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Abstract: Three-dimensional reconstruction technology has demonstrated broad application potential
in the industrial, construction, medical, forestry, agricultural, and pastural sectors in the last few
years. High-quality digital point cloud information exists to help researchers to understand objects
and environments. However, current research mainly focuses on making adaptive adjustments to
various scenarios and related issues in the application of this technology rather than looking for
further improvements and enhancements based on technical principles. Meanwhile, a review of
approaches, algorithms, and techniques for high-precision 3D reconstruction utilizing line-structured
light scanning, which is analyzed from a deeper perspective of elementary details, is lacking. This
paper takes the technological path as the logical sequence to provide a detailed summary of the latest
development status of each key technology, which will serve potential users and new researchers in
this field. The focus is placed on exploring studies reconstructing small-to-medium-sized objects, as
opposed to performing large-scale reconstructions in the field.

Keywords: 3D reconstruction; light-section method; line-structured light; point cloud reduction;
point cloud registration; 3D shape representation

1. Introduction

By virtue of the improvement of computer graphics and the cognitive dimension,
three-dimensional reconstruction technology has demonstrated broad application poten-
tial, for example in reverse engineering and robot control in the industrial sector, layout
drawing and crack repair in the construction sector, disease diagnosis and prosthesis pro-
duction in the medical sector, resource detection in the forestry sector, virtual plants and
grafting in the agricultural sector, type recognition and smart machinery in the pastural
sector and so on, which can be easily brought into mind regarding the kinds of applica-
tion scenarios [1–4]. The digital point cloud acquired by this technology can provide a
wealth of three-dimensional information with high quality, great detail, and high preci-
sion. Specifically, scale information in the three-dimensional space can be exploited as
input data for a sensing system to perceive the surrounding environment, providing new
assistance for object recognition, sensing, map construction, and navigation. Meanwhile,
in the fields of reverse engineering developed by three-dimensional (3D) reconstruction
technology, the point cloud data can realize the digitization of complex free-form surfaces
to quickly create or reproduce accurate models of the objects, which plays a crucial role
in part machining and inspection, clothing design, and cultural heritage protection. In
addition, 3D reconstruction technology applied in the medical field is an excellent auxiliary
method in preoperative diagnosis, prosthesis customization, and medical aesthetics. It can
also be combined with virtual reality technology to achieve interoperative visualization,
simulation training and teaching, and intelligent agriculture.

According to the implementation steps, the 3D reconstruction technology can be
divided into two main parts: digital point cloud acquisition and point cloud data processing.
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The classification of 3D information measurement methods, which is considered the most
fundamental point cloud acquisition method, is given in Figure 1.
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Compared with the shortcomings of contact measurement methods, such as their
susceptibility to wear, their time-consuming nature, their strict environmental requirements,
and their higher cost, non-contact three-dimensional measurement methods are more
favored. Among them, passive non-contact three-dimensional measurement methods,
represented by monocular vision, binocular vision, and multi-vision, which have low
measurement accuracy, large computational amount, and a relatively small percentage
of adequate information needed to reconstruct complex objects with high precision, are
commonly adopted in the recognition, semantic segmentation, and configuration analysis
of 3D targets [5].

Correspondingly, the time-of-flight (TOF) method, which relies on temporal resolu-
tion, requires expensive equipment and is difficult to adapt to complex environments.
Among the active non-contact three-dimensional measurement methods [6], the optical
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interferometry method (e.g., Moiré pattern method), the working range of which mainly
depends on the size of the reference grating, is incapable of reconstructing larger objects
and also has poor measurement stability [7]; meanwhile, phase measurement profilometry
(a.k.a. the grating projection method) introduces a serious phase unwrapping problem in
the shaded region or sudden phase variation, such as steps, deep grooves, and protrusions,
leading to the failure of reconstruction of complex three-dimensional objects with highly
drastic changes or discontinuous areas on the surface. Meanwhile, this technology has a
small measurement range and strict environmental requirements that are difficult to scale
up for practical applications [8]; Fourier transform profilometry needs to ensure that there
is no aliasing between the various levels of the spectrum, which limits the measurement
range and the enhancement of the measurement accuracy [9].

In contrast, the light-section method (based on single-line or multi-line structured
light scanning as shown in Figure 2) can reach the micrometer level in measurement
accuracy, which is more adaptable to the application environment and has higher
measurement robustness.

Figure 2. Diagram of the light-section reconstruction system.

Therefore, the light-section method is a common and applicable way to obtain point
cloud data for the needs of 3D reconstruction in small-to-medium-sized scenes. Detailed
comparison results of various methods are shown in Table 1.

Table 1. The detailed comparison results of various classical methods.

Method Type Cost 1 Output 2 Resolution Measuring
Range

Time-of-flight method Active 2 XYZD mm large
Laser triangulation method Active 1 XYZ µm medium

Light-section scanning method Active 2 XYZD/RGB µm medium
Phase transform method Active 3 XYZP <mm small

Phase shifting profilometry Active 3 XYZP <mm small
Optical interferometry method Active 3 XYZIP µm small

Shape from X Passive 1 XYZRGBD mm large
Photometric stereo method Passive 1 XYZRGB µm–mm small

Binocular Stereo Vision Passive 2 XYZRGBD µm–mm medium
1 The number is proportional to the cost. The higher the value, the higher the cost. 2 X, Y, and Z, respectively,
represent three-dimensional space position information; D represents the depth information corresponding to
each pixel; P represents the phase information of the structured light; I represents the light intensity information;
R, G, and B, respectively, represent the three primary colors in the color information.
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This article mainly focuses on the 3D light-section reconstruction technology based
on single line-structured light, the schematic diagram of which is shown in Figure 3.
First of all, the feature coordinates in a specific plane in the three-dimensional space are
obtained by the principle of laser triangulation measurement in the case of a single frame;
Multiple frames of data can be registered under the same coordinate system to obtain
the original point cloud data of the object to be reconstructed with the aid of the mobile
device and system calibration results. Afterwards, filtering is performed to weaken the
influence of noise in the measurement environment to obtain the topological relationship
in the point cloud after down-sampling and reduction. Finally, the high-precision three-
dimensional reconstruction of the object is achieved through shape representation and
other processing methods.

Figure 3. Schematic diagram of the light-section 3D reconstruction technology based on single-line-
structured light.

The single measurement of the 3D light-section reconstruction system is equivalent to
the laser triangulation method with a measurement range of about 1 mm to 10 m, which
means that the technology requires the cooperation of an angular rotation device or a
mobile device to complete the three-dimensional information measurement in a large scene
assisted by processing algorithms. However, these devices with a third degree of freedom
will introduce cumulative errors, so that the accuracy and precision of the measurement
results decrease with the extension of space and time. Therefore, this review focuses on
the three-dimensional reconstruction for small-to-medium-sized objects, exploring the
essential technological breakthroughs and development directions in this field.

During the whole process, the X and Y axis coordinates in the three-dimensional space
are provided by the principle of laser triangulation, which reaches the sub-pixel level for
the detailed surface extraction; The Z-axis coordinates are provided by mobile devices
(such as guide rails, turntables, etc.), which can be traced back to the laser interferometer,
with higher precision and more accurate results. However, there are still many problems in
the practical applications of this method that require further research.

This review takes the technological path and corresponding principles as the logical
sequence, which is shown in Figure 3, to give a detailed summary of the latest develop-
ment status of each key technology, hoping to provide help for the following research
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ideas. The rest of the paper is organized as follows: Section 2 discusses the methodology
used. Section 3 introduces the acquisition of original point cloud data, which contains the
triangulation measurement principle, point cloud filtering and decorating methods. In
Section 4, point cloud reduction methods are presented through five subdivision types.
Section 5 summarizes five types of point cloud registration methods based on different
principles. Meanwhile, three categories of 3D shape representation methods are discussed
in Section 6. The summary and conclusion of the paper, along with future directions of this
field, are given in Section 7.

2. Methodology

We started our paper by examining how 3D point cloud data are obtained through
triangulation measurement and some modification algorithms for original data. We then
described how the three categories of critical challenges in developing structured-light
scanning systems are, besides those inherent at the device level and algorithmic levels.
We promoted corresponding methods and solutions on both levels but, most importantly,
highlighted the currently unresolved issues to achieve higher precision and a wider range
of applications, especially given the limitations in complex features.

All highly cited articles, which were adopted to characterize the development pro-
cess of the field and related technical foundations, were all published between 1968 and
2015. Meanwhile, other articles describing the latest developments in technology were all
published between 2016 and 2021. This review mainly focused on high-precision 3D recon-
struction utilizing line-structured light scanning with four main categories of processing
methods for point cloud.

We mainly searched for keywords, e.g., “3D reconstruction”, “light-section method”,
“line-structured light”, “point cloud reduction”, “point cloud registration”, “3D shape
representation” and other related words, to obtain relevant papers from mainstream
databases such as “Web of Science”, “Google Scholar”, and “CNKI”. In addition, we also
searched for papers using the major conference repositories.

The technical details and implementation process of the algorithm can be found in the
appendix of the article, the author’s personal homepage, GitHub, open-source libraries, etc.

The methods reviewed were organized according to Figure 4. Detailed introductions
and comparisons of these four categories of methods are reported in Sections 4–6.

Figure 4. Structure of this review about high-precision 3D reconstruction utilizing line-structured light scanning.
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3. Acquisition of Original Point Cloud Data
3.1. Principle of Laser Triangulation Measurement

Specific to 3D light-section reconstruction technology, the acquisition method of point
cloud data is equivalent to the laser triangulation measurement, where the coordinates of
each point need to be obtained through the laser stripe centerline extraction method. The
optical structure of a typical triangulation measurement system, where the laser is incident
on the vertical reference plane, and the Complementary metal oxide semiconductor (CMOS)
is placed obliquely, is shown in Figure 5.

Remote Sens. 2021, 13, 4457 6 of 34 
 

 

3. Acquisition of Original Point Cloud Data 
3.1. Principle of Laser Triangulation Measurement 

Specific to 3D light-section reconstruction technology, the acquisition method of 
point cloud data is equivalent to the laser triangulation measurement, where the coordi-
nates of each point need to be obtained through the laser stripe centerline extraction 
method. The optical structure of a typical triangulation measurement system, where the 
laser is incident on the vertical reference plane, and the Complementary metal oxide sem-
iconductor (CMOS) is placed obliquely, is shown in Figure 5. 

 
Figure 5. Schematic diagram of the laser triangulation measurement. 

The original point is the intersection of the laser and the lens normal when the laser 
is incident perpendicular to the reference plane. The plane that passes through this point, 
which is also perpendicular to the laser line, is taken as the reference plane. The height h 
of the measured point of the object can be expressed as: ℎ = 𝑑𝐿𝑐𝑜𝑠𝛼(𝑙𝑐𝑜𝑠𝛼 + 𝑑𝑠𝑖𝑛𝛼) (1) 

where α is the angle between the reference plane and the line within the origin point and 
the center of the lens; l is the distance from the center of the lens to the imaging surface; d 
is the distance between the imaging position and the center of the CMOS; and L is the 
horizontal distance between the laser and the CMOS. 

The coordinates of each point are connected according to the correct topological re-
lationship to characterize the contour information of the measured object in the current 
section. Considering the accuracy, robustness, and versatility of the extraction process, the 
commonly used methods for extracting the centerline of laser stripes mainly include the 
gray centroid method, the Steger method, the Hessian matrix method, etc., which achieve 
micrometer-level sub-pixel extraction accuracy [10,11]. At present, the latest research in 
this field has made certain adjustments to the classic algorithms mentioned above for par-
ticular applications, which has not yet been a significant breakthrough in principle. 

Subsequently, the whole system needs to be calibrated to map the extracted two-di-
mensional pixel coordinates into three-dimensional space in the correct sequence. The 
current laser triangulation measurement system mainly adopts the Scheimpflug imaging 
system, considering the high requirements for imaging clarity in the depth of field in 3D 
measurement. From a scale-invariant perspective, the Scheimpflug imaging process can 
be considered a non-linear mapping from one two-dimensional (2D) vector space, the 
original object plane, to a 3D imaging surface. This non-linear mapping will introduce 
nonrotational symmetric aberrations, a non-uniform resolution, a non-uniform intensity 
distribution, and other issues in the system that affect the measurement accuracy. There-
fore, it is crucial to accurately determine the parameters of the mathematical model for the 
Scheimpflug measurement system to achieve a precise transformation between pixel co-
ordinates and spatial positions [12]. 

Figure 5. Schematic diagram of the laser triangulation measurement.

The original point is the intersection of the laser and the lens normal when the laser is
incident perpendicular to the reference plane. The plane that passes through this point,
which is also perpendicular to the laser line, is taken as the reference plane. The height h of
the measured point of the object can be expressed as:

h =
dL

cosα(lcosα + dsinα)
(1)

where α is the angle between the reference plane and the line within the origin point and
the center of the lens; l is the distance from the center of the lens to the imaging surface;
d is the distance between the imaging position and the center of the CMOS; and L is the
horizontal distance between the laser and the CMOS.

The coordinates of each point are connected according to the correct topological
relationship to characterize the contour information of the measured object in the current
section. Considering the accuracy, robustness, and versatility of the extraction process, the
commonly used methods for extracting the centerline of laser stripes mainly include the
gray centroid method, the Steger method, the Hessian matrix method, etc., which achieve
micrometer-level sub-pixel extraction accuracy [10,11]. At present, the latest research in this
field has made certain adjustments to the classic algorithms mentioned above for particular
applications, which has not yet been a significant breakthrough in principle.

Subsequently, the whole system needs to be calibrated to map the extracted two-
dimensional pixel coordinates into three-dimensional space in the correct sequence. The
current laser triangulation measurement system mainly adopts the Scheimpflug imaging
system, considering the high requirements for imaging clarity in the depth of field in 3D
measurement. From a scale-invariant perspective, the Scheimpflug imaging process can be
considered a non-linear mapping from one two-dimensional (2D) vector space, the original
object plane, to a 3D imaging surface. This non-linear mapping will introduce nonrotational
symmetric aberrations, a non-uniform resolution, a non-uniform intensity distribution,
and other issues in the system that affect the measurement accuracy. Therefore, it is crucial
to accurately determine the parameters of the mathematical model for the Scheimpflug
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measurement system to achieve a precise transformation between pixel coordinates and
spatial positions [12].

There are three essential elements during the whole calibration process: the pixel
coordinates, the real-world coordinates, and the corresponding transformation relationship.
Focusing on these elements, existing studies on calibration methods can be divided into
three categories.

The first extensively developed category of studies is those on Zhang’s camera cali-
bration method, which can be classified as a plane method. However, the different model
of the Scheimpflug measurement system with two inclination angles, where the lens is
parallel to the image plane, means that Zhang’s method is not applicable. When this
difference is ignored, the residual error for the calibration results may be much more exten-
sive, leading to lower precision. Meanwhile, the results of fitting calibration may prefer
local optimization rather than global optimization when separating the imaging part and
the object plane part from the entire system to compensate for the deficiency of Zhang’s
method [13]. This method can theoretically cause secondary error propagation, similar to
the two-step calibration method, thus affecting the precision of the calibration results.

Another category is the physical calibration method studies that adopt an in-kind
object on which the real-world coordinate system is built. This object must contain some
known spatial relationships to provide details on the feature points that focus on obtaining
a fitting function. Several past studies have used calibration boards or unique shapes
of objects. Alternatively, these methods are limited by objective conditions, such as the
calibration object and its processing accuracy, or perhaps by the high demands of the
experimental environment and efficient parallel algorithm.

The last kind is the studies on the displacement method, where the final calibration
accuracy can be traced back to the displacement corresponding to the necessary real-
world coordinates. The calibrator adopted by these methods does not limit the processing
accuracy, which completely resolves the drawbacks of the physical calibration method.
Meanwhile, this method can achieve a minimal movement interval to obtain dense datasets
compared with others to achieve higher accuracy than traditional calibration methods [14].

In addition, the depth information in the Z-axis will have an error accumulation
phenomenon, which is difficult to eliminate through system calibration due to the limitation
of the principle of the light-section 3D reconstruction technology. The current ideal solution
to this problem is to perform scale transformation and fusion to obtain a directed point
cloud after multiple measurements, which can be taken as high-precision original data.

3.2. Point Cloud Filtering and Decorating Methods

The original point cloud will produce outliers due to the inherent noise of the sensor or
acquisition device, the surface characteristics of the objects, or other environmental/human
factors, which will affect the accuracy of the 3D reconstruction. Therefore, it is essential to
weaken or even remove noise on the basis of preserving the initial features and details of
the point cloud. Point cloud filtering methods can be divided into seven categories:

1. Statistics-based filtering methods;
2. Neighborhood-based filtering methods;
3. Projection-based filtering methods;
4. Filtering methods based on signal processing;
5. Filtering methods based on partial differential equations;
6. Hybrid filtering methods;
7. Other filtering methods.

The filtering methods for the point cloud are relatively consummate at present, and
have also been introduced by some reviews [15]. Therefore, this paper will not give a
detailed introduction and overview of this technology.

After filtering the original point cloud data, the holes caused by the missing data
during the collection process or the visual blind zone in laser triangulation measurement
can be viewed more clearly. These holes in semi-disordered point clouds will bring great
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difficulties to subsequent processing, such as non-convergence of the algorithm, errors in
solving equations, failure of topological connection, etc. Especially for non-rigid objects
or complex environments to be tested, the point cloud hole phenomenon is a problem
that cannot be ignored. The current algorithms for hole repair, most of which are point
cloud data amplification methods based on boundary equations, are relatively intuitive
linear/non-linear fitting methods.

As shown in Figure 6, one of the classic point cloud datasets produced by Stanford
University, which has been frequently adopted, is the Stanford Bunny [16].

Figure 6. The classical Stanford Bunny: (a) original digital point cloud containing only spatial coordinate information;
(b) point cloud containing a variety of 3D information after 3D reconstruction; (c) the holes caused by the missing data
during the collection process or the visual blind zone.

4. Point Cloud Reduction Methods

Generally speaking, the front-end system requires a higher sampling rate and res-
olution, which results in an enormous amount of original data and a higher density of
information space, to obtain a high-quality point cloud. The demand for point cloud data
storage and related computing speeds is also increasing exponentially with the range
expansion or the increasing complexity of the object to be reconstructed. However, the
data volume of a filtered point cloud is still huge, with insufficient necessity. The inefficient
storage, operation, and transmission of massive data directly affect the convergence of
subsequent algorithms. In the case of low point cloud accuracy requirements, the point
cloud density can be reduced by decreasing the sampling resolution. On the other hand,
it is necessary to down-sample the data and establish a topological structure before fur-
ther operations on the point cloud when the application scenario is high-precision object
reconstruction.

Point cloud reduction methods can be divided into the following five categories.

4.1. Traditional Down-Sampling Reduction Methods

Traditional sparse down-sampling methods for point clouds mainly include the ran-
dom down-sampling method, uniform down-sampling method, and point-spacing down-
sampling method [17–19]. Among them, the random down-sampling method only needs
to select a specific number of points from the original data; the uniform down-sampling
method removes some of the points according to the order of insertion points; and the point-
spacing down-sampling method completes the data screening based on the pre-specified
minimum distance between adjacent points. Compared with the random down-sampling
method, the other two down-sampling methods achieve a more uniform spatial distribution.

However, none of the three methods considers local surface features or point density
changes in the original point cloud, leading to the loss of some details, making it challenging
to achieve high-precision three-dimensional reconstruction. Existing research has shown
that the point density does not affect subsequent recognition and modeling operations in
a specific local neighborhood. Therefore, the local neighborhood in the above algorithm
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process can be randomly refined to obtain a higher local point density than the specified
density to retain more details and achieve more accurate adaptive down-sampling. It
is worth noting that the performance of the adaptive down-sampling method highly
depends on the accurate local characterization process due to the need to estimate the point
density [20].

Chen et al. gradually improved resampling quality by interleaving optimization for
resample points and updating the fitting plane [21]. This general framework can generate
high-quality resampling results with an isotropic or anisotropic distribution from a given
point cloud.

In addition, Rahmani et al. selected a greedy method to find sampled data points
for the problem that the minimization equation is nonconvex and difficult to solved in
down-sampling [22]. The first embedding vector is randomly sampled during initialization.
In the subsequent step, the next embedding vector is sampled to have the largest distance
from the previously sampled embedding vector. Therefore, the other embedding vectors
far away from the sampled embedding vector are taken as the target, where the sampled
embedding vector gradually covers the distribution of all embedding vectors in each step.

Meanwhile, Al-Rawabdeh et al. proposed two improved down-sampling methods on
this basis [23]. The first is a plane-based adaptive down-sampling strategy, which removes
redundant points in a high-density area while keeping the points in a low-density area. The
second method derives the normal surface vector of the target point cloud through the local
neighborhood, which can be expressed on the Gaussian sphere, achieving down-sampling
by removing the points through the detected peaks. Furthermore, Tao et al. and Li et al.
adopted bi-Akima in the selective sampling of initial points [24,25].

4.2. Reduction Methods Based on Geometric Features

The second kind of method is to determine the weight of each point in the point cloud
through geometric features, removing the less important points to achieve the purpose
of streamlining the point cloud. Han et al. proposed an edge-preserving point cloud
simplification algorithm based on normal vectors [26]. Particular edge points should
always be retained in the process of point cloud simplification due to their more apparent
characteristics than nonedged points. The algorithm first uses an octree to establish the
spatial topological relationship of each point and then applies a simple but effective method
to identify and retain edge points. Focusing on those non-edge points, the least essential
points are deleted until the data reduction rate is reached. The importance of non-edge
points is measured using the average Euclidean distance (based on the normal vector) of
the estimated tangent plane from the point to each neighboring point.

Sayed et al. took advantage of an intelligent feature detection algorithm based on
point sampling geometry to select the initial point, combined with Gaussian interpolation,
to evaluate and select the remaining points until reaching a predetermined reduction level.
This method overcomes the time complexity problem in the point cloud simplification
process, which only sacrifices 0.7% of the accuracy [27].

Meanwhile, Xuan et al. adopted the local entropy based on the normal angle to
evaluate the importance of points, which is derived on the basis of the normal angle and
information entropy theory through the estimation of the normal vector. The point cloud is
finally simplified by removing the least important points, which are evaluated by gradually
updating the normal vector and the corresponding importance value [28].

In addition, Ji et al. proposed a simplified algorithm based on detailed feature points,
which has different processes to achieve three aspects of improvement [29]. First, the
k-neighborhood search rule is set to ensure that the target point is closest to the sample
point so that the calculation accuracy of the normal vector is significantly improved and
the search speed is greatly improved. Second, a vital measurement formula, considering
multiple features, is proposed to preserve the main details of the point cloud. Finally,
the octree structure simplifies the remaining points, significantly reducing the hole in the
reconstructed point cloud.
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In addition, Guo et al., Tazir et al., and Thakur et al., respectively, chose curvature,
color, distance, and other information to reduce the point cloud data [30–32].

4.3. Reduction Methods Based on Component Analysis

The third type of method is to measure the structure and composition information of
the point cloud from a global perspective. Markovic et al. proposed a simplified method
for the sensitization of 3D point cloud features based on ε-insensitive support vector
regression, which is suitable for structured point clouds [33]. The algorithm uses the
flatness characteristics of the ε-support vector regression machine to effectively identify
points in the high-curvature area, which are saved in a simplified point cloud along with a
reduced number of points from a flat area. In addition, this method can effectively detect
points near sharp edges without additional processing.

In addition, Yao et al. exploited dimensionality reduction technology to generate 2D
data by extracting the first and the second principal components of the original data with
minor information loss. The generated 2D data are clustered for noise reduction before
being restored to 3D in the 2D space spanned by the two principal components. This
method reduces computational complexity and effectively removes noise by performing
dimensionality reduction and clustering on generated 2D data while retaining details of
environmental features [34].

4.4. Reduction Methods Based on Spatial Subdivision

The fourth type of method is adopting spatial subdivision to achieve point cloud
down-sampling. El-Sayed et al. took advantage of an octree to subdivide the point cloud
into small cubes with a limited number of points, which were down-sampled according to
the local density of each cube [35]. Song et al. also applied the octree encoding method to
divide the neighborhood space of the point cloud into multiple sub-cubes with specified
side lengths, which kept the closest point of each sub-cube from the center point to simplify
the point cloud [36]. Lang et al. used adaptive cell-sized voxel grids to characterize point
clouds, which down-sampled the point clouds by finding the centroid of each grid [37].

In addition, Shoaid et al. resorted to a fractal bubble algorithm to generate a 2D elastic
bubble and a copy of itself through a 2D dataset representing the geometric contour of
a plane. As the bubbles grow, each bubble will select a single point that it first touches,
which will become a simplified set of points. The fractal bubble algorithm is repeatedly
applied to simplify the plane slices of the general 3D point cloud corresponding to the 3D
geometric object, resulting in global simplification of the 3D point cloud [38].

4.5. Reduction Methods Based on Deep Neural Networks

The fifth category of methods combines deep learning and neural networks, while
deterministic down-sampling of disordered point clouds in deep neural networks has not
been rigorously studied so far [39]. Existing methods down-sample the points regardless
of their importance to the network output. Therefore, some critical points may be removed,
and lower value points may be transported to the next layer. Furthermore, it is necessary
to sample points by considering the importance of each point, which varies according to
the application, task, and training data.

Xin et al. introduced the data simplification and point retention steps based on neural
networks in the contour area of the point cloud between the coarse alignment process of
the model data with the measured data as well as the precise registration process of the
reweighted iterative closest point algorithm, which significantly reduced the complexity of
time and space and improves computational efficiency without loss of accuracy [40].

In addition, Nezhadarya et al. proposed a new deterministic, adaptive, and unchang-
ing down-sampling layer called the critical point layer, which learns to reduce the number
of points in the disordered point cloud while retaining the important (critical) point [41].
Unlike most graph-based point cloud down-sampling methods, the graph-based down-
sampling methods use K-nearest neighbor (K-NN) to find neighboring points. At the same
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time, the critical points layer (CPL) is a global down-sampling method, which computa-
tional efficiency is very high. The proposed layer can be developed with a graph-based
layer to form a convolutional neural network.

5. Point Cloud Registration Methods

Limited by the principle of structured light measurement and the development direc-
tion of multi-source data fusion, it is usually necessary to synthesize multiple sets of point
cloud data and register point clouds in different world coordinate systems to the same
coordinate system to complete high-precision reconstruction of objects or the environment,
which is called point cloud registration. The main difficulties of the current registration
process include:

• The point cloud density inconsistent, caused by different distances and perspectives
of data acquisition sources, or the overlap rate between multiple sets of point clouds
being lower, making it difficult to converge the registration algorithm;

• Self-similar or symmetric objects can easily cause misregistration in the absence of
practical constraints;

• Loss of point cloud data caused by occlusion in a complex environment makes the
registration process lack valid input;

• The noise or outliers introduced in the data acquisition process make the iterative
direction not unique and prone to phenomena such as “artifacts”;

• A large number of point clouds in a single time leads to a large amount of calculation,
increased time-consuming, and lower time efficiency.

Traditional point cloud registration methods mainly rely on explicit neighborhood
features such as curvature, point density, and surface continuity. The details of the object are
easily lost in the subdivision area with sudden curvature. Most of the improvements in such
algorithms are to find suitable registration features, speed up data queries, and optimize
registration efficiency. Some of the registration methods require a higher initial position
of the cloud point, which easily falls into the local optimum and makes it challenging to
obtain a good registration result when the overlap rate between two point clouds is high.

The following is a detailed introduction of various classical registration methods and
the latest related research, with a brief summary of classical algorithms in Table 2.

Table 2. A brief summary of classical registration methods.

Category Algorithm Name Author Year Keywords

Based on mathematical
solutions —— —— —— Rotation transformation matrix;

Translation transformation matrix

Based on statistical
models

RANSAC [42,43] Fischler and Chen 1981–1991 Random sample consensus
NDT [44] Biber 2003 Normal distributions transform
4PCS [45] Aiger 2008 Four coplanar points; RANSAC
CPD [46] Myronenko 2010 Coherent point drift

Based on point cloud
features

Spin-Images [47] Johnson 1997 Cylindrical-coordinate system
HIS [48] Zhang 1999 Harmonic shape images

3Dsc [49] Frome 2004 3D shape context
SHOT [50] Salti 2004 Signature of histogram of orientation
PFH [51] Rusu 2008 Persistent feature histograms

FPFH [52] Rusu 2009 Fast persistent feature histograms
VFH [53] Rusu 2010 Viewpoint feature histogram
HKS [54] Sun 2009 Heat kernel signature
PPF [55] Drost 2010 Point pair feature

Based on ICP
deformation

ICP [56] Besl 1991 Iterative closest point
IDC [57] Lu 1997 Iterative dual correspondences

Based on deep learning LORAX [58] Elbaz 2017 Localization by registration using a
deep auto-encoder reduced cover set
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5.1. Registration Methods Based on Mathematical Solutions

The mathematical expression of the point cloud registration process is to solve the
rotation and translation matrix (rigid transformation condition or Euclidean transformation
condition) between multiple point clouds, as shown in the formula:

pt = R·ps + T (2)

where pt and ps are a set of corresponding points between the target point cloud and the
original point cloud. R and T are the rotation transformation matrix and the translation
transformation matrix, respectively. As a result, the point cloud registration process can be
transformed into a mathematical model solving problem.

Jauer et al. solved the registration problem by assuming that the point cloud is a rigid
body composed of particles based on principles of mechanics and thermodynamics [59].
Forces can be applied between two particle systems to make them attract or repel each
other. These forces are used to bring about rigid movement between particle systems until
the two are aligned. This framework supports a physically based registration process, with
arbitrary driving forces depending on the desired behavior.

Meanwhile, de Almeida et al. expressed the rigid registration process by comparing it
with the coding of the intrinsic second-order direction tensor of local geometry. Therefore,
the applied Gaussian space can have a Lie group structure, which can be embedded in
the linear space defined by the Lie algebra of the symmetric matrix, to be adopted in the
registration process [60].

Parkison et al. exploited a new regularized model in the regenerative kernel Hilbert
space (RKHS) to ensure that the corresponding relationship is also consistent in the abstract
vector space (such as the intensity surface). This algorithm regularizes the generalized
iterative closest point (ICP) registration algorithm under the assumption that the intensity
of the point cloud is locally consistent. Learning the point cloud intensity function from
the noise intensity measurement instead of directly using the intensity difference solves
possible mismatch problems in the data association process [61].

In addition, Wang et al. proposed a set of satisfactory solutions for the Cauchy
mixture model, using the Cauchy kernel function to improve the convergence speed of the
registration [62]. For rigid and affine registration, the calculation of the Cauchy mixture
model is more straightforward than that of the Gaussian mixture model (GMM), which
requires less strict correspondence and initial values. Feng et al. proposed a point cloud
registration algorithm based on gray wolf optimizer (GWO), which uses a centralization
method to solve the translation matrix. Subsequently, the inherent shape features are
employed to simplify the points of the initial point cloud model, and the quadratic sum of
the distances between the corresponding points in the simplified point cloud is utilized
as the objective function [63]. The various parameters of the rotation matrix are obtained
through the GWO algorithm, which effectively balances the global and local optimization
ability to obtain the optimal value in a short time.

In addition, Shi et al. introduced the adaptive firework algorithm into the coarse
registration process, which reminds us that multiple types of optimization algorithms can
be applied in the point cloud registration process to achieve higher precision [64].

5.2. Registration Methods Based on Statistical Models

The robust model estimation method that Fischler et al. proposed in 1981 can handle
a large number of outliers, namely Random Sample Consensus (RANSAC), is one of the
classic registration algorithms in the field of computer graphics [42]. Chen et al. applied
the RANSAC idea to the point cloud data registration process in 1991 [43], the process of
which is:

Step 1: Randomly find three non-collinear points in the original point cloud Ps and
three corresponding points in the target point cloud Pt. The transformation matrix Hk
between two point clouds is estimated through these point pairs;
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Step 2: Calculate the degree of agreement between the remaining point pairs of the
original point cloud ps and the target point cloud pt under the transformation matrix Hk
and the error threshold δ obtained in step 1;

Step 3: Iteratively carry out step 1 and step 2 until the transformation matrix H with
the greatest degree of correspondence between the original point cloud ps and the target
point cloud pt is found, which is the transformation matrix between two point clouds
obtained in the registration process.

In summary, the RANSAC algorithm, having a certain probability of obtaining the
correct result, estimates the model parameters for samples containing outliers in an iterative
manner. Moreover, the time complexity of this algorithm is high, which makes it difficult
to apply in large-scale point clouds. In addition, the effect of the RANSAC algorithm
is relatively poor when the point cloud overlap rate is low, or the proportion of outliers
is high.

In 2008, Aiger et al. proposed the 4-Points Congruent Sets (4PCS) algorithm, using
four coplanar points as RANSAC search elements on this basis [45]. This method is robust
and fast in search speed, which has the ability to handle arbitrary initial position alignment
through the introduction of constraint invariants. However, the disadvantage of this type
of method is that there are certain restrictions on the surface shape of the point cloud to be
registered. The registration result is poor if the overlap rate between point clouds is very
low (less than 20%) and the overlap is concentrated in a relatively small area of the point
cloud. Improvements to the algorithm include Super 4-Points Congruent Sets (Super4PCS),
Multiscale Sparse Features Embedded 4-Points Congruent Sets (MSSF-PCS), Volumetric
4-Points Congruent Sets (V4PCS), etc. [65–67].

In addition, Hähnel et al. proposed another probabilistic registration algorithm in
2002 [68]. The algorithm regards the measured value of the reference scan as a probability
function, calculating the probability density of each pair of scans, to perform registration
through a greedy hill-climbing search in the likelihood space. Boughorbel et al. used the
Gaussian mixture model in 2004 to measure the spatial distance between the two scan
points and the similarity of the local surface around the point to achieve registration [69].

Attempting to solve the problems of low time efficiency of the traversal and error-
prone feature matching process, Biber et al. proposed an normal distributions transform
(NDT) registration method in 2003 [44]. The algorithm divides the space into several cells
and calculates the parameters of each cell according to the distribution of points in the
cell. Then, another point cloud is transformed according to the transformation matrix T to
obtain the response probability density distribution function in the corresponding cell, as
shown in the formula of the likelihood of having measured
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However, the registration accuracy of NDT largely depends on the degree of cell
subdivision. Determining the size, boundary, and distribution status of each cell is one of
the directions for the further development of this type of algorithm.

In addition, Myronenko et al. proposed a coherent point drift (CPD) algorithm in
2010, which regarded the registration as a probability density estimation problem [46]. The
algorithm fits the GMM centroid (representing the first point cloud) with the data (the
second point cloud) through maximum likelihood. In order to maintain the topological
structure of the point cloud at the same time, the GMM centroids are forced to move
coherently as a group. In the case of rigidity, the Expectation Maximum (EM) algorithm’s
maximum step-length closed solution in any dimension is obtained by re-parameterizing
the position of the centroid of the GMM with rigid parameters to impose coherence
constraints, which realizes the registration.

Focusing on the problem that too many outliers will cause significant errors in esti-
mating the log-likelihood function, Korenkov et al. introduced the necessary minimization
condition of the log-likelihood function and the norm of the transformation array into the
iterative process to improve the robustness of the registration algorithm [70].

Li et al. borrowed the characteristic quadratic distance to characterize the directivity
between point clouds. By optimizing the distance between two GMMs, the rigid transfor-
mation between two sets of points can be obtained without solving the correspondence
relationship [71]. Meanwhile, Zang et al. first considered the measured geometry and
the inherent characteristics of the scene to simplify the points [72]. In addition to the
Euclidean distance, geometric information and structural constraints are incorporated
into the probability model to optimize the matching probability matrix. Spectrograms are
adopted in structural constraints to measure the structural similarity between matching
items in each iteration. This method is robust to density changes, which can effectively
reduce the number of iterations.

Zhe et al. exploited a hybrid mixture model to characterize generalized point clouds,
where the von Mises–Fisher mixture model describes the orientation uncertainty and the
Gaussian mixture model describes the position uncertainty [73]. This algorithm com-
bined the expectation-maximization algorithm to find the optimal rotation matrix and
transformation vector between two generalized point clouds in an iterative manner. Exper-
iments under different noise levels and outlier ratios verified the accuracy, robustness, and
convergence speed of the algorithm.

In addition, Wang et al. utilized a simple pairwise geometric consistency check to
select potential outliers [74]. Transform and decomposition technology is adopted to
estimate the translation between the original point clouds for a set of potential internal
correspondence pairs. Meanwhile, a rotation search algorithm based on the correspondence
relationship estimates the rotation between the two original point clouds. The translation
and rotation search algorithms are based on the Branch-and-Bound (BnB) optimization
framework, which means that the corresponding input data are globally optimal. However,
the optimal solution of the two decomposition problems of the three-degree-of-freedom
(DoF) translation search and the 3DoF rotation search is not necessarily the optimal solution
of the original 6DoF problem of rigid registration. Experiments showed that the accuracy
of the registration is acceptable.

5.3. Registration Methods Based on Point Cloud Features

The use of mathematical solutions or traversal-exhaustive ideas to achieve registra-
tion between point clouds has certain limitations on computational efficiency, which is
difficult to be actually applied to the registration process of large-scale point clouds. Low-
dimensional point feature information such as normal surface vectors and local curvatures
was adopted to simplify the amount of input data for the point cloud registration process
in the early years of the research.

Johnson et al. proposed a Spin-Images descriptor in 1997 to generate a cylindrical coor-
dinate system based on feature points and their normal vectors [47]. The three-dimensional
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coordinates in the cylinder are projected into the two-dimensional image, and the cor-
responding intensity is calculated according to the points that fall in each image grid,
which forms the Spin-Images descriptor. The registration method based on this feature
quantity does not require any attitude measurement hardware or manual intervention, nor
does it need to assume any prior knowledge of the initial position or dataset overlap to
complete the registration of the three-dimensional point cloud. Relying on Spin-Images’
robustness to occlusion and clutter, as well as the rotation and translation invariance, this
method can also obtain satisfactory results for the registration of cluttered and occluded
three-dimensional point clouds.

In 1999, Dongmei et al. constructed harmonic mapping through a two-step process
of boundary mapping and internal mapping so that there is a one-to-one correspondence
between the points on the 3D surface and the mapped image. While preserving the
shape and continuity of the primary surface, a general framework is adopted to represent
surface properties such as normal vectors, colors, textures, and materials, which are called
harmonic shape images (HSI) descriptors [48].

These kinds of algorithms have improved the calculation speed to a certain extent.
While it is difficult to distinguish some local features with high similarity, and the reg-
istration effect between point clouds with the inconsistent resolution is poor. Therefore,
researchers introduced high-level feature information to characterize discrete point clouds,
which achieved rapid registration between point clouds by matching three-dimensional
or multi-dimensional feature information. Current research on feature descriptors mainly
focuses on the local rather than global level because local feature descriptors can resist
interference such as chaos and occlusion, while global feature descriptors are more sensitive
to clutter and occlusion.

Frome et al. proposed a descriptor called 3D shape context (3Dsc) in 2004 [49]. This
method adopts the normal vector of the key point as the local reference axis, where the
spherical neighborhood is equally divided along the azimuth and elevation dimensions.
Meanwhile, the radial dimension is divided logarithmically. The 3Dsc descriptor is gener-
ated by counting the number of weighted points that fall into each area.

Meanwhile, Rusu et al. proposed persistent feature histograms (PSH) descriptors in
2008, which consider all interactions between the estimated normal directions by param-
eterizing the spatial difference between the query point and the neighboring point [51].
The algorithm attempts to capture the best sample changes of the surface to describe the
geometric characteristics of the sample, which forms a multi-dimensional histogram for
the description of the geometric attributes of the k-neighborhood of the point. The highly
dimensional hyperspace located in the histogram provides a measurable information space
for feature representation, which is invariant to the six-dimensional posture of the cor-
responding surface of the point cloud. This method is robust under different sampling
densities or neighborhood noise levels.

Specifically, the point-to-coordinate system constructed in the point cloud is:
u = ns

v = u× (pt−ps)
‖pt−ps‖2

w = u× v
(5)

where vectors u, v and w are the computed Darboux frame. ps is defined as the source
point and pt is defined as the target point. ns is the estimated normal at point of ps.

Meanwhile, the representation based on the neighborhood feature is shown in the formula:
α = v·nt

∅ = u· (pt−ps)
d

θ = arctan(w·nt, u·nt)
d = ‖pt − ps‖2

(6)
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where <α, ϕ, θ, d> are a measure of the angles between the points’ normals and the distance
vector between them. nt is the estimated normal at point of pt.

However, the time complexity of calculating the PFH feature for a query point is
O(k2). The time complexity is O(nk2) if a point cloud has n points, which has extremely low
efficiency. R.B. Rusu et al. improved it into an fast persistent feature histogram (FPFH on
this basis in 2009 [52]. Meanwhile, the weighted average of the statistics of the point pairs
was taken in the k neighborhood, as shown in the formula:

FPFH
(

pq
)
= SPFH

(
pq
)
+

1
k

k

∑
i=1

1
wk
· SPFH(pk) (7)

where simplified point feature histogram (SPFH) simplifies <α, ϕ, θ, d> to <α, ϕ, θ>. The
weight wk represents the distance between query point p and a neighbor point pk in a given
metric space.

FPFH retains most of the information of FPH, which has pose invariance and strong
description ability to shorten the calculation time in the registration process considerably.
Rusu et al. also introduced perspective features based on FPFH in 2010, called the viewpoint
feature histogram (VFH) descriptor [53]. Beyond implementing the registration function,
this descriptor better meets the functional requirements for recognition and pose estimation.

In 2009, Sun et al. proposed a shape-based thermal diffusion characteristic descriptor,
which is called thermonuclear features heat kernel signature (HKS) [54]. This algorithm
calculates the residual heat of each point in the point cloud over time, which is the cor-
responding curve between the degree of heat diffusion and the passage of time. The
algorithm adopted this as the hot core feature of the point to realize the point cloud registra-
tion through the search and matching processes, which has certain robustness, while only
being suitable for application scenarios under equidistant changes. Meanwhile, Zobel et al.
proposed the general heat kernel signature (GHKS) descriptor in 2011 and 2015, which
supplements and improves this type of algorithm [75].

On the other hand, Drost et al. proposed a point pair feature (PPF) descriptor in
2010 to represent the relative position and attitude of two directed points [55]. The set
of feature vectors and the point pair set corresponding to each feature vector was built
into a global model of the point cloud. Pick any point in the model to match the position
and normal vector of a certain point in the target point cloud. Then, the optimal number
of matching point pairs between two point clouds is found through voting, etc., which
means the registration is successful. The algorithm can be applied in environments with
interference, stacking, partial occlusion, etc.

In 2004, Salti et al. proposed the signature of histogram of orientation (SHOT) descrip-
tor to seamlessly integrate multiple data source information, which adopted the structure
of feature signatures and histograms to improve the uniqueness, descriptiveness, and
robustness of the descriptor [50]. Specifically, the feature signature encodes local spatial
geometric information by defining the local reference frame (LRF). The eigenvalues of its
local geometric space are ordered due to the existence of the LRF. The histogram divides
the eigenvalues into intervals, which were encoded in the manner of histogram statistics so
that the statistics were disordered. The spherical support area is divided into 32 partitions
as shown in Figure 7, performing quadrilinear interpolation in the dimensions of normal
vector cosine, longitude, latitude, and radial, which weakens the edge effect and completes
the characterization of the space.
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Figure 7. Signature structure for SHOT.

In recent years, researchers have implemented a lot of improvement work based on
the above algorithm. Ahmed et al. exploited the quadratic polynomial of three variables
to represent the area as an implicit quadric. The intersection of all three implicit quadric
surfaces defines a virtual point of interest, representing a stable area in the point cloud.
The algorithm reduces the computational cost of registration, which is robust to noise and
data density changes [76].

Liu et al. established the local correlation of feature information based on the fast
point feature histogram, combining with greedy projection triangulation [77]. Then, the
sample consistency initial alignment method was applied to perform the initial transforma-
tion to achieve the initial registration. Experimental results show that greedy projection
triangulation improves the accuracy and speed of registration, significantly improving the
efficiency of feature point matching.

Sheng et al. used asymmetric coding, which cannot be affected by rotation, translation,
and scale factors, to obtain plane boundary lines through Freeman differential coding and
Hough transform [78]. This method constructed a two-level index structure, which greatly
improved the feature matching efficiency and precision for the point cloud centerline.

Moreover, Truong et al. applied semantic information to point cloud registration, effec-
tively deleting mismatched point pairs, ensuring maximum consistency in the registration
process, and improving registration speed based on registration performance [79].

In addition, Zou et al. proposed a new local feature descriptor called the local angle
statistical histogram (LASH) for effective 3D point cloud registration [80]. LASH encodes
its characteristics at the angle between the normal vector of a point and the vector formed
by other points in its local neighborhood to form a geometric description of the local shape.
Then, triangle matching points are detected with the same similarity ratio, which is adopted
to calculate multiple transformations between the two point clouds.

Yang designed the corresponding hybrid feature representation for the point cloud
carrying color information [81]. The weight parameter can be dynamically adjusted be-
tween the color and spatial information through the similarity measurement to more
reliably establish the corresponding relationship in the point cloud and estimate the
conversion parameters.

To reduce the influence of noise and eliminate outliers, Wan et al. established a
registration model based on the maximum entropy criterion [82]. The algorithm introduces
two-way distance measurement into the registration framework to avoid the model from
falling into local extremes, which is highly robust.

Eslami et al. resorted to a feature-based fine registration method for images and point
clouds [83]. The connection point and its two adjacent pixels are matched in the overlapping
image, which intersects in the object space to create a differential connection plane. The
initial rough external direction parameters (EDP), IOP internal direction parameters (IOP),
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and additional parameters (AP) are adopted to convert the connection plane points into
object space. Then, the closest point between the point cloud data and the transformed
contact plane point is estimated, which is used to calculate the direction sector of the
different planes. As a constraint equation and a collinearity equation, each spatial contact
point of an object must be located on the differential plane of the point cloud.

5.4. Registration Methods Based on ICP Deformation

The point cloud registration process can be divided into coarse registration and fine
registration. The approximate rotation and translation matrix can be solved by the coarse
registration algorithm when the relative position of each point cloud datum is unknown.
The fine registration process takes the solution obtained by the coarse registration process
as the initial value on this basis. Iterative optimization is performed by setting different
constraint conditions, while the global optimal rotation and translation matrix solution is
obtained to achieve higher precision registration.

The ICP algorithm and its variants are currently the most classic and commonly used
precision registration methods [56], which progress is:

Step 1: Obtaining point pairs (nearest neighbor point). A transformed point cloud is
obtained from the original point cloud, using the result of the rough registration process
as the initial value. The point pair called the nearest neighbor point, whose distance
between the point cloud and the target point cloud is less than a certain threshold, is the
corresponding point between the point clouds.

Step 2: R, T optimization. Minimize the objective function through many correspond-
ing points to obtain the optimal rotation and translation matrix. The m solution process is
shown in the formula:

Rm
∗, Tm

∗ = argmin
R,T

1
|Ps|

|Ps |

∑
i=1
‖Pt

i−
(

R·Ps
i + T

)
‖

2
(8)

where R, T is the corresponding initial value before the m solution, Ps, Pt is the correspond-
ing point (nearest point) in the original point cloud and the target point cloud.

Step 3: Iterative re-optimization. The new R and T parameters are generated in step 2
cause some point pairs to change, which means the initial value of the iteration is incon-
sistent with the previous iteration. Therefore, Step 1 and Step 2 need to be continuously
iterated until the preset iteration termination conditions are met, such as the relative dis-
tance change of the nearest point pair, the change in the objective function value, or the
change in R and T less than a certain threshold.

The prerequisite for applying the ICP algorithm is that the original point cloud and the
target point cloud are basically in a pre-aligned state. The registration process will usually
fail due to falling into a local minimum if the point clouds are far apart or contain repetitive
structures. In addition, the direct use of the ICP method is inefficient and unstable due
to the difference between the point cloud density distribution, the acquisition scanner,
and the scanning angle. At present, scholars have made specific improvements to the ICP
algorithm based on the above problems.

In 1997, Lu et al. extended the ICP algorithm to the Iterative Dual Correspondences
(IDC) algorithm, which accelerates the convergence of the rotating part in the attitude
estimation during the matching [57].

Moreover, Ji et al. used a genetic algorithm to transform the point cloud to the vicinity
of the 3D shape to realize the coarse registration of the point cloud in response to the
requirement that the ICP algorithm needs a more accurate iterative initial value. Combined
with the fine registration algorithm, this method improves the registration rate, matching
accuracy, and convergence speed [84]. Bustos et al. presented a point cloud registration
preprocessing method that guarantees the removal of abnormal points, which reduces the
input to a small set of points in a way that rejects the correspondence relationship and
ensures that it does not exist in the global optimal solution. In this way, the true outliers are
deleted. At the same time, pure geometric operations ensure the accuracy and speed of the
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algorithm [85]. Liu et al. combined the simulated annealing algorithm and Markov chain
Monte Carlo to improve the sampling and search capabilities in the point cloud, which
achieves global optimization under any given initial conditions with the ICP algorithm [86].

In addition, Wang et al. proposed a parallel trimming iterative closest point (PTrICP)
method for the fine registration of point clouds, which adds the estimation of the parallel
overlap rate during the iterative registration process to improve the robustness of the
algorithm [87]. Focusing on the rigid registration problem with noise and outliers, Du
et al. introduced the concept of correlation and proposed a new energy function based on
the maximum correlation criterion, which convergences monotonically from any given
parameter with higher robustness [88].

5.5. Registration Methods Based on Deep Learning

The registration of point clouds combined with deep learning technology has been
one of the emerging development directions in recent years. Elbaz et al. proposed a
registration algorithm between a large point cloud and a short-range scanning point cloud,
called the Localization by Registration Using a Deep Auto-Encoder Reduced Cover Set
(LORAX) algorithm [58]. The algorithm uses a sphere as the basic unit to subdivide
the point cloud into blocks and project them into a depth map. Adopting deep neural
network-based autoencoder technology combined with unsupervised machine learning,
the low-dimensional descriptor of the 5 × 2 matrix is calculated, which can realize the
solution of the coarse registration conversion matrix of the point cloud.

Chang et al. adopted two consecutive convolutional neural network models to build
a point cloud registration framework [89]. Based on the calculated average after training,
the framework can estimate the conversion between the model point cloud and the data
point cloud. Compared with the omnidirectional uncertainty covered by the first model,
the second model can accurately estimate the direction of the 3D point cloud. Experimental
results show that the framework could significantly reduce the estimation time while
ensuring the accuracy of registration.

Furthermore, Perez-Gonzalez et al. proposed a deep neural network based on sparse
autoencoder training, combined with the Euclidean and Mahalanobis distance map point
registration learning method [90]. The algorithm does not assume the proximity between
point clouds or point pairs, which is suitable for point clouds with high displacement or
occlusion. Moreover, this algorithm does not require an iterative process and estimates the
point distribution in a non-parametric manner, with a broader application range.

Weixin et al. trained an end-to-end learning point cloud registration network frame-
work called Deep Virtual Corresponding Points (DeepVCP), which generates key points
based on the learned matching probabilities between a set of candidate points. This method
can avoid interference with dynamic objects and adopts the help of sufficiently prominent
features in static objects to achieve high robustness and high registration accuracy [91].

In addition, Kurobe et al. built a deep learning-based point cloud registration system
called CorsNet (Correspondence Net), which connects local features with global features
and returns the correspondence between point clouds instead of directly setting or gath-
ering features. Thus, it integrates more helpful information than traditional methods.
Experiments showed that CorsNet is more accurate than the classic ICP method and more
accurate than the recently proposed learning-based PointNetLK (PointNet framework
based on Lucas and Kanade) and DirectNet (domain-transformation enabled end-to-end
deep convolutional neural network), including visible and invisible categories [92].

6. Three-Dimensional Shape Representation Methods

The traditional shape representation process is primarily based on point-to-point
correspondence. In 2000, Pfister et al. used point primitive surfels without direct connec-
tivity to characterize geometric surfaces. The attributes of surfels include depth, texture
color, normal, etc., which can be reconstructed on the screen space to achieve low-cost
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rendering [93]. However, the coherence of each primitive is poor, which is reflected in the
discontinuity of the rendering surface.

In 2001, Zwicker et al. gave each footprint a Gaussian filter kernel with symmetric
radius based on the surfels correlation algorithm, where the continuous surface was
reconstructed by a weighted average [94]. The algorithm provides high-quality anisotropic
texture filtering, hidden surface removal, edge anti-aliasing, and independent transparency.
The method is less efficient when drawing highly complex models.

Rusinkiewicz proposed a grid algorithm QSplat, which is suitable for large-scale
point clouds with low computational consumption in 2000, since traditional grid display,
simplified and progressive transmission algorithms are difficult to adopt in the situation of
increasing high-level point cloud data [95]. The algorithm combines the multi-resolution
hierarchy based on the bounding sphere with the point-based rendering system for data
culling, level of detail selection, and rendering. In addition, this algorithm makes the
corresponding trade-offs in quantization, storage form, and description of the Splat shape,
which has a faster rendering speed.

However, the feature point search is usually affected by image noise, distortion, light
and shadow changes, etc., leading to image aliasing. In addition, point-based reconstruction
ignores the structural information between sample points on the surface of the object, which
introduces more difficulties for the subsequent processing of reconstructed points. In order
to avoid the problems mentioned above, researchers have tried to reconstruct the three-
dimensional scene using curves and curved surfaces.

The following is a detailed introduction to various classical 3D shape representation
methods and the latest related research, with a brief summary of representation algorithms,
as shown in Table 3.

Table 3. A brief summary of classical representation methods.

Category Algorithm Name Author Year Keywords

Parametric shape representation

Coons [96] Coons 1964–1967 Four boundaries of a closed curve
Bezier curve [97] Bezier 1971 ——

B-spline curve [98] Gordon 1974 ——
NURBS [99] Versprille 1975 Non-uniform rational B-spline curve
BPLI [100] Barequet 1996 Piecewise-linear interpolation

Implicit surface
representation

Global

RBF [101,102] Hardy 1971 Radial basis function
PSR [103] Kazhdan 2006 Poisson surface reconstruction

SPSR [104] Kazhdan 2013 Screened poisson surface
reconstruction

Local

MLS [105] Lancaster 1981 Moving least squares
MTLS [106] Scitovski 1998 Moving total least squares
MPU [107] Ohtake 2003 Multi-level partition of unity implicits
APSS [108] Guennebaud 2007 Algebraic point set surfaces

RIMLS [109] Öztireli 2009 Robust implicit moving least squares
PIA [110] Hamza 2020 Progressive iterative approximation

Mesh representation

LTA/FA [111] Lawson 1977 Local transformation algorithm

B-W A [112,113] Bowyer,
Watson 1981 Triangulation of an m-dimensional

space point set

TGM [114–117]
Brassel,
Mirante,
Green

—— Triangulation growth method

Crust [118] Amenta 1998 Vertices of the Voronoi diagram
Co-cone [119] Amenta 2000 Simplification of Crust

BPA [120] Bernardini 1999 Ball pivoting algorithm

Voxel representation MC [121] Lorensen 1987 Marching cubes
MTA [122] Doi 1991 Marching tetrahedral algorithm

Other representation methods Surfels [93] Pfister 2000 Include depth, texture color, normal
QSplat [95] Rusinkiewicz 2000 Multi-resolution hierarchy
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6.1. Parametric Shape Representation Methods

Parametric shape representation can also be referred to as explicit shape represen-
tation, representing the three-dimensional surface in the point cloud using realizable
parameters. This type of algorithm is simple in principle and intuitive to implement, which
is susceptible to the limitation of original data to characterize the occluded part of the
data with less flexibility. The various algorithms for parametric shape representation are
introduced below.

In the process of parameter characterization, the most classic idea is to complete the
feature surface drawing of the original point cloud by inserting points and connecting
lines to form a surface. Coons first proposed a universal surface description method in
1964–1967 to define a curved surface, given four boundaries of a closed curve. However,
this method requires a large amount of data, and there are certain uncontrollable factors in
the shape and connection of the curved surface [96].

In response to the method mentioned above, Bezier proposed a way to modify the
shape of the curve by controlling the position of the vertex, which formed the Bezier
curve and surface technology after development and perfection [97]. This method is
simple to calculate, and the reconstructed surface is controllable, while it still cannot meet
the requirements of surface connection and local modification. Therefore, Gordon et al.
proposed the B-spline curve and surface method in 1974, which solved the problems of
local control and parameter continuity while retaining the advantages of Bezier theory [98].
However, this algorithm cannot accurately represent conic section lines and elementary
analytical surfaces, limiting application scenarios.

Versprille extended the non-rational B-spline method to four-dimensional space in
1975, forming the current mainstream non-uniform rational B-spline curve (NURBS) al-
gorithm [99]. NURBS curves can accurately represent standard analytical shapes, such as
simple algebraic curves and surfaces, which can also represent various forms of free-form
curves and surfaces. Meanwhile, NURBS has geometric invariance under affine, translation,
shear, parallel and perspective projection transformations. Therefore, the algorithm has
relatively loose requirements for the initial value, which reduces the computing demand.

In 1992, Meyers proposed an algorithm to reconstruct the surface from the contour
structure, which comprehensively dealt with four problems in the process of extending
from the “line” to the “surface” as follows; (1) The correspondence between the contour
line and the surface; (2) the tiling problem of each contour; (3) the apparently divergent
ruling issue; and (4) the optimal direction of the reconstructed surface [123]. Barequet et al.
proposed an optimal triangulation strategy based on a dynamic programming algorithm
for this problem in 1996, which is called (Barequet’s Piecewise-Linear Interpolation (BPLI)
algorithm. The segmentation result that conforms to the actual topology can be obtained
by connecting the input two-layer contour lines to a three-dimensional surface without
self-intersection [100].

Scholars have made certain improvements on the basis of these classic algorithms,
proposing methods such as bicubic Hermite interpolation, the bicubic Bezier surface
method, the bicubic B-spline method, the least square surface method, the Legendre
polynomial interpolation method, etc. [124–128].

Kong et al. adopted the discrete stationary wavelet transform method to extract the
feature points of the surface to be reconstructed, which are the input data of the NURBS
equation. Compared with the traditional NURBS surface reconstruction method, the root
mean square error of the fitting result is reduced to 77.64% [129].

In addition, the newly proposed T-spline theory overcomes some of the topological
constraints of the B-spline and NURBS, significantly reducing the number of control
parameters, which has certain application prospects due to the linear independence and
unity of the basis functions. For example, Wang et al. adaptively constructed a T grid
suitable for the initial analysis according to the distribution of high-curvature feature points,
where, to perform its local refinement and optimization, algorithms were run iteratively
until the preset accuracy conditions were met [130].
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6.2. Implicit Surfaces Representation Methods

The implicit functions, which consist of some essential functions, are usually adopted
in implicit surface reconstruction processing to characterize the object surface. The complex-
ity of the surface determines the composition of the basis function. The basis function with
general symmetry is adopted to describe the symmetry of the surface, while asymmetric fea-
tures such as edges and corners require basis function characterization of other properties.

The distance function and the symmetric convolution function are the two most
commonly used basis functions. The former is more about energy minimization and
relative variational surfaces, while the latter is a combination of symmetric functions and
different parameters to find the best fit under given conditions. Least squares (LS), partial
differential equations (PDE), Hausdorff distance, and the radial basis function (RBF) are
some of the variational implicit surface substitution equations which can approximately
replace the object surface when setting these equations to 0.

6.2.1. Global Implicit Surface Representation Methods

Various algorithms based on radial basis functions have been extensively studied
by scholars for their accuracy and stability in implicit surface representation. Moreover,
the independent variable of the radial basis function only contains one radial quantity
representing the concept of “distance”, which is more intuitive and more straightforward.

In 1971, Hardy first applied radial basis functions in surface analysis, which solved
surface equations based on coordinate data [101]. Carr et al. introduced the idea of a greedy
algorithm to reduce the number of points in the interpolation calculation of the radial basis
function in 2001 [102]. The algorithm defines the surface to be reconstructed as the zero-set
of the radial basis function, which matches the given surface data, to approximate any
non-linear function and characterize the implicit surface.

However, there are two main difficulties in the shape representation based on radial
basis functions. The first one is to quickly calculate the weight on each sampling point
to fit large-scale data quickly; the second is the fast assignment method of the implicit
function surface represented by the radial basis function, which is a linear superposition
model obtained by the radial basis function and the weight of each sampling point. The
calculation of the function value at any point in the space requires all sampling points to
participate in the calculation so that the function assignment is very time-consuming for
the radial basis function composed of large-scale data.

On the other hand, Kazhdan et al. proposed the Poisson Surface Reconstruction (PSR)
algorithm in 2006 [103]. The algorithm regards the reconstruction of the directed point
cloud as a spatial Poisson problem, which transforms the discrete sample point information
of the object surface into a continuous integrable surface function to construct an implicit
surface. Unlike the radial basis function format, this method allows a hierarchical structure
of locally supported basis functions, which can be simplified to a well-conditioned sparse
linear system solution. Experiments showed that the algorithm is robust to data noise,
which can be applied to noisy point clouds reconstruction while producing wrong partial
triangles sometimes.

Subsequently, the scholar mentioned above extended the mathematical framework
of the PSR algorithm in 2013, which is called the Screened Poisson Surface Reconstruc-
tion (SPSR) algorithm [104]. The modified linear system retains the exact finite element
discretization, which maintains a constant sparse system, to be solved by the multi-grid
method. This algorithm reduces the time complexity of the solver and the number of linear
points, realizing faster and higher-quality surface reconstruction.

Fuhrmann et al. proposed a floating-scale surface reconstruction method to construct
a floating-scale implicit function with spatial continuity as the sum of tightly supported
basis functions in 2014, where the final surface is extracted as a zero-order set of the implicit
functions [131]. Even for complex and mixed-scale datasets, the algorithm can perform
parameter-free characterization without any preprocessing operations, which is suitable
for directional, redundant, or noisy point sets.
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In recent years, Guarda et al. introduced a generalized Tikhonov regularization in
the objective function of the SPSR algorithm, where the enhanced quadratic difference
eliminates artifacts in the reconstruction process, improving the accuracy [132]. Combining
this with Poisson reconstruction, Juszczyk et al. fused multiple sources of data to effectively
estimate the size of the human wound, which is consistent with the diagnosis of clinical
experts [133].

He et al. adopted a variational function with curvature constraints to reconstruct the
implicit surface of the point cloud data, where the minimization function balances the
distance function from the point cloud to the surface and the average curvature of the
surface itself. The algorithm replaces the original high-order partial differential equations
with a decoupled partial differential equation system, which has better noise resistance to
restore concave features and corner points [134].

In addition, Lu et al. proposed an evolution-based point cloud surface reconstruc-
tion method, which contains two deformable models that evolved from the inside and
outside of the input point [135]. One model expands from its inside to a point, and the
other shrinks from its outside. These two deformable models evolve simultaneously in a
collaborative and iterative manner, which is driven by an unsigned distance field and the
other model. A center surface is extracted when the two models are close enough as the
final reconstructed surface.

6.2.2. Local Implicit Surface Representation Methods

Lancaster et al. proposed the moving least squares (MLS) method in 1981, which
can be regarded as a generalized form of the standard least squares method [105]. The
fitting function is composed of a coefficient vector related to an independent variable and a
complete polynomial basis function, rather than the complete polynomial of the traditional
least squares method. While using the tightly supported weight function to divide the
support domain, the discrete points are assigned corresponding weights so that the fitted
curve and surface have the property of local approximation.

Subsequently, Scitovski et al. made certain improvements to the MLS in 1998, which
is called the moving total least squares (MTLS) method [106]. The essence of the algorithm
is to introduce the TLS method approaching in the orthogonal direction in the support
domain according to the construction method of MLS.

However, the method of determining local approximation coefficients is easily af-
fected by outliers and smooth or sharp features, leading to estimation distortion. Öztireli
et al. proposed the robust implicit moving least squares (RIMLS) method in 2009, which
combines the simplicity of implicit surfaces and the advantages of robust kernel regression
to retain fine-detailed continuous surfaces better and can naturally handle type features
with controllable sharpness [109].

In addition, MLS and other similar algorithms are not stable when dealing with
large curvature and sparse point sets. In response to this problem, Guennebaud et al.
proposed high-order algebraic point set surfaces (APSS) instead of the plane used in MLS
in 2007 [108]. This algorithm significantly improves the reconstruction stability in the case
of low sampling rate and high curvature, where the average curvature of the surface, sharp
features, and boundaries can be reliably estimated without additional costs.

Multi-level partition of unity implicits (MPI) was proposed by Ohtake in 2003, which
also adopted an octree to segment and store the input point cloud data [107]. This method
selects different local functions to fit the surface represented by the local point set according
to the position of the data point and the normal vector relationship in each subdomain.
The weight of each local function is then calculated, which is spliced into a global implicit
function to represent the model surface. This method effectively solves the problems
of large memory consumption and slow running time, which performs rapid surface
reconstruction on massive scattered point cloud data. However, the local details of the
model surface obtained by this algorithm are not obvious, leading to a poor ability to repair
holes. In addition, it is worth noting that the MPU algorithm has no noise immunity.
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Gu et al. divided the nodes in the influence domain into a certain number of sub-
samples, which adopted the total least squares method with compact support weight
functions to achieve local approximation. The algorithm cuts the node with the largest
orthogonal residual of each sub-sample, where the remaining nodes of the sub-sample
determine the local coefficients, improving the robustness of the MLS method [136].

Another type of local implicit surface representation path utilizes RBF with adjustable
local influence. Zhou et al. constructed an explicit RBF to approximate the local surface
patch, where an equivalent implicit surface reconstruction form was transformed through
the local system coordinate [137]. This algorithm can avoid the trivial solution that appears
when the radial basis function is approximated, which has good robustness and effective-
ness for processing large-scale shape reconstruction without increasing the scale of the
data solution.

Zhong et al. presented an extended Hermite radial basis function interpolation method
for sparse point clouds with no ideal shape trend. This method introduces differential oper-
ators and difference operators to construct interpolation conditions, which also constructs
a variety of constraint rules to interactively control the local trend of the shape based on
the Hermite–Birkhoff interpolation theory. Experiments showed that the algorithm could
flexibly handle parallel or nonparallel sparse contours [138].

Meanwhile, Hamza et al. applied the progressive iterative approximation (PIA)
method to the implicit curve and surface reconstruction process for the first time, where the
convergence is proved. This algorithm can solve the minimization problem with regular-
ization terms, improving the reconstruction efficiency of implicit curves and surfaces [110].

Kazhdan et al. demonstrated the advantages of introducing Dirichlet constraints on
the general boundary, which inputs the constraint envelope on the basis of the directed
point cloud to make the reconstructed implicit function zero outside the constrained
surface, eliminating the appearance of artifacts and making the reconstruction model more
accurate [139].

6.3. Mesh/Voxel Representation Methods
6.3.1. Mesh Representation Methods

Mesh reconstruction is a series of mesh deformation operations with constraints,
which is performed according to expectations and requirements to obtain a model of the
desired shape based on the original three-dimensional mesh model.

Among them, the triangular mesh model is a more commonly used computer-aided
design model, which contains a series of triangular faces to approximate objects in a three-
dimensional space. The greater the number of triangles, the smoother the surface of the
object model obtained by the approximation, which is closer to the object to be represented.
The structure of the triangular mesh is simple, which has an excellent approximation to
the complex surface to easily represent the object with a complex surface structure. It can
be expressed mathematically as a set consisting of three elements: point, line, and surface.
However, the same space can have several triangulation results, where malformed grid
cells are likely to be present in the triangulation without optimization conditions.

In 1971, Zienkiewicz et al. proposed a mapping method [140]. The original point cloud
discrete data are first mapped to a two-dimensional plane according to the agreed mapping
relationship, which is triangulated to obtain a triangulation and finally is remapped back
to the actual space domain through the mapping relationship. The algorithm is simple
in principle to easily implement, and also has computational efficiency and is generally
suitable for single-connected regions. However, this algorithm cannot be directly applied
to solve the mapping relationship due to its inability when dealing with complex multi-
connected regions.

The Delaunay triangulation method that satisfies the empty circle characteristics and
maximizes the minimum angle criterion is a more classic method among such algorithms,
which is shown in Figure 8. The triangulation of the target point set contains only Delaunay
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edges, which have the closest proximity, uniqueness, optimality, most regularity, regionality,
and a convex polygonal hull.

Figure 8. Delaunay triangulations and Voronoi diagrams for a set of 16 planar points.

In 1977, Lawson proposed a classic algorithm in this field called the Local Transforma-
tion Algorithm (LTA), which is also known as the Flipping Algorithm [111]. This algorithm
has strong uniqueness and robustness, which can delete and adjust new points in the form
of local networking and construct new Delaunay edges. However, the algorithm is slower
when building a network of large amounts of data. Moreover, an illegal triangle will be
formed, affecting the accuracy of the reconstruction result if the range of the point set is a
nonconvex area or in an inner ring.

Meanwhile, Bowyer and Watson proposed an incremental algorithm for constructing
the triangulation of an m-dimensional space point set in 1981, which was synthesized into
the Bowyer–Watson algorithm, as one of the classic algorithms in this field [112,113]. Sloan
also made specific improvements on the basis of predecessors [141]. Generally speaking,
the above three algorithms can be classified as a point-by-point insertion method. The
principle and implementation path of these algorithms are relatively simple, while the time
complexity is relatively poor, which is generally between O(N3/2) and O(N5/4).

In response to these problems, researchers such as Dwyer, Lee, Lewis, Chew, etc.,
introduced the idea of divide and conquer in the process of point set division, subnet
construction, and triangulation merging, which improved the time efficiency of recon-
struction [114–117]. However, ample memory space and workload are required due to the
recursive execution progress, resulting in low space efficiency. In addition to these two
types of algorithms, Brassel, Mirante, and Green et al. proposed the triangulation growth
method, whose efficiency is extremely low and has been rarely applied so far [142–144].

Amenta adopted the vertices of the Voronoi diagram to fit the point concentration
axis, reconstructing the curve of the discrete point set based on the Voronoi diagram and
the Delaunay triangle correlation algorithm in computational geometry mentioned above,
which is called the Crust algorithm [118]. This algorithm can effectively reconstruct the
single-edge sampling point set obtained from the smooth curve sampling, while the Crust
algorithm is no longer applicable when the edge contour sampling point set has a certain
thickness or the thickness is not uniform, or the original point cloud is dense and complex.
Subsequently, this researcher made specific improvements based on the Crust algorithm
in 2001, which is called the Power-Crust algorithm. The algorithm has a corresponding
reconstruction result output for any input, while it has a high time complexity and a low
reconstruction efficiency [119].

Moreover, he also simplified the Crust algorithm in 2000, requiring only one Voronoi
diagram calculation and no data construction steps in the original algorithm, which is
called the Co-cone algorithm [145]. This algorithm dramatically reduces the reconstruction
time comparing with the Crust algorithm. While this algorithm still has strict requirements
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on sampling density and other conditions to deal with complex shapes such as abruptly
curved surfaces.

In 1999, Bernardini et al. proposed the Ball Pivoting Algorithm (BPA), which started
with the seed triangle and connected the points through a ball with a certain radius to form
the remaining triangles, to achieve surface reconstruction [120]. The space complexity of
the algorithm is O(n + L), where O(L) is the total number of voxels and O(n) is the number
of data. However, the ball sometimes does not touch the point during the rolling process,
resulting in holes in the reconstructed surface when the density of the point cloud data is
not uniform.

At present, the research on the two-dimensional Delaunay triangulation method is
relatively mature, while there are still some problems to be solved in the three-dimensional
Delaunay triangulation method. The most critical issue is the consistency of the boundary
edges and boundary surfaces of the designated area, which means that effective trian-
gulation should ensure that the boundary of the triangulated model is consistent with
the original model. However, the Delaunay triangulation algorithm only considers the
connection rule of points to guarantee only the existence of points in Delaunay triangula-
tion rather than boundary edges and boundary surfaces in Delaunay triangulation. The
boundary must be restored to ensure the consistency of the designated area boundary.

6.3.2. Voxel Representation Methods

A voxel is a six-sided area of non-variable values surrounding a central grid point,
which characterizes three-dimensional regions in the voxel representation methods. Voxels
are usually three-dimensional boxes so that each voxel contains eight vertices. The isosur-
face can be extracted as a reconstruction of the original curved surface by calculating the
field function at these vertices. The voxel method has no assumptions about the behav-
ior of the data between grid points, which only adopts known data values to generate a
three-dimensional space.

Hoppe et al. proposed for the first time automatically calculating the normal infor-
mation at each point through the local information of each sampling point and using the
linear approximation of the tangent plane to approximate the local model of the surface to
be reconstructed to establish the distance field function of the discrete point set. Then, the
triangle type approximated surface is obtained by the step cube algorithm of isosurface
extraction, which is the required re-evaluated surface. This method has a high degree of
automation, while the reconstruction effect of the boundary of the curved surface and
sharp edges is not good enough [146].

In 1987, Lorensen proposed the Marching Cubes (MC) algorithm based on the Delau-
nay triangle, which adopted each grid cell in a three-dimensional discrete data field as a
voxel [121]. Each voxel vertex has a corresponding scalar value, which can be linearly inter-
polated to approximate the isosurface, triangulating the mesh. The algorithm maintains the
connectivity and gradient information well in the original point cloud. A higher-precision
interpolation method or corresponding topological structure analysis of the original data is
required if the quality of the algorithm needs to be further improved.

In 1991, Doi et al. adopted a tetrahedron instead of a cube to obtain an isosurface to
solve the problem of ambiguity and the low degree of detail retention of the reconstruc-
tion result, which is called the Marching Tetrahedral Algorithm (MTA). In contrast, the
algorithm will accordingly require more computing power and storage space [122].

Some researchers have published exceptional reviews on the MC algorithm, so this
article only listed an example as follows. Zhao et al. determined the connection mode
within the voxel by comparing the asymptotic intersection point of the hyperbola, which is
formed by the intersection of the surface to be reconstructed with the specific plane, with
the threshold pixel value to overcome the ambiguity problem in the MC algorithm [147].
The algorithm avoids the generation of voids in the three-dimensional surface introduced
by connection errors to improve the reconstruction accuracy.
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Guan et al. took voxels as an intermediate medium between the point cloud and the
grid to generate voxel models, constructing a quadrilateral mesh by mapping the vertices
of the outer surface to points [148]. This algorithm refines the quadrilateral meshes with
point mapping and meshes regularization to obtain a high-quality mesh.

7. Summary and Future Directions

This study takes the technological path and corresponding principles as the logical
sequence to give a detailed summary of the latest development status of each key technol-
ogy in the past five years, not only to evaluate the existing research but also to provide
a deeper understanding for new researchers in this field. The four essential technologies
of light-section reconstruction were reviewed and categorized on the basis of the selected
relevant papers.

The first category is the acquisition method for point cloud data utilizing line-structured
light, which can be divided into two main parts. One is the original 3D data, which can be
traced back to XOY-plane results measured by laser triangulation and the displacement
of the Z-axis. This part guarantees high-precision spatial positioning results, directly
affecting the performance of the entire system. Another, also worthy of more attention, is
the filling and decorating method for original 3D data, which restricts the application and
development of this technology to a certain extent. Limited by the measurement principle
of laser triangulation and the non-rigid characteristics of the objects, holes easily appear in
the point cloud, leading to significant obstacles to subsequent processing, identification,
and other processes. Therefore, this aspect deserves more in-depth research, which may
improve the performance of existing systems and widen the range of application scenarios.

The second category is an introduction to the point cloud reduction algorithm, which
occupies an important place in this technology from the present to the future. The data
volume of a filtered point cloud obtained by the front-end system with a higher sampling
rate and resolution is still huge with insufficient necessity, also resulting in a higher density
of in-formation space and the difficulty of converging the subsequent algorithms. If the
light-section scanning system is to be applied to more significant scenes or objects with
rich details, the point cloud reduction method needs further research rather than simply
deleting point cloud data based on similarity or importance.

In addition, the point cloud registration methods mentioned in Chapter 4 alleviate
the limitations of laser triangulation measurement and multi-source data fusion to a
certain extent, while the current registration algorithm still has certain inadaptability,
such as the point cloud density caused by different distances and perspectives of data
acquisition sources is inconsistent, or the overlap rate between multiple sets of point
clouds is lower, which is difficult to converge the registration algorithm. Meanwhile,
the noise introduced in the data acquisition process, or the objects being self-similar or
symmetric, makes the iterative direction not unique and prone to phenomena such as
“artifacts”. The most important thing is that most of the current registration algorithms
are computationally intensive and have low time efficiency, gradually falling behind the
needs of application scenarios. Therefore, improving the effectiveness and simplicity of the
registration algorithm is one of the further directions.

Moreover, this paper also reviews classical and the latest 3D shape representation
methods, which are usually adopted to establish the topological relationship in the point
cloud and visualize the results, containing rich 3D information. For a light-section scanning
system, the obtained point cloud is semi-disordered, presenting more challenges to the
current 3D shape representation methods. In addition, a single-function system will
inevitably make it difficult to meet actual needs in the future development of science
and technology. There will be more types of inputs and noise in the processing of shape
representation. Such algorithms should be more robust and universal.

In this paper, each category was investigated based on the current landscape of the
research, relevant improvements, significant results, and recommendations in this area.
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Future research is also suggested to investigate further improvements. We foresee that our
review of the field will help researchers in this field.

Author Contributions: Conceptualization, B.C., W.T. and H.Z.; methodology, B.C.; software, B.C.;
validation, B.C.; formal analysis, B.C. and W.T.; investigation, B.C.; resources, B.C., W.T. and H.Z.; data
curation, B.C.; writing—original draft preparation, B.C.; writing—review and editing, B.C., W.T. and
H.Z.; visualization, B.C.; supervision, W.T. and H.Z.; project administration, W.T. and H.Z.; funding
acquisition, W.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China, grant number
51975374.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Patil, A.K.; Holi, P.; Lee, S.K.; Chai, Y.H. An adaptive approach for the reconstruction and modeling of as-built 3D pipelines from

point clouds. Autom. Constr. 2017, 75, 65–78. [CrossRef]
2. Wang, Q.; Kim, M.K. Applications of 3D point cloud data in the construction industry: A fifteen-year review from 2004 to 2018.

Adv. Eng. Inform. 2019, 39, 306–319. [CrossRef]
3. Louvrier, A.; Marty, P.; Barrabe, A.; Euvrard, E.; Chatelain, B.; Weber, E.; Meyer, C. How useful is 3D printing in maxillofacial

surgery? J. Stomatol. Oral Maxillofac. Surg. 2017, 118, 206–212. [CrossRef] [PubMed]
4. Iglhaut, J.; Cabo, C.; Puliti, S.; Piermattei, L.; O’Connor, J.; Rosette, J. Structure from Motion Photogrammetry in Forestry: A

Review. Curr. For. Rep. 2019, 5, 155–168. [CrossRef]
5. Liu, S.L.; Liu, J.H.; Jin, P.; Wang, X. Tube measurement based on stereo-vision: A review. Int. J. Adv. Manuf. Technol. 2017, 92,

2017–2032. [CrossRef]
6. Sun, M.J.; Zhang, J.M. Single-Pixel Imaging and Its Application in Three-Dimensional Reconstruction: A Brief Review. Sensors

2019, 19, 732. [CrossRef]
7. Yang, S.M.; Zhang, G.F. A review of interferometry for geometric measurement. Meas. Sci. Technol. 2018, 29, 29. [CrossRef]
8. Zhang, S. High-speed 3D shape measurement with structured light methods: A review. Opt. Lasers Eng. 2018, 106, 119–131.

[CrossRef]
9. Lyu, C.G.; Bai, Y.; Yang, J.C.; Qi, H.; Ma, J.J. An iterative high dynamic range image processing approach adapted to overexposure

3D scene. Opt. Lasers Eng. 2020, 124, 7. [CrossRef]
10. Xu, X.B.; Fei, Z.W.; Yang, J.; Tan, Z.Y.; Luo, M.Z. Line structured light calibration method and centerline extraction: A review.

Results Phys. 2020, 19, 17. [CrossRef]
11. Li, T.T.; Yang, F.; Li, S.G.; He, Y. Extraction Method of Line-Structured Light Stripe Center Based on Gauss-Lorenz Decomposition

Peak Fitting. Laser Optoelectron. Prog. 2019, 56, 10. [CrossRef]
12. Yin, X.Q.; Tao, W.; Zheng, C.; Yang, H.W.; He, Q.Z.; Zhao, H. Analysis and simplification of lens distortion model for the

scheimpflug imaging system calibration. Opt. Commun. 2019, 430, 380–384. [CrossRef]
13. Zhang, J.; Yu, H.; Deng, H.X.; Chai, Z.W.; Ma, M.C.; Zhong, X. A Robust and Rapid Camera Calibration Method by One Captured

Image. IEEE Trans. Instrum. Meas. 2019, 68, 4112–4121. [CrossRef]
14. Cui, B.; Fu, Q.W.; Sun, H.; Tao, W.; Lv, N.; Zhao, H. Cross-point calibration method or the Scheimpflug measurement system.

Appl. Optics 2020, 59, 8618–8627. [CrossRef]
15. Han, X.F.; Jin, J.S.; Wang, M.J.; Jiang, W.; Gao, L.; Xiao, L.P. A review of algorithms for filtering the 3D point cloud. Signal

Process.-Image Commun. 2017, 57, 103–112. [CrossRef]
16. Turk, G.; Levoy, M. Zippered polygon meshes from range images. In Computer Graphics Proceedings. Annual Conference Series

1994, Proceedings of the SIGGRAPH 94 Conference Proceedings, Orlando, Floria, USA, 24–29 July 1994; Association for Computing
Machinery: New York, NY, USA, 1994; pp. 311–318. [CrossRef]

17. Wang, J.Q.; Fan, Y.G.; Li, G.S.; Yu, D.F. Adaptive Point Cloud Reduction Based on Multi Parameter k-Means Clustering. Laser
Optoelectron. Prog. 2021, 58, 9. [CrossRef]

18. Sommen, P.; Janse, K. On the relationship between uniform and recurrent nonuniform discrete-time sampling schemes. IEEE
Trans. Signal Process. 2008, 56, 5147–5156. [CrossRef]

19. Lin, Y.J.; Benziger, R.R.; Habib, A. Planar-Based Adaptive Down-Sampling of Point Clouds. Photogramm. Eng. Remote Sens. 2016,
82, 955–966. [CrossRef]

20. Zou, B.C.; Qiu, H.D.; Lu, Y.F. Point Cloud Reduction and Denoising Based on Optimized Downsampling and Bilateral Filtering.
IEEE Access 2020, 8, 136316–136326. [CrossRef]

21. Chen, Z.G.; Zhang, T.Y.; Cao, J.; Zhang, Y.J.; Wang, C. Point cloud resampling using centroidal Voronoi tessellation methods.
Computer-Aided Design 2018, 102, 12–21. [CrossRef]

http://doi.org/10.1016/j.autcon.2016.12.002
http://doi.org/10.1016/j.aei.2019.02.007
http://doi.org/10.1016/j.jormas.2017.07.002
http://www.ncbi.nlm.nih.gov/pubmed/28732777
http://doi.org/10.1007/s40725-019-00094-3
http://doi.org/10.1007/s00170-017-0254-9
http://doi.org/10.3390/s19030732
http://doi.org/10.1088/1361-6501/aad732
http://doi.org/10.1016/j.optlaseng.2018.02.017
http://doi.org/10.1016/j.optlaseng.2019.105831
http://doi.org/10.1016/j.rinp.2020.103637
http://doi.org/10.3788/lop56.071201
http://doi.org/10.1016/j.optcom.2018.05.086
http://doi.org/10.1109/TIM.2018.2884583
http://doi.org/10.1364/AO.401350
http://doi.org/10.1016/j.image.2017.05.009
http://doi.org/10.1145/192161.192241
http://doi.org/10.3788/lop202158.0610008
http://doi.org/10.1109/TSP.2008.928695
http://doi.org/10.14358/PERS.82.12.955
http://doi.org/10.1109/ACCESS.2020.3011989
http://doi.org/10.1016/j.cad.2018.04.010


Remote Sens. 2021, 13, 4457 29 of 33

22. Rahmani, M.; Ping, L. Graph Analysis and Graph Pooling in the Spatial Domain. arXiv 2019, arXiv:1910.01589.
23. Al-Rawabdeh, A.; He, F.N.; Habib, A. Automated Feature-Based Down-Sampling Approaches for Fine Registration of Irregular

Point Clouds. Remote Sens. 2020, 12, 1224. [CrossRef]
24. Tao, Y.; Wang, Y.Q.; Liu, H.B.; Li, M. On-line three-dimensional point cloud data extraction method for scan-tracking measurement

of irregular surface using bi-Akima spline. Measurement 2016, 92, 382–390. [CrossRef]
25. Li, Y.; Liu, H.B.; Tao, Y.; Liao, J.X. Reasoning mechanism: An effective data reduction algorithm for on-line point cloud selective

sampling of sculptured surfaces. Computer Aided Design 2019, 113, 48–61. [CrossRef]
26. Han, H.Y.; Han, X.; Sun, F.S.; Huang, C.Y. Point cloud simplification with preserved edge based on normal vector. Optik 2015, 126,

2157–2162. [CrossRef]
27. Sayed, H.M.; Taie, S.A.; Ei-Khoribi, R.A.; Abdelrahman, I.F.; Helmy, A.K. Point clouds reduction model based on 3D feature

extraction. Int. J. Embed. Syst. 2019, 11, 78–83. [CrossRef]
28. Xuan, W.; Hua, X.H.; Chen, X.J.; Zou, J.G.; He, X.X. A New Progressive Simplification Method for Point Cloud Using Local

Entropy of Normal Angle. J. Indian Soc. Remote. Sens. 2018, 46, 581–589. [CrossRef]
29. Ji, C.Y.; Li, Y.; Fan, J.H.; Lan, S.M. A Novel Simplification Method for 3D Geometric Point Cloud Based on the Importance of

Point. IEEE Access 2019, 7, 129029–129042. [CrossRef]
30. Guo, H.Y.; Yan, L. Method for compressing point cloud according to curvature standard. In Proceedings of the 14th IEEE

Conference on Industrial Electronics and Applications (ICIEA), Xian, China, 19–21 June 2019; pp. 932–936.
31. Tazir, M.L.; Checchin, P.; Trassoudaine, L. Color-based 3D point cloud reduction. In Proceedings of the 2016 14th International

Conference on Control, Automation, Robotics and Vision (ICARCV), Phuket, Thailand, 13–15 November 2016; pp. 1–7. [CrossRef]
32. Thakur, S.; Peethambaran, J. Dynamic Edge Weights in Graph Neural Networks for 3D Object Detection. arXiv 2020,

arXiv:2009.08253.
33. Markovic, V.; Jakovljevic, Z.; Miljkovic, Z. Feature Sensitive Three-Dimensional Point Cloud Simplification using Support Vector

Regression. Teh. Vjesn. 2019, 26, 985–994. [CrossRef]
34. Yao, D.; Chuanchuan, Y.; Hao, C.; Weizhen, Y.; Hongbin, L. Low-complexity point cloud filtering for LiDAR by PCA-based

dimension reduction arXiv. arXiv 2020, arXiv:1904.08506.
35. El-Sayed, E.; Abdel-Kader, R.F.; Nashaat, H.; Marei, M. Plane detection in 3D point cloud using octree-balanced density

down-sampling and iterative adaptive plane extraction. IET Image Process. 2018, 12, 1595–1605. [CrossRef]
36. Song, S.W.; Liu, J.; Yin, C.Q. Data Reduction for Point Cloud Using Octree Coding. In Proceedings of the 13th International

Conference on Intelligent Computing (ICIC), Liverpool, UK, 7–10 August 2017; pp. 376–383.
37. Lang, D.; Friedmann, S.; Paulus, D. Adaptivity of conditional random field based outdoor point cloud classification. Pattern

Recognit. Image Anal. 2016, 26, 309–315. [CrossRef]
38. Shoaib, M.; Cheong, J.; Kim, Y.; Cho, H. Fractal bubble algorithm for simplification of 3D point cloud data. J. Intell. Fuzzy Syst.

2019, 37, 7815–7830. [CrossRef]
39. Bello, S.A.; Yu, S.S.; Wang, C.; Adam, J.M.; Li, J. Review: Deep Learning on 3D Point Clouds. Remote Sens. 2020, 12, 1729.

[CrossRef]
40. Xin, M.T.; Li, B.; Yan, X.; Chen, L.; Wei, X. A robust cloud registration method based on redundant data reduction using

backpropagation neural network and shift window. Rev. Sci. Instrum. 2018, 89, 8. [CrossRef] [PubMed]
41. Nezhadarya, E.; Taghavi, E.; Razani, R.; Bingbing, L.; Jun, L. Adaptive Hierarchical Down-Sampling for Point Cloud Classification.

In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19
June 2020; pp. 12953–12961. [CrossRef]

42. Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and
automated cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]

43. Chen, Y.; Medioni, G. Object modeling by registration of multiple range images. In Proceedings of the 1991 IEEE Interna-
tional Conference on Robotics and Automation (Cat. No.91CH2969-4), Sacramento, CA, USA, 9–11 April 1991; Volume 2723,
pp. 2724–2729. [CrossRef]

44. Biber, P.; Strasser, W. The normal distributions transform: A new approach to laser scan matching. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA, 27–31 October 2003; pp. 2743–2748.

45. Aiger, D.; Mitra, N.J.; Cohen-Or, D. 4-points congruent sets for robust pairwise surface registration. ACM Trans. Graph. 2008,
27, 10. [CrossRef]

46. Myronenko, A.; Song, X.B. Point Set Registration: Coherent Point Drift. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 2262–2275.
[CrossRef]

47. Johnson, A.E.; Hebert, M.; IEEE Comp, S.O.C.; IEEE Comp, S.O.C. Efficient multiple model recognition in cluttered 3-D scenes. In
Proceedings of the 1998 IEEE Computer-Society Conference on Computer Vision and Pattern Recognition, Santa Barbara, CA,
USA, 23–25 June 1998; pp. 671–677.

48. Dongmei, Z.; Hebert, M. Harmonic shape images: A representation for 3D free-form surfaces based on energy minimization.
In Energy Minimization Methods in Computer Vision and Pattern Recognition, Proceedings of the Second International Workshop,
EMMCVPR’99, York, UK, 26–29 July 1999; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1999;
Volume 1654, pp. 30–43.

http://doi.org/10.3390/rs12071224
http://doi.org/10.1016/j.measurement.2016.06.008
http://doi.org/10.1016/j.cad.2019.04.002
http://doi.org/10.1016/j.ijleo.2015.05.092
http://doi.org/10.1504/IJES.2019.097573
http://doi.org/10.1007/s12524-017-0730-6
http://doi.org/10.1109/ACCESS.2019.2939684
http://doi.org/10.1109/icarcv.2016.7838685
http://doi.org/10.17559/tv-20180328175336
http://doi.org/10.1049/iet-ipr.2017.1076
http://doi.org/10.1134/S1054661816020085
http://doi.org/10.3233/JIFS-182742
http://doi.org/10.3390/rs12111729
http://doi.org/10.1063/1.4996628
http://www.ncbi.nlm.nih.gov/pubmed/29495860
http://doi.org/10.1109/cvpr42600.2020.01297
http://doi.org/10.1145/358669.358692
http://doi.org/10.1109/robot.1991.132043
http://doi.org/10.1145/1360612.1360684
http://doi.org/10.1109/TPAMI.2010.46


Remote Sens. 2021, 13, 4457 30 of 33

49. Frome, A.; Huber, D.; Kolluri, R.; Bulow, T.; Malik, J. Recognizing objects in range data using regional point descriptors. In
Computer Vision—Eccv 2004, Pt 3; Pajdla, T., Matas, J., Eds.; Lecture Notes in Computer Science; Springer: Berlin, Germany, 2004;
Volume 3023, pp. 224–237.

50. Salti, S.; Tombari, F.; Di Stefano, L. SHOT: Unique signatures of histograms for surface and texture description. Comput. Vis. Image
Underst. 2014, 125, 251–264. [CrossRef]

51. Rusu, R.B.; Blodow, N.; Marton, Z.C.; Beetz, M. Aligning Point Cloud Views using Persistent Feature Histograms. In Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 3384–3391.

52. Rusu, R.B.; Blodow, N.; Beetz, M. Fast Point Feature Histograms (FPFH) for 3D Registration. In Proceedings of the IEEE
International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 1848–1853.

53. Rusu, R.B.; Bradski, G.; Thibaux, R.; Hsu, J. Fast 3D Recognition and Pose Using the Viewpoint Feature Histogram. In Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 2155–2162.

54. Sun, J.A.; Ovsjanikov, M.; Guibas, L. A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion. Comput.
Graph. Forum 2009, 28, 1383–1392. [CrossRef]

55. Drost, B.; Ulrich, M.; Navab, N.; Ilic, S. Model Globally, Match Locally: Efficient and Robust 3D Object Recognition. In Proceedings
of the 23rd IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA, 13–18 June 2010;
pp. 998–1005.

56. Besl, P.; McKay, N. Method for Registration of 3-D Shapes. Available online: https://www.spiedigitallibrary.org/conference-
proceedings-of-spie/1611/1/Method-for-registration-of-3-D-shapes/10.1117/12.57955.short (accessed on 5 September 2015).

57. Lu, F.; Milios, E. Robot pose estimation in unknown environments by matching 2D range scans. J. Intell. Robot. Syst. 1997, 18,
249–275. [CrossRef]

58. Elbaz, G.; Avraham, T.; Fischer, A. 3D Point Cloud Registration for Localization using a Deep Neural Network Auto-Encoder. In
Proceedings of the 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26
July 2017; pp. 2472–2481.

59. Jauer, P.; Kuhlemann, I.; Bruder, R.; Schweikard, A.; Ernst, F. Efficient Registration of High-Resolution Feature Enhanced Point
Clouds. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 1102–1115. [CrossRef] [PubMed]

60. De Almeida, L.R.; Giraldi, G.A.; Vieira, M.B. Rigid Registration of Point Clouds Based on Indirect Lie Group Approach. In
Proceedings of the 21st Symposium on Virtual and Augmented Reality (SVR), Rio de Janeiro, Brazil, 28–31 October 2019;
pp. 130–139.

61. Parkison, S.A.; Ghaffari, M.; Gan, L.; Zhang, R.; Ushani, A.K.; Eustice, R.M. Boosting Shape Registration Algorithms via
Reproducing Kernel Hilbert Space Regularizers. IEEE Robot. Autom. Lett. 2019, 4, 4563–4570. [CrossRef]

62. Wang, C.; Yang, Y.X.; Shu, Q.; Yu, C.X.; Cui, Z.M. Point Cloud Registration Algorithm Based on Cauchy Mixture Model. IEEE
Photonics J. 2021, 13, 14. [CrossRef]

63. Feng, Y.Q.; Tang, J.L.; Su, B.H.; Su, Q.L.; Zhou, Z. Point Cloud Registration Algorithm Based on the Grey Wolf Optimizer. IEEE
Access 2020, 8, 143375–143382. [CrossRef]

64. Shi, X.J.; Liu, T.; Han, X. Improved Iterative Closest Point(ICP) 3D point cloud registration algorithm based on point cloud
filtering and adaptive fireworks for coarse registration. Int. J. Remote Sens. 2020, 41, 3197–3220. [CrossRef]

65. Mohamad, M.; Ahmed, M.T.; Rappaport, D.; Greenspan, M. Super Generalized 4PCS for 3D Registration. In Proceedings of the
2015 International Conference on 3D Vision (ENS), Lyon, France, 19–22 October 2015; pp. 598–606.

66. Xu, Z.H.; Xu, E.S.; Zhang, Z.X.; Wu, L.X. Multiscale Sparse Features Embedded 4-Points Congruent Sets for Global Registration
of TLS Point Clouds. IEEE Geosci. Remote Sens. Lett. 2019, 16, 286–290. [CrossRef]

67. Huang, J.D.; Kwok, T.H.; Zhou, C. V4PCS: Volumetric 4PCS Algorithm for Global Registration. J. Mech. Des. 2017, 139, 9.
[CrossRef]

68. Hahnel, D.; Burgard, W. A probabilistic method for recording of 3D images. In Proceedings of the Robotik 2002 Conference,
Ludwigsburg, Germany, 19–20 June 2002; pp. 137–143.

69. Boughorbel, F.; Koschan, A.; Abidi, B.; Abidi, M. Gaussian fields: A new criterion for 3D rigid registration. Pattern Recognition
2004, 37, 1567–1571. [CrossRef]

70. Korenkov, M.; Dralle, H.; Klar, E.; Saad, S.; Senninger, N.; Standop, J.; Stier, A.; Strik, M.; Ulrich, A.; Weiner, R. Register of Difficult
Surgical Situations. Zent. Chir. 2018, 143, 55–59. [CrossRef]

71. Li, L.; Yang, M.; Wang, C.X.; Wang, B. Robust Point Set Registration Using Signature Quadratic Form Distance. IEEE T. Cybern.
2020, 50, 2097–2109. [CrossRef]

72. Zang, Y.F.; Lindenbergh, R.; Yang, B.S.; Guan, H.Y. Density-Adaptive and Geometry-Aware Registration of TLS Point Clouds
Based on Coherent Point Drift. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1628–1632. [CrossRef]

73. Zhe, M.; Jiaole, W.; Meng, M.Q.H. Joint registration of multiple generalized point sets. In Shape in Medical Imaging, Proceedings of
the International Workshop, ShapeMI 2018, Granada, Spain, 20 September 2018; Lecture Notes in Computer Science (LNCS 11167);
Springer: Cham, Switzerland, 2018; pp. 169–177. [CrossRef]

74. Wang, C.; Chen, X.R.; Wang, M.N. Efficient Similarity Point Set Registration by Transformation Decomposition. Sensors 2020,
20, 4103. [CrossRef] [PubMed]

http://doi.org/10.1016/j.cviu.2014.04.011
http://doi.org/10.1111/j.1467-8659.2009.01515.x
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/1611/1/Method-for-registration-of-3-D-shapes/10.1117/12.57955.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/1611/1/Method-for-registration-of-3-D-shapes/10.1117/12.57955.short
http://doi.org/10.1023/A:1007957421070
http://doi.org/10.1109/TPAMI.2018.2831670
http://www.ncbi.nlm.nih.gov/pubmed/29994022
http://doi.org/10.1109/LRA.2019.2932865
http://doi.org/10.1109/jphot.2020.3035673
http://doi.org/10.1109/ACCESS.2020.3013706
http://doi.org/10.1080/01431161.2019.1701211
http://doi.org/10.1109/LGRS.2018.2872353
http://doi.org/10.1115/1.4037477
http://doi.org/10.1016/j.patcog.2004.02.005
http://doi.org/10.1055/s-0043-104769
http://doi.org/10.1109/TCYB.2018.2845745
http://doi.org/10.1109/LGRS.2019.2950128
http://doi.org/10.1007/978-3-030-04747-4_16
http://doi.org/10.3390/s20154103
http://www.ncbi.nlm.nih.gov/pubmed/32717938


Remote Sens. 2021, 13, 4457 31 of 33

75. Zobel, V.; Reininghaus, J.; Hotz, I. Visualizing Symmetric Indefinite 2D Tensor Fields Using the Heat Kernel Signature. In
Proceedings of the Workshop on the Visualization and Processing of Higher Order Descriptors for Multi-Valued Data, Dagstuhl,
Germany, Febuary 2014; pp. 257–267.

76. Ahmed, M.T.; Marshall, J.A.; Greenspan, M. Point Cloud Registration with Virtual Interest Points from Implicit Quadric
Surface Intersections. In Proceedings of the International Conference on 3D Vision (3DV), Qingdao, China, 10–12 October 2017;
pp. 649–657.

77. Liu, J.; Bai, D.; Chen, L. 3-D Point Cloud Registration Algorithm Based on Greedy Projection Triangulation. Appl. Sci. 2018,
8, 1776. [CrossRef]

78. Sheng, Q.H.; Hong, R.; Wang, B.; Wang, Q. Line Matching of Point Clouds Based on Encoded Asymmetric Boundary. IEEE Geosci.
Remote Sens. Lett. 2020, 17, 1983–1987. [CrossRef]

79. Truong, G.; Gilani, S.Z.; Islam, S.M.S.; Suter, D. Fast Point Cloud Registration using Semantic Segmentation. In Proceedings of
the APRS International Conference on Digital Image Computing—Techniques and Applications (DICTA), Perth, Australia, 2–4
December 2019; pp. 200–207.

80. Zou, X.Y.; He, H.W.; Wu, Y.M.; Chen, Y.B.; Xu, M.X. Automatic 3D point cloud registration algorithm based on triangle similarity
ratio consistency. IET Image Process. 2020, 14, 3314–3323. [CrossRef]

81. Yang, Y.; Chen, W.L.; Wang, M.Y.; Zhong, D.X.; Du, S.Y. Color Point Cloud Registration Based on Supervoxel Correspondence.
IEEE Access 2020, 8, 7362–7372. [CrossRef]

82. Wan, T.; Du, S.Y.; Cui, W.T.; Yang, Y.; Li, C. Robust Rigid Registration Algorithm Based on Correntropy and Bi-Directional
Distance. IEEE Access 2020, 8, 22225–22234. [CrossRef]

83. Eslami, M.; Saadatseresht, M. Imagery Network Fine Registration by Reference Point Cloud Data Based on the Tie Points and
Planes. Sensors 2021, 21, 317. [CrossRef]

84. Ji, S.J.; Ren, Y.C.; Zhao, J.; Liu, X.L.; Gao, H. An improved method for registration of point cloud. Optik 2017, 140, 451–458.
[CrossRef]

85. Bustos, A.P.; Chin, T.J. Guaranteed Outlier Removal for Point Cloud Registration with Correspondences. IEEE Trans. Pattern Anal.
Mach. Intell. 2018, 40, 2868–2882. [CrossRef] [PubMed]

86. Liu, H.B.; Liu, T.R.; Li, Y.P.; Xi, M.M.; Li, T.; Wang, Y.Q. Point Cloud Registration Based on MCMC-SA ICP Algorithm. IEEE Access
2019, 7, 73637–73648. [CrossRef]

87. Wang, X.; Zhu, X.H.; Ying, S.H.; Shen, C.M. An Accelerated and Robust Partial Registration Algorithm for Point Clouds. IEEE
Access 2020, 8, 156504–156518. [CrossRef]

88. Du, S.Y.; Xu, G.L.; Zhang, S.R.; Zhang, X.T.; Gao, Y.; Chen, B.D. Robust rigid registration algorithm based on pointwise
correspondence and correntropy. Pattern Recognit. Lett. 2020, 132, 91–98. [CrossRef]

89. Chang, W.C.; Pham, V.T. 3-D Point Cloud Registration Using Convolutional Neural Networks. Appl. Sci. 2019, 9, 3273. [CrossRef]
90. Perez-Gonzalez, J.; Luna-Madrigal, F.; Pina-Ramirez, O. Deep Learning Point Cloud Registration based on Distance Features.

IEEE Latin Am. Trans. 2019, 17, 2053–2060. [CrossRef]
91. Weixin, L.; Guowei, W.; Yao, Z.; Xiangyu, F.; Pengfei, Y.; Shiyu, S. DeepVCP: An end-to-end deep neural network for point cloud

registration. In Proceedings of the International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November
2019; pp. 12–21. [CrossRef]

92. Kurobe, A.; Sekikawa, Y.; Ishikawa, K.; Saito, H. CorsNet: 3D Point Cloud Registration by Deep Neural Network. IEEE Robot.
Autom. Lett. 2020, 5, 3960–3966. [CrossRef]

93. Pfister, H.; Zwicker, M.; Van Baar, J.; Gross, M. Surfels: Surface elements as rendering primitives. In Proceedings of the Computer
Graphics Annual Conference, New Orleans, LA, USA, 23–28 July 2000; pp. 335–342.

94. Zwicker, M.; Pfister, H.; Van Baar, J.; Gross, M. Surface splatting. In Proceedings of the Siggraph 2001, Los Angeles, CA, USA,
12–17 August 2001; pp. 371–378.

95. Rusinkiewicz, S.; Levoy, M. QSplat: A multiresolution point rendering system for large meshes. In Proceedings of the Computer
Graphics Annual Conference, New Orleans, LA, USA, 23–28 July 2000; pp. 343–352.

96. Coons, S.A.; Herzog, B. Surfaces for computer-aided aircraft design. J. Aircr. 1968, 5, 402–406. [CrossRef]
97. Bezier, P.E. Example of an existing system in the motor industry: The Unisurf system. Proc. R. Soc. Lond. A Math. Phys. Sci. 1971,

321, 207–218. [CrossRef]
98. Gordon, W.J.; Riesenfeld, R.F. Bernstein-Bezier methods for the computer-aided design of free- form curves and surfaces. J. Assoc.

Comput. Mach. 1974, 21, 293–310. [CrossRef]
99. Versprille, K.J. Computer-Aided Design Applications of the Rational b-Spline Approximation Form. 1975. Available online: https:

//www.proquest.com/openview/4963196bb4672664bfa12bf07150d024/1?pq-origsite=gscholar&cbl=18750&diss=y (accessed on
5 September 2015).

100. Barequet, G.; Sharir, M. Piecewise-linear interpolation between polygonal slices. Comput. Vis. Image Underst. 1996, 63, 251–272.
[CrossRef]

101. Hardy, R.L. Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res. (USA) 1971, 76, 1905–1915.
[CrossRef]

http://doi.org/10.3390/app8101776
http://doi.org/10.1109/LGRS.2019.2956561
http://doi.org/10.1049/iet-ipr.2019.1087
http://doi.org/10.1109/ACCESS.2020.2963987
http://doi.org/10.1109/ACCESS.2020.2969360
http://doi.org/10.3390/s21010317
http://doi.org/10.1016/j.ijleo.2017.01.041
http://doi.org/10.1109/TPAMI.2017.2773482
http://www.ncbi.nlm.nih.gov/pubmed/29990122
http://doi.org/10.1109/ACCESS.2019.2919989
http://doi.org/10.1109/ACCESS.2020.3019209
http://doi.org/10.1016/j.patrec.2018.06.028
http://doi.org/10.3390/app9163273
http://doi.org/10.1109/TLA.2019.9011551
http://doi.org/10.1109/iccv.2019.00010
http://doi.org/10.1109/LRA.2020.2970946
http://doi.org/10.2514/3.43957
http://doi.org/10.1098/rspa.1971.0027
http://doi.org/10.1145/321812.321824
https://www.proquest.com/openview/4963196bb4672664bfa12bf07150d024/1?pq-origsite=gscholar&cbl=18750&diss=y
https://www.proquest.com/openview/4963196bb4672664bfa12bf07150d024/1?pq-origsite=gscholar&cbl=18750&diss=y
http://doi.org/10.1006/cviu.1996.0018
http://doi.org/10.1029/JB076i008p01905


Remote Sens. 2021, 13, 4457 32 of 33

102. Carr, J.C.; Beatson, R.K.; Cherrie, J.B.; Mitchell, T.J.; Fright, W.R.; McCallum, B.C.; Evans, T.R. Reconstruction and representation
of 3D objects with Radial Basis Functions. In Proceedings of the Siggraph 2001, Los Angeles, CA, USA, 12–17 August 2001;
pp. 67–76.

103. Kazhdan, M.; Bolitho, M.; Hoppe, H. Poisson surface reconstruction. In Proceedings of the fourth Eurographics symposium on
Geometry processing, Cagliari, Italy, 26–28 June 2006; pp. 61–70.

104. Kazhdan, M.; Hoppe, H. Screened Poisson Surface Reconstruction. ACM Trans. Graph. 2013, 32, 13. [CrossRef]
105. Lancaster, P.; Salkauskas, K. Surfaces generated by moving least squares methods. Math. Comput. 1981, 37, 141–158. [CrossRef]
106. Scitovski, R.; Ungar, S.; Jukic, D. Approximating surfaces by moving total least squares method. Appl. Math. Comput. 1998, 93,

219–232. [CrossRef]
107. Ohtake, Y.; Belyaev, A.; Alexa, M.; Turk, G.; Seidel, H.P. Multi-level partition of unity implicits. ACM Trans. Graph. 2003, 22,

463–470. [CrossRef]
108. Guennebaud, G.; Gross, M.; Zurich, E. Algebraic point set surfaces. ACM Trans. Graph. 2007, 26, 9. [CrossRef]
109. Oztireli, A.C.; Guennebaud, G.; Gross, M. Feature Preserving Point Set Surfaces based on Non-Linear Kernel Regression. Comput.

Graph. Forum 2009, 28, 493–501. [CrossRef]
110. Hamza, Y.F.; Lin, H.W.; Li, Z.H. Implicit progressive-iterative approximation for curve and surface reconstruction. Comput. Aided

Geom. Des. 2020, 77, 15. [CrossRef]
111. Lawson, C.L. Software for C1 Surface interpolation. Available online: https://www.sciencedirect.com/science/article/pii/B978

012587260750011X (accessed on 5 September 2021).
112. Bowyer, A. Computing dirichlet tessellations. Comput. J. 1981, 24, 162–166. [CrossRef]
113. Watson, D.F. Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes. Comput. J. 1981, 24,

167–172. [CrossRef]
114. Dwyer, R.A. A faster divide-and-conquer algorithm for constructing Delaunay triangulations. Algorithmica 1987, 2, 137–151.

[CrossRef]
115. Lee, D.T.; Schachter, B.J. Two algorithms for constructing a Delaunay triangulation. Int. J. Comput. Inf. Sci. 1980, 9, 219–242.

[CrossRef]
116. Lewis, B.A.; Robinson, J.S. Triangulation of planar regions with applications. Comput. J. 1978, 21, 324–332. [CrossRef]
117. Chew, L.P. Constrained Delaunay triangulations. Algorithmica 1989, 4, 97–108. [CrossRef]
118. Amenta, N.; Bern, M.; Eppstein, D. The crust and the β-skeleton: Combinatorial curve reconstruction. Graph. Models Image Process.

1998, 60, 125–135. [CrossRef]
119. Amenta, N.; Choi, S.; Kolluri, R.K. The power crust, unions of balls, and the medial axis transform. Comput. Geom. 2001, 19,

127–153. [CrossRef]
120. Bernardini, F.; Mittleman, J.; Rushmeier, H.; Silva, C.; Taubin, G. The ball-pivoting algorithm for surface reconstruction. IEEE

Trans. Vis. Comput. Graph. 1999, 5, 349–359. [CrossRef]
121. Lorensen, W.E.; Cline, H.E. Marching cubes: A high resolution 3D surface construction algorithm. ACM Siggraph Comput. Graph.

1987, 21, 163–169. [CrossRef]
122. Doi, A.; Koide, A. An efficient method of triangulating equi-valued surfaces by using tetrahedral cells. IEICE Trans. 1991, E74,

214–224.
123. Meyers, D.; Skinner, S.; Sloan, K. Surfaces from contours. ACM Trans. Graph. 1992, 11, 228–258. [CrossRef]
124. De Boor, C.; Hollig, K.; Sabin, M. High accuracy geometric Hermite interpolation. Comput. Aided Geom. Des. 1987, 4, 269–278.

[CrossRef]
125. Shirman, L.A.; Sequin, C.H. Local surface interpolation with Bezier patches. Comput.-Aided Geom. Des. 1987, 4, 279–295. [CrossRef]
126. Catmull, E.; Clark, J. Recursively generated B-spline surfaces on arbitrary topological meshes. Comput. Aided Des. 1978, 10,

350–355. [CrossRef]
127. Mestre, M. Least Squares Best Fit Using Linear Prediction for Engineering Surfaces Metrology. Available online: https://bit.ly/

3ERSUp6 (accessed on 5 September 2015).
128. Davies, A.M.; Owen, A. Three-dimensional numerical sea model using the Galerkin method with a polynomial basis set. Appl.

Math. Model. 1979, 3, 421–428. [CrossRef]
129. Kong, D.M.; Tian, X.Q.; Kong, D.H.; Zhang, X.D.; Yuan, L. An Improved Method for NURBS Free-Form Surface Based on Discrete

Stationary Wavelet Transform. IEEE Access 2020, 8, 67015–67023. [CrossRef]
130. Wang, J.; Lu, Y.; Ye, L.; Chen, R.; Leach, R. Efficient analysis-suitable T-spline fitting for freeform surface reconstruction and

intelligent sampling. Precis. Eng. J. Int. Soc. Precis. Eng. Nanotechnol. 2020, 66, 417–428. [CrossRef]
131. Fuhrmann, S.; Goesele, M. Floating Scale Surface Reconstruction. ACM Trans. Graph. 2014, 33, 11. [CrossRef]
132. Guarda, A.F.R.; Bioucas-Dias, J.M.; Rodrigues, N.M.M.; Pereira, F. Improving Point Cloud to Surface Reconstruction with

Generalized Tikhonov Regularization. In Proceedings of the 19th IEEE International Workshop on Multimedia Signal Processing
(MMSP), Luton, UK, 16–18 October 2017.

133. Juszczyk, J.M.; Wijata, A.; Czajkowska, J.; Krecichwost, M.; Rudzki, M.; Biesok, M.; Pycinski, B.; Majewski, J.; Kostecki, J.; Pietka,
E. Wound 3D Geometrical Feature Estimation Using Poisson Reconstruction. IEEE Access 2021, 9, 7894–7907. [CrossRef]

134. He, Y.C.; Kang, S.H.; Liu, H. Curvature Regularized Surface Reconstruction from Point Clouds. SIAM J. Imaging Sci. 2020, 13,
1834–1859. [CrossRef]

http://doi.org/10.1145/2487228.2487237
http://doi.org/10.1090/S0025-5718-1981-0616367-1
http://doi.org/10.1016/S0096-3003(97)10077-7
http://doi.org/10.1145/882262.882293
http://doi.org/10.1145/1276377.1276406
http://doi.org/10.1111/j.1467-8659.2009.01388.x
http://doi.org/10.1016/j.cagd.2020.101817
https://www.sciencedirect.com/science/article/pii/B978012587260750011X
https://www.sciencedirect.com/science/article/pii/B978012587260750011X
http://doi.org/10.1093/comjnl/24.2.162
http://doi.org/10.1093/comjnl/24.2.167
http://doi.org/10.1007/BF01840356
http://doi.org/10.1007/BF00977785
http://doi.org/10.1093/comjnl/21.4.324
http://doi.org/10.1007/BF01553881
http://doi.org/10.1006/gmip.1998.0465
http://doi.org/10.1016/S0925-7721(01)00017-7
http://doi.org/10.1109/2945.817351
http://doi.org/10.1145/37402.37422
http://doi.org/10.1145/130881.131213
http://doi.org/10.1016/0167-8396(87)90002-1
http://doi.org/10.1016/0167-8396(87)90003-3
http://doi.org/10.1016/0010-4485(78)90110-0
https://bit.ly/3ERSUp6
https://bit.ly/3ERSUp6
http://doi.org/10.1016/S0307-904X(79)80024-4
http://doi.org/10.1109/ACCESS.2020.2986607
http://doi.org/10.1016/j.precisioneng.2020.08.008
http://doi.org/10.1145/2601097.2601163
http://doi.org/10.1109/ACCESS.2020.3035125
http://doi.org/10.1137/20M1314525


Remote Sens. 2021, 13, 4457 33 of 33

135. Lu, W.Y.; Liu, L.G. Surface reconstruction via cooperative evolutions. Comput. Aided Geom. Des. 2020, 77, 18. [CrossRef]
136. Gu, T.Q.; Tu, Y.; Tang, D.W.; Lin, S.W.; Fang, B. A trimmed moving total least-squares method for curve and surface fitting. Meas.

Sci. Technol. 2020, 31, 8. [CrossRef]
137. Zhou, Z.; Fu, Y.; Zhao, J. An Efficient Method for Surface Reconstruction Based on Local Coordinate System Transform and

Partition of Unity. Neural Netw. World 2020, 30, 161–176. [CrossRef]
138. Zhong, D.Y.; Wang, L.G.; Bi, L. Implicit surface reconstruction based on generalized radial basis functions interpolant with

distinct constraints. Appl. Math. Model. 2019, 71, 408–420. [CrossRef]
139. Kazhdan, M.; Chuang, M.; Rusinkiewicz, S.; Hoppe, H. Poisson Surface Reconstruction with Envelope Constraints. Comput.

Graph. Forum 2020, 39, 173–182. [CrossRef]
140. Zienkiewicz, O.C.; Phillips, D.V. An automatic mesh generation scheme for plane and curved surfaces by ‘isoparametric’

co-ordinates. Int. J. Numer. Methods Eng. 1971, 3, 519–528. [CrossRef]
141. Sloan, S.W. A fast algorithm for constructing Delaunay triangulations in the plane. Adv. Eng. Softw. 1987, 9, 34–55. [CrossRef]
142. Brassel, K.E.; Reif, D. A procedure to generate Thiessen polygons. Geogr. Anal. 1979, 11, 289–303. [CrossRef]
143. Mirante, A.; Weingarten, N. The radial sweep algorithm for constructing triangulated irregular networks. IEEE Comput. Graph.

Appl. 1982, 2, 11–21. [CrossRef]
144. Green, P.J.; Sibson, R. Computing Dirichlet tessellations in the plane. Comput. J. 1978, 21, 168–173. [CrossRef]
145. Amenta, N.; Choi, S.; Dey, T.K.; Leekha, N. A simple algorithm for homeomorphic surface reconstruction. Int. J. Comput. Geom.

Appl. 2002, 12, 125–141. [CrossRef]
146. Hoppe, H.; DeRose, T.; Duchamp, T.; McDonald, J.; Stuetzle, W. Surface reconstruction from unorganized points. Comput. Graph.

1992, 26, 71–78. [CrossRef]
147. Zhao, W.; Wang, L.N. Research on 3D Reconstruction Algorithm of Medical CT Image Based on Parallel Contour. IEEE Sens. J.

2020, 20, 11828–11835. [CrossRef]
148. Guan, B.L.; Lin, S.J.; Wang, R.M.; Zhou, F.; Luo, X.N.; Zheng, Y.C. Voxel-based quadrilateral mesh generation from point cloud.

Multimed. Tools Appl. 2020, 79, 20561–20578. [CrossRef]

http://doi.org/10.1016/j.cagd.2020.101831
http://doi.org/10.1088/1361-6501/ab4ff6
http://doi.org/10.14311/NNW.2020.30.012
http://doi.org/10.1016/j.apm.2019.02.026
http://doi.org/10.1111/cgf.14077
http://doi.org/10.1002/nme.1620030407
http://doi.org/10.1016/0141-1195(87)90043-X
http://doi.org/10.1111/j.1538-4632.1979.tb00695.x
http://doi.org/10.1109/MCG.1982.1674214
http://doi.org/10.1093/comjnl/21.2.168
http://doi.org/10.1142/S0218195902000773
http://doi.org/10.1145/142920.134011
http://doi.org/10.1109/JSEN.2019.2948579
http://doi.org/10.1007/s11042-020-08923-5

	Introduction 
	Methodology 
	Acquisition of Original Point Cloud Data 
	Principle of Laser Triangulation Measurement 
	Point Cloud Filtering and Decorating Methods 

	Point Cloud Reduction Methods 
	Traditional Down-Sampling Reduction Methods 
	Reduction Methods Based on Geometric Features 
	Reduction Methods Based on Component Analysis 
	Reduction Methods Based on Spatial Subdivision 
	Reduction Methods Based on Deep Neural Networks 

	Point Cloud Registration Methods 
	Registration Methods Based on Mathematical Solutions 
	Registration Methods Based on Statistical Models 
	Registration Methods Based on Point Cloud Features 
	Registration Methods Based on ICP Deformation 
	Registration Methods Based on Deep Learning 

	Three-Dimensional Shape Representation Methods 
	Parametric Shape Representation Methods 
	Implicit Surfaces Representation Methods 
	Global Implicit Surface Representation Methods 
	Local Implicit Surface Representation Methods 

	Mesh/Voxel Representation Methods 
	Mesh Representation Methods 
	Voxel Representation Methods 


	Summary and Future Directions 
	References

