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Abstract: From August to October 2020, a serious wildfire occurred in California, USA, which
produced a large number of particulate matter and harmful gases, resulting in huge economic
losses and environmental pollution. Particulate matter delays the GNSS signal, which affects the
like precipitable water vapor (LPWV) derived by the GNSS non-hydrostatic delay. Most of the
information of GNSS-derived LPWV is caused by water vapor, and a small part of the information is
caused by particulate matter. A new method based on the difference (∆PWV) between the PWV of
virtual radiosonde stations network and GNSS-derived LPWV is proposed to detect the changes of
particulate matter in the atmosphere during the 2020 California wildfires. There are few radiosonde
stations in the experimental area and they are far away from the GNSS station. In order to solve this
problem, we propose to use the multilayer perceptron (MLP) neural network method to establish
the virtual radiosonde network in the experimental area. The PWV derived by the fifth-generation
European center for medium-range weather forecasts reanalysis model (PWVERA5) is used as the
input data of machine learning. The PWV derived by radiosonde data (PWVRAD) is used as the
training target data of machine learning. The ∆PWV is obtained based on PWV derived by the
virtual radiosonde station network and GNSS in the experimental area. In order to further reduce the
influence of noise and other factors on ∆PWV, this paper attempts to decompose ∆PWV time series
by using the singular spectrum analysis method, and obtain its principal components, subsequently,
analyzing the relationship between the principal components of ∆PWV with particulate matter. The
results indicate that the accuracy of PWV predicted by the virtual radiosonde network is significantly
better than the fifth-generation European center for the medium-range weather forecast reanalysis
model, and the change trend of ∆PWV is basically consistent with the change law of particulate matter
in which the value of ∆PWV in the case of fire is significantly higher than that before and after the fire.
The mean of correlation coefficients between ∆PWV and PM10 at each GNSS station before, during
and after wildfires are 0.068, 0.397 and 0.065, respectively, which show the evident enhancement of
the correlation between ∆PWV and particulate matter during wildfires. It is concluded that because
of the high sensitiveness of ∆PWV to the change of particulate matter, the GNSS technique can be
used as an effective new approach to detect the change of particulate matter and, then, to detect
wildfires effectively.

Keywords: global navigation satellite system; 2020 California wildfires; virtual radiosonde stations
network; multilayer perceptron neural network; PM10/PM2.5

1. Introduction

In 2020, huge wildfires that raged through California killed 91 people, and fiercer wild-
fires occur in the western United States more frequently [1], impinging on the ecosystem.
Additionally, wildfires cannot only cause great economic damage, but also produce incalcu-
lable impacts on the environment. Therefore, the research on wildfires detection methods
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grows in popularity. Wildfires produce a large number of smoke particles [2], of which
PM10 (particles from 0 microns to 10 microns) and PM2.5 (particles from 2.5 microns
or less) are considered as two important indicators, affecting human health. Long-term
exposure to particles seriously damages human bodies. Anjali et al. studied the Australian
wildfires in 2019, concluding through experimenters that long-term exposure to wildfires
smoke has a serious impact on the respiratory tract [3]. Angeliki et al. collected statistics
on particulate matter from 1980 to 2020. Moreover, it was concluded that PM10 and PM2.5
concentrations are associated with mortality, and that the risk of cardiovascular death
and the incidence rate of the respiratory system will mount with the increase in PM2.5
concentration in smoke [4]. The occurrence of wildfires is often triggered by natural causes
such as heatwaves and droughts in summer and lightning, as well as smoking, picnics, and
other human activities [5,6]. Wildfires are unpredictable and harmful. The earlier detection
of wildfires can significantly alleviate the impact on people and the loss [7,8]. Antonio et al.
developed a layered wireless sensor network, which is combined with originated wildfires
in dangerous areas and integrated with a fire command center, geographic information
system, and fire detector so as to detect wildfires [9]. Hu et al. applied Sentinel-2 remote
sensing data to classify wildfire areas and non-fire areas, and established a fully automatic
algorithm based on adaptive thresholds which can be applied to onboard processing [10].
Taking the 2020 California wildfires as the research object, Alan et al. modeled 54 million
wildfires and 25 million building locations in the study area, conducting a risk assessment
and experiments for wildfire prediction [11]. Currently, the research methods of wildfire
detection mainly use unmanned aerial vehicles, remote sensing, various smoke sensors, etc.,
but these methods have the disadvantages of a huge cost and poor real-time performance.

The Global Navigation Satellite System (GNSS) has been widely used in the field of me-
teorology by virtue of its advantages of wide distribution of stations, all-weather observa-
tion, low cost, and high temporal and spatial resolution [12–15]. The content of precipitable
water vapor (PWV) in the atmosphere changes sharply with time and space [16–18], so the
PWV is widely used in meteorology research [19–21]. The GNSS-derived PWV (PWVGNSS)
has been verified, and its accuracy is the same as that of traditional technologies such
as a radiosonde station, airborne radiometer, water vapor radiometer, and lidar [22,23].
Moreover, Abbasy et al. conducted experiments on GNSS stations in the province of Zanjan,
Iran, and compared PWVGNSS with the radiosonde-derived PWV (PWVRAD) value and
PWV value in the global reanalysis datasets [24]. It has been concluded that GNSS inver-
sion PWV has a better inversion accuracy. Yahaya et al. studied the correlation between
GNSS inversion PWV and particulate matter in Nigeria, and determined statistics on the
correlation between GNSS inversion PWV and particulate matter PM10 [25]. It has been
concluded that GNSS inversion PWV and PM10 are highly correlated. Guo et al. studied
the correlation between the inversion of the zenith total delay (ZTD) and PM2.5 by GNSS,
and predicted the particulate matter PM2.5 in short-term, proving the influence of the
GNSS-based inversion on ZTD, including particulate matter [26]. Wen et al. verified the
relationship between the zenith wet delay and PM2.5 based on GNSS and meteorologi-
cal factors, and predicted the PM2.5 value in short-term [27]. The feasibility of particle
detection based on GNSS has been proved by relevant research.

The GNSS signal is delayed due to the influence of the troposphere. The hydrostatic
delay can be obtained by the tropospheric model with millimeter accuracy, mainly con-
sidering the influence of the standard atmosphere without particles such as PM10/PM2.5.
Therefore, the influence of particulate matter is included in the non-hydrostatic delay [26]
and GNSS-derived like PWV(LPWV). Most of the information of GNSS-derived LPWV is
caused by water vapor, and a small part of the information is caused by particulate matter.
The PWV observed by the radiosonde station is mainly caused by water vapor, without
being affected by particles. Therefore, the difference (∆PWV) between GNSS-derived
LPWV and PWVRAD is mainly caused by particles in theory [28]. Because of a few available
ground sounding stations without colocation, this paper proposes a method to detect
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the change of atmospheric particles during the 2020 California wildfires by obtaining the
∆PWV based on the PWV of virtual sounding stations and GNSS stations.

This paper aims to use the GNSS technique to detect particulate matter changes caused
by the 2020 California wildfires. A new method based on the ∆PWV between the PWV
of the virtual radiosonde stations network and GNSS-derived LPWV is proposed. The
relationship between particulate matter and ∆PWV is studied. Section 2 introduces study
areas, data collection and research methods. Processing results and analyses are presented
in Section 3. Finally, the conclusion is given in Section 4.

2. Data and Research Methods
2.1. Study Area

California is a wildfire hot spot in the western United States [29]. In order to deal
with the occurrence of wildfires, California’s fire prevention budget has mounted year
by year, but still cannot solve the problem of wildfires. The most destructive wildfires
recorded broke out in the 21st century [30]. Since August 2020, another wildfire consumed
swathes of California with a burned area of more than 2.09 million acres (about 8457 square
kilometers), reaching an all-time high. The 2020 California wildfires have led to huge
economic losses and environmental pollution.

As California is located in the west of the Rocky Mountains and positioned in the
Mediterranean climate zones, it is affected by anticyclones caused by Pacific high pressure
in summer with dry air and little rainfall, which is very prone to triggering wildfires. In
winter, affected by the Pacific moderation, it belongs to the wet season (from December
to April), and the precipitation on the windward slope (west slope) is abundant [31].
Heatwaves and dryness in summer can induce wildfires easily, so California has become a
hot spot of wildfires in the world.

2.2. Research Data
2.2.1. Wildfire Data

The wildfires map provided by National Aeronautics and Space Administration
(NASA) is shown in Figure 1b (https://firms.modaps.eosdis.nasa.gov/map Access date:
6 September 2021). The wildfires mainly occur in northern California with a large area
and long duration. Additionally, the wildfires mainly happen in August, September, and
October, of which the area of wildfires in September is regarded as the largest. According
to the area of the wildfires, the area with longitude from 113◦W to 124◦W and latitude from
33◦N to 41◦, mainly in California, was chosen for the current study. The distribution of
GNSS stations, air quality monitoring stations, and ground radiosonde sounding stations
is shown in Figure 1.

2.2.2. GNSS Data

Based on wildfire information, 10 GNSS stations in California were selected as the
research data which were taken from the Système d’Observation du Niveau des Eaux
Littorales (SONEL) website (https://www.sonel.org/ Access date: 6 September 2021). The
GNSS data only included GPS data with a 30s data sampling interval and a data length
from day 001 of year 2020 to day 366 of year 2020. The distribution of selected GNSS
stations is shown in Figure 1b.

The Global Positioning System(GPS) data processing strategy is shown in Table 1.
The GPS data were processed based on the data processing strategy in Table 1. The

solution average accuracy of GNSS-derived ZWD and GNSS-derived LPWV at each site
is shown in Table 2. According to Table 2, the average accuracy of ZWD and LPWV
at ten GNSS stations in the experimental area from 001 days to 366 days in 2020 was
between 3.09 mm~4.53 mm and 0.52 mm~0.75 mm, respectively. The solution accuracy
met the requirements.

https://firms.modaps.eosdis.nasa.gov/map
https://www.sonel.org/
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Table 1. The Global Positioning System (GPS) data processing strategy.

Parameters Value

Cut-off height angle 10◦

Tropospheric model Saastamoinen
Mapping function GMF

Tropospheric parameter estimation interval 1 h
Ocean tide model Fes2004

Epoch interval 30 s
Solar pressure model BERNE
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Table 2. The average accuracy of GNSS-derived zenith wet delay (ZWD) and GNSS-derived like
precipitable water vapor (LPWV)(mm).

Site GNSS-Derived ZWD GNSS-Derived LPWV

QUIN 4.03 0.67
GOLD 4.02 0.66
GOL2 4.07 0.68
FVPK 3.98 0.66
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Table 2. Cont.

Site GNSS-Derived ZWD GNSS-Derived LPWV

SLAC 3.09 0.52
TIBB 4.18 0.70
UCSF 4.53 0.75
STFU 4.49 0.74
CSST 4.37 0.73
EOCG 4.28 0.73

2.2.3. Air Quality Data

The PM10/PM2.5 data were selected to indicate the wildfire situation, which were
taken from the global air quality data platform (https://aqicn.org/data-platform/register/
Access date: 6 September 2021) with the data period from day 001 of year 2020 to day 366
of year 2020. The global air quality data platform provides an average of PM data every
day. The distribution of selected air quality stations is shown in Figure 1b.

2.2.4. PWV Data

The PWVRAD data were derived from the measured data of radiosonde stations
(http://weather.uwyo.edu/upperair/sounding.htm Access date: 6 September 2021). This
paper adopted four radiosonde stations in which the observation data at 0:00 am every day
was taken as the experimental data with the data period from day 001 of year 2016 to day
366 of year 2020, with its geographical distribution shown in Figure 1a,b.

The PWV derived by the fifth-generation European center for medium-range weather
forecasts reanalysis model (ERA5) dataset (https://cds.climate.copernicus.eu/cdsapp#
!/dataset/reanalysis-era5-single-levels?tab=form Access date: 6 September 2021) was
also used in this study. The ERA5 uses physical laws to combine the model data with
the observation results throughout the world to form a global complete dataset [32–34].
The ERA5 can provide PWV data extending from the earth’s surface to the top of the
atmosphere. Thereinto, data grid size was 0.25◦and the time resolution was 24 h. Moreover,
the data at 0:00 (UTC) in a day was taken as the experimental data in this study with the
data period from day 001 of year 2016 to day 366 of year 2020.

Due to the systematic error between ERA5-derived PWV (PWVERA5) and PWVRAD, in
order to establish the PWV network model of virtual radiosonde station, the PWV data
of radiosonde sounding stations in the Rockies were used as the neural network learning
data to train PWVERA5, so as to construct the PWV model of virtual radiosonde station in
the Rockies of California and eliminate the systematic error. The PWV data in radiosonde
station were derived from the Department of Atmospheric Science at the University of
Wyoming (http://weather.uwyo.edu/upperair/sounding.html Access date: 6 September
2021). The data were measured twice at 0:00 am (UTC) and 12:00 am every day, and the
research period was selected from day 001 of year 2016 to day 366 of year 2020, a total of
five years. The distribution of selected radiosonde stations is shown in Figure 1a, where
ZXS, BOI and EPZ were self-inspection data.

2.3. Research Methods
2.3.1. Acquirement of ∆PWV

GAMIT 10.74 was used to process GPS data for obtaining GNSS-derived LPWV. The
principle was that the total tropospheric delay (ZTD) was taken as an unknown parameter
and solved by the GNSS carrier phase observation equation. GNSS phase observation
equation was [35]:

Lj
i, f = ρ

j
i + c

(
dti − dtj

)
+ M·ZTD − I j

i, f + λ f N j
i, f + ε

j
i, f (1)

https://aqicn.org/data-platform/register/
http://weather.uwyo.edu/upperair/sounding.htm
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
http://weather.uwyo.edu/upperair/sounding.html
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where I, j, and f denote the satellite, receiver, and signal frequency, respectively. ρ
j
i denotes

the geometry distance from receiver to satellite. c represents the speed of light in vacuum.
dti and dtj are the receiver clock offset and the satellite clock offset, respectively. M is the
mapping function of troposphere. The ZTD and I j

i, f denote the total tropospheric delay

and the slant ionosphere delay. N j
i, f and λ f are the phase ambiguity and the wavelength of

phase observation. ε
j
i, f denotes other unmodelled errors.

The ZTD can be expressed as:

ZTD = [Lj
i, f − ρ

j
i − c

(
dti − dtj

)
+ I j

i, f − λ f N j
i, f − ε

j
i, f ]/M (2)

The ZTD is the zenith total delay, including the delay caused by standard dry atmo-
sphere, water vapor, and particulate matter. The ZHD was calculated using the Saasta-
moinen model [36]. The equation was:

ZHD =
0.0022768P

1 − 0.00266COS(2L)− 0.00028H
(3)

where P denotes atmospheric pressure. L denotes latitude. H denotes the GPS station
geodetic height. The ZHD is a delay due to standard dry atmosphere. The standard
dry atmosphere did not include PM10, PM2.5, and other particles. Finally, zenith non-
hydrostatic delay (also known as zenith wet delay, ZWD) could be calculated by:

ZWD = ZTD − ZHD (4)

Therefore, the delay caused by water vapor and particles was included in ZWD.
The GNSS-derived LPWV could be calculated by [37]:

LPWV = ZWD·σ (5)

σ =
106

ρwgs

[
k2 +

(
k3
Tm

)] (6)

where σ, Tm and ρw are the conversion factor, the weighted average temperature of the
troposphere, and the density of liquid water. gs = 461 J·kg−1 K−1. k2 = 16.48 K/hPa,
k3 = 105 K2 (3.776 ± 0.014)/hPa.

Since GNSS-derived LPWV was calculated according to ZWD, GNSS-derived LPWV
would also be affected by particles.

The PWVRAD threes directly calculated by meteorological parameters, so it threes only
caused by water vapor and threes not affected by particles. In order to deduct the influence
of water vapor in GNSS-derived LPWV, the PWVRAD threes introduced.

The relative humidity (U) and the saturated water vapor pressure (E) of radiosonde
data should have been used to calculate the precipitable water pressure (e) [38] to obtain
PWVRAD from radiosonde stations:

e =
UE
100

(7)

The specific humidity (q) was obtained according to water vapor pressure:

q =
εe

p − e ∗ (1− ε)
(8)

The PWVRAD from radiosonde stations was obtained by integration [39]:

PWVRAD =
1
g

∫ p0

0
qdp (9)
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where, ε = 0.622 gkg−1 as an empirical constant. p and p0 represent pressure of different
heights measured by the sounding balloon sensor. g is gravitational acceleration. The
PWVRAD was calculated from the measured meteorological data. Therefore, the influence
of particulate matter was not included.

Therefore, the ∆PWV affected by particulate matter was expressed as:

∆PWV = LPWV − PWVRAD (10)

The ∆PWV was obtained through the calculation from Equations (1) to (10) above.
Theoretically, ∆PWV was caused by particles. The occurrence of fire would produce a large
number of smoke particle pollutants such as PM2.5 and PM10. Therefore, the correlation
between ∆PWV and PM10/PM2.5 could be used to detect wildfires.

2.3.2. Establishment Methods of Virtual Radiosonde Station Networks

Since only 4 radiosonde stations were available in the area of the wildfires without co-
location with GNSS stations, this situation affected the calculation of ∆PWV. In this study,
establishing PWV network of virtual radiosonde stations based on multilayer perceptron
(MLP) neural network was proposed. Thereinto, the PWVERA5 data at the radiosonde sta-
tions provided by the European center for medium-range weather forecasts, the longitude,
latitude and elevation of GNSS station, as well as the annual and the day of year (doy) of
PWV data, were used as training input data. Moreover, the PWVRAD value at radiosonde
stations was used as the learning target data. As the experimental area was located in the
west of the Rockies and close to the Pacific Ocean, the terrain fluctuated greatly. To validate
the science of virtual radiosonde network, the PWVERA5 and the PWVRAD at 40 radiosonde
stations were used as input data and learning target data for training. Radiosonde stations
are distributed around North American Rockies (as shown in Figure 1). The period of PWV
data was doy 001 of 2016 to doy 366 of 2020. The geographical distribution of radiosonde
stations used for training and verification is shown in Figure 1a.

The MLP neural network is defined as a distributed algorithm mathematical model
for information processing based on the interaction of a large number of neurons with
the characteristics of self-adaptive, self-learning, and real-time learning. The MLP neural
network is generally composed of input layer, hidden layer, and output layer, in which
there are a large number of nodes connected by weight between each network layer [40].
When MLP neural network receives a group of input signals, it performs nonlinear weight
calculation through activation function, and transmits the calculation results to the next
neuron. Because the initial weight is randomly generated, the output value reaches the
predetermined goal by continuously adjusting the weight between each neuron in the
training process.

The MLP neural network model constructed in this study is shown in Figure 2, in
which the input layer contained 6 parameters—year, doy, latitude, longitude, geodetic
height, and 0:00 (UTC) PWVERA5; 2 hidden layers were included in the middle, and the
output layer was the 0:00 PWVRAD value of ground radiosonde station. In this study,
Levenberg–Marquart (LM) algorithm was used for neural network training. The LM
algorithm has proved to be an optimization algorithm with excellent performance, strong
convergence, and high precision by combining the strengths of gradient method and
Newton–Raphson method. In this study, it was used for neural network fitting training
algorithm, eliminating the systematic error between PWVERA5 and PWVRAD to improve
the accuracy of PWVERA5.

2.3.3. Singular Spectrum Analysis (SSA)

In theory, the ∆PWV was influenced by particulate matter. However, the LPWV could
be affected by climate temperature and precipitation. Therefore, it was also affected by
many other factors besides particles. Since the singular spectrum analysis (SSA) method
could decompose the one-dimensional sequence into a series of time series with their
characteristics, such as tendency, cycle, and noise, it was possible to extract the trend,
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identify the period of the original time series, and smooth the data [41–44]. Therefore, the
SSA was used to decompose ∆PWV to obtain its principal component. The technical route
is shown in Figure 3.
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As shown in Figure 3, first, input ∆PWV time series. Second, the construction of delay
matrix. In general, oscillations with periods of M/5~M could be well recognized when
the window length was M. Third, singular value decomposition, which could construct a
new matrix by choosing its eigenvalues and eigenvectors. The fourth grouping divided the
original time series into disjoint groups. Fifth, diagonal averaging, the purpose of which
was to convert the decomposed primary matrix back into a new time series of the original
length, called the reconstruction component (RC), and the sum of all the RC values equaled
the original sequence. Sixth, the correlation analysis of all RCs was carried out, and the
principal components were determined.

3. Result and Analysis
3.1. Accuracy Analysis of PWV of Virtual Radiosonde Station Network

In order to verify the accuracy of the virtual radiosonde station network PWV
(PWVVR), the fitting rate (R) of the neural network and performance of machine learning
at different stages of learning were analyzed, and the results are shown in Table 3 and
Figure 4. It can be seen from Figure 4 that the fitting rate of the regression analysis in the
training stage, validation stage, test stage, and the whole process was 0.977, 0.987, 0.984,
and 0.979, respectively. The mean squared error (MSE) in the training stage, validation
stage, test stage, and the whole process was 3.12 mm, 1.17 mm, and 1.37 mm, respectively.
The results show that the effect of machine learning was good.

Table 3. Performance of machine learning.

Progress Samples MSE (mm) Fitting Rate

Training 52,428 3.12 97.75%
Validation 6554 1.17 98.77%

Testing 6554 1.37 98.41%

In order to further analyze the accuracy of PWVVR, PWVVR, and PWVERA5 at ZXS
(the radiosonde in the northern of the virtual radiosonde network), BOI (the radiosonde
station in the central of the virtual radiosonde network), and EPZ (the radiosonde station in
the south of the virtual radiosonde network) were selected to compare with the PWVRAD,
respectively. The root mean square error (RMS), mean, and standard deviation (STD) were
calculated, respectively. The correlations between PWVERA5 and PWVRAD, and PWVVR
and PWVRAD were analyzed, respectively. The statistical results are listed in Table 4.

Table 4. PWV of virtual radiosonde station network (PWVVR) accuracy analysis.

Station Latitude (◦) Longitude (◦) Geodetic
Height (m) Parameter PWVERA5 and

PWVRAD (mm)
PWVVR and

PWVRAD (mm)

ZXS 53.9 –122.79 601

RMS 2.16 1.75
STD 1.85 1.75

MEAN 1.11 0.05
CORREL 0.98 0.99

BOI 43.56 –116.21 874

RMS 0.93 0.72
STD 0.91 0.72

MEAN –0.11 –0.08
CORREL 0.98 0.99

EPZ 31.86 –106.7 1252

RMS 1.02 0.79
STD 0.97 0.79

MEAN 0.31 0.04
CORREL 0.98 0.99
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According to the statistics, compared with the RMS, STD, and mean of the difference
between PWVERA5 and PWVRAD, those of the difference between PWVVR and PWVRAD at
the three radiosonde stations were reduced by 21.37%, 14.95%, and 69.95%, respectively,
with particularly obvious improvement in the mean value. This shows that the system
error between PWVERA5 and PWVRAD could be greatly reduced by establishing a virtual
radiosonde station network, so that the accuracy of PWVERA5 can be improved. It can be
seen from the above statistical results that the accuracy of PWVVR was obviously better
than that of PWVERA5. Therefore, PWVVR could be used to replace the PWVRAD value of
the radiosonde station to calculate ∆PWV.

3.2. Detection of Change of Particulate Matter Based on ∆PWV

Firstly, based on PWVVR in the Rocky Mountain region of the United States, the ∆PWV
of each GNSS station at hour 0 (UTC) each day was obtained, and the mean of ∆PWV of
each period before, during, and after the fire was calculated. The variation of the mean of
∆PWV in different fire stages was analyzed, and the statistical results were listed in Table 5.

As is listed in Table 5, the mean of ∆PWV at each GNSS station was higher than that
before the fire, which was mainly due to the significant increase in ∆PWV caused by a large
amount of particulate matter generated during the fire. The ∆PWV before the wildfire
of the seven GNSS stations was higher than that after the wildfire, such as QUIN. This
was mainly due to the rainy season from January to April every year. After the fire, there
was less rainfall in the dry season in this area. Due to the special climatic factors, the
∆PWV in the seven GNSS stations was higher in the early period than in the later period
of the wildfire. The ∆PWV of the three GNSS stations, including STFU in the later stage
of fire, was larger than that in the earlier stage, possibly because the three GNSS stations
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were located at the junction of the Coast Mountains and Tehachapi Mountains, with no
high mountains blocking them. Under the influence of the Pacific humid airflow all year
round [45], and because the GNSS stations on both sides were close to the fire burning area,
the particles after the fire remained in the air for a long time.

Table 5. Statistics of mean of the difference (∆PWV) between the PWV of virtual radiosonde stations
network and GNSS-derived LPWV in different fire periods (mm).

GNSS Before Fire During Fire After Fire

QUIN 2.42 3.51 2.36
GOLD 3.67 4.50 2.90
GOL2 3.63 4.44 2.88
FVPK 1.84 3.57 1.24
SLAC 1.76 4.11 1.42
TIBB 1.57 4.02 1.42
UCSF 3.87 6.25 3.47
STFU 1.80 3.69 2.50
CSST 1.05 3.33 2.79
EOCG 0.98 2.21 2.47

There were four air quality monitoring stations distributed in the study area. San Jose
only provided PM2.5 data, while the other three stations provide PM10 and PM2.5 data.
This paper determined statistics on PM10 data of the four air quality stations according
to the maximum value, average value, and STD before and after the fire. The results are
listed in Table 6, from which it can be concluded that PM10 was maximum at the time of
fire occurrence. The PM10 concentration after the wildfire was higher than that before the
wildfire, which was consistent with the change trend of wildfire, indicating that PM10 data
could be used to characterize the change of wildfire.

Table 6. The PM10 statistics of air quality stations in different fire periods (µg/m3).

Air Station Parameter Before Fire During Fire After Fire

San Jose
STD 10.09 38.77 15.83

MEAN 25.53 58.08 36.20
MAX 57.00 180.00 85.00

Los Angeles
STD 15.21 26.01 14.75

MEAN 43.82 68.38 55.38
MAX 94.00 159.00 90.00

Fresno
STD 10.19 29.77 19.31

MEAN 23.07 69.71 32.61
MAX 59.00 164.00 79.00

Las Vegas
STD 7.52 10.72 8.16

MEAN 18.84 32.72 20.66
MAX 57.00 67.00 43.00

In order to analyze the relationship between ∆PWV and PM more directly, the vari-
ation trend of ∆PWV and PM2.5 at the SLAC station and STFU station in different fire
periods was studied. The two GNSS stations were close to the San Jose Air Quality Station,
and the PM2.5 data of San Jose Air Quality Station were taken to characterize the change
of fire. The monthly mean of ∆PWV at the two GNSS stations and the monthly mean of
PM2.5 at the air quality station were analyzed. The results are shown in Figure 5, where
the red box is the time of fire occurrence.
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Figure 5. Comparison of monthly mean values of ∆PWV and PM2.5 at SLAC and STFU stations (the fire period is in the box).

As is shown in Figure 5, before the fire, ∆PWV and PM2.5 of the two GNSS stations
were small with steady change. Since May, PM2.5 and ∆PWV were on the rise. From
August to October, when fires broke out on a large scale, PM2.5 reached the peak, and
∆PWV also rose rapidly to the peak, both changing dramatically. After October, the PM2.5
and the ∆PWV showed a trend of rapid decline, and then stabilized after November. As
can be seen from the above results, ∆PWV was highly consistent with the change of PM2.5,
and the change of PM2.5 could be detected by ∆PWV.

3.3. Analysis of the Detection of Wildfires by ∆PWV Based on SSA

However, due to the complex composition of water vapor, the ∆PWV may also be
affected by other factors. Therefore, ∆PWV was decomposed by SSA to obtain the ∆PWV
principle component (∆PWVPC), and the effects of other factors (except particulate matter)
on ∆PWV were reduced as much as possible. The window length selected in this study
was 90.

In order to select the principal component, firstly, the eigenvalue contribution rate was
analyzed. As shown in Figure 6, the results show that the eigenvalue contribution rate of
the first RC in the ∆PWV decomposition results was more than 87%. Theoretically, most of
the signals contained in the ∆PWV were caused by particles, so this result was reasonable.
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This paper, respectively, took the first one to ten order RCs as ∆PWVPC and analyzed
the correlation between each ∆PWVPC and PM10. The results show that it could achieve
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the best effect when the first RCs were taken as ∆PWVPC. Therefore, the first RCs of the
decomposition results were taken as ∆PWVPC. The undecomposed ∆PWV and ∆PWVPC
were analyzed for correlation with PM10 data, respectively, and the results are listed in
Table 7.

Table 7. Correlation comparison between PM10 data and ∆PWV before and after reconstruction.

GNSS Correlation Coefficient between
∆PWV and PM10

Correlation Coefficient between
∆PWVPC and PM10

GOL2 0.11 0.53
GOLD 0.12 0.55
STFU 0.21 0.46
SLAC 0.19 0.43
TIBB 0.25 0.49
UCSF 0.22 0.45
QUIN 0.10 0.58
CSST 0.35 0.56
EOCG 0.19 0.55
FVPK 0.21 0.59

As is listed in Table 7, by using SSA to extract the principle components, the correlation
coefficient between ∆PWVPC and PM10 was 209.65% higher than the correlation between
∆PWV and PM10. It could be concluded that after SSA reconstruction, the influence of
non-particulate matter on ∆PWV was significantly reduced, and the contribution rate of
particulate matter to ∆PWV was significantly increased.

Taking QUIN, CSST, EOCG, and FVPK as examples, the correlation analysis of
∆PWVPC in different periods of fire with PM10 and PM2.5 was conducted, respectively.
The statistical results are listed in Table 8.

Table 8. The correlation analysis of ∆PWV principle component (∆PWVPC).

GNSS Fire Period PM10 PM2.5

QUIN
Before the fire 0.082 –0.525
During the fire 0.413 0.310
After the fire 0.309 –0.007

CSST
Before the fire 0.027 0.175
During the fire 0.418 0.321
After the fire 0.377 0.295

EOCG
Before the fire 0.117 0.257
During the fire 0.412 0.281
After the fire –0.164 –0.202

FVPK
Before the fire 0.045 0.182
During the fire 0.346 0.310
After the fire –0.260 –0.064

As is listed in Table 8, the correlation coefficient between ∆PWVPC and PM10 and
PM2.5 increased significantly when fire occurred, which indicates that ∆PWV based on the
virtual radiosonde station network was feasible to detect the change of particulate matter.
Additionally, it was also effective to detect the change of particulate matter. In addition, the
correlation coefficient between PM10 and ∆PWV increased the most, indicating that in the
particulate matter produced by the fire, the content of PM10 was larger than that of PM2.5.

4. Conclusions

The study took the 2020 California wildfires as an example, and the data of doy 001
to 366 in 2020 from 10 GNSS stations were calculated to obtain LPWV. A new method
base on ∆PWV to detect the changes of particulate matter in the atmosphere during the
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2020 California wildfires was proposed. The results showed that the variation trend of
∆PWV was highly consistent with that of particulate matter data, with a high correlation
between them.

The specific conclusions are as follows:

(1) The virtual radiosonde station network in the Rocky Mountain region was constructed
based on the MLP neural network. The accuracy of PWVVR was significantly higher
than that of PWVERA5, and the system deviation between PWVERA5 and PWVRAD
could be greatly reduced.

(2) The ∆PWV at fire occurrence was significantly higher than that at early and late stages
of fire occurrence, showing the same change pattern with particulate matter.

(3) The ∆PWVPC was obtained by decomposing and reconstructing ∆PWV with the SSA
method. The correlation coefficient between ∆PWVPC and particulate matter data
was significantly improved, showing that the decomposition and reconstruction of
∆PWV by SSA can significantly increase the contribution rate of particulate matter to
∆PWV. At the same time, the correlation coefficient between ∆PWVPC and particulate
matter data was significantly higher during the fire occurrence period than before
and after the fire occurrence.

In conclusion, the ∆PWV method based on the virtual radiosonde station network
could effectively detect the change of particulate matter and, thus, provides a new technol-
ogy and method for wildfire detection.
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