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Abstract: In recent years, noticeable subsidence depressions have occurred along the coastal zone of
the Yellow River Delta. Consistent with these changes, dramatic human modifications within the
coastal zone stand out, and the coastline is altered from an undisturbed natural area to an artificial
coastline. However, very few studies have attempted to quantitatively analyze the relationship
between subsidence depression and human activities. Here, the subsidence characteristics of the
different land-use types in the Yellow River Delta are examined, and their spatiotemporal trends are
quantified using a long-term satellite-observed time series of 30 years (1984–2017) regarding the land
use map in combination with the InSAR-derived vertical ground deformations during three typical
periods (P1: 1992–2000, P2: 2007–2010, and P3: 2016–2017). Noticeably, the highest subsidence rates
were observed in areas where substantial human activities were observed, such as the subsidence in
the salt fields ranging from 13 mm/year to 32 mm/year to 453 mm/year, respectively. Moreover,
through the land-use prediction of Land Change Modeler (LCM), it is found that the salt field area
will be further expanded in the future. The ecological vulnerability of the Yellow River Delta coastal
zone should receive more attention in the future in terms of planning environmental protection
strategies.

Keywords: land-use/cover change; coastal subsidence; underground brine exploitation; Sentinel-1A;
Landsat; GIS

1. Introduction

There is no doubt that the amount of human interference in Earth systems has strongly
increased during the last century and has now reached a new high level, with even greater
effects than those of many natural processes on Earth [1]. In recent decades, most of the
deltas in the world have undergone artificial transformations. In East Asia, the Yellow
River Delta is highlighted as a hotspot due to its dramatic coastal land-use changes [2,3].
The delta’s natural coastline has become dominated by artificial shorelines due to the boom
of the nearshore salt and aquaculture industries, with natural areas decreasing from 70% in
1974 to 11% in 2015 [4].

On the other hand, deltaic sediments are naturally prone to sinking due to their
high compressibility and low bearing capacity. It is clear that human activity has ac-
celerated this natural process, primarily through the exploitation of groundwater and
hydrocarbons [5–7]. In the Yellow River Delta, an increasing number of case studies have
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shown that groundwater (including underground brine water) pumping and hydrocarbon
extraction are responsible for the large amount of sinking in coastal regions [8–14].

However, the relationship between land-use changes and subsidence has not been well
analyzed, and it is still not clear whether there is a causal relationship between them [15,16].
This study demonstrates the evolution of the coastal land-use of the Yellow River Delta,
which is represented by shrimp farms, oil fields, and salt pans, and these aspects have
been subjected to tremendous alterations due to human activities over the past 30 years.
Specifically, the study aims to evaluate the relationship between land-use evolution and
land subsidence risk in this delta. Moreover, we attempt to predict the future trend of
land use based on the land-use history and relevant terrain factors (see Section 3.1.3 for
details), such as slope, aspect, and a digital elevation model (DEM). It is expected that
this prediction can provide a scientific basis for land-use planning and the exploitation of
groundwater.

2. Study Area

The Yellow River Delta is one of the most active areas of land use/cover change
(LUCC) in China, and one of the fastest land-making deltas in the world (Figure 1). The
delta is formed by the accumulation of delta sediments since the Yellow River diverted in
1855, so the thickness of sediments gradually thickens from land to sea, from 4 m to 16 m.
The spatial distribution of sediment thickness is shown in the previous article [17].
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with a 10 km radius) around the 2017 coastline (~350 km) as the study area in our anal-
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Figure 1. The location of the study area is outlined by the yellow polygon within the standard
false-color Landsat 8 OLI image of the Yellow River Delta in September 2017.

The Yellow River Delta is located between the Jiyang fault depression and the Chengn-
ing uplift, with rich reserves of oil, gas, brine, and water resources [11]. The groundwater
in the Yellow River Delta is mainly composed of loose-rock pore water and mainly occurs
in alluvial and marine sediments in the upper part of the Quaternary system [18]. Since
the late Pleistocene, there have been three major transgression–regression events in the
delta [17]. Consequently, a large amount of underground brine has been found in the
Pleistocene aquifer. It has been shown that there is a large underground brine resource belt
along the coast of Bohai Bay. According to its burial depth, the belt is generally divided into
three categories: shallow brine (100 m to the surface), medium brine (100 to 400 m), and
deep brine (400 m and deeper). Previous studies [18] have shown that the development of
underground brine resources is limited to shallow underground brines. The salt pan area
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of the whole province is approximately 400 km2, with approximately 5600 brine wells and
an annual output of 6.53 million tons of raw salt.

3. Materials and Methods
3.1. Land-Use Maps
3.1.1. Remote Sensing Datasets

We built a novel constant time series of land-use maps by employing optical satellite
remote sensing Landsat mission images. Landsat-series images were chosen due to the
long period of available images, the appropriate ground resolution (30 m × 30 m), the
broad range of spectral bands, and the free access to the images (Accessed date: 10 February
2019 http://earthexplorer.usgs.gov/). The Landsat tile (path 121, row 34) covering the
entire delta was selected and outlined as the study area (Figure 1). To analyze the land-use
evolution with the maximum access to the land-use history, quantify the synchronous
subsidence rates obtained from InSAR-derived subsidence rates (see 3.3 for details), and
reduce the classification errors caused by seasonal variation (especially vegetation cover),
six Landsat satellite images (1984, 1992, 2000, 2007, 2010, and 2017) with low cloud coverage
during autumn (August–October) were screened (Table 1). We use all satellite images
passing through during the day, so it is in a descending mode.

Table 1. The detailed information of the six Landsat satellite images.

Sensor ID Date Acquired Path/Row Resolution Cloud Cover

Landsat5 TM 3 September 1984 121/34 30 m × 30 m 9.92%
Landsat5 TM 24 August 1992 121/34 30 m × 30 m 0.02%
Landsat5 TM 17 October 2000 121/34 30 m × 30 m 0.42%

Landsat7 ETM+ 11 September 2007 121/34 30 m × 30 m 0.31%
Landsat7 ETM+ 17 November 2010 121/34 30 m × 30 m 0

Landsat8 OLI 30 September 2017 121/34 30 m × 30 m 3.08%

For our research, we defined the three most representative manmade land-use classes
to include shrimp ponds, salt pans, and oil wells in the deltaic coastal zone. To encompass
the major human-induced zones, we produced a buffer polygon (~2500 km2, with a 10 km
radius) around the 2017 coastline (~350 km) as the study area in our analyses (Figure 1,
yellow polygon).

Furthermore, the topographic map constructed in 1998 was employed to depict the
locations of oil wells that are too small to be identified from the Landsat images.

3.1.2. Image Classification

The Landsat images were classified with a supervised method according to the follow-
ing two primary steps: (1) the choice of training samples and (2) the use of an appropriate
classification algorithm. We employed a “maximum likelihood classification” (MLC) algo-
rithm to assign the land-use types to the patches in the Landsat images [19]. We define

X = {xi}N
i=1,

as an original image pixel and
Y = {yi}N

i=1,

as the classification result. The MLC algorithm can be described as follows:

Ŷ = a{yi}N
i=1,

where N is the number of pixels in the original dataset and Ŷ is the solution of the opti-
mization problem. We should note that this algorithm is conducted under the presumption
that each pixel to be classified is normally distributed in each class [20].

http://earthexplorer.usgs.gov/
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According to the results of the image classification, the transformation matrix can be
realized to quantitatively examine the land-use changes. First, two different land-use maps
with identical class names were dissolved by merging the matching records into a single
map to improve the following processing. Then, these two dissolved maps were intersected
based on the overlay analysis. The above two steps were accomplished in ArcGIS 10.2.
Subsequently, these two maps were used to produce a transformation matrix in Excel.

3.1.3. Land-Use Prediction

The land change modeler (LCM) model is an integrated module in the IDRISI soft-
ware. It has been developed by the Clark Laboratory and Conservation International for
many years [21]. It is becoming one of the commonly used models to measure land-use
changes [22]. The LCM model consists of a multilayer perceptron–artificial neural network
(MLP-ANN), a Markov chain, cellular automata, and soft and hard prediction models. The
model can predict the future land-use status through simulation of the existing land-use
status and provides a good reference for decision-makers who plan and protect. Here,
we randomly selected two-thirds of the samples as training samples, and the remaining
one-third of the samples to verify the accuracy of the model. Moreover, the model can
predict and analyze land-use changes in the environment provided by IDRISI and runs by
following a set of rules in an orderly manner.

3.2. Land Subsidence Measurement
3.2.1. Rerunning Geodetic Leveling

The land subsidence in the study area in recent decades was monitored through
repeated geodetic leveling by employing the benchmark network produced by the Yellow
River Conservancy Commission from 1964 to 2007. The leveling dataset used for this study
is available from Liu and Huang (2013) between 2000 and 2007 (Figure 1, red triangle)
and from the Shandong Provincial Lubei Geo-engineering Exploration Institute from 2016
to 2017 (Figure 1, green triangle), with random errors of 3–5 mm/km and 1 mm/km,
respectively. The original leveling measurements were digitized and interpolated to derive
a homogeneous set of contour maps of the land subsidence rates (Figure 2b).
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3.2.2. InSAR Observations

In comparison with the traditional investigation method of geodetic leveling, the
InSAR technique has great advantages due to its broad coverage and high spatial–temporal
resolution under all weather conditions. More recently, radar acquisitions by various
satellites (ERS-1/2, ENVISAT-ASAR, and Sentinel-1A/B) were processed through synthetic
aperture radar (SAR) interferometry over the delta [8–14]. In the ArcGIS software environ-
ment, the conversion from InSAR vector feature point data to grid data was realized, and
then the land subsidence maps were generated by Kriging interpolation method. The land
subsidence map was shown in Figure 2a (1992–2000) and 2c (2007–2010), with estimated
errors caused by spatiotemporal variability in the surface scattering properties of 6.1 and
7.2 mm/year, respectively [11,13]. Except forSsentinel-1A, which was in ascending orbit
mode, all satellites were in descending orbit mode.

As shown in Figure 2d, we further measured recent subsidence rates in P3, by anal-
ysis of interferometric synthetic aperture radar (InSAR) imagery, using 15 C-band as-
cending track Sentinel-1A images acquired over the period from Jan 2016 to Apr 2017.
InSAR-derived subsidence rates are consistent with the leveling-based rates (mentioned in
Section 3.2.1, Figure 1, green triangle). The comparative results are shown in Figure 3. The
mean and standard deviation of the difference of the deformation rate between the two
measurements are 3.52 mm/year and 6.87 mm/year, respectively. This small error indicates
that the InSAR observations are in good agreement with the results from repeated geodetic
leveling. The settlement extremes in Figure 3 are consistent with other references [8,14].
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Figure 3. Comparison between InSAR and leveling measurements from 2016 to 2017.

3.3. Coupling Land-Use and Land-Cover Change with Subsidence

The land-use sequence maps were integrated with the corresponding land subsidence
maps to quantify the subsidence rates for each land-use class during each time period. To
improve the integration accuracy, the four corresponding Landsat images (1992, 2000, 2007,
and 2010) were chosen for combination with the two available groups of InSAR-based
subsidence measurements (Figure 2a,c).

First, the massive vector data (millions of InSAR feature points and image patches)
were converted into a raster format by employing a conversion tool embedded in ArcGIS to
improve the processing efficiency. Then, a relational equal-to operation was performed on
two inputs (e.g., 1992 and 2000 classified raster maps) on a cell-by-cell basis using the map
algebra functions in GIS. It was set to 1 in cells where the first raster (1992) was equal to
the second (2000) and to 0 otherwise. Finally, the statistical values (such as the maximum,
minimum, median, and average) of the input rasters (e.g., change or no change between
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1992 and 2000) acquired within the zone of another dataset (e.g., land subsidence rates over
1992–2000) were retrieved through zonal statistical analysis with ArcGIS 10.2 software.

3.4. Analysis of Brine Exploitation Potential

The mining potential coefficient method is used to analyze and evaluate the potential
of brine resources. The exploitation potential coefficient refers to the ratio between the
allowable exploitation amount of regional brine and the current exploitation amount, and
the calculation formula is as follows:

P = Qz/Qk

where P is the exploitation potential coefficient, Qz is the exploitable quantity of brine
(104 m3/year), and Qk is the current exploitation amount of brine (104 m3/year).

Here, the mining potential coefficient is calculated according to the above formula.
According to the zoning standards [23] shown in Table 2, the brine distribution area is
divided into the potential area, compensation balance area, and overexploitation area.

Table 2. Evaluation criteria for brine resource potential.

Zoning Standards P ≥ 1.2 0.8 < P < 1.2 P < 0.8

Evaluation potential area compensation
balance area overexploitation area

4. Results
4.1. Land-Use and Land-Cover Change
4.1.1. Land-Use Structure Change

Six maps of land-use/cover classifications were produced based on the Landsat
satellite images, as shown in Figure 4. With the help of the topographic map dated 1998
(scale 1:50,000), the oil wells constructed since 2000 were digitized and added (black dots
in Figure 4). The areal coverage of each land-use type is shown in Figure 5. The overall
accuracies of the six land-use maps are mostly greater than 90% (Table 3).

Figure 4 shows that over approximately the past 30 years, the coastal land-use structure
of the delta has undergone major changes. The most prominent change was the remarkable
increase in the area of salt fields and shrimp ponds, which increased from less than 3%
of the study area in 1984 to more than half of the area in 2017. Meanwhile, in response
to the increased aquaculture and salt industries, residential areas have constantly grown.
These developments directly reflect human activities and urbanization in the Yellow River
Delta over the past few decades. Without artificial intervention, other land-use classes
have remained relatively stable. Bare land mainly includes intertidal zones along the
coast, and its size is greatly affected by the satellite image acquisition time. Water bodies
include reservoirs, ponds, seasonal rivers, and tributaries of the Yellow River. The areas of
farmland, forest, and grassland are primarily affected by seasonal alternations.

Table 3. Validation statistics of each land-use map.

Land-Use 1984 1992 2000 2007 2010 2017

Overall accuracy 94.8 92.6 91.6 92.0 80.5 90.1
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4.1.2. Land-Use Dynamic Change

Using a transition matrix, we can quantitatively describe the land-use conversion
during a certain period. Since the satellite images in 1984 suffered from heavy cloud
cover (~10%), two transfer matrices were built for the periods of 1992–2007 (Table 4) and
2007–2017 (Table 5). The bins are colored from blue (small) to purple (large). The values
on the diagonals are those without land-use changes. A zero value means that no change
occurred. The most noticeable conversion that occurred was the growth of salt pans, mainly
by reclaiming bare fields, with the area increasing almost threefold (Table 4, 10–29%) during
P1 (1992–2007). In this period, farmland, forest, and saline alkali land increased slightly,
while shrimp ponds remained basically unchanged. Subsequently, during the next 10 years
(P2: 2007–2017, Table 5), the salt field area steadily continued to expand, and the shrimp
pond area increased by a third. Due to persistent urbanization, the areas of farmland, forest,
grassland, and saline alkali land have been greatly reduced.

Table 4. Land use/cover change transfer matrix of the study area in P1 (percentage).

Bare field Farm Forest Residential Saline
Land Salt Pan Shrimp

Farm Water Total
1992

Bare field 13 0 8 0 4 13 2 6 47
Farm 0 1 1 0 0 0 0 0 1
Forest 1 2 14 0 0 2 0 2 21

Resident 0 0 0 0 0 0 0 0 0
Saline
land 1 0 0 0 1 1 0 0 4

Salt pan 0 0 0 0 0 9 0 0 10
Shrimp

farm 0 0 0 0 0 3 7 0 11

Water 1 0 1 0 1 1 0 2 6
Total in

2007 17 3 25 0 6 29 10 10 100
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Table 5. Land use/cover change transfer matrix of the study area in P2 (percentage).

Bare
Field Farm Forest Residential Saline

Land Salt Pan Shrimp
Farm Water Total

2007
Bare field 8 0 0 0 0 2 4 2 17

Farm 1 0 1 0 0 0 0 0 3
Forest 8 0 11 0 0 4 1 1 25

Resident 0 0 0 0 0 0 0 0 0
Saline
land 4 0 1 0 0 0 1 0 6

Salt pan 3 0 0 2 1 21 2 1 29
Shrimp

farm 1 0 0 0 0 3 6 0 10

Water 2 0 1 0 1 3 1 3 10
Total in

2017 25 1 15 2 3 34 13 7 100

4.2. Subsidence Rates of Each Land-Use Type

The InSAR-derived subsidence rates measured from P1 and P2 to P3 for each land-use
sequence are shown in Figure 6 (unchanged) and Figure 7 (changed). Since P3 is only one
year (2016–2017), we assume that there is no significant change in land-use type during P3.
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The category shown in Figure 6 comprises the constant land-use sequences during
both periods (P1, P2, and P3). After the slow growth of the first two periods (P1 and
P2), the subsidence rate of the land-use class exhibited explosive growth in P3. The
highest subsidence rates occurred for salt pans, which increased from 13 mm/year (P1)
and 32 mm/year (P2) to 453 mm/year (P3). The lowest subsidence rates were observed for
bare land, which increased from 16 to 22 mm/year in the two periods. The average land
subsidence rate varied from 3–5 mm/year (P1) and 9–12 mm/year (P2) to 24–83 mm/year
(P3). The standard deviation was less than 7 mm/year.
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A total of 26 patterns of changes were identified in the other category. The maximum
value occurred for saline-alkali fields (27 mm/year, P2) that were previously bare lands,
closely followed by salt pans (25 mm/year, P2) that were previously bare fields. In particu-
lar, severe coastal subsidence appeared in both of the typical anthropogenic conversions to
shrimp ponds and salt fields (Figure 7).

Significantly, due to the insufficient coverage of the land settlement dataset in this
study, the settlement in P2 is too small. However, the existing literature [8] shows that in
the P2 period, the subsidence rate in the coastal area of the Yellow River Delta reached
250 mm/year.
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4.3. Evolution and Prediction of Land-Use/Cover and Subsidence

The land-use map of 2050 (Figure 8) predicted by the LCM model shows that the
scale of salt fields will further expand, and this prediction agrees with the distribution
characteristics of the brine resources in the coastal zone of the Yellow River Delta. It has
been shown that there are two large underground brine reserves on the southwest bank
of Laizhou Bay and the south bank of the Bohai Sea [24]. Currently, the distribution of
mining intensity is uneven, and the Yangkou salt field on the southwest bank is in a state
of overmining; however, the other areas were all deemed to be potential mining areas (see
potential area in Figure 8). The predicted distribution area of the salt fields is consistent
with the distribution of underground brine in this area. The prediction results show that in
the next 30 years, the scale of salt fields will increase by 38% at the cost of a reduction in
natural land (e.g., bare land, saline-alkali land, and forest grassland). With the development
of urbanization, the scale of residential areas will increase by 7%. Compared with the
actual land-use maps for 2010 and 2017, the prediction accuracy-based land-use maps from
1984–2007 reached 51% and 68%, respectively, due to insufficient relevance of the input
maps.



Remote Sens. 2021, 13, 4563 11 of 14

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 15 
 

 

of overmining; however, the other areas were all deemed to be potential mining areas 
(see potential area in Figure 8). The predicted distribution area of the salt fields is con-
sistent with the distribution of underground brine in this area. The prediction results 
show that in the next 30 years, the scale of salt fields will increase by 38% at the cost of a 
reduction in natural land (e.g., bare land, saline-alkali land, and forest grassland). With 
the development of urbanization, the scale of residential areas will increase by 7%. 
Compared with the actual land-use maps for 2010 and 2017, the prediction accura-
cy-based land-use maps from 1984–2007 reached 51% and 68%, respectively, due to in-
sufficient relevance of the input maps. 

 
Figure 8. Distribution map of brine exploitation potential (see Section 3.4) and land-use distribution 
map in 2050 based on the LCM model. 

5. Discussion 
5.1. Expansion of Salt Pans and Exploitation of Underground Brine 

Over the past 30 years, land-use changes in the coastal zone of the Yellow River 
Delta have featured the rapid expansion of salt fields and aquaculture. These features are 
in line with spatial–temporal patterns reported for the delta in other studies [2,25]. In 
particular, the expansion of salt pans is the most remarkable land-use transformation, 
with an area growth rate of 23 km2/year, corresponding to the findings of Qiao [4]. The 
salt industry remained stable with slight variations from 1984 to 1992. Long-term un-
reasonable extraction has led to a decline in the underground brine concentration over 
time. For example, the concentration of brine in the Guangrao salt field decreased from 
100–130 g/L at the beginning of 1959 to 40–70 g/L in 2007. Studies have shown that the 
underground brine in the salt field on the southeastern coast of Bohai Bay has declined 
by as much as 1 mm/year [17]. The appearance of land subsidence depressions in the salt 
fields denotes direct evidence of the decline in the underground brine levels [14].  

  

Figure 8. Distribution map of brine exploitation potential (see Section 3.4) and land-use distribution
map in 2050 based on the LCM model.

5. Discussion
5.1. Expansion of Salt Pans and Exploitation of Underground Brine

Over the past 30 years, land-use changes in the coastal zone of the Yellow River
Delta have featured the rapid expansion of salt fields and aquaculture. These features
are in line with spatial–temporal patterns reported for the delta in other studies [2,25]. In
particular, the expansion of salt pans is the most remarkable land-use transformation, with
an area growth rate of 23 km2/year, corresponding to the findings of Qiao [4]. The salt
industry remained stable with slight variations from 1984 to 1992. Long-term unreasonable
extraction has led to a decline in the underground brine concentration over time. For
example, the concentration of brine in the Guangrao salt field decreased from 100–130 g/L
at the beginning of 1959 to 40–70 g/L in 2007. Studies have shown that the underground
brine in the salt field on the southeastern coast of Bohai Bay has declined by as much as
1 mm/year [17]. The appearance of land subsidence depressions in the salt fields denotes
direct evidence of the decline in the underground brine levels [14].

5.2. Aquaculture and Oil Fields

In addition to salt fields, aquaculture (mainly shrimp ponds) and oil fields are two
typical types of human activities in the delta, as well as two representative manmade
subsidence factors supported by other studies [8–10]. Actually, all three of these land-use
classes are closely related in space (Figure 4). In the Yellow River Delta, the terrain is
relatively low-lying and flat, and groundwater resources are rich. Therefore, it is common
to use underground salt water for shrimp culture. Recently, shrimp breeding ponds have
been built in salt pan areas, increasing the yield of prawns and providing obvious economic
benefits. Moreover, on the north bank of the Yellow River Delta, many oil wells have been
interspersed among salt fields and shrimp ponds for decades. Long-term and high-intensity
exploitation has contributed to declines in reservoir pressure. Furthermore, as the main
method of oil exploration, water-driven exploitation accounts for 81.3% of the reservoir
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pressure effects. Therefore, artificial water injection pumped from shallow strata usually
leads to more ground subsidence than does the exploitation of deep oil with a burial depth
of 700–3500 m [13].

5.3. Land Subsidence per Land-Use Sequence

According to the InSAR measurement results of the three periods (P1, P2, and P3) and
the spatial analysis of land-use classification data, the temporal and spatial characteristics
of land subsidence under different land-use classes can be identified. In P1, in the early
stage of the construction of the delta, the influence of human activities on the natural
environment was not remarkable and was even less than the self-weight consolidation
compaction effect of the sedimentary strata [26].

In P2, the average annual subsidence rates of all land-use classes changed markedly
and became 2–3 times larger than those of the previous period. However, the differences in
subsidence rates among different land-use types were still not significant, with values of
less than 2 mm/year.

Although the average subsidence rates of various land-use classes were relatively
similar (all less than 2 mm) during the period of either P1 or P2, the interperiod change
of magnitude of subsidence increased by 2–3 times from P1 to P2. Remarkably, in P3,
the subsidence rates were approximately an order of magnitude higher than those in P2,
ranging from 24 mm/year (oil well) to 83 mm/year (salt field). This finding is consistent
with the results of several recent studies [8,14]. In particular, due to the existence of
subsidence depressions caused by groundwater exploitation (shown in Figure 2d), some
land-use types around the subsidence center show a higher subsidence rate (Figure 6).

We believe that from P1 to P3, the salt field has further expanded in space, which is
accompanied by excessive underground brine mining. Therefore, land subsidence disasters
in the delta coastal zone are caused.

5.4. Prospect for the Future

To meet the needs of economic development, the scale of the salt industry is expected
to expand further. According to Feng et al. [24], predatory exploitation of underground
brine in 2005–2008 resulted in an average annual decrease in the brine level of 1.39 m.
At present, shallow brine is the main resource in brine mining, while deep brine has not
been developed. Therefore, the exploitation potential of brine is still great. Due to the
unreasonable development of shallow brine resources, some environmental problems,
such as the depletion of underground brine resources, waste of resources, ground fissures,
ground subsidence funnels, and environmental pollution, have emerged.

Figure 9 shows the cumulative distribution function of the level-based (see locations
in Figure 1) subsidence rates for different study areas during the same period (2016–2017).
The 90% cumulative distribution of the coastal zone (red curve) is close to 100 mm/year,
which is six times larger than that of the inland area (blue curve). Even during the early
days of deltaic construction, the subsidence rates in the coastal zone were higher than
those in the inland zone. For example, the 90% cumulative distribution of the subsidence
rate from 2000 to 2007 (cyan curve) was 38 mm/year, which was more than twice that of
16 mm/year in 2016–2017 (blue curve).

According to the existing investigation, the average annual subsidence rate of the salt
fields along the coastal zone varies from tens of millimeters to hundreds of
millimeters [8,11,13,14,26,27]. Coastal zone subsidence combined with the absolute an-
nual sea level rise in the Bohai Sea and extreme disaster events such as storm surges will
likely have a great impact on the ecological environment and human life as well as on
safety in the delta.
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6. Conclusions

In the past three decades, the coastal zone of the Yellow River Delta has changed
from an undisturbed natural condition to a state dominated by salt fields and shrimp
ponds characterized by artificial activity. At the expense of the development of the natural
ecological environment, approximately 50% coverage of the coastal zone has been used
for salt fields and shrimp ponds. Such a rapid expansion of salt fields has led to the
excessive extraction of groundwater (i.e., underground brine), presumably leading to
serious geophysical disasters such as land subsidence depressions and ground fissures.

Through the analysis of land-use changes and InSAR data, it was found that after the
slow growth (increased by 2–3 times) of the first two periods (P1 and P2), the subsidence
rate of the land-use class increased by an order of magnitude in P3. Moreover, extreme land
subsidence includes different characteristics and often occurs in areas with strong human
imprints, such as salt fields and shrimp ponds. With the development of underground brine
production and the coastal brine industry, as well as the environmental impact of future
sea level rise, the ecological vulnerability of the deltaic coastal area should deserve more
attention from broad public and governmental managers. Addressing the relationship
between economic development and environmental protection is a problem worthy of
consideration. We should pay more attention to the development of underground brine.
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