the literature as it is mentioned by Kornblith et al. [18] that
TLFE performs better for smaller datasets than TLFT [1,4,18]. If a much bigger dataset was
available, then DLRI would perform better than transfer learning in general. A crucial
parameter in determining whether classic deep learning or transfer learning performs
better is the size of the dataset. Another factor that affects transfer learning performance is
the similarity of the dataset that the model was trained on to the target dataset [4,18].

ResNet50 DLRI, classic deep learning, has a mean accuracy performance (80.851%)
that is 15.243% better than that of EfficientNet B4 (65.608%) on this small dataset despite
ResNet50 having seven million more parameters. ResNet50 DLRI also outperformed TLFE
with ResNet152, EfficientNet B7, ResNet152V2, and ResNet50V2. ResNet50 DLRI also
outperformed TLFT with ResNet50. ResNet50 fine-tuning has a 3.197% higher accuracy
than EfficientNet B4 fine-tuning, even though the EfficientNet architecture was designed
using the neural architecture search, which leverages machine learning to acquire the best
architecture configuration, which optimizes ImageNet performance [1,4,51].

Figure 23 illustrates the average test accuracy concerning parameter size. A trend line
is shown for models from the same architecture. The ResNet results are shown in orange.
Using a model with more layers decreases the single model performance. There is a steep
decrease in performance between feature extraction done using the ResNet101 model and
the ResNet152 single model. This decrease in performance is steeper than the decrease in
performance observed between the ResNet50 and ResNet101 models. This result is observed
despite the increase in the number of parameters (18 m) being less when comparing the
ResNet50 model (26 m) to the ResNet101 model (44 m) than the increase in the number of
parameters (16 m) when comparing the ResNet101 (44 m) model to the ResNet152 model
(60 m). For the EfficientNet architecture (shown in blue), a decrease in performance with
an increase in the number of parameters in the model is also observed. For the ResNetV2
architecture, the line indicating performance observed is almost horizontal when comparing
the performance of the ResNet50V2 model to the performance of the deeper ResNet152
model with 102 more layers. The number of parameters of the ResNet50 (version 1) and the
ResNet50V2 models is the same and the number of parameters of the ResNet152 (version
1) and ResNet152V2 models is also the same. However, the steepness of decrease in
performance comparing the ResNet50 model (50-layer ResNet) to the ResNet152 model
(152-layer ResNet) is more pronounced in the version 1 architecture, where performance
decreases by 3.074%, than in the version 2 architecture, where it increases by 0.001%. An
inverse correlation between mean test accuracy and deep learning network size is evident
in general when the architecture remains constant.
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Figure 23. Model performance with reference to parameter size, zoomed in to show models with performances above 78%,
FeatSpaceEnsNet, AvgEnsNet, and HybridEnsNet are abbreviated as FSE, AE, and HE, respectively.

Mean accuracy of above 78% was achieved by all models with at least 30 m parameters.
Mean accuracy of at least 83.47% was achieved by all models with at least 70 m parameters.
There is a non-linear correlation between the number of parameters in the model and
the mean accuracy achieved in general. However, it must be noted that classic DLRI and
fine-tuning have only been evaluated on: ResNet50 (26 m parameters) and EfficientNet B4
(19 m parameters). From Figure 23, it is evident that on this dataset, most of the models
which used the feature extraction method of transfer learning performed better than DLRI
and TLFT method with the ResNet50 and EfficientNet B4 architectures, respectively. This
result was independent of parameter size. Had more DLRI been used, then due to the small
size of the dataset, as compared to the millions of images in ImageNet, deeper networks
would have performed worst due to not having enough data to train all the parameters [4].

Figure 24 illustrates the average test accuracy performance concerning the number
of models used. In general, single models do not perform as well as ensembles of models
with more than one model. An increase in performance with an increase in the number
of models in the ensemble is not observed. AvgEnsNet 7 achieves the peak performance
which contains three models (ResNet50, ResNeXt50 and EfficientNet B4). A slight increase
in performance accuracy percentage is observed when increasing the model number
from HybridEnsNet 1 to HybridEnsNet 2 and from HybridEnsNet 2 to HybridEnsNet 3.
However, a decrease in performance is observed when increasing the number of models
from HybridEnsNet 3 to HybridEnsNet 4 and from HybridEnsNet 4 to HybridEnsNet
5 respectively. This is due to the addition of lower performing single models in the
composition of the HybridEnsNet 4 and HybridEnsNet 5 ensembles as compared to the
other HybridEnsNet models with reference to Table 1.
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Figure 24. Model performance with reference to the number of models, zoomed in to show models with performances
above 78%, FeatSpaceEnsNet, AvgEnsNet, and HybridEnsNet are abbreviated as FSE, AE, and HE, respectively.

Figures 25–27 illustrate the confusion matrix of the best performing models (AvgEn-
sNet 7, HybridEnsNet3, and FeatSpaceEnsNet 2) that were evaluated. FeatSpaceEnsNet
2 and HybridEnsNet 3 both have one less false-positive and one more false-negative
than AvgEnsNet 7. AvgEnsNet 7 has one true-positive more than HybridEnsNet 3 and
FeatSpaceEnsNet 2, respectively. AvgEnsNet 7 also has one true-negative less than Hybri-
dEnsNet 3 and FeatSpaceEnsNet 2, respectively.
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Figure 25. AvgEnsNet 7 confusion matrix.
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Figure 26. HybridEnsNet 3 confusion matrix.
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Figure 27. FeatSpaceEnsNet 2 confusion matrix.

4.5. Limitations

Since changes need to be at least 28 m × 34 m, the resolution of the DInSAR processed
imagery also contributes to the high false-positive rate since it is skewed to detecting
significant area changes. Nevertheless, true-positive blobs are detected due to mines,
construction sites (uplift and subsidence), quarries, parking lots and factory yards. In cases
where there is industrial infrastructure in areas where there are high rise buildings the
performance may deteriorate. Only the RGB bands of Sentinel-2 are considered, adding
some of the other bands may have improved performance. Only the VV polarization
of the Sentinel-1 SAR data was used. The occurrence of water bodies or snow covered
surfaces also leads to bad coherence and false positives being generated. However, the
visual spectral information would counter this to some extent.

4.6. Complexity of the Different Approaches

DLRI trains the whole network and requires the longest training time. TLFT runs faster
than DLRI since the whole network is not trained. However, TLFE has the fastest running
time since no neural networks are actually trained, only a simple linear model is trained
on the feature maps. ’Ensembling’ with TLFE improves the accuracy, but requires more
running time to train. The more models included in the ensemble the longer the training
time required. Training FeatSpaceEnsNets is more computationally expensive than training
AvgEnsNets and has a longer running time since only one logistic regression model is
trained on the concatenated feature vector, which is much larger than the individual feature
vectors. The AvgEnsNets are also more computationally faster than the HybridEnsNets
due to them including one FeatSpaceEnsNet and a larger number of single models.

5. Conclusions

A novel dataset was developed comprising Sentinel-2 optical RGB images fused with
the corresponding Sentinel-1 DInSAR coherence, phase and displacement maps for binary
classification for industrial change detection. The knowledge learnt from the ImageNet
RGB images dataset was transferred to the novel dataset. All of the models that used TLFE
outperformed classic deep learning and the fine-tuning method of transfer learning with the
EfficientNet B4 architecture and they also outperformed fine-tuning with ResNet50. This is
due to the small size of the dataset limitation which prevents the adequate training of DNNs.
From all of the single models, TLFE with the ResNet50 and TLFE with the ResNet101 both
individually outperform all of the other single models, which include newer architectures,
such as ResNeXt50, EfficientNet, ResNetV2, and Inception-ResNetV2. ResNet50 is the best
performing single model with an accuracy of 83.751%. ResNet50 used as a feature extractor
for transfer learning outperformed all of the non-deep machine learning models such as
the LBP and HOG feature descriptors and their combination with linear SVM, radial basis
function SVM, random forest, and multi-layer perceptron classifiers, respectively. ResNet50
TLFE also outperformed the ConvNet2 model by 1.110% [4].

The power of ’ensembling’ combined with TLFE is demonstrated by the fact that all of
the ensembles evaluated using transfer learning by feature extraction have a mean accuracy
of at least 83.472% and an F1 score of at least 0.836. All of the AvgEnsNet, FeatSpaceEn-
sNet, and HybridEnsNet models evaluated statistically significantly outperform the best
performing single model, ResNet50 with TLFE, except for AvgEnsNet 3, AvgEnsNet 6, and
FeatSpaceEnsNet 5. Five of the seven FeatSpaceEnsNets that have a similar composition to
the respective AvgEnsNets have a higher performance than the corresponding AvgEnsNet
models. FeatSpaceEnsNet 7, FeatSpaceEnsNet 3, FeatSpaceEnsNet 1, FeatSpaceEnsNet 4,
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and FeatSpaceEnsNet 5 outperformed the corresponding similarly composed AvgEnsNets,
AvgEnsNet 1, AvgEnsNet 2, AvgEnsNet 3, AvgEnsNet 4, and AvgEnsNet 6, respectively.
Only AvgEnsNet 5 outperformed its corresponding FeatSpaceEnsNet, FeatSpaceEnsNet 6.
AvgEnsNet 7 has the same mean accuracy performance as its corresponding FeatSpaceEn-
sNet, FeatSpaceEnsNet 2, but has an F1-score that is higher by 0.001 and a variance that
is wider by 0.266. In general, AvgEnsNets are computationally simpler to train since the
size of the combined feature vector increases with an increase in the number of models in
the ensemble, which consequently increases the complexity and the training time it takes
to fit a single logistic regression model to the large combined feature vector. However,
FeatSpaceEnsNets can improve accuracy and are worthy of consideration.

Transfer learning by feature extraction is an efficient method of transferring the
knowledge of a pre-trained model that was trained on a much larger dataset that has
millions of images and has learnt rich discriminative filters to a new, usually smaller
dataset, to reap the benefits of deep learning without going through the intense training
process that requires images numbering in the tens of thousands or more. It should be
noted, though, that a 2-layer CNN, which has regularization layers, such as ConvNet2,
should also be evaluated for small datasets, as it can have better performance than classic
deep learning, and even transfer learning, using many architectures. Future work may
involve evaluating more models to improve binary classification accuracy.
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The following abbreviations are used in this manuscript:
DLRI deep learning random initialization
TL transfer learning
FE feature extraction
FT fine-tuning
CNN convolutional neural network
DNN deep neural network
TLFE transfer learning by feature extraction
TLFT transfer learning by fine-tuning
ResNet Deep Residual Network
ResNet50 50-layer Deep Residual Network Version 1
ResNet101 101-layer Deep Residual Network Version 1
ResNet152 152-layer Deep Residual Network Version 1
ResNet50V2 50-layer Deep Residual Network Version 2
ResNet152V2 152-layer Deep Residual Network Version 2
EfficientNet efficient network

FeatSpaceEnsNet
Feature Space Ensemble of transfer learning by feature extraction
neural networks
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FSE
feature space ensemble of transfer learning by feature extraction
neural networks

AvgEnsNet
average ensemble of transfer learning by feature extraction
neural networks

AE
average ensemble of transfer learning by feature extraction
neural networks

HybridEnsNet
hybrid ensemble of transfer learning by feature extraction
neural networks

HE
hybrid ensemble of transfer learning by feature extraction
neural networks

HOG histogram of oriented gradients
LBP local binary pattern
SVM linear support vector machine
RBF-SVM radial basis function support vector machine
RF random forest
MLP multi-layer perceptron
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