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Abstract: The equivalent water thickness (EWT) is an important biophysical indicator of water status
in crops. The effective monitoring of EWT in wheat under different nitrogen and water treatments
is important for irrigation management in precision agriculture. This study aimed to investigate
the performances of machine learning (ML) algorithms in retrieving wheat EWT. For this purpose,
a rain shelter experiment (Exp. 1) with four irrigation quantities (0, 120, 240, 360 mm) and two
nitrogen levels (75 and 255 kg N/ha), and field experiments (Exps. 2–3) with the same irrigation
and rainfall water levels (360 mm) but different nitrogen levels (varying from 75 to 255 kg N/ha)
were conducted in the North China Plain. The canopy reflectance was measured for all plots at
30 m using an unmanned aerial vehicle (UAV)-mounted multispectral camera. Destructive sampling
was conducted immediately after the UAV flights to measure total fresh and dry weight. Deep
Neural Network (DNN) is a special type of neural network, which has shown performance in
regression analysis is compared with other machine learning (ML) models. A feature selection
(FS) algorithm named the decision tree (DT) was used as the automatic relevance determination
method to obtain the relative relevance of 5 out of 67 vegetation indices (Vis), which were used
for estimating EWT. The selected VIs were used to estimate EWT using multiple linear regression
(MLR), deep neural network multilayer perceptron (DNN-MLP), artificial neural networks multilayer
perceptron (ANN-MLP), boosted tree regression (BRT), and support vector machines (SVMs). The
results show that the DNN-MLP with R2 = 0.934, NSE = 0.933, RMSE = 0.028 g/cm2, and MAE of
0.017 g/cm2 outperformed other ML algorithms (ANN-MPL, BRT, and SVM- Polynomial) owing to
its high capacity for estimating EWT as compared to other ML methods. Our findings support the
conclusion that ML can potentially be applied in combination with VIs for retrieving EWT. Despite
the complexity of the ML models, the EWT map should help farmers by improving the real-time
irrigation efficiency of wheat by quantifying field water content and addressing variability.

Keywords: equivalent water thickness; UAV; deep learning; vegetation indices; multispectral images

1. Introduction

Wheat production accounts for nearly 50% of China’s National Agricultural output.
Increasing wheat consumption requires effective decision-making during the wheat growth
period. Classically, field data collection has been employed to diagnose plant biophysi-
cal parameters, including equivalent water thickness (EWT) [1]. Improving crop water
management requires the accurate and timely monitoring of water in the plant [2]. EWT
has previously been used to derive the expected grain yield [3] by managing irrigation
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scheduling [4]. Although the classical method is accurate, it is time-consuming, laborious,
and does not indicate the spatial variability of EWT in the entire field [5–7]. Airborne
remote sensing has been used to detect plant water variability. Recently, UAV-mounted
multispectral, hyperspectral, and thermal sensors have been used to acquire very high spec-
tral and spatial resolutions [8]. Many studies have been carried out to explore accuracy in
the retrieval of crop biophysical parameters using the UAV remote sensing platform [8–13].
The use of the UAV platform not only allows non-destructive and timely data acquisition,
but it also captures variability at the field scale as well. Therefore, it is also possible to
use UAV-based remote sensing techniques to increase the accuracy of EWT retrieval by
reducing the assessment time.

In addition, EWT have been assessed using the broad waveband [14], narrow waveband
in the near-infrared (NIR), and shortwave infrared (SWIR) regions [15–18]. Ceccato et al. [15,17]
confirmed that the wavelength absorption bands of plant and water molecules are in the
region of 900 to 2500 nm. The reflectance spectrum of green vegetation in this region
is reported to be affected by strong liquid water absorption. Tucker [19] suggested that
the 1555–1750 nm region was best-suited for the remote sensing of plant canopy water
status using satellite platforms. In the past, data analysis techniques such as laboratory
spectral reflectance and remote sensing platforms using hyperspectral sensors have been
used to estimate EWT [1,20–23]. Physical-methods have shown that the simple ratio
between 1600 and 820 nm is heavily influenced by EWT [15]. Recently, multispectral
sensors with higher spatial and spectral resolutions have been used for site-specific crop-
management, which provides a reliable and effective remotely sensed source of information
for agriculture. For instances, multispectral data have been used to assess chlorophyll
content [24,25] and plant nitrogen content [26,27] and their wavelengths are located in
the 500 to 800 nm region. However, the most commonly used multispectral vegetation
indices (VIs) have limitations when used for predicting plant water content via a linear or
multilinear model. In a previous study undertaken by Thornton et al. [28], the change in
plant nitrogen concentration was explained by changes in shoot water content, suggesting
that changes in chlorophyll or nitrogen content affect plant water content. Poblete et al. [13]
have suggested that several indices, when applied to information between 500 and 800 nm,
can help to indirectly estimate water status using nonlinear methods.

Estimating EWT at the canopy level using optical remotely sensed data can be achieved
via several methodologies, including the empirical method based on hyperspectral VIs [29].
However, the indices generated to estimate EWT in this context yield poor performance.
Physical models have also been used to assess EWT from remotely sensed data, based
on physical laws such as radiative transfer models that describe the transfer and inter-
action of radiation within the atmosphere and plant canopy [30,31]. The fact that the
site-specific information requirement for a proper model parameterization, which is not
always available, can be the biggest disadvantage of radiative transfer modeling. The
VIs-based and physical models are critically limited in their ability to accurately estimate
EWT. Consequently, alternative methods for the retrieval of EWT using multispectral VIs
are needed. The machine learning (ML) method is an advanced computational method
that has shown good performance in retrieving biophysical parameters from crops using
multispectral and hyperspectral reflectance data. The ML models have been used to pro-
duce accurate and robust models in engineering [32], agriculture [33–35], hydrology [36],
and forestry [37]. ML is a step forward to implement artificial intelligence without the need
for explicit programming while deep learning, a subset of machine learning algorithm,
makes intuitive and intelligent decisions using a neural network stacked layer-wise. ML
algorithms such us neural networks (NN) are known to learn the underlying relationship
between the input and the output data [38]. NN is one of the powerful learning algorithms
for standing exemplary performance in regression problems [39–41]. The success of NN
captured the attention of researchers by exploring the possibility to train NN with several
hidden layers. However, the success of the NN was limited to one or two hidden layers.
For instance, the difficulties of training NN such as artificial neural network (ANN) with
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several hidden layers lie in vanishing gradients or exploding gradients with the increment
of the hidden layer number (depth of network). The introduction of a deep neural network
(DNN) smoothed the issue of vanishing or exploding gradients, thereby speeding up
training [42]. The attractive feature of DNN is its ability to exploit new activation functions
and learning algorithms. In addition, deep architectures often have an advantage over
ANN architectures when dealing with complex learning problems [38].

However, ML techniques have not yet been fully employed to bridge the knowledge
gap between VIs from the visible infrared region and EWT. Consequently, it is important
to define an ML method to accurately assess vegetation EWT using only VIs. Despite the
advantages of using ML, they present some major drawbacks. ML models can include any
superfluous input variable, increasing the complexity and providing erroneous information
about the variables that actually affect the model’s performance [43,44]. To solve these
problems, dimensionality reduction approaches, such as feature selection (FS) methods,
are applied to reduce the number of input variables to only the relevant ones. As such, FS
is used to clean up the redundant, irrelevant, and noisy data. As a result, the performance
is boosted. In the FS, a subset of features is selected from the original set based on their
redundancy and relevance [44]. In recent studies [45–47], FS methods such as filter, wrapper,
and embedded methods have been used based on their interaction with the learning model.
The filter and wrapper have been widely used in various remote sensing applications;
nevertheless, their large computational time is a major drawback. Embedded methods,
such as decision tree (DT) algorithms, use ensemble learning and hybrid learning methods
for FS [48]. The DT offers excellent sparseness performance compared to the filter and
wrapper methods. It is less computationally intensive than the other two methods [47].

The EWT varies with vegetation growth, and thus estimating EWT across the field
at different growth stages using the ML method and VIs could offer the farmer critical
time- and location-specific information for monitoring their crops and managing farming
activities, thus enabling them to increase yields. Therefore, the objective of the present
study was to investigate the feasibility of different ML algorithms, such as DNN, ANN,
boosted regression tree (BRT), and support vector machines (SVMs) models, to predict
wheat EWT using multispectral single-band images and VIs. The key idea behind using
several ML methods is to take advantage of each method’s capability to predict EWT.
We thus investigated an FS algorithm-based DT to determine best VIs for use as input
parameters in the different machine learning models.

2. Materials and Methods
2.1. Description of The Study Area and Experimental Design

Three experiments with varied water and nitrogen rate were conducted from Septem-
ber 2019 to June 2020 at the Agricultural Station of the Chinese Academy of Agricultural
Sciences (CAAS), located in Qiliying county of the North China Plain (Figure 1). For
all experiments, UAV and destructive sampling were performed from March to May in
2020. This area is categorized by a subtropical warm climate with rainfall varying be-
tween 900 and 1200 mm, about 65 to 70% of which occurs between June and September.
The average solar radiation is about 4900 MJ m−2 yr−1. The mean annual temperature
is about 14.5 ◦C. Exp. 1 was conducted in a rain-out shelter facility using a split-plot
design with four treatments of different irrigation quantities (0, 120, 240, 360 mm) and
two nitrogen (N) levels (75 and 255 kg N ha−1). In Exp.1, twenty-four plot experiments
were conducted in the irrigation treatment involving one wheat cultivar, Zhoumai27. All
of the plot experiments adopted a randomized complete block design. The size of each
plot was 3.5 m × 1.9 m and this did not change during the study period. N fertilizer was
applied via a two-plot split design with three replications, and the N was only applied at
the top dressing. In addition to the plot experiments, two field experiments, Exps. 2–3
were conducted under field conditions to precisely compare the wheat water statuses. The
plot size for each treatment varied from 14 × 10 m to 15 m × 10 m. The wheat cultivar
was Zhoumai22 and each treatment was performed once. All the plots received a basic N
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application of 75 kg N ha−1, and at the top dressing the application rate varied from 0 to
150 kg N ha−1. Previous field plot experiments have had various objectives, but this study
took advantage of the varying N status to evaluate different UAV remote sensing-based
water status estimation methods. Areas of 0.36 m2 were selected as sampling areas in each
experiment. However, the samples in Exps. 2–3 were taken at three different locations, and
the average value was taken.
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Figure 1. Location of the study area.

The description of all the abbreviated parameters and description of parameters and
variables used have been summarized in Tables 1 and 2 respectively.

Table 1. Description of the abbreviations.

Name Description

ANN-MLP artificial neural networks–multilayer perceptron
BRT boosted tree regression
DT decision tree

DNN-MLP deep neural network–multilayer perceptron
FS feature selection
ML machine learning
NIR near-infrared region
NN neural network

SWIR short-wavelength infrared region
SVMs support vector machines
UAV unmanned aerial vehicle
VIs vegetation indices

Table 2. Description of parameters and variables.

Parameters/Variables Description Unit

DW dry weight t·ha−1

EWT equivalent water thickness g·cm−2 or cm
FW fresh weight t·ha−1

MAE mean absolute error g·cm−2 or cm
MLR multiple linear regression g·cm−2 or cm
NSE Nash–Sutcliffe efficiency

RMSE root means square error
R2 determination coefficient

Xn input variable
βn regression coefficients associated Xn input variable

Xnorm normalized value of the input variable
Xi real value of the input variable

Xmin minimum input variable
Xmax maximum input variable
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Table 2. Cont.

Parameters/Variables Description Unit

Ynorm denormalized value of the output variable g·cm−2 or cm
Yi real value of the output variable g·cm−2 or cm

Ymin minimum output variable g·cm−2 or cm
Ymax maximum output variable g·cm−2 or cm

f (neti) transfer function of neural network
xi input from
wij weight of the connection between unit i and unit j
bi bias
ei Backpropagation (error)
δ summation index that enforces j > i
e products errors
ε injected errors
ŷi predicted values g·cm−2 or cm
ŷi actual values g·cm−2 or cm
yi mean of the observed values g·cm−2 or cm
yi mean of predicted values g·cm−2 or cm
n number of data points

2.2. Sampling and Measurements

Destructive sampling was undertaken immediately after UAV remote sensing data col-
lection. Wheat plants were harvested from 0.36 m2 quadrats in all experiments. The flights
and the ground samplings occurred on 7 March, 4 April, and 28 May 2020, reflecting the
three stages of growth: the early stem elongation, late stem elongation, and anthesis growth
stages. The leaves and stems of harvested wheat plants were separated and weighed, fol-
lowed by oven drying for 24 h at 105 ◦C before the dry weight was determined. The canopy
equivalent water thickness (EWTCanopyy) corresponded to the hypothetical thickness of a
single layer of water averaged over the whole ground area (Ag). Wocher et al. [21] defined
EWTCanopy as the sum of the EWT of the leaf, stem, and fruit over one square meter of
ground. To derive an unbiased estimation of EWT, we considered the weight of the fresh
and dry masses of the leaf, stem, and ear for the calculation of EWTCanopy over one square
meter of ground.

Total EWTCanopy = ∑
(

FWlea f+stem+ears − DWlea f+stem+ears

)
∗ Ag−1

[
g cm2

]
or [cm] (1)

where Ag denotes the ground area, FW is the fresh sample weight, and DW is the oven
dry weight. The EWTlea f , EWTstem , EWTear, and EWTcanopy per cm2 were calculated from
specific water content per ground area.

2.3. UAV Data Collection and Processing

The multirotor UAV Spreading Wings S900 (DJI-Innovations Inc., Shenzhen, China)
with six rotors, GPS, and flight control stabilizers was used in this study. To ensure
maximum overlap in the fields, a flight path was set before the flights. The multispectral
camera, Micasense Red Edge-MX (MicaSense, Seattle, WA, USA) (https://micasense.
com/rededge-mx/, accessed on 3 November 2021) mounted on the UAV has five bands
in the VIS-NIR spectral range (Red, Green, Blue, Nir, and Red Edge). The details of the
multispectral sensor are shown in Table 3. Images were acquired across the entire field at the
nadir viewing angle. The data were collected at 11 am–2 pm to minimize the shading effect
of the canopy, at a speed of 2 ms−1 and an altitude of 30 m (Table 4). Radiometric calibration
was performed using images of a spectral white panel before flight. The calibration image
was used to calibrate each band during image processing in the Pix4D mapper (PIX4d,
Lausanne, Switzerland) (https://www.pix4d.com/, accessed on 3 November 2021). The
following steps were used for UAV image processing after UAV data collection. The pix4D
mapper was used to process all the images into one large image using calibration images.

https://micasense.com/rededge-mx/
https://micasense.com/rededge-mx/
https://www.pix4d.com/
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The individual images were combined to form a large ortho-mosaic. The ortho-mosaic
images were then radiometrically corrected and converted into reflectance. The resulting
large ortho-mosaic images were Blue, Green, Near infrared (NIR), Red, and Red Edge (RE).
Large ortho-mosaic images or their converted reflectance values were used to calculate the
different VIs used in this study. The UAV data acquisition, processing methodology, image
segmentation, and VIs calculation are described in Figure 2.

Table 3. Specifications of sensors used in the present study.

Band Bandwidth Wavelength Picture Resolution

Blue 20 475 1280 × 960
Green 20 560 1280 × 960
NIR 40 840 1280 × 960
Red 10 668 1280 × 960

Red Edge 717 10 1280 × 960
Remote Sens. 2021, 13, x  7 of 28 
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Table 4. Flight details for the automated unmanned aerial vehicle imagery system during wheat
growing season 2020.

Period Flight Altitude (m) Speed (ms−1) Snapshot Interval (s) Growth Stages

7 March 2020 30 m 2.5 2.5 Early stem
elongation

4 April 2020 30 m 2.5 2.5 Late stem elongation
28 May 2020 30 m 2.5 2.5 Anthesis

An automatic image segmentation algorithm called the Otsu segmentation algo-
rithm [49] was implemented to minimize the effects of soil background and other non-leaf
materials on canopy information pixels. The normalized difference vegetation index (NDVI)
was first calculated and then used with the Otsu algorithm to separate soil from the canopy.
The NDVI was employed for separating vegetation from other materials (soil included) [50].
The result of this was used in each plot in the form of a threshold value representing the
border between soil and canopy. Soil or other background pixels were defined as 0 and
wheat pixels as 1 during the extraction of the NDVI map. The integration of NDVI with the
Otsu algorithm yielded efficient results in separating canopy from soil. The entire process
of the NDVI–Otsu method was implemented using MATLAB and ArcMap.

2.4. EWTcanopy Regression Model Development
2.4.1. Machine Learning for Regression

In this subsection, we present the ML regression method used to predict EWTcanopy
from the VIs. Figure 3 illustrates a typical workflow of a supervised ML algorithm for
regression in MATLAB. In the first step, the FS method based on DT is used to reduce
the input data to only five relevant input parameters. The next step is to normalize the
data using the minimum–maximum normalization techniques. Seventy (70) percent of the
normalized data were used as a training dataset to model EWT, while 15% were used for
validation, and the remaining 15% were used for testing all the machine learning models
used in this study. Next, the VIs and measured EWTcanopy values pass into the training
phase, where machine learning algorithms are used to identify a good model that can
map the inputs to desired outputs. The validation and testing phases provide feedback
to the ML phase so as to improve model accuracy. The training process is repeated until
the desired accuracy level achieved. Once a model is constructed, it is used to predict
EWTcanopy from the new VIs data. FW and DW are estimated separately using vegetation
indices and SVMs, BRT, ANN-MLP, and DNN-MLP algorithms. The resulting predicted
FW and DW are used to estimate EWTcanopy. MATLAB MathWorks was used to simulate
all the machine learning models used in this study. Constructing the EWTcanopy maps
involved two steps. The first was to convert the calculated VIs map (G, MTVI2, RE, OSAVI,
NIR) to an “n × m” matrix with n rows and m columns. In order to be fed into the ML
model, the matrix has to be presented as “n × 1”, with n rows and one column. In our
study, we used the reshape function in Matlab to reshape the matrix. The output data are
the predicted EWTcanopy values, given in the form of an “n × 1” matrix. The second step is
to reshape the “n × 1” to an “n ×m” matrix and convert the matrix to a MATLAB image
using the inwrite function.
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2.4.2. Multiple Linear Regression

Multiple regression is generally used to explain the relationships between multiple
independent/inputs variables and one dependent/target variable. The general form of the
multiple regression equation is:

y = a + β 1X 1 + β 2X 2 + · · ·+ β nX n + ε (2)

where y is the dependent variable; a is the intercept; and the parameters β 1, β 2, . . . , β n
are the regression coefficients associated with X 1, X 2, . . . , X n, respectively, while ε is
the regression residual reflecting the difference between the observed and fitted linear
relationships. The independent variables are VIs, represented as X 1, X 2, . . . , X n.

2.4.3. Support Vector Machine

The support vector machine (SVM), introduced by Boser et al. [51], is one of the most
commonly applied supervised learning methods for regression as well as classification
problems. When used for regression problems, the SVM model is known as support
vector regression (SVR), which is used to predict a target using input variables. SVR is a
powerful algorithm with the flexibility to be tolerant of an error margin (ε), and through
tuning the tolerance, it can be made to fall outside the acceptable error rate. The kernel
function is important for SVM analysis. Fan et al. [52] used SVM to estimate daily maize
transpiration, and they found that SVM, alongside decision tree and deep learning models,
can successfully estimate daily maize transpiration. Durbha et al. [53] retrieved the leaf
area index using a multiangle imaging spectroradiometer.

In the present study, the SVM analyses were performed using different kernel func-
tions, such as the Gaussian radial basis function (RBF) and polynomial kernel functions.

2.4.4. Boosted Regression Tree

Regression tree methods are commonly used to construct a model that can predict
and explain target data from input data. The regression tree can capture the effect of each
input variable on the target variable. However, the gradient boosted method combines
several simple models to improve the prediction performance of one single model [54].
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For instance Zhang et al. [55] modeled upland rice yield responses to climate factors
using boosted regression tree in Sahel. A boosted regression tree (BRT) was employed to
model the EWTcanopy using spectral indices in this study. BRT incorporates the strengths of
regression and boosted algorithms [55]. BRT is commonly used because it does not require
data transformation or outlier elimination.

2.4.5. Artificial Neural Network Regression Model

The artificial neural network model is inspired by the structure of neural networks
in the brain. Zha et al. [39] evaluated ANN other ML methods for estimating rice (Oryza
sativa L.) aboveground biomass, plant N uptake, and N nutrition index. The ANN-MLP
structure used in this study is a three-layer learning network consisting of an input layer,
a hidden layer, and an output layer. The model minimizes the error based on the mean
square error minimum value during the training process, using a tangent and sigmoid
transfer function [55]. A maximum epoch of 10,000 iterations was set during the training,
and we employed gradient descent with momentum and a learning rate of 0.2. A Bayesian
regularized neural network model with a Levenberg–Marquart (LM) backpropagation
algorithm was used during the training process to improve the generalization of the model.
Sigmoid and logistic sigmoid functions were used for the activation function in each
neuron, while a linear transfer function was used to calculate the network output. Five
spectral indices were used as the inputs in this study, while EWTcanopy was regarded as
a target. The data were divided into three subsets: training, validating, and testing. The
“dividerand” function of Matlab was used to randomly divide the data.

Forward equation (Transfer)yi = f (neti) = f

(
∑

j
wijxj + bi

)
(3)

where f (neti) is the transfer function, with a transfer threshold defined by [0, 1] for the
sigmoid logistic and [−1, 1] for the sigmoid tangent transfer; xi is the input from i; wij is
the weight of the connection between unit i and unit j; bi is the bias.

Backpropagation equation (error)ei = −εi + ∑
j>1

wijδj (4)

where δ is the summation index that enforces j > i, and e and ε are the products and injected
errors. The error is propagated from the output layer to the input layer in order to update
the weights of connections using a gradient equation.

2.4.6. DNN-MLP Model Deployment

Deep learning algorithms were used for image classification [56] and regression analy-
ses [34,52,57]. The addition of more data during deep learning improves the performance
of the model, and this makes this technique superior to other learning techniques, such
as ANNs, SVM, and RF, which reach a plateau in performance after a certain quantity of
data is fed into the model. This study employed a DNN-MLP model with a Relu transfer
function to stimulate EWTcanopy using spectral indices by setting a maximum epoch at
10000 interactions. Adaptive moment estimation (Adam) was used as an optimization al-
gorithm in the DNN-MLP model. The DNN-MLP structure is a three-layered feed-forward
neural network consisting of an input layer, a hidden layer, and an output layer (Figure 4).
The “dividerand” function in MATLAB was also used to randomly divide the data.
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2.5. Data Pre-Processing Techniques
2.5.1. Data Normalization

The input variables were scaled to the same range (0, 1) using the minimum–maximum
normalization techniques. Data normalization is carried out as part of data preparation for
ML. The goal of normalization is to change the values of the inputs and output variables
to a common scale [58]. Xmin and Xmax are the minimum and maximum values of the ith
attribute involved in the normalization process. Each input variable (VIs, EWTcanopy, FW,
and DW) was normalized using the following Equation (5):

Xnorm = (Xi − Xmin)/(Xmax − Xmin) (5)

where Xnorm, Xi, Xmin, and Xmax represent the normalized value, the real value of the input
variable, the minimum input variable, and the maximum input variable, respectively. The
real predicted value was denormalized after training, validation, and testing, according to
the following Equation (6):

Yi = Ymin + Ynorm(Ymax −Ymin) (6)

where Ynorm, Yi, Ymin, and Ymax represent the normalized value, the real value of the output
variable, the minimum output variable, and the maximum output value, respectively.

2.5.2. Feature Selection

Feature selection is a pre-processing technique used in ML to reduce the under-
and over-fitting problems [46]. It is used to remove the irrelevant input variables and
thus improve the learning accuracy of ML algorithms [58]. Several feature selection
methods, such as functional discriminate analysis, principal component analysis (PCA),
and sensitivity analysis, have been implemented. Feature selection based on a DT was
used in this study to score the importance of each input variable in the model. It is easy to
determine the contribution of each feature to the regression and its relative significance
based on whether a leaf node, i.e., the output (DW, FW, and EWTcanopy), is higher or lower
in the tree using DT. The five best VIs were used to model DW, FW, and EWTcanopy.

2.5.3. Model Performance

The determination coefficient (R2), Nash–Sutcliffe efficiency (NSE) [59], root mean
square error (RMSE), and mean absolute error (MAE) were used to minimize the error and
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to assess the predictive accuracy of the regression models used in this study. The statistical
indices are presented as follows:

R2 =

[
∑n

i=1(yi − yi)
(
ŷi − ŷi

)]2[
∑n

i=1(yi − yi)
2 ∑n

i=1
(
ŷi − ŷi

)2
] (7)

NSE = 1−
[

n

∑
i=1

(yi − ŷi)
2/

n

∑
i=1

(yi − yi)
2

]
(8)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (9)

MAE =
1
n

n

∑
i=1
|ŷi − yi| (10)

where ŷi and yi are the predicted and actual values; yi and ŷi are the mean of the observed
and predicted values; and n is the number of data points. The larger the values of R2 and
NSE, and the smaller the values of RMSE and MAE, the greater the precision and accuracy
of the model in predicting EWTcanopy.

3. Results
3.1. Dynamic Changes of FW, DW and EWTcanopy during the Growth Stage

Fresh weight (FW) and dry weight (DW) are amongst the most important crop growth
indices. The accurate estimation of wheat FW and DW at different crop growth stages
leads to effective agricultural field management. The dynamic changes in FW, DW, and
EWTcanopy observed at different growth stages are shown in Figure 5. Table 5 also summa-
rizes the statistics (range, mean, standard deviation) used for in situ measured EWTlea f ,
EWTstem , EWTear, and EWTcanopy. From the early stem elongation stage to the late stem
elongation stage, there was an increase in FW, DW, and EWTcanopy. However, from the
late stem elongation to anthesis growth stages, there was a decrease in EWTcanopy that can
be explained by an increase in DW in favor of FW. The mean value of FW did not change
significantly from the late elongation growth stage to the anthesis growth stage. With
regard to FW and DW, we observed a gradual increase from the late stem elongation to
the anthesis growth stage. Our results show that wheat growth was more vigorous in the
late stem elongation growth stage compared to other stages. The mean values of FW at
the early stem elongation, late stem elongation, and anthesis growth stages were 14.89,
28.71, and 29.05 t ha−1, respectively, while the mean DW at the same growth stages was
2.67, 6.49, and 10.40 t ha−1, respectively. The FW and DW increased by 92% and 143% from
the early to late stem elongation growth stages, respectively (Figure 5). Conversely, FW
and DW increased by 1.2% and 60% from the late stem elongation to the anthesis growth
stage, respectively.

Table 5. Statistics (range, mean, standard deviation) for in situ measured EWTlea f , EWTstem , EWTear

and EWTcanopy.

Exps. Exp. (1) Exp. (2) Exp. (3)

EWTlea f Range [g cm−2] [0.003–0.296] [0.014–0.186] [0.001–0.158]
Mean (std) (g cm−2) 0.084 (0.072) 0.077 (0.041) 0.056 (0.05)

EWTstem Range [g cm−2] [0.013–0.175] [0.041–0.382] [0.004–0.259]
Mean (std) (g cm−2) 0.081 (0.037) 0.166 (0.094) 0.091 (0.062)

EWTear Range [g cm−2] [0.01–0.112] [0.039–0.108] [0.006–0.082]
Mean (std) (g cm−2) 0.055 (0.016) 0.077 (0.019) 0.039 (0.022)

EWTcanopy Range [g cm−2] [0.03–0.442] [0.09–0.567] [0.011–0.459]
Mean (std) (g cm−2) 0.184 (0.089) 0.268 (0.126) 0.173 (0.113)
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3.2. Variable Inputs’ Effects on FW, DW, and EWTcanopy Estimation

Decision tree (DT) methods were implemented in this study to reduce the VIs to the
most useful input variables only. The selected input variables were used in different ML
models to predict the target variable (EWTcanopy, FW, and DW). It is very important to
reduce the number of input variables in order to improve the performance of the model.
The importance of VIs for estimating EWTcanopy, FW, and DW is shown in Figure 6. In this
study, the sixty-seven individual calculated VIs were fed into the DT algorithm to select
the five most relevant input variables on the basis of their feature weights (Appendix A
Tables A1 and A2). The FS method was separately applied to the input variables, VIs, and
the target variables EWTcanopy, FW, and DW. The five VIs chosen as input variables by
the algorithm, according to their scores, were G, MTVI2, RE, OSAVI, and NIR, and their
relative importance to the EWTcanopy varied from 2.4 to 78%. The top five VIs selected by
the DT algorithm while modeling FW were G, RE, IKAW, R, and RESR, and their relative
importance ranged between 1.48 and 58.54%. MTVI2, RE, RESAVI, R, and NNIR were
selected while modeling DW, and the relative importance varied from 2.3 to 80.34%. Red
edge (RE) was consistently selected among the top five VIs for estimating EWTcanopy, FW,
and DW. MTVI2 was among the top five VIs for EWTcanopy and DW. The R band was also
among the top five VIs used for FW and DW.
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3.3. EWTcanopy Responses from the Multiple Regression Model

Multiple linear regression (MLR) has been extensively used to determine the relation-
ships between target and input variables. VIs and EWT from the three experiments were
used to develop a linear model in this study. Figure 7a shows the scatter plot between
EWTcanopy and the input VIs using the MLR model. The relationship between EWTcanopy
and the VIs shows acceptable prediction performance. As such, VIs could be used to predict
EWTcanopy by MLR. The R2, NSE, RMSE, and MAE values of the MLR were 0.843, 0.843,
0.0433 g/cm2, and 0.0313 g/cm2, respectively. Nevertheless, MLR demonstrated poor per-
formance for predicting EWTcanopy as compared to the other ML models (Tables 6 and 7).
The multiple regression model for EWTcanopy (y) was expressed as follows:

y = 0.4311 − 0.5454 × G + 1.4150 ×MTVI2 + 0.8637 × RE − 1.3980 × OSAVI − 0.3555 (11)
Remote Sens. 2021, 13, x  14 of 28 
 

 

 
Figure 7. Scatter plots of predicted 𝐸𝑊𝑇௖௔௡௢௣௬ according to multiple linear regression (MLR, a), boosted regression tree 
(BRT, b), artificial neural network (ANN, c), deep neural network (DNN, d), support vector machine Gaussian (SVM-
Gaussian, e) and support vector machine polynomial (SVM-Polynomial, f) models versus the 𝐸𝑊𝑇௖௔௡௢௣௬ values meas-
ured from all datasets. 

Table 6. Summary statistics of multiple linear regression models. 

Statistics Values 
Multiple R 0.9185 
R Square 0.8436 

Adjusted R Square 0.8406 
Standard Error 0.0439 

Intercept 0.4312 
Beta:  

G (𝛽 ଵ) −0.5454 
MTVI2(𝛽 ଶ) 1.4150 

RE (𝛽 ଷ) 0.8637 
OSAVI (𝛽 ସ) −1.3980 

NIR (𝛽 ହ) −0.3555 

 

Figure 7. Scatter plots of predicted EWTcanopy according to multiple linear regression (MLR, a), boosted regression tree
(BRT, b), artificial neural network (ANN, c), deep neural network (DNN, d), support vector machine Gaussian (SVM-
Gaussian, e) and support vector machine polynomial (SVM-Polynomial, f) models versus the EWTcanopy values measured
from all datasets.
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Table 6. Summary statistics of multiple linear regression models.

Statistics Values

Multiple R 0.9185
R Square 0.8436

Adjusted R Square 0.8406
Standard Error 0.0439

Intercept 0.4312
Beta:

G (β 1 ) −0.5454
MTVI2(β 2 ) 1.4150

RE (β 3 ) 0.8637
OSAVI (β 4 ) −1.3980

NIR (β 5 ) −0.3555

Table 7. Statistical performance indices of different machine learning (ML) algorithm during the training, validation, and
testing stages for EWTcanopy, FW, and DW.

Model Variables Training Cross-Validation Testing

R2 ENS RMSE MAE R2 ENS RMSE MAE R2 ENS RMSE MAE

ANN-MLP
EWTcanopy(%) 0.916 0.916 0.032 0.021 0.922 0.915 0.034 0.025 0.905 0.894 0.0334 0.019

FW (t/ha) 0.905 0.904 3.889 2.583 0.909 0.907 3.944 2.395 0.954 0.952 2.629 1.976
DW (t/ha) 0.868 0.868 0.680 0.508 0.875 0.864 0.574 0.449 0.924 0.922 0.512 0.391

DNN-MLP
EWTcanopy(%) 0.938 0.937 0.027 0.015 0.933 0.930 0.030 0.021 0.913 0.909 0.034 0.022

FW (t/ha) 0.934 0.934 3.215 1.953 0.914 0.897 4.085 2.413 0.903 0.902 3.943 2.659
DW (t/ha) 0.900 0.900 0.571 0.413 0.894 0.893 0.508 0.421 0.882 0.881 0.701 0.531

BRT
EWTcanopy(%) 0.948 0.947 0.026 0.017 0.893 0.868 0.035 0.025 0.872 0.868 0.039 0.027

FW (t/ha) 0.928 0.928 3.377 2.175 0.885 0.883 4.204 2.922 0.902 0.900 3.972 2.738
DW (t/ha) 0.917 0.917 0.537 0.423 0.778 0.758 0.854 0.690 0.814 0.803 0.759 0.531

SVM-Gaussian
EWTcanopy(%) 0.955 0.950 0.024 0.015 0.908 0.904 0.032 0.026 0.915 0.907 0.035 0.025

FW (t/ha) 0.937 0.936 3.192 1.873 0.880 0.878 4.299 3.041 0.925 0.898 4.007 2.937
DW (t/ha) 0.922 0.920 0.516 0.352 0.864 0.864 0.626 0.502 0.924 0.922 0.519 0.434

SVM-Polynomial EWTcanopy(%) 0.900 0.899 0.035 0.023 0.846 0.843 0.043 0.027 0.902 0.899 0.036 0.023
FW (t/ha) 0.892 0.892 4.097 2.769 0.857 0.857 4.783 2.978 0.852 0.850 4.976 2.868
DM (t/ha) 0.861 0.860 0.684 0.514 0.821 0.812 0.735 0.571 0.894 0.888 0.623 0.505

3.4. Modeling EWTcanopy Using DNN-MLP, ANN-MLP, BRT, and SVM

To predict EWTcanopy, we employed regression analysis using the DNN-MLP model
with the ReLu transfer function and Adam optimizers algorithm; the ANN-MLP model
with sigmoid and sigmoid tangent functions; and BRT and SVM using Gaussian and
polynomial kernel functions. In this study, 267 data samples were considered to train the
model, of which 15% were used for validation and 15% were used for testing. The number
of epochs was set to 10000. Here, we compare the results of DNN-MLP with the MLR, ANN-
MLP, BRT, and SVMs models. Table 7 shows the statistical indices comparing the models
used to calibrate the FW, DW, and EWTcanopy to VIs. It is clear that the performances of all
the ML methods (Table 7) were better than the MLR model (Table 6). The SVM-Gaussian
regression method had an R2 of 0.941, an NSE of 0.937, an RMSE of 0.0274 g/cm2, and
an MAE of 0.0181 g/cm2. DNN-MLP had an R2 of 0.934, an NSE of 0.933, an RMSE of
0.0283 g/cm2, and an MAE of 0.0165 g/cm2. The ANN-MLP-MPL had an R2 of 0.914, NSE
of 0.914, RMSE of 0.0321 g/cm2, and MAE of 0.0211 g/cm2. The BRT had an R2 of 0.926,
NSE of 0.926, RMSE of 0.0298 g/cm2, and MAE of 0.0194 g/cm2. The SVM-Polynomial
had an R2 of 0.892, NSE of 0.891, RMSE of 0.0362 g/cm2, and MAE of 0.0231 g/cm2.

3.5. Relationship between Measured and Predicted EWTcanopy

The scatter plots of the EWTcanopy predicted by the models versus the observed
EWTcanopy are given in Figure 7. However, for the ML models, the ability to accurately pre-
dict EWTcanopy depends on the typology of the ML algorithm. SVM-Gaussian (R2 = 0.941)
was found to be the best for predicting EWTcanopy using VIs. The performance of DNN-
MLP (R2 = 0.934) was also better than BRT (R2 = 0.926), ANN-MLP (R2 = 0.914), and
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SVM-Polynomial (R2 = 0.892). Of the ML networks, the SVM-Polynomial produced the
weakest model. A cross-comparison of all the models employed showed that, in terms of
performance, they ranked in the order SVN-Gaussian, DNN-MLP, BRT, ANN-MLP, SVM-
Polynomial, and multiple regression (Table 8). The scatter plots of the EWTcanopy predicted
by the models versus the observed EWTcanopy are given in Figure 7. The performances
of the SVM-Gaussian and DNN-MLP models were judged as satisfactory, as the slope of
the regression line is close to 1. Figure 8 shows a curve between the predicted models
and the observed EWTcanopy. From this figure, we can conclude that the results of the
SVM-Polynomial and DNN-MLP are the closest to the observed EWTcanopy.

Table 8. Comparative performance statistics of the machine learning (ML) models employed in
the study.

Performance Rank Model R2 NSE RMSE MAE

1 SVM-Gaussian 0.942 0.937 0.027 0.018
2 DNN-MLP 0.934 0.933 0.028 0.017
3 BRT 0.926 0.926 0.030 0.019
4 ANN-MLP 0.914 0.914 0.032 0.021
5 SVM-Polynomial 0.892 0.891 0.036 0.023
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Figure 8. Comparative plots between EWTcanopy values predicted using multiple linear regression (MLR, a), boosted
regression tree (BRT, b), artificial neural network (ANN, c), deep neural network (DNN, d), support vector machine
Gaussian (SVM-Gaussian, e), and support vector machine polynomial (SVM-Polynomial, f) models and the measured
EWTcanopy values from all datasets.

3.6. Calculating EWTcanopy using Predicted DW and FW

The DW and FW predicted using the DNN-MLP and VIs were used to calculate
EWTcanopy. The calibration, validation, and testing processes were carried out using the
DW and FW collected during the three experiments. The EWTcanopy calculation results
show that the direct estimation of EWTcanopy performs well compared to the indirect
estimation using predicted DW and FW. The results of the indirect method show a decrease
in the performance of R2, RMSE, and MAE (Figure 9). However, the planned comparisons
reveal that the assessment of EWTcanopy using MLR and SVM-Polynomial models and FW
and DW predicted from VIs performed slightly better than the EWTcanopy estimated directly
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from the VIs. The results clearly demonstrate that VIS are suitable for EWTcanopy assessment.
They proved to be sensitive to water stress, which is the major factor influencing EWTcanopy
retrieval. Additionally, VIs are suitable for assessing EWTcanopy instead of using the
predicted FW and DW.
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Figure 9. Scatter plots of EWTcanopy calculated from predicted FW and DW according to multiple linear regression (MLR, a),
boosted regression tree (BRT, b), artificial neural network (ANN, c), deep neural network (DNN, d), support vector machine
Gaussian (SVM-Gaussian, e), and support vector machine Polynomial (SVM-Polynomial, f) models versus the measured
EWTcanopy values from all datasets.

3.7. Model Visualization

The results of the ML models and multi-linear regression were used to generate the
EWTcanopy map in Exp. (2). Although SVM-Gaussian achieved the best prediction for
EWTcanopy, the EWTcanopy map of Figure 10 shows that SVM-Gaussian cannot accurately
assign EWTcanopy because of the overfitting problem. Therefore, in terms of practically
applying the ML in estimating EWTcanopy, DNN-MLP gave results close to the observed
EWTcanopy in regard to the study areas, and achieved the highest level of accuracy in terms
of visual comparison. The results of this study (Table 8) suggest that DNN-MLP achieved
the highest level of accuracy and is better used in the assessment of EWTcanopy using VIs.
We therefore found it possible to model EWTcanopy using the DNN-MLP methodology,
finding this to be a powerful computational tool to model EWTcanopy using multispectral
data. The results indicate that the model accurately identified the low and high regions of
EWTcanopy. The results will allow us to identify water deficiencies in plants, and to take
the appropriate action for irrigation. The EWTcanopy map will allow agricultural decision-
makers to remotely quantify plant water content (EWTcanopy) and address the variability
in this value so as to improve input efficiency and irrigation management. The ANN-
MPL, DNN-MLP, BRT, and SVM-Polynomial models were successfully used to quantify
EWTcanopy in the field, but the SVM-Gaussian model failed to estimate EWTcanopy because
of the overfitting problem. The map indicates that all the models except SVM-Gaussian
will assist farmers in managing irrigation.
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Figure 10. EWTcanopy map used in field experiments at the anthesis stage via multiple linear re-
gression (MLR, a), boosted regression tree (BRT, b), artificial neural network (ANN, c), deep neural
network (DNN, d), support vector machine Gaussian (SVM-Gaussian, e), and support vector machine
polynomial (SVM-Polynomial, f) models.

4. Discussion
4.1. Dynamic Changes in FW, FW and Ewtcanopy during the Growth Stage

In this study, we evaluated dynamic changes within wheat during the early and late
stem elongation and anthesis growth stages. EWTcanopy is dependent on FW and DW, and
so has a higher value during the late stem elongation stage. These results reflect those
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of Jin et al. [34], who also found that the DW increased steadily with crop development.
The changes in FW affect the value of EWTcanopy. At the anthesis stage, the wheat dries
and holds a small amount of water. The increases in DW, FW, and EWT during late stem
elongation are explained by the fact that wheat growth is vigorous during this period.
However, in this study, during the anthesis growth stage, there was a decrease in EWT and
an increase in DW, while the FW did not change significantly. These results agree with the
study of Wocher et al. [21], showing that EWT decreased in the late growth stage.

4.2. Performance of the Machine Learning Models

The performances of the SVM-Gaussian and DNN-MLP models were remarkable in
the training, cross-validation, and testing periods. The calibration, cross-validation, and
testing processes were carried out using the observed EWTcanopy, FW, and DW values.
Other studies employed the DNN- and ANN-MLP models to predict crops’ biophysical
parameters, such as crop biomass and yield, finding that DNN was the best model for
these purposes [34,45,60]. In addition to MLR, four different ML algorithms were applied
to predict EWTcanopy status indicators in this study. The ML model performed significantly
better than the models based on MLR. Our results are consistent with previous studies [55],
which used BRT and ANN to forecast upland rice yield under climate change conditions in
the Sahel. The MLR models can only model a linear combination of predictors, while the
ML models can also model nonlinear relationships. DNN-MLP is a regression with a great
capacity for supporting many hidden layers [61,62]. This study’s results corroborated those
of Jin et al. [34], who indicated that the DNN-MLP algorithm could be used to accurately
estimate plant biomass from VIs. The SVM algorithm is based on statistical learning, and
provided accurate results [63]. ANN-MLP regression is a nonparametric, nonlinear model
that creates a neural network between inputs and target data. Fan et al. [52] confirmed the
utility of SVM, extreme gradient boosting (XGBoost), ANN-MLP, and DNN-MLP models
for estimating the daily temperature of maize in Northwest China. EWTcanopy estimation
using FW and DW was not as successful as that performed with the direct estimation
approach. This may be because the indirect estimation approach led to the accumulation
of errors.

4.3. Feature Selection Methods

In this study, 67 VIs were used in the decision algorithm, and only the 5 best-scoring
(1.48 to 8.34) were selected for the estimation of EWTcanopy, FW, and DW. The RE band
was one of the five most relatively important when applying the DT. MTVI2 was among
the five top VIs when using the feature selection method for FW and DW, while the R
band was among the five best VIs for EWTcanopy and DW. Other VIs were also important
for EWTcanopy estimation. This is consistent with other studies that showed that differ-
ent feature selection methods increase the performance of the model and decrease the
computational time [48,58,64,65]. Haq et al. [64] stated that feature selection methods
significantly increase model accuracy. In the feature selection method based on DT, the
process of constructing the DT is the process of feature selection. The main advantages
of the DT algorithm are its high classification and regression accuracy and its strong ro-
bustness [46,48,65]. Consistent with previous works [46,66], this study also found that
feature selection improves the performance of the model by reducing the number of input
variables. These results further support the idea that the feature vector plays a significant
role in the performance of the ML model by including or excluding input variables. This is
essential to the processes of training, testing, and validation.

4.4. Advantages and Limitations of Machine Learning

In this study, the multispectral data and VIs were obtained using a multi-rotor UAV
remote sensing platform, while the EWTcanopy distribution maps were created based on
DNN-MLP, ANN-MLP, BRT, and SVM model prediction. The EWTcanopy map can be used
to guide farmers in the application of irrigation water. The use of an UAV remote sensing
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platform combined with the ML method could help overcome the limitations of airborne
and satellite remote sensing platforms, and provide a reliable data source for EWTcanopy
assessment during the growth stage. In addition to the commonly used red, green, blue,
red edge, and NIR bands, other spectral regions should be used to diagnose EWTcanopy,
such as shortwave infrared (SWIR)-based indices or hyperspectral cameras. Other studies
found that a combination of multispectral and thermal images via the ML method refines
the estimation of plant chlorophyll concentration [67], improves vegetation monitoring [68],
and can help predict water stress. In the future, thermal and SWIR- hyperspectral remote
sensing data should be used to improve the performances of ML models.

Although the use of UAVs combined with ML enabled the prediction of EWTcanopy,
there are several limitations that prevent their wider use. The multispectral camera was
relatively expensive. However, these costs could be reduced by using low-cost RGB
imaging instead of a multispectral camera. Sánchez-Sastre et al. [69] successfully used
RGB VIs to estimate chlorophyll content in sugar beet leaves. The same results may be
achieved by using RGB VIs to assess EWTcanopy. Hence, further work is needed to assess
the applicability of RGB imaging for assessing EWTcanopy using RGB VIs and ML models.
In relation to the main limitations of this ML method, it should be noted that an average
farmer may require training on how to operate the UAV platform and process the data
using the ML methods, which may be costly. This fact may prohibit the adoption of
UAV technologies for individual farmers with only small agricultural fields. This may
affect the adoption of the UAV remote sensing technology reported in the literature [70].
We propose that scientists and experts should assist farmers in the field. Finally, crop
biophysical parameters are known to be influenced by UAV flight height, as reported by
Oniga et al. [71]. Further research should be undertaken to determine the influence of
height in the retrieval of EWTcanopy. Another drawback of commercial UAVs technology
is the short flight time, which ranges from 20 min to 1 h and can thus only cover a very
restricted area with every flight. In addition, effective UAVs cannot be used on a very
windy or rainy day, meaning flights must be postponed. In addition, feature selection is
essential for optimizing the accuracy of the model and for enhancing model interpretability.
However, in the FS method, all 67 VIs were blindly fed into the FS algorithm to select
the 5 best VIs for EWTcanopy modeling. Other FS methods need to be investigated in
order to assess the effects of other VIs on EWTcanopy assessment. RS scientist and/or
progressive farmer with larger farms size are able to generate these valuable maps on
demand using the methods prescribed in this study despite the complex nature of ML and
DL models. Furthermore, the newly developed models might also assist the policy makers
and agriculture extensionist for making the recommendations that can guide smallholder
farmers to accomplish water management. However, further investigations with different
regions and wheat cultivars are recommended to test the applicability of newly developed
models for crop water diagnosis.

5. Conclusions

In our study, the ML algorithms DNN-MLP, ANN-MLP, BRT, SVM-Gaussian, SVM-
Polynomial, and MLR were used to improve the estimation accuracy of EWTcanopy. The
results show that only five VIs could be used to accurately estimate EWTcanopy when using
a feature selection algorithm. This study has also demonstrated the power of the DT
algorithm used for automatic relevance determination when evaluating the more relevant
input parameters in modeling EWTcanopy using ML models. SVM-Gaussian gave the best
performance, followed by DNN-MLP, BRT, ANN-MLP, and SVM-Polynomial. In terms of
the EWTcanopy map, the SVM-Gaussian model performed poorly when compared to the
other ML models, making DNN-MLP the most suitable ML to assist farmers in irrigation.
The linear model performed poorly in EWTcanopy estimation. These findings contribute
to the accurate estimation of EWTcanopy, and thus improve irrigation efficiency and grain
yield. However, other advanced ML and thermal imagery models may be used to model
EWTcanopy. Besides this, other feature selection methods may be implemented to improve
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the retrieval accuracy of EWTcanopy using ML. More studies are needed to further improve
these ML-based models by using thermal, SWIR, and hyperspectral images for irrigation
and crop management.
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Appendix A

Table A1. The vegetation indices evaluated in this study, B, G, R, RE, and NIR, indicate blue, green, red, red edge, and near-infrared
band reflectance.

Vegetations (VIs) Formulas References

Blue Normalized Difference Vegetation Index
(BNDV) (NIR − B)/(NIR + B) [72]

Green Chlorophyll Index (CIg) NIR/G − 1 [73]
Red Edge Chlorophyll Index (CIre) NIR/RE − 1 [25]

DATT Index (DATT) (NIR − RE)/(NIR + R) [24]
Excess Blue Vegetation index (ExB) (1.4 × B − G)/(G + R + B) [74]

Excess Green minus Excess Red (EXGR) ExR − ExG [75]
Excess Green index (ExG) (2 × G − R − B) [76]

Excess Red Vegetation index (ExR) (1.4 × R − G)/(G + R + B) [77]
Green Difference Vegetation Index (GDVI) NIR − G [78]

Green Leaf Index (GLI) (2×G–R–B)/(– R − B) [79]
Green Normalized Difference Vegetation Index

(GNDVI) (NIR − G)/(NIR + G) [80]

Green Optimal Soil Adjusted Vegetation Index
(GOSAVI) (1 + 0.16) (NIR − G)/(NIR + G + 0.16) [81]

Green Re–normalized Different Vegetation Index
(GRDVI) (NIR − G)/SQRT (NIR + G) [26]

Green Ratio Vegetation Index (GRVI) (G − R)/(G + R) [82]
Green Red Vegetation Index (GRVI_Ratio) NIR/G [82]

Green Soil Adjusted Vegetation Index (GSAVI) 1.5× ((NIR − G)/(NIR + G + 0.5)) [81]
Green Wide Dynamic Range Vegetation Index

(GWDRVI) (0.12×NIR − G)/(0.12 × NIR + G) [83]

Kawashima Index (IKAW) (R − B)/(R + B) [84]
Modified Chlorophyll Absorption in Reflectance

Index 1 (MCARI1) ((NIR − RE) − 0.2 × (NIR − G)) × (NIR/RE) [85]

Modified Chlorophyll Absorption in Reflectance
Index 2 (MCARI2)

1.5 × (2.5 × (NIR − RE) –1.3× (NIR − G))/SQRT (SQ
(2 × NIR + 1)) − (6 × NIR − 5 × SQRT(RE) − 0.5) [86]

Modified Chlorophyll Absorption in Reflectance
Index 3 (MCARI3) ((NIR − RE) − 0.2 × (NIR − R))/(NIR/RE) [26]

Modified Chlorophyll Absorption in Reflectance
Index 4 (MCARI4)

1.5 × (2.5 × (NIR − G) –1.3 × (NIR − RE))/SQRT (SQ
(2 × NIR + 1)) − (6 × NIR − 5 × SQRT(G) − 0.5) [26]
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Table A1. Cont.

Vegetations (VIs) Formulas References

Modified Double Difference Index Green (MDD) (NIR − RE) − (RE − G) [87]
Modified Double Difference Index Red (MDD) (NIR − RE) − (RE − R) [27]
Modified Green Red Vegetation Index (MGRVI) (SQ(G) − SQ (R))/(SQ(G) + SQ (R)) [88]

Modified Nonlinear Index (MNLI) 1.5 × (SQ(NIR) − R)/(SQ(NIR) + R + 0.5) [89]
Modified Red Edge Difference Vegetation Index

(MREDVI) RE − R [26]

Modified Red Edge Soil Adjusted Vegetation Index
(MRESAVI)

0.5 × (2 × NIR + 1 − SQRT (SQ (2 × NIR + 1)) − 8 ×
(NIR − RE)) [90]

Modified Red Edge Transformed Vegetation Index
(MRETVI) 1.2 × (1.2 × (NIR − R) − 2.5 × (RE − R)) [86]

Modified Soil Adjusted Vegetation Index (MSAVI) 0.5× (2×NIR + 1 − SQRT (SQ (2×NIR + 1) –8× (NIR
− G))) [90]

Modified Simple Ratio (MSR) (NIR/R − 1)/SQRT (NIR/R + 1) [91]
Modified Green Simple Ratio (MSR_G) (NIR/G − 1)/SQRT (NIR/G + 1) [91]

Modified Red Edge Simple Ratio (MSR_RE) ((NIR/RE) − 1)/SQRT ((NIR/RE) − 1) [91]
Modified Transformed Chlorophyll Absorption in

Reflectance Index (MTCARI) 3× ((NIR − RE) − 0.2 × (NIR − R) × (NIR/RE)) [92]

Modified Red Edge Soil Adjusted Vegetation Index
(MRESAVI)

0.5 × (2 × NIR + 1 − SQRT (SQ (2 × NIR + 1)) − 8 ×
(NIR − RE)) [90]

Modified Red Edge Transformed Vegetation Index
(MRETVI) 1.2 × (1.2 × (NIR − R) − 2.5 × (RE − R)) [86]

Modified Soil Adjusted Vegetation Index (MSAVI) 0.5× (2×NIR + 1 − SQRT (SQ (2×NIR + 1) –8× (NIR
− G))) [90]

Modified Simple Ratio (MSR) (NIR/R − 1)/SQRT (NIR/R + 1) [91]
Modified Green Simple Ratio (MSR_G) (NIR/G − 1)/SQRT (NIR/G + 1) [91]

Modified Red Edge Simple Ratio (MSR_RE) ((NIR/RE) − 1)/SQRT ((NIR/RE) − 1) [91]
Modified Transformed Chlorophyll Absorption in

Reflectance Index (MTCARI) 3× ((NIR − RE) − 0.2 × (NIR − R) × (NIR/RE)) [92]

Modified Triangular Vegetation Index (MTVI2) 1.5 × (1.2 × (NIR − G) − (2.5 × R–G))/SQRT (SQ (2 ×
NIR + 1) − (6 × NIR − 5 × SQRT(R)) − 0.5) [86]

Normalized Difference Red Edge (NDRE) (NIR − RE)/(NIR + RE) [93]
Normalized Difference Vegetation Index (NDVI) (NIR − R)/(NIR + R) [94]

Normalized Green Index (NGI) G/(NIR + RE + G) [81]
Nonlinear Index (NLI) (SQ(NIR) − R)/(SQ(NIR) + R) [95]

Normalized NIR Index (NNIR) NIR/(NIR + RE + G) [81]
Normalized Near Infrared Index (NNIRI) NIR/(NIR + RE + R) [27]

Normalized Red Edge Index (NREI) RE/(NIR + RE + G) [81]
Normalized Red Edge Index (NREI) RE/(NIR + RE + R) [27]

Normalized Red Index (NRI) R/(NIR + RE + R) [27]
Optimized SAVI (OSAVI) (1 + 0.16) × (NIR − R)/(NIR + R + 0.16) [96]

Renormalized Difference Vegetation Index (RDVI) (NIR − R)/SQRT (NIR + R) [97]
Red Edge Difference Vegetation Index (REDVI) NIR − RE [26]

Red Edge Normalized Difference Vegetation Index
(RENDVI) (RE − R)/(RE + R) [98]

Red Edge Optimal Soil Adjusted Vegetation Index
(REOSAVI) (1 + 0.16) × (NIR − RE)/(NIR + RE + 0.16) [96]

Red Edge Renormalized Different Vegetation Index
(RERDVI) (NIR − RE)/SQRT (NIR + RE) [26]

Red Edge Ratio Vegetation Index (RERVI) NIR/RE [99]
Red Edge Soil Adjusted Vegetation Index (RESAVI) 1.5× ((NIR − RE)/(NIR + RE + 0.5)) [81]

Red Edge Simple Ratio (RESR) RE/R [100]
Red Edge Transformed Vegetation Index (RETVI) 0.5× (120× (NIR − R) – 200 × (RE − R)) [91]
Optimized Red Edge Vegetation Index (REVIopt) 100 × (Ln (NIR) − Ln (RE)) [101]
Red Edge Wide Dynamic Range Vegetation Index

(REWDRVI) (0.12×NIR − RE)/(0.12 × NIR + RE) [83]
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Table A1. Cont.

Vegetations (VIs) Formulas References

Red Green Blue Vegetation Index (RGBVI) (SQ(G) − (B × R))/(SQ(G) + (B × R)) [88]
Ratio Vegetation Index (RVI) NIR/R [102]

Soil–Adjusted Vegetation Index (SAVI) 1.5× (NIR − R)/(NIR + R + 0.5) [103]
Transformed Normalized Vegetation Index (TNDVI) SQRT ((NIR − R)/(NIR + R) + 0.5) [104]

Optimal Vegetation Index (VIopt) 1.45×(SQ(NIR) + 1)/(R + 0.45) [101]
Wide Dynamic Range Vegetation Index (WDRVI) (0.12×NIR − R)/(0.12 × NIR + R) [83]

Table A2. Mean, standard deviation, minimum, and maximum values of vegetation indices used in the study.

Vegetation
Indices/Bands Mean ± SD Min. Max. Vegetation

Indices/Bands Mean ± SD Min. Max.

B 0.03 ± 0.02 0.08 0.01 MSR_RE 1.25 ± 0.55 2.12 0.51
BNDV 0.82 ± 0.11 0.95 0.62 MTCARI 0.04 ± 0.16 0.23 –0.39

Cig 6.48 ± 4.33 14.99 1.59 MTVI2 0.34 ± 0.35 0.84 –0.17
CIre 1.88 ± 1.41 4.51 0.26 NDRE 0.41 ± 0.2 0.69 0.11

DATT 0.48 ± 0.25 0.8 0.12 NDVI 0.64 ± 0.29 0.95 0.2
ExB –0.13 ± 0.07 –0.05 –0.26 NGI 0.11 ± 0.04 0.18 0.05
ExG 0.01 ± 0.04 0.06 –0.07 NIR 0.38 ± 0.08 0.53 0.23

ExGR 0.09 ± 0.31 0.55 –0.33 NLI 0.31 ± 0.5 0.91 –0.46
ExR 0.1 ± 0.28 0.49 –0.29 NNIR 0.63 ± 0.12 0.8 0.46

G 0.07 ± 0.03 0.14 0.03 NNIRI 0.62 ± 0.15 0.83 0.41
GDVI 0.31 ± 0.1 0.48 0.14 NREI_G 0.26 ± 0.08 0.37 0.15
GLI –0.57 ± 0.62 0.21 –1.68 NREI_R 0.25 ± 0.06 0.32 0.15

GNDVI 0.69 ± 0.15 0.88 0.44 NRI 0.13 ± 0.1 0.27 0.02
GOSAVI 0.46 ± 0.12 0.65 0.25 OSAVI 0.55 ± 0.25 0.85 0.18
GRDVI 0.59 ± 0.14 0.79 0.34 R 0.08 ± 0.07 0.27 0.01
GRVI 0.07 ± 0.28 0.47 –0.32 RDVI 0.43 ± 0.2 0.69 0.14

GRVI_Ratio 7.48 ± 4.33 15.99 2.59 RE 0.16 ± 0.05 0.33 0.09
GSAVI 0.49 ± 0.13 0.69 0.26 REDVI 0.23 ± 0.12 0.42 0.06

GWDRVI –0.14 ± 0.28 0.31 –0.53 RENDVI 0.44 ± 0.26 0.78 0.09
IKAW 0.25 ± 0.21 0.54 –0.06 REOSAVI 0.36 ± 0.19 0.63 0.1

MCARI1 0.61 ± 0.55 1.77 0.03 RERDVI 0.41 ± 0.32 1.36 0.09
MCARI2 0.29 ± 0.6 1.16 –0.75 RERVI 2.77 ± 1.57 5.51 0.09
MCARI3 0.05 ± 0.01 0.08 0.03 RESAVI 0.42 ± 0.29 1.23 0.09
MCARI4 –0.1 ± 0.64 0.89 –1.21 RESR 3.63 ± 2.27 8.1 1.19
MDD_G 0.13 ± 0.14 0.36 –0.09 RETVI 10.35 ± 6.55 21.96 2.01
MDD_R 0.15 ± 0.1 0.34 0.02 REVIopt 92.05 ± 51.11 170.3 22.94
MGRVI 0.12 ± 0.51 0.77 –0.58 REWDRVI –0.51 ± 0.18 –0.21 –0.74
MNLI 0.14 ± 0.24 0.49 –0.2 RGBVI 0.36 ± 0.3 0.75 –0.06

MREDVI 0.07 ± 0.02 0.12 0.03 RVI 13.69 ± 13.08 44.02 1.5
MRESAVI –0.89 ± 0.48 –0.22 –1.69 SAVI 0.46 ± 0.21 0.73 0.15
MRETVI 0.2 ± 0.15 0.48 0.03 TNDVI 1.06 ± 0.14 1.21 0.84
MSAVI 0.49 ± 0.16 0.76 0.23 VIopt 3.21 ± 0.53 3.98 2.39

MSR 2.65 ± 2.01 6.38 0.32 WDRVI –0.06 ± 0.5 0.67 –0.7
MSR_G 2.04 ± 0.92 3.63 0.84
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