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Abstract: Information about water level is essential for hydrological monitoring and flood/drought
risk assessment. In a large part of Italian river network, in situ instruments for measuring water
level are rare or lacking. Here we consider the satellite measurements of water level retrieved by
Copernicus altimetric missions (Sentinel 3A, Sentinel 3B, Jason 2/3), and compare these with in situ
data, from 19 gauging stations in Italy with a river section in the range of [50, 555] m. The results
highlight the potentiality of altimetric satellite measurements for water level retrieval in a case study
of Italian rivers. By comparing synchronous satellite and in situ water level difference (i.e., difference
between two successive measurements in time of satellite data compared to the difference of two
successive measurements in time of in situ data), we found a median value of Pearson correlation
of 0.79 and 0.37 m of RMSE. Then, from water level differences, we extracted the satellite water
level values with two different procedures: (1) assuming as the initial water level of the satellite
measurements the first joint measurement (satellite–in situ data) and (2) calibrating the initial water
level, minimizing the mean absolute error metric. The results show the feasibility of using satellite
data for water level retrieval in an operative and automatic perspective.

Keywords: water level; Copernicus; altimeter; comparison; in situ data; accuracy

1. Introduction

Floods and droughts are widespread natural hazards that cause a huge amount
of damage every year worldwide [1]. The increasing economic and life losses due to
these hazards evidence that its risk is a crucial theme [2]. Italy is one of the European
countries for which this topic is more urgent. The ISPRA (2018) report states that 71.1%
of the municipalities are interested by a medium or high flood hazard; in terms of areas
interested, 4.1% (12,405 km2) of Italian territory is classified as a highest-hazard zone; 8.4%
(25,398 km2) as a medium-hazard zone; and 10.9% (32,961 km2) as low hazard zone, with
6M people potentially impacted by flood risk [3].

Among the best practices for risk reduction and mitigation there are the early warn-
ings and forecast systems that underline the need of a robust meteo-hydro monitoring
system [4]. An extended system of flood/drought monitoring based both on meteorolog-
ical (pluviometric) and hydrometric measurements is necessary for setting forecast and
warning systems. Monitoring the flow discharge at specific sections of a river is essential
to quantify the outputs of a catchment [5]. This is crucial for assessing effective water
management procedures, from flood risk estimation to water resource management [5].
Although the importance of river monitoring is clear, a large part of Italian rivers is not
monitored. In Italy, there are a total of 1276 hydrometric sensors. Among them, 747 also
provide measurements of discharge [6]. Forty-six percent (588) of the total is located in the
northern part [7]. There is a great portion of territory where the traditional hydrometric
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sensors are decommissioned, or absent, such as remote and mountain areas. Increasing the
hydrometric measurements by also using non-traditional sensors can be useful for the alert
system, to monitor the territory.

Satellites provide non traditional widespread and common measurements exploited
in different fields: agriculture [8,9], landslide mapping [10], rainfall [11], soil humidity [12],
snow [13,14], water level [15], water quality [16], and other hydrological and natural hazard
applications. Water surface height can be obtained through measurement of satellite radar
echo return time, with the radar altimeter instrumentation [17,18]. Water level derived
from satellite altimetry can be useful for different types of hydrological purposes. Radar
altimetry can be used for monitoring the water level and the volume variation of lakes
and reservoirs [19–23], which are key components of the water cycle. Another possible
application is the estimation of river discharge exploiting the altimeter data in Rating Curve
models [24–27].

The first satellite missions using radar altimeters started in the 1970s, with the primary
objective of measuring sea level and ocean surface topography. Satellite altimetric data
from Poseidon and successive missions such as Jason 1 (2001) and Envisat (2002) provided
excellent water level evaluations for large water bodies such as lakes and inland sea [28–30].
The results achieved for water lakes and inland sea showed the potential use of satellite
altimetric data for both easily accessibility and large spatial coverage [28,29]. The satellite
altimetric data can be a good complementary source of information for ground-based
networks and can supply where gauges are missing [28,31]. For lakes and inland water, the
quality assessment and in situ validation of satellite altimeter data have been quite widely
explored [32,33], as good performance has also been found for the largest river [34–37].
The assessment of radar altimeter on rivers has been more problematic for the smallest
river and is dependent on river width. Birkett et al. (2002) assessed the ability of the radar
altimeter derived from the TOPEX/POSEIDON dataset to monitor the surface water height
for a selection of rivers in the Amazon basin. In their work, they set a minimum theoretical
river width at 1.16 km [38]. Joecila Santos et al. (2010) performed in situ comparison
considering ERS2 and ENVISAT radar altimetry missions, also including narrow riverbeds
(till to 0.05 km), finding that the river reach did not appear as a factor strongly affecting
the quality of results. Therefore, high-quality series can also be collected on very narrow
reaches (<1 km) [39].

In 2016, a new mission, Sentinel 3A, was launched operating with a nadir Satellite
Radar ALtimeter (SRAL) [40]. The sentinel 3 mission provides higher spatial resolution
and lower noise with respect to the previous one [41]. The validation of Sentinel 3 altimeter
data in open sea [41] and lakes [34,42] also shows good performance in comparison to
previous missions [43]. The applicability of Sentinel 3 altimeter data over river basin has
recently been addressed [44–46]. Whereas recent works highlight that there is not a clear
dependence of measurement performance with the river width [36,47,48], surrounding
terrain can be an influencing factor. Altimeters can have difficulties tracking rivers at very
high altitudes and in steep topographic reliefs [47].

The quality assessment report of Copernicus Global Land Operations (2018) provides
the validation and quality assessment for Sentinel 3A and Jason missions. Still, in this
official document, the river case study refers to a minimum of 300 m river width [17]. This
highlights the need to assess the case of rivers with a width less than 300 m.

Here, we want to assess the feasibility of using satellite altimeter data from Jason,
Sentinel 3A and Sentinel 3B missions for water level retrieval considering very narrow
river sections (less than 300 m). The case study is the whole Italian territory, considering all
the available Copernicus altimetric stations. We used the dataset of Jason and Sentinel 3
missions, and we compare it with in situ water level data. The objective is to investigate
the accuracy of Copernicus altimetric measurements for water level retrieval and small
river section monitoring.
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2. Materials and Methods
2.1. Data

Ocean and surface topography measurements began with the Topex/Poseidon satellite
in 1992 and continued through Jason 1 (2001), Jason 2 (2008), and Jason 3, which have been
operating since 2016. Jason 3 is an Ocean Altimetry Satellite in a U.S.–European program
to measure the height of the ocean surface.

Sentinel 3 mission is part of the Copernicus project, the European Union’s Earth
observation program for the establishment of European capacity for Earth observation [49].
The primary objective is marine observation: sea-surface topography, sea and land surface
temperature, ocean, and land color [49]. The Sentinel 3 satellite carries the following
instruments: a dual-frequency SAR altimeter called SAR radar altimeter (SRAL) instrument,
a microwave radiometer (MWR), Precise Orbit Determination (POD), Ocean and Land
Colour Instrument (OLCI), and the Sea and Land Surface Temperature Radiometer (SLSTR)
instrument (for further details see [50]). Therefore, it provides altimetric measurements
and visible and infrared measurements simultaneously.

Here we used Sentinel 3A, Sentinel 3B, Jason 2 and Jason 3 satellite mission data,
provided at the free and open access Copernicus Global Land service portal:
https://land.copernicus.eu/global/products/wl (accessed date: 29 September 2020). The
revisit time, corresponding to the duration of the orbital cycle of the considered satellite,
is of 10 days for Jason 3 and 27 days for Sentinel 3A [51]. Jason 3 was launched in 2016
(and complements the Jason 2 water level timeseries as it is on the same orbit). The Jason
water level timeseries are 5 years long, with one measurement every 10 days. Sentinel 3A
was launched in 2016, so the Sentinel 3A water level timeseries therefore have a maximum
length of at least 5 years, with one measurement every 27 days. Sentinel 3B was launched
in 2018 and reached its final orbit in November 2018. The comparison between in situ and
satellite measurements started in 2016 for the Sentinel 3 mission and in 2006 for the Jason
mission. The intersection of the satellite ground track (i.e., the path on the surface directly
below the satellite’s trajectory) with the river is called the “virtual station” [18,23]. Virtual
stations are defined to provide river-water-level time series [52]. The coordinate of the
virtual station is defined as the intersection of the satellite’s theoretical ground track and
river’s centerline. The virtual stations are fixed, and their timeseries contain one data point
per satellite cycle [52]. More precisely, the virtual station is the intersection between the
rivers and satellite “theoretical ground track”, the path on the surface we would obtain if
the satellite passes exactly over the same positions every cycle. Due to small effects on the
satellite orbit (e.g., the fact that Earth’s mass distribution is not perfectly homogeneous),
it does not pass exactly over the same position each cycle. Adjustments are regularly
performed with small burns to ensure that the real ground track does not deviate more
than 1 km from the theoretical ground track.

The altimeters’ footprint of Jason 3 is in the order of 16 km. For Sentinel 3A and
Sentinel 3B, which use SAR mode, it is 300 m along the satellite’s flight direction and
about 10 km across the track. The altimetry data used to generate the satellite water level
estimate consist in 20 Hz data (i.e., one measurement every 300 m). Copernicus products
account for all points within about +/− 2 km around the virtual station position. Several
measurements are used: the ones at the nadir of the rivers and also a few just before or
after the river crossing, for which the water is still in the footprint. Editing is performed
over these 20 Hz measurements, and the median of the valid measurements is taken to get
the water level estimate for that satellite crossing of the river. These medians are directly
provided in the Copernicus Global Land Water level products. This is repeated for each
satellite crossing, which occurs every 10 days for Jason 3 and 27 days for the Sentinel 3A
and Sentinel 3B (the satellite cycle duration), hence constituting a water level time-series
over the station with 10- or 27-day intervals. The accuracy of water level measurements
depends on multiple parameters: the altimetry mission used, the shape and size of the
river bed and its surroundings, as well as the period within the hydrological cycle. The
mean accuracy over all virtual stations is in the order of 13 cm. This is the dispersion of the
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20 Hz measurements over each river crossing. It varies from 10 to 35 cm depending on the
basins and whether the measurement occurs during high or low water.

In Figure 1, we can see the orbit ground tracks for Sentinel 3A, Sentinel 3B, and Jason
2/3. Whereas there are potentially more virtual stations than what is displayed on the
map, the current available sample provided from the Copernicus Global Land Service
platform (red crosses in Figure 1) is limited in processed and good-quality retrievals. The
data available in the platform and used in the analysis, are Level 3 products resulting from
advanced processing of the Level 2 altimeter data made available by the space agencies.
Level 2 data (1 measurement about every 300 m) are edited, based on their standard
deviation value and the water surface height estimates across the transect. The Level 3
product is the median of these valid values and hence contains a quality control that has
already removed most of the outliers. The requirements for the validation processing are
the following: (1) time series that present no more than 3 consecutive cycles without valid
measurements, (2) the median difference between in situ and satellite measurements does
not exceed 0.5 m and the maximum difference is 1 m; and (3) at least 60 records with the
theoretical time resolution must be reached [17]. An initial quality control includes an
outlier rejection method where values outside the mean +/−3* standard deviation of the
water level estimates from all the 20 Hz data measurements of the transect are identified
as outliers. In addition, a criterion based on the backscatter coefficient is implemented
in order to consider only data points associated with water. Therefore, the satellite time
series used in the study have already been processed at different levels (including outlier
rejection, mean calculation, and ellipsoid correction).

Figure 1. Location of virtual stations (×) and in situ stations (4) in Italy. Orbit ground tracks of Jason
2/3, Satellite 3A, and Satellite 3B obtained from AVISO (Pass locator) [53] and ESA website. In the
map are indicated only the regions for which satellite altimetric data are actually available.
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Radar altimetry provides vertical measurements between satellite and water level.
Altimetry sends a radar signal to the Earth’s surface and the elevation is obtained by
measuring the time in between emission and the backscattered wave [51]. The difference
between the satellite altitude with respect to a reference surface (Geoid or Ellipsoid) and the
satellite-water surface distance provides measurements of water level above the reference
of the satellite data. Therefore, the water-level data extracted from satellite measurements
are the water level measurements with respect to a reference. The validation with in situ
data (which are water level with respect to a zero level) requires the knowledge of the river
section at the exact position of virtual station. This value has to be then referred to the same
reference as the satellite data [54].

This procedure implies: (1) the knowledge of the topographic section of river bed in
the exact position of virtual station; (2) technical skills to manage the Digital Elevation
Model and doing topographic conversion of the reference surface (if needed); (3) the
knowledge of the zero level of all the river gauges and the respective references.

Looking to an automatized and operative perspective of the use of satellite water level
data, this procedure can be discouraging if the topographic or instrumental information are
not available or easy to access. To overcome this problem, we propose three different meth-
ods of data comparison directly using the satellite water level and in situ measurements
without considering the surface of reference (see Methodology).

Each virtual station is provided by a “.json” file format with general information
(such as latitude, longitude, satellite type, time coverage, and river basin), water surface
reference, and an instantaneous water level value in UTC time.

Out of 11,336 virtual stations (744, 6049 and 4543 for Jason 2/3, Sentinel 3A, and
Sentinel 3B, respectively) representing the global dataset, in Italy, there are a total of 43
(5, 28, and 10 for Jason 2/3, Sentinel 3A, and Sentinel 3B, respectively) virtual stations,
reported in Figure 1, covering 9 italian regions: Lombardia, Emilia Romagna, Piemonte,
Trentino-South Tyrol, Toscana, Veneto, Umbria, Lazio, and Sardegna, and interesting some
of the main rivers like Po, Tevere, Adige, Arno, Adda, Oglio, but also minor rivers like
Livenza, Ombrone, Tirso, Tanaro, Reno, and Dora Baltea e Mincio. Most of the virtual
stations are placed on the Po river, this is for the very favorable orientation of that river
running West–East in regards to the satellite tracks.

We selected 19 gauging stations close to the virtual stations, following criteria defined
in the Methodology section (see an example of couple selection in Figure 2).

Figure 2. Examples of virtual–in situ-coupled selection methodology: (a) discarded pair for the presence of interference,
(b) selected pair. Base maps are taken from OpenStreetMap.

Table 1 provides information about each of the gauging stations selected, including
the river, the region it belongs to, the geographical coordinates, the width of the river
section, the satellite sensor providing data, and the distance with the correspondent virtual
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station. In particular, we have 4 stations on the Po river, 5 stations on the Tevere river, 3
stations on the Adige river, and 1 on the Adda river. These are the four longest rivers in
Italy, each more than 300 km in length. Tevere river has a North–South orientation and
passes through four different regions: there is a section at Ponte Nuovo in Umbria (in the
North–South direction of the river channel) and four stations on the outlet of the river in
the Lazio region (in the West–East orientation of the river channel). Arno river horizontally
crosses the Tuscany and has a total length of 241 km. The four selected stations in the Arno
river are located on the last part of the river path. Ombrone has a total length of 161 km
and Livenza of 112 km. The two stations along these rivers are both on the outlet part. The
altitude of the in situ stations is in the range of [0, 186] m a.s.l., so we do not have mountain
stations. The data of the gauging stations were acquired with the minimum time scale
available (up to 10 min) provided by the regions they belong to.

2.2. Methodology

It is quite unlikely that a virtual station may coincide with an in situ station; thus
it needs a criterion to identify the pair’s virtual station—i.e., in situ gauging station—
to be used in the comparison between satellite data and in situ measurements. This
criterion is based on (1) the pair’s distance, assumed to be <100 km according to [17], and
(2) comparable hydraulic and geometric/morphological conditions in the two stations.
The presence of some (natural or anthropogenic) interference between two stations may
influence their water levels. The interference includes (a) lakes and dams, (b) incoming
tributaries, (c) river bifurcations, (d) diversions, (e) obstacles that can cause the water flow
to regurgitate (like a piles of a bridge, or barrages), (f) changes in the geometry of the river
section, and (g) changes in the slope of the river channel.

In particular, we selected the pairs of satellite–in situ stations according to the follow-
ing criteria:

• Stations (virtual and in situ) that are geographically close to each other (according to
the distance criterion) but that are not on the same river branch are not selected;

• Stations (virtual and in situ) that are on the same river branch but present in the
middle an interference (among the ones mentioned above), are not selected.

• If there are two in situ stations close to one satellite station, we compare the satellite
station with both of them, the same for the opposite situation.

According to the criterion for the identification of the virtual station–in situ gauging
station pair, we have selected 22 pairs, with a distance in the range of [0.05, 11.39] km,
given in Table 1. In particular, 5 stations have a river width more than 300 m, 1 station with
a section between 200 and 300 m, 4 stations in the interval 100–200 m and 9 less than 100 m
in width. Some in situ stations can be combined with the passages of two different types of
satellite. The Pontelagoscuro, Badia Polesine, and Ficarolo stations are considered twice,
comparing the same in situ data with the two different types of satellite data. For each pair,
we associated a river section width measured at each virtual station position retrieved by
Google Earth and used it to categorize the different sections, distinguishing the large rivers
such as the Po river from the small ones such as the Livenza and Ombrone rivers. The river
section width varies within the [50, 555] m range.

Once the pairs were defined, we focused on the comparison in time. For each virtual
station, there is a time series of satellite water level at a specific date and time. On the basis
of the satellite data and time passage, we extracted the in situ data at the same date and the
nearest time. Since the altimeter time is UTC (Coordinated Universal Time), the satellite
time series have been referenced to CET (Central Europe Time) to match the time of in situ
gauging stations. The time format of in situ gauging stations depends by the station and
the authority that collects data. Thus, we compared data the between virtual station and
the in situ gauging station and found a maximum 30 min difference. The period analyzed
is 2016–2020 for Sentinel 3A data, 2018–2020 for Sentinel 3B, and 2008–2020 for Jason data.
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Table 1. Main information related to the in situ station–virtual station pairs selected.

In-Situ Stat. River Region Lat. [N] Long. [E] Sect. Width [m] Satellite Virtual Stat. ID Pair Dist. [km] Num. Data

Boretto Po Emilia Romagna 44.91 10.56 329 Sentinel 3A 8634 4.33 23
Piacenza Po Emilia Romagna 45.06 9.70 260 Sentinel 3A 8633 2.06 23
Pontelagoscuro Po Emilia Romagna 44.89 11.61 444 Jason 2/3 8631 4.67 331
Pontelagoscuro Po Emilia Romagna 44.89 11.61 533 Sentinel 3A 8636 6.32 24
Ponte Felice Tevere Lazio 42.35 12.46 66 Sentinel 3A 9906 2.99 45
Fiumara Grande Tevere Lazio 41.75 12.26 113 Sentinel 3A 9907 4.96 43
Mezzocammino Tevere Lazio 41.81 12.42 93 Sentinel 3A 9905 5.49 45
Capo due rami Tevere Lazio 41.78 12.28 113.01 * Sentinel 3A 9907 0.56 43
La Salute Livenza Veneto 45.66 12.80 56 Sentinel 3A 12,810 2.98 36
Boara Pisani Adige Veneto 45.10 11.78 109 Jason 2/3 9726 4.70 388
Cavarzere Adige Veneto 45.14 12.08 83 Sentinel 3A 9730 0.05 44
Badia Polesine Adige Veneto 45.10 11.48 95 Sentinel 3B 9731 11.37 15
Badia Polesine Adige Veneto 45.10 11.48 89 Sentinel 3A 9728 10.69 42
Ficarolo Po Veneto 44.94 11.43 555 Sentinel 3A 8636 9.92 47
Ficarolo Po Veneto 44.94 11.43 437 Jason 2/3 8631 11.39 142
Pisa a Sostegno Arno Toscana 43.71 10.39 77 Jason 2/3 12,738 9.86 388
S.G. alla Vena valle Arno Toscana 43.68 10.59 77.01 * Jason 2/3 12,738 6.06 389
Pontedera Arno Toscana 43.67 10.63 105 Sentinel 3A 12,740 9.89 57
Fucecchio valle Arno Toscana 43.72 10.81 105.01* Sentinel 3A 12,740 5.93 57
Ponte Tura Aurelia Ombrone Toscana 42.76 11.14 50 Sentinel 3A 9882 5.80 54
Ponte Nuovo Tevere Umbria 43.01 12.43 53 Sentinel 3B 9908 2.54 19
Pizzighettone Adda Lombardia 45.19 9.78 107 Sentinel 3A 8627 0.62 24

* A fictitious decimal unit is added when the same virtual station corresponds to different in situ stations. This is done to distinguish these pairs in the next boxplots. The river width is measured in correspondence
with the virtual station position.
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Since the satellite water level measurements are referred to a reference (GEOID/
Ellipsoid) and each in situ data is referred to a zero hydrometric, for each pair there exists a
constant bias between the two data series (satellite-in situ). The measurements comparison
has been done in terms of water level difference and absolute water level. As first case,
we calculated the difference between two successive satellite data measurements in time
and compared it with the difference between two successive in situ data measurements in
time. The comparison of the variation in time of satellite measurements with the variation
in time of in situ measurements is a procedure that permits to overcome the problem of
different reference.

Comparisons in terms of absolute water level have been done in two different ways:
(1) the systematic bias between satellite water level and in situ water level is calculated
imposing the equality of in situ–satellite measurements, for the first available measurement
in common. In this way, the first in situ measurement is taken as reference of all the series
of data. (2) We calibrated the initial water level from the differences between satellite—in
situ water level, choosing as systematic bias for the whole series that one that minimizes
the MAE (mean absolute error metric). To do the optimization we used the “optimize”
function in R, varying the delta between satellite and in situ measures for each time steps
and imposing the minimization of the MAE. The delta that minimized the MAE has been
chosen as systematic bias for the whole series.

In order to check the agreement between satellite and in situ measurements, we have
considered the following metrics (as also computed in [17]): the Pearson correlation coeffi-
cient (R), the Root Mean Square Error (RMSE), the Mean Bias Error (MBE), and the Mean Ab-
solute Error (MAE). In the next, we briefly recalled their sample versions. Let {y1, y2, ..., yn}
be a sample of size n of (in situ water level) observations, and similarly {ŷ1, ŷ2, ...ŷn} a
sample of (satellite water level) measurements.

The Pearson correlation coefficient is calculated as

R =
syŷ

sysŷ
(1)

where sy =
√

∑n
i=1 (yi−ȳ)2

n−1 and sŷ =
√

∑n
i=1 (ŷi− ¯̂y)2

n−1 are the sample standard deviations,

respectively, of in situ and satellite measurements and syŷ = ∑n
i=1 (yi−ȳ)(ŷi− ¯̂y)

n−1 is the sample
covariance, where ȳ and ¯̂y are the sample means, respectively, of in situ and satellite
measurements. R ∈ [−1, 1]. If R = 1(−1), it indicates that the data lying exactly on a line
with positive (negative) angular coefficient. R = 0 would indicate no correlation between
the data.

The Root Mean Square Error is calculated as

RMSE =

√
RSS

n
(2)

where RSS is the Residual Sum of Squares, RSS = ∑n
i=1 (yi − ŷi)

2. RMSE is non-negative,
and a value of 0 indicates a perfect agreement. Thus, lower is RMSE better is the agreement.
The Mean Bias Error is calculated as

MBE =
1
n

n

∑
i=1

(ŷi − yi) (3)

MBE denotes the average bias in the prediction. A positive bias represents an overesti-
mation, while a negative bias an underestimation. The Mean Absolute Error is calculated as

MAE =
1
n

n

∑
i=1
|ŷi − yi| (4)

MAE indicates the average of the absolute differences.
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3. Results and Discussion

Considering the 22 satellite–in situ station pais, we calculated the values of the four
metrics: R, RMSE, MBE, and MAE (Table 2). We calculated these for water level differences
and water levels obtained assuming the first value of satellite water level measurement
equal to the in situ one. We found a good agreement between virtual and in situ measure-
ments, finding that, for the 68% of pairs, the coefficient of correlation is higher than 0.7,
with a median value of 0.79 (value referred to water level differences while the value for
the water level is 0.87), the first quartile of 0.65 (0.66) and the third quartile of 0.93 (0.94)
(Table 2). In terms of RMSE, 41% of pairs have a value smaller than 0.3 m, with a median
value of 0.37 m (0.38 m), the first quartile of 0.23 m (0.25 m) and the third quartile of 0.61 m
(0.76 m). In terms of MBE, 68% of pairs have a value between −0.01 m and 0.01 m, with a
median value of −0.003 m (−0.07 m), the first quartile of −0.01 m (−0.32 m) and the third
quartile of 0.001 m (0.08 m). In terms of MAE, 63% of pairs have a value smaller than 0.3 m,
with a median value of 0.24 m (0.28 m), the first quartile of 0.19 m (0.2 m) and the third
quartile of 0.42 m (0.48 m). The values of RMSE are quite similar to those found by [54]
over French rivers using Jason 3, with a river width in the range [35, 300] m. They found a
median value of RMSE equal to 0.275 m, the first quartile of 0.20 m and the third quartile
of 0.44 m. They found that if the attention is restricted to width >100 m, the values of the
statistics improve as follows: median value of RMSE equal to 0.24 m, the first quartile of
0.18 m and the third quartile of 0.28 m. In our case, the highest values of RMSE (>1 m) are
found for the case of Adda at Pizzighettone (Sentinel 3A), Adige at Badia Polesine (Sentinel
3B) where there are some outliers. Adda is a tributary of Po river, while Adige shares
with Po the area of delta. Both the stations (Pizzighettone, Badia Polesine) are located
in the Po valley, the large plain area surrounding the Po river characterized by minimal
slope. Pizzighettone station is placed in the last part of the river path, which is oriented
along the North-West direction and converges almost perpendicularly into Po river. This
emphasizes the possible interaction between the orientation of the river and the satellite
ground track. Badia Polesine is located in the last part of Adige river, which flows parallel
to the Po river in the area of delta. For this station, as can be seen in Figure A1c,d, there is
a good agreement between in situ—satellite data except for an outlier that influences the
RMSE. The presence of outliers can be due to errors of in situ instruments, or problems
in the satellite measurements due to the presence of interference due to water reflections,
vegetation and topography can influences the radar echoes over land surface preventing a
precise determination of altimetric height [51].

The performance obtained comparing the water levels can be improved finding the
optimal value of the initial water level. Imposing the equality of the first value of the water
level could be good for some stations but can lead to a shift of measurements if the first
value is an outlier. Pontelagoscuro station (see Results section) can be an example of this
case. For this station the procedure of fixing the first value can be inaccurate since there is
clearly a bias between satellite and in situ measurements. Or, in others words, the choice
of assuming equal the first water level value was not the optimal one. To overcome this
situation, we calibrated the initial value, minimizing the differences between satellite and
in situ water levels, specifically minimizing the MAE.
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Table 2. Values of R, RMSE, MBE, MAE for the in situ station—virtual station pairs, calculated considering as variable as water level difference as water level. The satellite water levels are
determined from satellite water level differences assuming as initial water level the corresponding one observed in the in situ station.

Water Level Difference Water Level

In-Situ Stat. Satellite R [-] RMSE [m] MBE [m] MAE [m] R [-] RMSE [m] MBE [m] MAE [m]

Boretto Sentinel 3A 0.99 0.17 −0.01 0.14 0.98 0.16 −0.08 0.13
Piacenza Sentinel 3A 0.93 0.35 −0.01 0.20 0.93 0.24 0.01 0.14
Pontelagoscuro Jason 2/3 0.72 0.78 0 0.48 0.86 0.79 0.45 0.59
Pontelagoscuro Sentinel 3A 0.97 0.28 0.01 0.20 0.98 0.24 0.05 0.17
Ponte Felice Sentinel 3A 0.80 0.31 −0.01 0.23 0.88 0.40 −0.33 0.35
Fiumara Grande Sentinel 3A 0.59 0.17 −0.02 0.11 0.61 0.25 −0.19 0.20
Mezzocammino Sentinel 3A 0.84 0.16 −0.01 0.13 0.79 0.35 −0.32 0.33
Capo due rami Sentinel 3A 0.63 0.16 −0.02 0.11 0.68 0.26 −0.22 0.22
La Salute Sentinel 3A 0.70 0.25 0 0.19 0.76 0.21 0.03 0.14
Boara Pisani Jason 2/3 0.95 0.17 0 0.13 0.98 0.50 0.49 0.49
Cavarzere Sentinel 3A 0.39 0.61 0 0.34 0.65 0.45 0.09 0.22
Badia Polesine Sentinel 3B 0.28 1.25 −0.01 0.73 0.49 0.92 0.41 0.45
Badia Polesine Sentinel 3A 0.96 0.22 0 0.19 0.98 0.23 0.14 0.18
Ficarolo Sentinel 3A 0.96 0.39 0 0.29 0.98 0.29 0.04 0.20
Ficarolo Jason 2/3 0.77 0.68 0 0.49 0.90 0.64 −0.38 0.43
Pisa a Sostegno Jason 2/3 0.60 0.60 0 0.45 0.63 0.93 −0.44 0.73
S.G. alla Vena valle Jason 2/3 0.79 0.47 0 0.35 0.90 0.68 −0.33 0.52
Pontedera Sentinel 3A 0.84 0.42 −0.03 0.25 0.85 1.91 −1.88 1.88
Fucecchio valle Sentinel 3A 0.94 0.27 −0.01 0.22 0.95 0.29 −0.15 0.22
Ponte Tura Aurelia Sentinel 3A 0.89 0.43 0 0.27 0.90 0.32 −0.07 0.23
Ponte Nuovo Sentinel 3B 0.77 0.97 0.15 0.82 0.65 0.90 0.62 0.70
Pizzighettone Sentinel 3A 0.49 1.45 0 0.63 0.56 1.03 −0.32 0.36
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Calibrating the systematic bias, the results we obtained are better in terms of RMSE,
MBE, and MAE (Table 3). We obtained a median value of RMSE of 0.27 m, the first quantile
equal to 0.19 m and the third quantile of 0.59 m. In terms of MAE, we found a median value
of 0.19 m, the first quantile of 0.13 m and the third quantile of 0.35 m. In terms of MBE,
the median value is −0.02 m, the first quantile is −0.05 m, and the third quantile is 0.03 m.
The performance in terms of Pearson correlation coefficient did not change, because the
change in the initial water level corresponds to a change in the intercept of the regression
line, but not altering the relation between the variables. As can be seen also from Figure 3,
the agreement between satellite and in situ measurements, after calibration, increases.

The in situ stations with the largest river sections (Boretto, Pontelagoscuro,Piacenza,
and Ficarolo) belong to the Po river and have a medium width of 440.5 m. For these
stations, we found the highest values of the Pearson correlation (the median value equal
to 0.96) and the median value of RMSE equal to 0.26 m, −0.03 m for MBE, and 0.16 m for
MAE (comparison done with absolute values and the calibrated systematic bias). These
results are concordant with the validation done by Tourian et al., (2016) [55] in the same
river, where they found an average correlation of 0.7, Root-Mean-Square Error of 0.8 m
using ENVISAT, CryoSat-2, Jason 1/2, and SARAL/AltiKa. For all of these sections using
Sentinel 3A data, we obtained higher Pearson correlation values with respect to that ones
obtained with Jason, also referring to the results found by Tourian et al., (2016) [55]: the
correlation value for Pontelagoscuro is 0.98 (0.86 with Jason 2/3), for Ficarolo is 0.98 (0.90
with Jason 2/3), for Piacenza is 0.93, and for Boretto station is 0.98.

Table 3. Values of R, RMSE, MBE, and MAE for the in situ station–virtual station pairs, calculated over the water level
values obtained after the calibration of MAE.

Water Level

In-Situ Stat. Satellite R [-] RMSE [m] MBE [m] MAE [m]

Boretto Sentinel 3A 0.98 0.14 0 0.11
Piacenza Sentinel 3A 0.93 0.24 0.03 0.14
Pontelagoscuro Jason 2/3 0.86 0.65 −0.06 0.35
Pontelagoscuro Sentinel 3A 0.98 0.23 −0.04 0.13
Ponte Felice Sentinel 3A 0.88 0.23 −0.03 0.18
Fiumara Grande Sentinel 3A 0.61 0.15 −0.01 0.10
Mezzocammino Sentinel 3A 0.79 0.14 0.01 0.10
Capo due rami Sentinel 3A 0.68 0.14 −0.02 0.09
La Salute Sentinel 3A 0.76 0.21 0.04 0.14
Boara Pisani Jason 2/3 0.98 0.13 −0.01 0.10
Cavarzere Sentinel 3A 0.65 0.45 0.07 0.22
Badia Polesine Sentinel 3B 0.49 0.88 0.29 0.44
Badia Polesine Sentinel 3A 0.98 0.18 0.04 0.14
Ficarolo Sentinel 3A 0.98 0.29 −0.02 0.18
Ficarolo Jason 2/3 0.90 0.53 −0.15 0.37
Pisa a Sostegno Jason 2/3 0.63 0.84 −0.16 0.70
S.G. alla Vena valle Jason 2/3 0.90 0.61 −0.10 0.49
Pontedera Sentinel 3A 0.85 0.37 −0.05 0.23
Fucecchio valle Sentinel 3A 0.95 0.25 −0.04 0.19
Ponte Tura Aurelia Sentinel 3A 0.90 0.32 −0.03 0.23
Ponte Nuovo Sentinel 3B 0.65 0.65 0.06 0.57
Pizzighettone Sentinel 3A 0.56 1.02 −0.29 0.36
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Figure 3. Boxplots of the performances in terms of R, RMSE, MAE and MBE comparing in situ and
satellite water level differences (in pink), water levels where the satellite water levels are obtained by
imposing the initial water level (green), and water levels where the satellite water levels are obtained
by calibrating the initial water level (in blue).

The boxplots of water level differences between in situ and satellite measurements for
each of the 22 pairs considered, and distinguished by the different satellites, are reported in
Figure 4a). Looking at differences between in situ and satellite measurements varying with
the section width, we can see low variance of the boxplots obtained with Sentinel 3A also
for narrow rivers (less than 100 m) (Figure 4b). Focusing on the accuracy of Copernicus
data for the pairs with little river width (10 pairs have a width less than 100 m), we obtain
a median correlation of 0.77, median RMSE of 0.38 m, median MBE of 0.025 m, and median
value of MAE of 0.22 m. Among these pairs, three of them consider the in situ station
with a river width less than 56 m. In particular, the values of river sections are: 50 m for
Ombrone river (Tuscany), 53 m for the Tevere river in Umbria, and 56 m for Livenza river
in Veneto. Still considering these three lowest rivers, the median value of the Pearson
correlation is 0.75, RMSE 0.32 m, and MAE 0.23 m. Therefore, specifically for Sentinel
satellites, the results show no clear dependence of measurements performance with respect
to river width (as can be seen in Figure 4b). The same conclusions have been recently found
by Jiang et al. in Chinese rivers [47]. Besides the section width, other factors can influence
and have an impact on the altimeter water level retrieval. One of these factors can be the
distance between the virtual station and in situ sensor. In our work, we apply a very strict
criterion for the selection of pairs; the maximum distance between the pairs is 11 km, and
we do not consider pairs with the presence of hydrological interference. Another important
factor is the presence of meanders near the Sentinel virtual section, as well the presence
of other small water bodies around the river. This can be the case of the Ponte Nuovo
station (correlation 0.65, RMSE= 0.65 m), one of the station with the worst performance.
The river exhibits small ‘cascades’ that might imply some non-linearity between the water
levels at the virtual station and the in situ locations. The altimeter time-series could be
of lower quality for this particular virtual station, as we are not sure the re-tracked peak
in the altimeter waveform corresponds to the river. The environment (meanders, other
surrounding water bodies) can play a more important role in the altimeter water level
retrieval than the river width itself.
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Figure 4. (a) Boxplots of the differences (in situ water differences minus satellite water differences) for each of the 22 pairs,
with different colors distinguishing the different satellites. (b) Boxplots sorted by river section width.

Regarding the relationship between altitude and performance found by Jiang et al. [47],
we cannot lead to similar conclusions since all the stations considered are at a low altitude
(less than 200 m a.s.l.). For the stations Ficarolo and Pontelagoscuro, there is a multiple
satellite passage. We calculate the temporal variability of water level from in situ and satel-
lite measurements, reported in Figures 5 and 6, assuming for the initial water level value
for the satellites (a); calibrating the initial water level value (b); the scatter plot of satellite
and in situ measurements of the water level, assuming for the satellite measurements the
initial water level value (c); calibrating the initial water level value; (d) and the scatter plot
of satellite and in situ water level differences (e). It has been done similarly for the Adige
river at Badia Polesine, the Po river at Boretto, the Adige river at Boara Pisani, and the
Arno river at Fucecchio Valle (Figures A1–A4 of the Appendix A). Comparing different
satellites, it is possible to note that Sentinel 3A measurements show a better agreement with
in situ measurements with respect to Jason 2/3, over all the range of river widths, including
the smaller widths, as can be seen from Figure 4. The widest boxplots with the longest
whiskers were found for Tevere at Ponte Nuovo (Sentinel 3B), and Po at Ficarolo and Arno
at Pisa a Sostegno (both Jason 2/3). The high variability of Sentinel 3B performance for the
station of Ponte Nuovo can be explained by the terrain topographic conformation (presence
of meanders or small cascades) or by the possible interaction between orientation of the
rivers and the satellite ground track. In general, it is possible to see (1) an overall good
agreement between satellite and in situ measurements indicating a feasibility of satellite to
retrieve the water level also for narrow river section widths (Figures 4–6). For the Ficarolo
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and Pontelagoscuro stations, we can compare the performances of Sentinel 3A and Jason
2/3. For both of these stations, we can see that the Sentinel 3 data are well distributed along
the line, whereas there exists much greater dispersion for Jason 2/3 data (Figures 5 and 6).
The worst performances of satellite measurements are for low values of water level, as can
be seen from Figures 5 and 6. This issue was also pointed out by [17].

Figure 5. Po river at Ficarolo (Veneto): (a) temporal variability of satellite and in situ water level, where the satellite
water levels are obtained by imposing the initial water level; (b) as in panel (a) but the initial water level was calibrated;
(c) scatterplot satellite-in situ water levels given in panel (a); (d) scatterplot satellite-in situ water levels given in panel (b);
(e) scatterplot satellite-in situ water level differences.
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Figure 6. Po river at Pontelagoscuro (Emilia Romagna): (a) temporal variability of satellite and in situ water levels, where
the satellite water levels are obtained by imposing the initial water level; (b) as in panel (a) but the initial water level was
calibrated; (c) scatterplot satellite-in situ water levels given in panel (a); (d) scatterplot satellite-in situ water levels given in
panel (b); (e) scatterplot satellite-in situ water level differences.

4. Conclusions and Perspectives

Every year, floods and droughts cause huge and widespread damage worldwide
in terms of economic and human losses. A proper system of water level monitoring in
a territory is essential to realize effective mitigation procedures and a resilient society.
Traditional ground sensors are often disused, or not present, especially in mountain areas
and less developed or remote areas where there are not logistic/financial supports for
creating a proper system of measurements. In this respect, remote sensing techniques may
provide a valid support. Satellite data can be obtained for free, and easy download and near-
real time measurements can be retrieved for monitoring the river section. The drawback is
the time coverage of these measurements, which, at present, is up to 30 days. Past studies
have pointed out the difficulties of altimeter missions to achieve good performances for the
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smaller river sections due to contamined waveforms [47]. Indeed, in low waters, there can
be more sand benches or wet river boundaries, which represent echogenic surfaces and
degrade the altimeter accuracy. Considering a small extension along the river, there can
be errors, or data cannot represent the seasonal space variation of river [17]. Despite this,
some good results have also been obtained for smaller rivers [56].

In our analysis, we considered 22 pairs with a range of river section width between
50 and 555 m. Comparing satellite and in situ stations in terms of absolute values with
the calibrated systematic bias, we found a median correlation of 0.87, 0.27 m of RMSE,
−0.02 m of MBE, and 0.19 m of MAE. For the largest river sections, in the [260–555] m
interval, the median of Pearson correlation is of 0.95, 0.26 m of RMSE, −0.03 m of MBE,
and 0.16 m of MAE. These in situ stations belong to the Po river, one of the largest rivers in
Italy. The results also showed that, for rivers with lower width, the match between satellite
and in situ measurements can be good; considering just the river sections with a width
less than 100 m (10 pairs), we found a median of Pearson correlation of 0.77, RMSE of 0.38
m, MAE of 0.22 m, and MBE of 0.025 m. The results for these stations even improve if we
just consider the Sentinel 3A measures (median values: 0.87 of correlation, 0.23 m RMSE,
−0.02 m MBE and 0.14 m MAE). Therefore, we found an high accuracy of Copernicus
measures also considering smaller river stations.

Overall, the results lead us to conclude that Jason 2/3 and Sentinel 3A missions
provided altimeter data that can be implemented and used for river monitoring, also in
the case of Italian rivers. Whereas we did not find a correlation between performance
and river width, the environment (presence of meanders and smalls cascades) and the
orientation between satellite ground track and river seem to be possible influencing factors.
The stations considered in this study represent ’validation sites’ for altimetric products. In
addition, this analysis may provide confidence in the altimetry dataset over other areas of
the world where in situ data are not available.

Satellite data will be more exploited in the future. Indeed, the improvements brought
by the Open Loop tracking mode (on-board in Jason 3, Sentinel 3A, and Sentinel 3B) and
the regular updates of its associated open-loop tracking commands (OLTC), which allow
positioning the altimeters’ receiving window, have proved to be of interest to monitor small
water targets [57]. Moreover, the Open Loop mode use on Sentinel 3A and Sentinel 3B
was extended to latitudes higher than 60°N in November 2020, which yield new virtual
stations candidates at high latitudes. Associated with the yearly updates of the OLTC
onboard, these altimeters (the last version of Sentinel 3A (v3.1), and Sentinel 3B (v6.1)
OLTC were uploaded in August 2021), it will continue to allow defining new targets;
see Figure 7. Moreover, the technology used for altimeter measures is currently being
improved. Advanced instruments are being tested to improve the quality of data. For
example, with Fully Focus SAR processing (already tested on some R&D processing chains
of the Sentinel 3 data), there is the possibility of having altimeter data every 50 cm (data are
currently provided every 300 m). Fully Focused SAR is a technique that allows coherent
integration of the echos from the radar burst that illuminate a target [58]. This would
improve the quality for small river sections in the future.
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Figure 7. Map of the virtual stations (existing ones indicated with red circles and potential new ones
indicated with blue circles) in Italy, for which the altimeter on board DEM (OLTC) is tuned to track
the water [59] (V6 DEM was uploaded onboard Sentinel 3A at the end of August 2020 [57]). The
quality check of time series of new targets is currently in process. If the new targets satisfy the quality
requirements, they could be added to the existing virtual stations, permitting a coverage also of
southern Italy and islands, in the next future.

New missions are scheduled; for example, the constellation of small altimetry satellites
dedicated to continental surface waters (SMASH) [60] or the SWOT mission is scheduled
to be launched in 2022 for accurate future monitoring of local sea level changes at the
land-sea interface [61]. The results of comparison with in situ data show that altimetry
measurements can provide a valid way of retrieving water level by also considering narrow
river sections. The scheduled future implementations of this technology and the new
available targets will lead to the settling of a new type of level measurements that can be
integrated in the currently water management procedure for risk assessment and territory
control.
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Appendix A

Appendix A.1

Figure A1. Adige river at Badia Polesine (Veneto): (a) temporal variability of satellite and in situ water level, where the
satellite water levels are obtained imposing the initial water level; (b) same as panel (a), but the initial water level was
calibrated; (c) scatterplot satellite-in situ water levels given in panel (a); (d) scatterplot satellite-in situ water levels given in
panel (b); (e) scatterplot satellite-in situ water level differences.
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Appendix A.2

Figure A2. Po river at Boretto (Emilia Romagna): (a) temporal variability of satellite and in situ water level, where the
satellite water levels are obtained imposing the initial water level; (b) same as panel (a) but the initial water level was
calibrated; (c) scatterplot satellite-in situ water levels given in panel (a); (d) scatterplot satellite-in situ water levels given in
panel (b); (e) scatterplot satellite-in situ water level differences.
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Appendix A.3

Figure A3. Adige river at Boara Pisani (Veneto): (a) temporal variability of satellite and in situ water level, where the
satellite water levels are obtained by imposing the initial water level; (b) same as in panel (a) but the initial water level was
calibrated; (c) scatterplot satellite-in situ water levels given in panel (a); (d) scatterplot satellite-in situ water levels given in
panel (b); (e) scatterplot satellite-in situ water level differences.
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Appendix A.4

Figure A4. Arno river at Fucecchio valle (Tuscany): (a) temporal variability of satellite and in situ water level, where the
satellite water levels are obtained imposing the initial water level; (b) same as panel (a) but the initial water level was
calibrated; (c) scatterplot satellite-in situ water levels given in panel (a); (d) scatterplot satellite-in situ water levels given in
panel (b); (e) scatterplot satellite-in situ water level differences.
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