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Abstract: In defense applications, the main features of radars are the Low Probability of Intercept
(LPI) and the Low Probability of Exploitation (LPE). The counterpart uses more and more capable
intercept receivers and signal processors thanks to the ongoing technological progress. Noise Radar
Technology (NRT) is probably a very effective answer to the increasing demand for operational
LPI/LPE radars. The design and selection of the radiated waveforms, while respecting the prescribed
spectrum occupancy, has to comply with the contrasting requirements of LPI/LPE and of a favorable
shape of the ambiguity function. Information theory seems to be a “technologically agnostic” tool
to attempt to quantify the LPI/LPE capability of noise waveforms with little, or absent, a priori
knowledge of the means and the strategies used by the counterpart. An information theoretical
analysis can lead to practical results in the design and selection of NRT waveforms.

Keywords: noise radar; low probability of intercept; pseudorandom numbers; random processes;
electronic warfare; electronic support measures; radar signal processing; signal analysis

1. Introduction

The most relevant features of Noise Radar systems in defence applications are tightly
related to modern Electronic Warfare (EW) systems, whose intercept, identification and
jamming capabilities are quickly evolving following the evolution of radar threats. Both
EW and radar systems are boasting more and more “intelligence” thanks to the tighter
and tighter convergence of computer science, communications, signal processing and big
data analytic means. The history of anti-interference radars is old: more or less “clever”
anti-jamming techniques have been proven for over half a century in the radar context [1].
They include (to name only two of them) the Adaptive Frequency Selection with which
the radar automatically selects the least jammed operating frequency, and the Adaptive
Antenna System to counteract sidelobe jamming [2,3]. The normal follow-on has been a
generation of more and more adaptive radars, arriving in this century to the concept of
cognitive radar [4,5] with some (more or less partial) implementations [6,7] of it. Modern
adaptive radars [8] may change their operating modes and the radiated waveforms almost
instantaneously: these radar threats are adaptable and reprogrammable, creating for EW
engineers an urgent request to characterise them correctly.

At the same time, the increasing scarcity of the electromagnetic spectrum, which is, of
course, the main resource for radio communications, radio navigation and radar, has gener-
ated a lot of interest in research and development activities, both academic and industrial.
Hot topics today are the Communication and Radar Spectrum Sharing (CRSS), and the
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related usage of Artificial Intelligence with its Machine Learning/Deep Learning tools [9],
with new applications to Machine Learning of existing mathematical tools such as tensors.
Tensor is a multidimensional array providing a natural representation for multivariate,
high-dimensional data. Hence, tensor decomposition has rapidly found many applica-
tions in signal processing and machine learning problems. The most well-known and
widely-used tensor decompositions are CANDECOMP/PARAFAC (CP) decomposition
and Tucker decomposition which are extensions, for tensors, of the widely used singular
value decomposition, SVD. Tensors, generalising the concept of a matrix over the classical
two dimensions, are a powerful tool in automated and rapid analysis of huge quantities of
complex data, [10].

In general, there are two main research directions in CRSS: (i) Radar-communication
coexistence (RCC) and (ii) Dual-Functional Radar-Communication (DFRC) system design.
By considering the coexistence of individual radars and communication systems, the first
category of research aims for developing efficient interference management techniques,
so that both systems can operate without unduly interfering with each other [11]. On the
other hand, DFRC techniques focus on designing joint systems that can simultaneously
perform wireless communication and remote sensing [12]. Doing so enables a paradigm
change, where previously competing transmissions can be jointly optimised. It is worth
pointing out that these explorations have gone far beyond their original motivation of
realising spectrum sharing between radar and communication systems and were extended
to numerous novel applications including vehicular network, indoor positioning and
secure communications.

The term LPI (Low Probability of Intercept) is a property of radar that, because of its
low power, wide bandwidth, frequency variability, or other design attributes, makes it
difficult to be detected by passive intercept devices such as electronic support (ES), radar
warning receivers (RWRs), or electronics intelligence (ELINT) receivers. The term LPI in any
case refers to a certain application and is strongly related to the ratio of the detection range
of the LPI radar and the intercept range by a particular class of EW receivers. The success
of an LPI radar is measured by how hard it is to extract the radar emission parameters by
the EW system. Since LPI radars typically use wideband CW signals that are difficult to
intercept and/or identify, modern intercept receivers must resort to more sophisticated
signal processing systems to extract the waveform parameters necessary to create a proper
jamming response.

The main methods for intercepting LPI radars include: (a) filter bank processing
with higher-order statistics [13,14]; (b) methods based on time–frequency transforms, e.g.,
Short-Time Fourier transform (STFT), Wigner–Ville transform [15,16]; (c) quadrature mirror
filter banks [17] and (d) cyclostationary processing [18]. A novel method, based on the
use of two receivers on board a fast-moving platform (e.g., an airplane or a satellite), is
described in [19,20]. Recently, a new waveform recognition technique (WRT), based on a
convolutional neural network (CNN), was proposed in [21]. The input parameters of the
CNN (number of filters, filter size, number of neurons) are designed for various waveforms
to guarantee the best classification performance and a reduction of the computational cost.

The increasing capability of intercept receivers to detect, locate and identify a radar
set (which can quickly lead to an electronic reaction, i.e., soft kill technique or physical
reaction, i.e., hard kill technique by an Anti-Radiation Missile or by guided ammunition)
are stressing the LPI requirements more and more. The obvious counter measure of
interrupting the radar transmission is difficult, or even not allowed, in some safety-critical
applications such as the marine navigation radar and the airborne radar altimeter, as well
as in tactical surveillance. Hence, LPI features have ever-increasing importance in modern
military radar. The authors of [22] state the need for radar engineers to consider not only the
radar detection and measurements but also its survivability. The following LPI features are
summarised: (i) CW operation, with bistatic architecture because of the antennas coupling
problem, (ii) wide beam transmission, (iii) narrow beam reception with a multi-beam,
quickly scanning, low sidelobes antenna, and finally, (iv) large time-bandwidth product for
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the transmitted signal [23,24]. LPI radar techniques are receiving more and more attention
in the open literature for over three decades, see for instance [25–29].

Nowadays, the above-mentioned evolution is changing the classical paradigms of the
EW, which has to cope with typical battlefield spectral environments with thousands of
radio emitters (and billions of radar pulses per second). The possible answers to the prob-
lems are related to (a) the analysis of the electromagnetic spectrum, (b) the characterisation
of the sources, and (c) the exploitation of the spectrum for Electronic Attack (EA) and Elec-
tronic Defense (ED) purposes. Transition is ongoing towards the full automation of most
EW/ED functions, with the human component operating at higher and higher supervision
levels. EW pursues the way to cognitive systems, after radar. Cognitive EW uses modern
machine learning techniques for tasks such as target recognition, decision-making, and
autonomous learning. For instance, adaptive radars make it difficult for an EW system
to analyse the radar emission on a pulse basis by standard emitter libraries and, thus,
to define and actuate an adequate response. This issue causes EW technology to turn to
Machine Learning and to create cognitive EW systems with software-defined capabilities,
resulting in more operational flexibility, quicker upgrades, and greater affordability. The
mostly automated, quick interactions between EA, ED and radar functions [30] also call for
new analysis and design tools, also based on Game Theory, [31].

Modern Electronic Warfare uses technology advancements such as high-performance
Digital Signal Processing (DSP) and Field Programmable Gate Arrays (FPGA) [32] systems
to achieve appropriate values of resolution and dynamic range and to sustain the ever-
increasing algorithm complexity. Powerful algorithms have added the Specific Emitter
Identification (SEI, [33]) feature to some intercept receivers, permitting the identification of a
particular source, e.g., the long-range radar of a given platform (i.e., not limiting themselves
to identify the type of source) thanks to a detailed analysis of the signal modulation [34–36]
aiming at the identification of characteristics and therefore identifications of individual
radar sets. Modern agile radars demand paradigm changes in EW systems evolving
from pulse analysis to threat-based classifications. Thus, the design, development and
test/qualification phases of these cognitive systems require a set of agnostic (i.e., not limited
to specific types of equipment by particular suppliers) threat models, embedded in an
electromagnetic environment generator able to support multiple equipment types and
technologies, [37].

Summing up, as the battlefield electromagnetic spectrum becomes more and more
crowded, both cognitive radars and modern EW systems are trying to understand in
real-time the intent of every system using the spectrum, rather than relying on a priori
assumptions and modelling for the operational scenario. In such a frame, EW systems and
radars can be programmed on the fly to change waveforms and create unique signatures
in real-time: these systems are moving from merely being adaptive to using Machine
Learning capabilities to analyse any change in spectrum use. For what concerns Noise
Radar, this technology, whenever correctly applied (e.g., granting the radar signals a
“good enough” randomness, as discussed below) appears to promise better resilience
to modern and future EW interceptors as compared with adaptive and cognitive radars
using “deterministic”, although varying, waveforms. Note that for many decades radar
parameters may vary during radar operation—such as the carrier frequency (either due to
Automated Frequency Selector or to programmed “frequency hopping/agility” [26,38])
and/or the pulse repetition frequency (PRF stagger, [39]) and/or the transmitted code.
However, these variations still aim for a certain radar task which limits their degrees
of freedom and allows the counterpart to catch information to be exploited for threat-
based signal classification. For example, a radar waveform optimised for target tracking is
selected by the radar for a good reason and may be of a higher threat level to an airborne
platform than is a different emission that is clearly associated with a surveillance task.

Thus, present-day operational radars, also agile ones, may be “more easily” inter-
cepted to feed the “libraries” of the emitters of tactical and strategic interest, while the
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Noise Radar pseudorandom radiated signals may only be statistically analysed, a matter
to be discussed in the remaining parts of this paper.

As an example, let us consider (among many) two highly-automated EW systems: the
Autonomous decoys and the Electronic deception means to confuse enemy’s intelligence,
surveillance, and reconnaissance (ISR) systems. A common element of these applications is
the Digital Radio Frequency Memory, DRFM, system shown in Figure 1.
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Figure 1. General schematic of DRFM systems.

The key elements of the DRFM system are a fast Analog-to-Digital Converter, ADC, a
fast Digital-to-Analog Converter, DAC, and a fast dual memory or fast memory, [40]. Using
them, a “copy” of the radar signal is acquired, appropriately delayed and transmitted a
number of times to jam the radar receiver. When the radar changes its signal, this particular
jammer is only effective at radar ranges greater than the range of the platform carrying the
DRFM, but if the radar signal is predictable, or even transmitted unchanged many times,
all radar ranges may be jammed. When the EW system combines the DRFM technology
with waveform analyses in the ES domain that have the aforementioned intelligent features
the jammer becomes “smart” with deceptive features, as shown in Figure 2.
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In this case the jamming signal results from the aforementioned steps (a), (b) and (c)
with the Machine Learning/Deep Learning analysis of the signals emitted by radar (see
for instance [41]) according to their “signatures” and to their statistical features, and the
comparison of the result with “a priori” information stored in the ad hoc “libraries”.

In this general frame, the remaining part of this paper is dedicated to the robustness
of Noise Radar waveforms; for example, in Section 4.2 of [22] dedicated to Waveforms,
it is claimed that a pure random-phase coded signal is the best waveform for CW LPI
radar. This solution was studied and tested [42–44] by the Liu Guosui group, which is
one of the forerunners of NRT. In fact, the acquisition/recording of pseudorandom radar
signals (not necessarily phase-only modulated) is of little advantage to the counterpart
and their limited information content, in general, does not allow the enemy to feed any
“signal library”; more generally, the analysis of this content allows us to quantify the Low
Probability of Exploitation (LPE) property of NRT.

In [45] a novel system concept is introduced combining active sensing by a noise
radar (NR) with electronic warfare (EW) tasks. This joint NR/EW sensor concept provides
simultaneous operations of spectral sensing, jamming and radar target detection.

2. Pseudo-Random Numbers Generators and Cryptography Security

The entropy concept, in its broad sense, can be used to describe the disorder and lack
of predictability of a system (Appendix A). Computation units are deterministic systems,
hence they cannot generate entropy, but they only may collect it from outside sources when
needed. Strictly speaking, computers may not generate a random sequence, but only a
sequence of pseudo-random numbers (PRN), which is not strictly random being the result of
an algorithm: the (pseudo) randomness indicates that these numbers “appear random” to
an external observer, i.e., they may pass some statistical tests. It is well-known that a PRN
generation (PRNG) algorithm has a starting point, called “seed”, which defines the whole
sequence till a repetition point. In a finite-state machine such as a digital unit, repetition
cannot be avoided, but pushed away and away exploiting the digital resources, registers
and memory above all. The widely used “Mersenne Twister” [46] is the collective name of
a family of PRNGs based on F2–linear maps, whose period, for 32-bit integers, is the huge
219937−1. Today the Mersenne Twister is the default generator in C compilers, the Python
language, the Maple mathematical computation system, and in many other environments.
In practice, repetition is a minor problem with respect to the low statistical quality of some
widely used PRNGs [47].

In principle, an unpredictable truly-random numbers generator (TRNG), also said
hardware-based RNG, is a nondeterministic system driven by a noise source (i.e., a physical
process) governed by quantum mechanical laws, such as reflections of photons by a beam-
splitter, radioactive decay and many others. However, practical methods to derive the
requested numbers from such sources (i.e., to extract and exploit their entropy compliant
with the recommendation for the entropy sources used for random bit generation [48]) do not
always supply acceptable results, as important problems of accuracy and dynamic range
arise in most cases. For example, one could try to get random numbers by measuring
radioactive decay times and taking the time interval X between two successive decays. It is
well known that for a fixed decay-rate λ the probability distribution function of the time
interval (the inter-arrival time in traffic theory) X is an exponential type random variable
with distribution: FX(x) = 1− exp(−λx), x ≥ 0. Hence, taking the output quantity x and
transforming it into u = 1− exp(−λx), one should obtain (in theory) a random numbers
generator whose output U has a uniform distribution between 0 and 1. In practice, problems
arise. (a) Particle detectors have an efficiency less than unity. (b) The clock, needed to
measure X, has a finite resolution ∆x, i.e., the resulting random number is zero when
two successive different decay times differ by less than ∆x. (c) A real clock has drifts and
higher-order errors. (d) The decay-rate λ is a priori unknown and has to be measured,
leading to some possible errors in the distribution of U. For these reasons, the desired
uniform distribution cannot be exactly achieved in practice.
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In general, methods to extract, from physical sources, entropy/randomness are costly,
hard to be implemented and only used in particular, highly sensitive applications. This
is why computer-based PRNGs are referred to as “physical” generators and are so widely
used. An exception may be low-quality methods in consumer computer applications (e.g.,
electronic games) to create “entropy pools” based on easily usable phenomena such as
random movements of the mouse, least significant digits of the clock at a given event and
so on.

However, recently a PRNG was developed based on the use of beta radiations enabled
by integrated circuits (ICs) suitably designed to detect the very low energy of these radia-
tions [49,50]. This generator, although with a low number of bits, has shown a relatively
simple structure, low-cost and small volume, passing the National Institute of Standards
and Technology (NIST) test [48].

Cryptograph [51] is a driving factor for research on PRNGs, which are used in various
cryptographic steps, with an overall security level mostly depending on the quality of the
used pseudo-random number generator. A PRNG suitable for cryptographic use is called
a Cryptographically Secure Pseudo-Random Number Generator (CSPRNG). The strength of a
cryptographic system heavily depends on the properties of these CSPRNGs. Depending
on the particular application, a CSPRNG might generate sequences with some of these
features: (i) to appear random to an external observer, (ii) to be unpredictable in advance,
(iii) cannot be reproduced using affordable means. A perfect CSPRNG is one that produces
a sequence of independent, equally distributed numbers, i.e., if Xi is the generated integer
number (between 1 and N) at the i-th step, the probability of Xi equals 1/N independently
on all the outputs of the other steps, i.e., all Xk, with k 6= i. In other words, knowing the
past or future numbers does not help to predict the current number.

A perfect CSPRNG would permit the implementation of an unbreakable cryptographic
system, i.e., robust to any attack even using unlimited computation power. It is the cele-
brated one-time pad, in which each bit of the message is coded by addition (XOR operation)
to the corresponding bit of the key, which is the output of the CSPRNG and decoded with
the same operation by the legitimate recipient knowing the key. In practice, this method
has the important limitation of the key to be kept secret, to be used only once, in addition
to the well-known fundamental problem of the distribution of the cryptographic keys.

The features of CSPRNGs make them suitable to generate waveforms to be emitted
by Noise Radars, which have to be secure against statistical analysis and reproduction for
jamming and spoofing purposes. The main difference with respect to the aforementioned
cryptographic applications is the inherent randomness of the physical medium (including
receiver noise, environmental noises and channel/target fluctuations), [52–54]. This topic is
also studied in recent research on Physical Layer secure communications and the Internet
of Things [55,56]. In order to benefit the legitimate receiver (the own radar receiver) while
denying the operation of a counterpart receiver, one shall exploit the difference between
the channel to the legitimate receiver and the one to an eavesdropper (an intercept receiver
in radar/EW applications) to securely transmit confidential messages (even without using
an encryption key).

A possible example could be transmitting one communication code with a main,
narrow-beam antenna and a different code, for deception purposes, by an auxiliary antenna
(similar to the Interrogator Side Lobe Suppression—ISLS—one in Secondary Surveillance
Radar—Selective Mode—SSR Mode S) whose pattern is higher than the sidelobes structure
of the main antenna [57,58], thus masking its sidelobes signals.

3. Information Content of Radar Signals

When studying the properties of noise radar waveforms, the main question is: “How
much information about the signals emitted from a particular radar may be obtained by
analysing more and more samples from the radar emission?” Likely, the answer mainly
depends on the operation (and performance) of the counterpart system and on the opera-
tional theatre. However, a rather general answer may be searched in terms of Information
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Theory [59], in which a measure of the information contained in a signal is related to the
entropy concept [60] from which the mutual information is derived [61] (see Appendix A).

To introduce the concept of mutual information, we start considering a generic mea-
surement system as sketched in Figure 3 [61]. Generally speaking, X is a vector whose
components define the parameters of the “object” we wish to measure. The “measurement
mechanism” maps X into a random vector Y (“observer”) introducing an inherent inac-
curacy due to the measurement errors and to disturbing effects. We denote I(X; Y) the
mutual information between X and Y, i.e., the amount of information that the measurement
(Y) provides about the parameters of the “object” (X). More and more information can
be obtained about X when I(X; Y) increases. In communication systems, it is desirable to
choose, among all transmissible signals, the ones that maximise the mutual information.
Conversely, a low mutual information level implies a high difficulty in identifying the
“object”, as in the case of an LPI radar system.
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Figure 3. Block diagram of a general measurement system.

In Electronic Support (ES) measurements, the “object” is a particular radar (able to
transmit some types of waveform) and the components of the vector X are the (relatively
few) parameters of the waveform as obtained by the EW system, for example, TOA (time
of arrival), duration (PW, Pulse Width), bandwidth B, codes—called MOP (Modulation
on Pulse), samples of the power spectrum and more. Adding goniometry to the ESM an
additional component is available, i.e., the DOA (direction of arrival). With the classification
function or even the Specific Emitter Identification (SEI) feature, the result is a vector of
integers that enumerate the radar sources in the library. In such a case, the information of
X is not only a set of parameters (estimation problem) but it includes identification (decision
problem on many hypotheses) or, as a subcase, classification of the radar source.

The “observer” is the vector Y, whose components represent the samples of the signal
as intercepted by the ESM. The vector Y is affected by noise, multipath, and measurement
errors. Hence, I(X; Y) is a measure of the (partial and corrupted) information that Y
provides about X. The aim of LPI radar designs is to design and select a set of radar
waveforms that minimise the information I(X; Y) for best, or optimal, LPI features. However,
this set of waveforms has to guarantee the requirements for optimal target detection, i.e.,
a high peak-sidelobe level in its auto-correlation function (and, considering the Doppler
shift, in the ambiguity function) to mitigate the masking effect due to strong targets. The
constraints include a limited bandwidth to meet the frequency regulations, the required
range-resolution and, finally, the efficiency in the transmitted power. Concerning the latter,
noise radars show the possibility to control the peak-to-average power ratio (PAPR) of the
radiated waveform. For a given noise sequence g[k] of length n, the PAPR is defined as:

PAPR =
max

k
|g[k]|2

1
n ∑n

k=1|g[k]|
2 (1)

To maximise the transmitted power, deterministic waveforms (e.g., chirp, Barker, . . . , [62])
are normally Phase/Frequency only modulated with unitary PAPR. Unless the amplitude
is saturated, a noise waveform has a natural PAPR around 10 (or greater) with reduced
transmitted energy, which causes a loss, compared to the PAPR of unity, in signal-to-noise
ratio (SNR) equal to:

Loss[dB] = −10·log10(PAPR) (2)
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i.e., about 10 dB or greater for natural PAPR. To ensure a loss lower than 2 dB, the PAPR
must be less than 1.6. Of course, when a hard limiter is applied to the noise waveform, the
loss is zero. However, in this case, the noise waveform has a reduced number of degrees
of freedom (DoF) equal to the number (BT) of phase values versus of 2BT degrees of full
freedom, i.e., amplitude and phase pairs, or equivalently, I and Q (in-phase and quadrature)
pairs. More generally, a reduction in PAPR causes a decrease in the equivalent number of
DoF and therefore potentially a greater probability of interception of the waveform.

When the intercepted (observed) signal Y is modelled as a complex discrete-time
random process, it is natural to arrive at the concept of the Mutual Information Rate (MIR)
for the real part and the imaginary part of Y as a measure of the rate of growth of the
common information versus the time, as explained in paragraph 3.1.

3.1. Mutual Information of a Random Process

For a real discrete-time random process represented by a sequence of n equally-
distributed random variables {X1, X2, . . . , Xn}, with marginal and the joint entropies h(Xi),
i = 1, 2, . . . , n, and h(X1, X2, . . . , Xn) respectively, the mutual information (not to be confused
with the I(X; Y) of Figure 3) can be evaluated (see Appendix A) as [59]:

I(X1, X2, . . . , Xn) =
n

∑
i=1

h(Xi)− h(X1, X2, . . . , Xn) (3)

If {X1, X2, . . . , Xn} are independent, the mutual information is zero as h(X1, X2, . . . , Xn)

=
n
∑

i=1
h(Xi). As a measure of the rate of growth of the common information versus the time,

we introduce the mutual information rate (MIR):

MIR = I(X1, X2, . . . , Xn)− I(X1, X2, . . . , Xn−1) (4)

Substituting Equation (3) in Equation (4) and using the relation between the joint and
the conditional entropy (see Appendix A for details), the MIR can be written as:

MIR = h(Xn)− h(Xn|Xn−1, Xn−2, . . . , X1) (5)

Therefore the MIR represents the entropy of a single sample h(Xn), reduced by the
knowledge of its past, i.e., by the conditional entropy h(Xn|Xn−1, Xn−2, . . . , X1). If the process
is stationary in a wide sense (WSS), and n tends to the infinity, Equation (5) becomes (for
details see Appendix A):

MIR = h(X)− hr(X1, X2, . . . , Xn) (6)

with h(Xn) = h(X) for each n, and hr(X1, X2, . . . , Xn) the entropy rate, i.e., the measure
of the average information carried by each sample in a random sequence of n consecutive
samples. In many cases, the evaluation of h(x) and hr(X1, X2, . . . , Xn) are computationally
hard, a well-known exception being one of the WSS Gaussian processes, where:

h(X) = ln
(√

2πe
)
+

1
2

ln
[

1
2π

∫ +π

−π
S(ω)dω

]
(7)

hr(X1, X2, . . . , Xn) = ln
(√

2πe
)
+

1
4π

∫ +π

−π
ln[S(ω)]dω (8)

with S(ω) denoting the power spectrum density of the Gaussian process. Therefore:

MIR =
1
2

{
ln
[

1
2π

∫ +π

−π
S(ω)dω

]
− 1

2π

∫ +π

−π
ln[S(ω)]dω

}
(9)
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The MIR is non-negative and equal to zero if and only if S(ω) is a constant, i.e., for a
white Gaussian process. By Equation (9), we can introduce the Spectral Flatness Measure
(SFM) for the Gaussian process:

SFM = exp(−2·MIR) =
exp
[

1
2π

∫ +π
−π ln[S(ω)]dω

]
1

2π

∫ +π
−π S(ω)dω

(10)

The SFM is a well-known and widely accepted method for evaluation of the “white-
ness” (or “compressibility” in audio or imaging applications) of a signal. From the non-
negativity of MIR, it is easy to show that 0 < SFM ≤ 1. Values of SFM close to zero
(MIR� 1) correspond to a more structured (or less random) signal; an SFM = 1 (MIR = 0)
corresponds to a random, unpredictable signal.

Table 1 shows the theoretical MIR and SFM evaluated using Equations (9) and (10)
for three different power spectrum densities: Uniform, Hamming and Blackman-Nuttall
(see Figure 4). In Section 4, they will be used to generate noise waveforms with the
assigned spectrum. The Blackman-Nuttall spectrum will produce a more structured signal
in contrast to the others.

Table 1. Theoretical MIR and SFM.

Spectrum MIR SFM

Uniform 0.00 1.00
Hamming 0.272 0.580
Black-Nuttall 1.258 0.081
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In Appendix B the definition of MIR is extended to a complex process [63–65]. If
the process {Zn} is a second-order circular doubly white Gaussian (see Appendix B for the
definition), the marginal entropy h(Z) is the sum of the entropy of the real and the one of
the imaginary part. Additionally, the entropy rate results equal to the sum of the entropy
rate of the real and the imaginary parts. Hence:

MIR = ln
[

1
2π

∫ +π

−π
S(ω)dω

]
− 1

2π

∫ +π

−π
ln[S(ω)]dω (11)

3.2. On the Significance of MIR and SFM in Radar

The MIR and the SFM are used to characterise the information content of various
signals, e.g., the ones from musical instruments [66] and, sometimes, radar signals [67].
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The MIR analysis of radar signals, e.g., to characterise their LPI/LPE features, would prove
really useful when one takes into account the full information chain of the counterpart:
reception/interception, analysis/extraction up to data exploitation, which also includes
some a priori information stored in tactical databases or “libraries”. Such an analysis is
beyond the scope of this paper. Only, we wish to emphasise the importance of the a priori
information by the ideal, simple example which follows.

Let the counterpart know the radar’s operating band, with bandwidth B (e.g.,
B = 50 MHz), of the victim radar, and be able to sample its signals at the Nyquist rate. Let
the intercept receiver operate at a constant SNR measured on the band B before processing.
The exemplary radar, here, is assumed to have two basic options:

(a) Linear Frequency Modulation (LFM) pulse with duration T such that B·T � 1.
(b) Noise Radar operation emitting noise waveforms with three cases:

(b1) “natural” Peak-to-Average Power Ratio, PAPR ≥ 10 (Gaussian process for the
components I and Q);

(b2) “low PAPR”, e.g., PAPR = 1.5 (non-Gaussian process for I and Q);
(b3) “unimodular” waveform, PAPR = 1 (non-Gaussian process for I and Q).

In case (a), when the counterpart knows T (does not matter whether by intelligence or
measurement; remember that B is supposed to be known), the signal is fully determined
(apart from an immaterial constant phase). Hence, in principle, the “new” information from
the waveform’s samples is nearly zero, which is consistent with the “flat” signal spectrum
of a chirp signal with SFM = 1, hence with a nearly null MIR. Similar considerations apply
to any signal defined by a finite number of parameters. These parameters determine the
values of the signal samples or, vice versa, in principle, may be determined by a suited,
limited number of these samples.

Some preferred signal analysis methods against LPI radar use time–frequency trans-
forms. Their main aim is to classify the emitter (e.g., to define which signals are transmitted,
e.g., choose among Barker (nested Barker), polyphase, Frank, Golay, and other codes [62]).
In short, they are aimed at classification, a role in which MIR is less important. Moreover,
the ESM “sees” a signal that consists of radar emissions plus noise (from its receiver) so
Equation (11) has only a theoretical value.

Different considerations apply to the case of interception of NRT signals, case (b),
where the number of (real) parameters defining the (pseudo-random) signals reaches the—
possibly huge—value 2BT. Hence, even when the parameters B and T are known to the
intercepting part, a number of real parameters slightly less than 2BT remain unknown,
and the MIR analysis may be meaningful, and sometimes interesting, at least to compare
different pseudorandom waveforms. In case (b1) the process is Gaussian and Equation (11)
can be applied, conversely, in cases (b2) and (b3) the low PAPR makes the noise process no
longer Gaussian and Equation (11) is not applicable anymore. For non-Gaussian statistics,
it is necessary to evaluate the distance from the Gaussian one. A possible approach is based
on the use of the negentropy (see Appendix A), which will be considered in Section 4.2.

4. Estimation of Entropy and Mutual Information by Simulation

Three exemplary noise waveforms Z(k) = X(k) + jY(k) of N samples, duration
T = N·Ts = 100 µs (Ts is the sampling time), with spectrum inside

(
− B

2 ,+ B
2

)
defined by

three spectral windows (Uniform, Hamming and Blackman–Nuttall) with B = 50 MHz,
are generated as described in [68] with a detailed functional description of the blocks of
Figure 5.
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We assume that the sampling frequency Fs = 1
Ts

is set to B, hence the number of
complex samples is BT corresponding to 2BT real samples (or 2BT degrees of freedom).
The PAPR is varied from the “natural” value (ten or greater) to a value of one (minimum
loss on Signal-to-Noise Ratio). In this frame, the three waveforms are compared in terms of
marginal entropy, joint entropy and mutual information.

4.1. “Natural” PAPR (Gaussian Process)

A “natural” PAPR makes X(k) and Y(k) zero-mean Gaussian-distributed random
variables of the same variance σ2

X = σ2
Y = σ2. The latter, here, is set to 0.5 for the given

waveforms with unit power. Posing [Xi(1) Xi(2) . . . Xi(N)] where i denotes the trial i-th
(i = 1, 2, . . . , Ntrial with Ntrial set to 105), the analysis is limited here to the first and
at the second probability hierarchy, i.e., it is performed only on a couple of extracted
random variables X1 = [Xi(1)] and X2 = [Xi(2)]; the same is carried out for Y1 and
Y2. In the following Montecarlo simulation the marginal entropy h(X1), h(X2), the joint
entropy h(X1, X2) and the mutual information I(X1, X2) are estimated following two
different approaches.

In the first approach, the marginal entropy is estimated by the analytical expression,
valid for a Gaussian model, using the sample variance S2

1(2) (The sample variance is the

estimator S2 = 1
N−1 ∑N

i=1
[
X(i)− X

]2 with X = 1
N ∑N

i=1 X(i) the sample mean. For the

Gaussian population S2 is unbiased and consistent with Var
[
S2] = 2σ4

N−1 [60]. For N = 105

and σ2 = 0.5, the standard deviation is 2.24× 10−3):

ĥ
(

X1(2)

)
=

1
2

ln
(

2πeS2
1(2)

)
(12)

In Table 2 for N = 105, the value of S2
1 and S2

2 are shown for the real part of the signal
(X). Similar results are obtained for the imaginary part (Y). The maximum deviation of
S2

1(2) from 0.5 (theoretical value) is around 3·10−3 comparable with the standard deviation

of the estimator equal to 2.24× 10−3.

Table 2. Estimated marginal entropy of the real part of two contiguous samples with natural PAPR.

Spectrum σ2
1(2) h(X) S2

1 S2
2

ĥ(X1)
by S2

1

ĥ(X2)
by S2

2

ĥ(X1) by
histogram

ĥ(X2) by
histogram

Uniform 0.5 1.0724 0.5004 0.5013 1.0727 1.0737 1.0723 1.0732
Hamming 0.5 1.0724 0.5002 0.4994 1.0725 1.0718 1.0722 1.0718
Black-Nuttall 0.5 1.0724 0.4974 0.4970 1.0697 1.0703 1.0692 1.0697
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The joint entropy is estimated using Equation (13):

ĥ(X1, X2) =
1
2

ln
{
(2πe)2∣∣K̂∣∣} =

1
2

ln
{
(2πe)2S2

1S2
2

(
1− ρ̂2

12

)}
(13)

with |K̂| the determinant of the estimated covariance matrix K̂ =

∣∣∣∣ S2
1 S1S2ρ̂12

S1S2ρ̂12 S2
2

∣∣∣∣; ρ̂12

is the sample correlation coefficient: ρ̂12 =
∑N

i=1[X1(i)−X1][X2(i)−X2]√
∑N

i=1[X(i)−X1]
2

∑N
i=1[X2(i)−X2]

2 . Introducing the

Fisher’s auxiliary variable W = 1
2 ln
(

1+ρ̂12
1−ρ̂12

)
, for large N, the distribution of W is Gaussian

with mean ηW ∼= 1
2 ln
(

1+ρ̂12
1−ρ̂12

)
and variance σ2

W
∼= 1

N−3 [60]; setting N = 105 the standard

deviation of W is σW ∼= 3.16× 10−3.
For Uniform spectrum at lag Ts =

1
B the random variable {X1, X2} are uncorrelated

(ρ12
∼= 0), while for Hamming and Blackman-Nuttall the width of the main lobe of the

autocorrelation increases and ρ12 assumes the value reported in Table 3. The maximum
deviation of ρ̂12 from its theoretical value as shown in Table 3, after Fisher’s transformation
into W, is comparable with the standard deviation of W.

Table 3. Estimated joint entropy and information of the real part of two contiguous samples with natural PAPR.

Spectrum ρ12 ρ̂12 h(X1, X2)
ĥ(X1, X2)

by ρ̂12

ĥ(X1, X2)
by 2D hist.

I(X1, X2)
Î(X1, X2)

by ρ̂12

Î(X1, X2)
by 2D hist.

Uniform 0 5.3·10−5 2.1447 2.1447 2.1345 0 1.4·10−9 0.0111
Hamming 0.4258 0.4267 2.0447 2.0443 2.0338 0.10002 0.1005 0.1099
Black-Nuttall 0.6727 0.6681 1.8435 1.8491 1.8366 0.3013 0.2956 0.3024

Finally, by Equation (3) with n = 2, the mutual information is estimated as:

Î(X1, X2) = ĥ(X1) + ĥ(X2)− ĥ(X1, X2) = −
1
2

log
(

1− ρ̂2
12

)
(14)

It results that, having considered a pair of successive samples, the mutual information
depends only on the correlation coefficient and, for ρ12

∼= 0, it is very close to zero. If |ρ12|
tends to one (X1, X2 are becoming perfectly correlated) the mutual information is going
to infinity.

The estimates of ĥ(X1), ĥ(X2), ĥ(X1, X2) and Î(X1, X2), using the sample parameters,
are shown in Tables 2 and 3.

A second approach to estimate the marginal and the joint entropy is carried out
using the 1D and 2D histograms as an approximation of the probability density and
joint density function (details about the entropy estimation by histogram are reported in
Appendix C). Then, the mutual information is estimated using ĥ(X1), ĥ(X2) and ĥ(X1, X2)
in Equation (3) as in the previous approach. Figure 6 shows the projections of the 2D
histograms on the plane (X1, X2). A uniform spectrum shows a circular symmetry due to
the independence of (X1, X2). With Hamming and Blackman–Nuttall spectrum, after 1

B the
theoretical correlation coefficient is 0.4258 and 0.6727 respectively (the level curves of the
joint density function are ellipses with the major axis sloping).

The estimated entropy using histogram and the corresponding estimation of the mu-
tual information, which are shown in Table 2, are in good agreement with those estimated
by the sample parameters (S2

1, S2
2, ρ̂12) and with the theoretical ones.
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Figure 6. Projection of the 2D histogram on the plane (X1, X2). (a) Uniform spectrum ρ12 ∼= 0; (b) Hamming spectrum
ρ12 ∼= 0.4258; (c) Blackman-Nuttall spectrum ρ12 ∼= 0.6727. Parameters: B = 50 MHz, Fs =

1
B , σ2

1 = σ2
2 = 0.5.

4.2. Controlled PAPR (Non-Gaussian Process)

A reduction of the PAPR from the natural value by a non-linear transformation (Alter-
nating Projection algorithm in Figure 5) distorts the random process reducing or deleting
its Gaussianity. For a real random variable X, the negentropy J(X) measures the loss of
Gaussianity and is defined as:

J(X) = hG(X)− h(X) (15)

where hG(X) = 1
2 ln
(
2πeσ2) is the entropy of a Gaussian random variable with the same

variance σ2 as the random variable X. As well known, see for instance [60], the Gaussian
distribution has the maximal entropy among all distributions with the same variance, hence
a positive J(X) measures the distance of X from the Gaussian model. The main problem
using negentropy is its evaluation, very difficult when the probability density function of
X is unknown.

Figure 7 shows the estimated negentropy of the real part of a single waveform gen-
erated by FCG (with Uniform, Hamming and Blackman–Nuttall spectrum, B = 50 MHz,
σ2 = 0.5) varying the PAPR, where hG(X) = 1

2 ln
(
2πeσ2) = ln

(√
πe
) ∼= 1.0724 and h(X)

are estimated using the histogram (Appendix C). The negentropy results are independent of
the spectrum shape. When the PAPR is less than 4σ ∼= 3 the process begins to be definitely
non-Gaussian. The same trend is obtained for the imaginary part. According to Figure 7,
for PAPR > 3 the joint entropy and the joint information are the ones of a Gaussian process
(see Figure 8a,b). For PAPR < 3 the non-linear transformation de-correlates the samples
reducing both the joint entropy (Figure 8a) and the mutual information (Figure 8b).
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Figure 8. (a) Joint entropy (b) joint information vs. PAPR of the real part of a single noise waveform with unit power. 

5. Conclusions, Recommendations and Perspectives for Future Research 
The transmitted waveform is a key performance element in every radar design. Using 

Noise Radar Technology, the pseudo-random waveforms shall be suitably “tailored” to 
satisfy contrasting requirements in terms of power efficiency (calling for a “low” and often 
nearly unitary PAPR) and of the information available to any intercepting counterpart 
(calling for a “high” PAPR equal or close to that, order of 9–10, of a Gaussian process). In 
addition, low sidelobes of the autocorrelation function are requested by many applica-
tions, calling for a significant spectral weighting (e.g., Blackman–Nuttall or Taylor). 

From a preliminary information-theoretic analysis, using the negentropy concept, the 
effect of the selected PAPR on the information content that is available to EW receivers 
was analysed in its main trends. It results that for a PAPR value above an approximate 
threshold of three, the Gaussian approximation for the entropy holds. On the other hand, 
when the PAPR goes from about three towards the unity, there is a steep increase in the 
negentropy and a significant decrease in the joint information of a pair of successive sam-
ples due to their progressive decorrelation. This decorrelation increases the quantity of 
information available to the counterpart and might limit the LPI properties of the radar 
by supporting a detection or interception of the noise radar emission. Thus, the trade-off 
in noise radar waveform design between longer detection ranges (demanding for higher 
effective transmitter powers often implemented efficiently by lower PAPR values) and 
LPI features remains. This paper aims to support such design decisions by providing some 
quantitative analysis of the relationship between the PAPR and the detectability or ex-
ploitability of the radar waveform. 
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5. Conclusions, Recommendations and Perspectives for Future Research

The transmitted waveform is a key performance element in every radar design. Using
Noise Radar Technology, the pseudo-random waveforms shall be suitably “tailored” to
satisfy contrasting requirements in terms of power efficiency (calling for a “low” and often
nearly unitary PAPR) and of the information available to any intercepting counterpart
(calling for a “high” PAPR equal or close to that, order of 9–10, of a Gaussian process). In
addition, low sidelobes of the autocorrelation function are requested by many applications,
calling for a significant spectral weighting (e.g., Blackman–Nuttall or Taylor).

From a preliminary information-theoretic analysis, using the negentropy concept, the
effect of the selected PAPR on the information content that is available to EW receivers
was analysed in its main trends. It results that for a PAPR value above an approximate
threshold of three, the Gaussian approximation for the entropy holds. On the other hand,
when the PAPR goes from about three towards the unity, there is a steep increase in the
negentropy and a significant decrease in the joint information of a pair of successive
samples due to their progressive decorrelation. This decorrelation increases the quantity of
information available to the counterpart and might limit the LPI properties of the radar
by supporting a detection or interception of the noise radar emission. Thus, the trade-off
in noise radar waveform design between longer detection ranges (demanding for higher
effective transmitter powers often implemented efficiently by lower PAPR values) and
LPI features remains. This paper aims to support such design decisions by providing
some quantitative analysis of the relationship between the PAPR and the detectability or
exploitability of the radar waveform.
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Appendix A

Appendix A.1. Entropy and Negentropy

From an energetic point of view, in a transformation process, maximum efficiency
is obtained when the sum of all involved energies after the process has occurred has an
ability to produce work equal to their sum before. The II Law of Thermodynamics, the
well-known “increase of entropy principle”, states that maximum efficiency is attained in
energy transformations for an (ideal) reversible process, i.e., an “infinitely slow” one, in
which the entropy production is zero, hence, the order is saved. The extent of the entropy
creation due to irreversibility is a measure of the “lack of ideality” of a process. In energy
transformations, we get the maximum efficiency using processes in which the entropy
creation due to irreversibility is minimal.

The mechanical–statistical character of the entropy concept and its logarithmic connec-
tion to the probability is due to Ludwig E. Boltzmann (20 February 1844–5 September 1906)
and his kinetic gas theory. The tombstone of Boltzmann in the Viennese Zentralfriedhof
shows his celebrated formula for the entropy (S) of a system with W possible microstates:
S = kB·log(W), where kB is the Boltzmann’s constant and log(·) the natural logarithm.

In the Information Theory context [59], entropy is generally seen as a measure of the
uncertainty (unpredictability) of an event, and for a random variable X, of the “distance”
of its realisations from the predictable ones.

Given a discrete random variable X with probability mass function p(xi) = P{X = xi},
the entropy is defined as (being E[·] the expected value operator):

H(X) = −E[log{p(xi)}] = −∑
i

p(xi)·log{p(xi)} (A1)

For a continuous random variable X with probability density function f (x), the
differential entropy (denoted with the lowercase letter) is defined as:

h(X) = −E[log{ f (x)}] = −
∫

f (x)·log{ f (x)}dx (A2)

In the present discussion, the natural logarithm will be used. Note that when dealing
with discrete random variables the equivalent formulation with base-2 logarithm (log2)
is more widely used, and leads to the well-known information unit called bit, while the
natural logarithm, more widely used in signal processing, leads to the (equivalent) nat unit(

1 nat = 1
ln(2)

∼= 1.443 bit
)

.
A tutorial example of entropy evaluation is the coin-tossing experiment with outcomes

head (with probability p1 = P{head}) and tail (with probability p2 = P{tail} = 1− p1), which
generates a Bernouilli–type variable. Its entropy is: HBernouilli = −[p1 log(p1) + p2 log(p2)],
which is equal to 1, i.e., one bit of information, when log2 is used and the coin is unbiased
(p1 = 0.5), i.e., the result is minimally predictable (the disorder is maximum). For a biased
coin, predictability increases and the entropy is smaller: for p1 = 0.25, it equals 0.8114 bit
(0.5623 nat), and for p1 going to zero, or to one, the entropy goes to zero, i.e., the result
becomes predictable.

When the random variable X is normalised (i.e., with zero mean and unit variance)
its entropy only depends on the particular shape of its probability density function f (x)
or probability mass function p(xi). For real continuous random variables the interesting
result holds that, among all normalised random variables, the Gaussian (Normal) variable
has the maximum entropy: hG(X) = 1

2 ln(2πe) ∼= 1.42 nat.
Hence, any non-linear transformation of a Gaussian variable reduces the entropy, or

“creates some negentropy”. The term negentropy is first found in Schrödinger’s book [69],
which discusses the complexity of life and its evolution towards more and more “orga-
nized”, or someway, “ordered”, living species, a situation which seems to “create order”
and to “negate the entropy”, apparently against the II Law of Thermodynamics.
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For a random variable X, the negentropy J(X) is defined as:

J(X) = hG(X)− H(X) (A3)

where hG(X) = 1
2 ln
(
2πeσ2) is the entropy of a Gaussian random variable with the same

variance σ2 of X. As said, the Gaussian distribution has the maximal entropy among all
distributions of the same variance, hence J(x) ≥ 0.

The main problem using negentropy is its evaluation, very difficult when the probabil-
ity density function of X is unknown and it has to be estimated. Therefore, approximations
of negentropy use the higher-order (up to four) moments [70]:

J(X) ≈ 1
12

E
[

X3
]2

+
1
48

{
E
[

X4
]
− 3E

[
X2
]2
}2

(A4)

Appendix A.2. Self-Information and Mutual-Information

Posing I(X) = −log{p(xi)} in Equation (A1) or I(X) = −log{ f (x)} in Equation (A2),
the entropy of X equals the expectation of the random variable I(X). The latter is said
self-information of X and measures the information obtained by observing X, or equivalently,
it measures the a priori uncertainty in the outcome of the event {X = xi} in the discrete case
and {x < X < x + dx} for a continuous random variable.

A real random process {X(t)}, after sampling, can be described by n samples, i.e.,
by n real random variables X1, X2, . . . , Xn (or equivalently in the row vector notation
Xn ≡ [X1, X2, . . . , Xn]) with marginal probability density function f (xi) for i = 1, 2, . . . , n,
and joint probability density function f (Xn) , f (x1, x2, . . . , xn). The marginal entropy for
each Xi and the joint entropy of Xn are:

h(Xi) = −E[ln[ f (xi)]] ∀i (A5)

h(Xn) , h(X1, X2, . . . , Xn) = −
∫
Rn

f (x1, x2, . . . , xn)ln[ f (x1, x2, . . . , xn)]dx1dx2 . . . dxn

(A6)
The mutual information of Xn is defined as [59]:

I(Xn) , I(X1, X2, . . . , Xn) =
∫
Rn

f (x1, x2, . . . , xn)ln
[

f (x1, x2, . . . , xn)

f (x1)· f (x2)· . . . · f (xn)

]
dx1 . . . dxn

(A7)
Developing the integrand function of Equation (A7), we obtain:

I(X1, X2, . . . , Xn) =
n

∑
i=1

h(Xi)− h(X1, X2, . . . , Xn) (A8)

If {X1, X2, . . . , Xn} are independent, the mutual information I(X1, X2, . . . , Xn) = 0
and it results in h(X1, X2, . . . , Xn) = ∑n

i=1 h(Xi).
For a multivariate Gaussian distribution with covariance matrix K, the joint entropy is:

h(X1, X2, . . . , Xn) =
1
2

ln
{
(2πe)n|K|

}
(A9)

where |K| denotes the determinant of K. For a bivariate Gaussian distribution with covari-

ance matrix K =

[
σ2 ρσ2

ρσ2 σ2

]
being ρ the correlation coefficient, by Equation (A9), with

h(X1) = h(X2) =
1
2 ln
(
2πeσ2) and h(X1, X2) =

1
2 ln
{
(2πe)2|K|

}
= 1

2 ln
{
(2πe)2σ4(1− ρ2)},

the mutual information depends on only ρ and it results:

I(X1, X2) = −
1
2

ln
(

1− ρ2
)

(A10)
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If ρ = 0, {X1, X2} are independent and the mutual information is zero. If ρ = ±1,
{X1, X2} are perfectly correlated and the mutual information is infinite.

By Equation (A8), we can introduce the mutual information rate (MIR) as a measure
of the rate of growth of the common information as a function of the time:

MIR = I(X1, X2, . . . , Xn)− I(X1, X2, . . . , Xn−1) (A11)

If {X1, X2, . . . , Xn} are independent, MIR = 0. By Equation (A8), MIR can be written as:

MIR = h(Xn)− h(X1, X2, . . . , Xn) + h(X1, X2, . . . , Xn−1) (A12)

Using the relation between the joint and the conditional densities for {X1, X2, . . . , Xn},
i.e.,: f (x1, x2, . . . , xn) = f (xn|xn−1, . . . , x1)· f (xn−1|xn−2, . . . , x1)· . . . · f (x2|x1)· f (x1), the
joint entropy is written as a function of the conditional entropy:

h(X1, X2, . . . , Xn) = h(Xn|Xn−1, . . . , X1) + h(Xn−1|Xn−2, . . . , X1) + . . . + h(X2|X1) + h(X1) (A13)

and the MIR becomes:
MIR = h(Xn)− h(Xn|Xn−1, Xn−2, . . . , X1) (A14)

For a real wide sense stationary (WSS) process Equation (A14) can be written as:

MIR = h(X)− hr(X1, X2, . . . , Xn) (A15)

being h(Xn) = h(X) for each n and, when n→ ∞ , it can be demonstrated that lim
n→∞

h

(Xn|Xn−1, Xn−2, . . . , X1) = lim
n→∞

1
n h(X1, X2, . . . , Xn) , hr(X1, X2, . . . , Xn), where the second limit

defines the entropy rate hr(X1, X2, . . . , Xn), i.e., the measure of the average information carried by each
sample in a random sequence of n consecutive samples.

The above concepts can be extended to n discrete random variables. For example, considering a
process generating, at each step, a random natural number Xi in the interval from 1 to N, (where N
in computer applications may be, for example, the largest representable integer number, equal to
2b where b is the number of bits used in the representation) if the distribution of X is uniform and
each generation is independent of the others, the resulting entropy after M steps and for N � 1 is
M
N log(N). It seems useful to define 1

N log(N) as the entropy rate, or information rate, of this process.

Appendix B

For a complex random variable Z = X + jY the probability density function, f (Z), is defined
by the joint density of the real (X) and the imaginary (Y) part, i.e., f (Z) , f (X, Y).

Considering a complex random vector (Z ∈ Cn), with n complex components
{Z1, Z2, . . . , Zn}, the joint probability density function is f (Zn) , f (Xn, Yn) where
Xn, Yn ∈ Rn are real vectors denoting the real and the imaginary part of Zn.

The entropy of Zn is:

h(Zn) , h(Xn, Yn) = −E{log[ f (Xn, Yn)]} = H(Z1, Z2, . . . , Zn) (A16)

A complex random process {Z(t)}, after sampling, can be described by n complex samples,
i.e., by a raw vector Zn = [Z1, Z2, . . . , Zn], whose components are complex random variables
Zi = Xi + jYi with i = 1, 2, . . . , n. Without loss of generality, we suppose Zn to be zero-mean.

In this context of complex processes, to extend the definition of the entropy rate, we introduce
the second-order stationary (SOS) concept. The only covariance function R(i, i + m) = E

[
Zi+mZ∗i

]
is not

sufficient to entirely describe an SOS process. It is necessary to introduce a second function, said the
pseudo-covariance function (also called the relation function in [65]), defined as R̃(i, i + m) = E[Zi+mZi].

Definition of a Second-Order Stationary (SOS) Process

A complex random process Zn is said SOS if:

(i) it is WSS, i.e., ∀i E[Zi] is constant and the covariance function R(i, i + m) = E
[
Zi+mZ∗i

]
only

depends on the index difference m, i.e., R(i, i + m) = R(m);
(ii) ∀i the pseudo covariance function R̃(i, i + m) = E[Zi+mZi] only depends on the index difference

m, i.e., R̃(i, i + m) = R̃(m).
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For complex random processes, the WSS assumption does not necessarily imply the SOS. In
many applications (communications, medical image processing, . . . ) signals (realisations of the
process), in the most general case, are complex with the real and imaginary parts being possibly
correlated to each other. In this case the R̃(m) is complex. However, when the real and imaginary
parts are uncorrelated, R̃(m) has real values, and when R̃(m) = 0, the process is said second-order
circular (SOC) [63]. (Definition: A complex process is a second-order circular (SOC) if its second-order
statistics are invariant in any phase transformation, i.e., considering Z and Z·ejα, their covariance
functions, R(m), are equal for any real number α, but their pseudo-covariance functions, R̃(m), are
equal if and only if they are zero).

If the operator F{·} defining the Fourier Transform is applied to the covariance function and to
the pseudo-covariance function, the power spectrum S(ω) = F{R(m)} and the pseudo–power spectrum
S̃(ω) = F

{
R̃(m)

}
are defined.

For a real process S(ω) = S̃(ω), and uniquely it defines the power spectrum of the process, which
shows the well-known properties of symmetry, non-negative and a finite-value of the integral over the
interval [−π,+π]. Conversely, any function S(ω) satisfying the previous three properties can be
considered to be the Fourier transform of the covariance function of a real process.

For a complex process, given the two functions S(ω) and S̃(ω), they are respectively the
power spectrum and the pseudo–power spectrum of a complex SOS random process if they satisfy the
necessary conditions:

(i) S(ω) ≥ 0, (ii) S̃(ω) = S̃(−ω), (iii)
∣∣∣S̃(ω)

∣∣∣2 ≤ S(ω)S(−ω) (A17)

An SOS complex process is said “white” if the covariance function R(m) = R(0)·δ(m), where
δ(m) is the delta function, and no restriction is imposed on R̃(m). Instead, an SOS complex process is
said “doubly white” if it is “white”, and R̃(m) = R̃(0)·δ(m).

In general R̃(m) is complex, but when the real and imaginary parts are uncorrelated, it assumes
a real value and, and when R̃(m) = 0, the process is a circular white process.

Now, after the introduction of the above concepts and definitions, we define the entropy rate of a
complex random process Zn. As it occurs in the real case, the entropy rate is defined:

hr(Zn) = hr(Z1, Z2, . . . , Zn) = lim
n→∞

1
n

h(Z1, Z2, . . . , Zn) (A18)

if the limit exists, and it results: h(Z1, Z2, . . . , Zn) ≤ ∑n
k=1 h(Zk), where the equality occurs if and

only if the Zi are independent.
Hence, the entropy rate can be used to measure the sample dependence and it reaches the upper

bound when all samples of the process are independent.
Given a complex SOS Gaussian process Zn with power spectrum S(ω) and pseudo–power spectrum

S̃(ω), the entropy rate is [64]:

hr(Zn) = ln(πe) +
1

4π

∫ +π

−π
ln
[

S(ω)S(−ω)−
∣∣∣S̃(ω)

∣∣∣2]dω (A19)

If Zn is a Gaussian second-order circular process, S̃(ω) = 0, and Equation (A19) becomes:

hcirc.
r (Zn) = ln(πe) +

1
4π

∫ +π

−π
ln[S(ω)S(−ω)]dω (A20)

hence, being in the most general case
∣∣∣S̃(ω)

∣∣∣2 ≥ 0, for the second-order circular and non-circular
Gaussian process with the same covariance function R(m), we have:

hnon−circ.
r (Zn) < hcirc.

r (Zn) (A21)

Now we show that for a doubly white Gaussian random process with R̃(0) ∈ R (i.e., with the
real and imaginary parts uncorrelated) the entropy rate, Equation (A19), is the sum of the entropy rate
of the real part, hr(Xn), and imaginary parts, hr(Yn), of the process. Since Xn and Yn are uncorrelated,
we can directly use the entropy rate formula for real Gaussian process, and the entropy rate of the
complex Gaussian process is:

hr(Zn) = hr(Xn) + hr(Yn) (A22)



Remote Sens. 2021, 13, 4509 19 of 22

Since Xn and Yn are white, i.e., with constant spectrum: SX(ω) = RX(0) and
SY(ω) = RY(0), due to the uncorrelation hypothesis for Xn, Yn: R(0) = RX(0) + RY(0) and
R̃(0) = RX(0)− RY(0), it results S(ω) = S(−ω) = SX(ω) + SY(ω) and S̃(ω) = SX(ω)− SY(ω)
real. Then:

S(ω)S(−ω)−
∣∣∣S̃(ω)

∣∣∣2 = 4·SX(ω)SY(ω) (A23)

Inserting Equation (A23) in Equation (A19), we obtain Equation (A22) being:

hr(Xn) = ln
(√

2πe
)
+

1
4π

∫ +π

−π
ln[SX(ω)]dω (A24)

hr(Yn) = ln
(√

2πe
)
+

1
4π

∫ +π

−π
ln[SY(ω)]dω (A25)

If the Gaussian random process is second-order circular white, R̃(m) = 0, the entropy rate is
simply given by twice the entropy rate in the real domain and MIR = h(Z)− hr(Z1, Z2, . . . , Zn), can

be evaluated considering the marginal entropy h(Z) = ln(πe) + ln
[

1
2π

∫ +π
−π S(ω)dω

]
(sum of the

entropy of the real and the imaginary part) and also the entropy rate as the sum of the entropy rate of
the real and the imaginary part: hr(Z1, Z2, . . . , Zn) = ln(πe) + 1

2π

∫ +π
−π ln[S(ω)]dω. Hence:

MIR = ln
[

1
2π

∫ +π

−π
S(ω)dω

]
− 1

2π

∫ +π

−π
ln[S(ω)]dω (A26)

Appendix C

The following Matlab function allow us to estimate the marginal and the joint entropy of the
real (imaginary) part of a noise waveforms.

function E = EntropyEstimationHist(X1) function E = EntropyEstimationHist2D(X1,X2)
h = histogram(X1); h = histogram2(X,X2);
x = h.BinEdges; x = h.XBinEdges;
BinCount = h.BinCounts; y = h.YBinEdges;
zero = find(BinCount == 0); stepx = x(2) − x(1);
for k = 1:length(zero) stepy = y(2) − y(1);
BinCount(zero(k)) = 1e − 18; BinCount = h.BinCounts;
end zero = find(BinCount == 0);
BinCount = BinCount/sum(BinCount); for k = 1:length(zero)
step=x(2) − x(1); BinCount(zero(k)) = 1e − 18;
E = log(step) − sum(BinCount.*log(BinCount)); end
end BinCount = BinCount/sum(sum(BinCount));

E = log(stepx*stepy) − sum(sum(BinCount.*log(BinCount)));

It uses the approximation of the density function and the joint density function by the
1D and 2D histogram.

The performance of the estimation depends on the number of samples (or pairs for
2D histograms) used to evaluate the histogram. Figure A1a shows the estimated marginal
entropy, Figure A1b the joint entropy versus the number of samples (or pairs) and their
standard deviation (Figure A1c). Generally, this approach presents an underestimate of the
entropy for a low number of samples (lack of values in the histogram evaluation). For a
large number of samples (or pairs), i.e., ≥ 105, the performance becomes to be appreciable.

This approach conceptually could be extended to estimate the joint density in the
multivariate case (n > 2), however, the “curse of dimensionality” [71] makes it impossible to
realise. This term “curse of dimensionality” was coined by R. E. Bellman (1961) to indicate
that the number of samples needed to estimate an arbitrary function with a given level of
accuracy grows exponentially with the number of variables that it comprises.
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