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Abstract: Land surface temperature (LST) is one of the most valuable variables for applications
relating to hydrological processes, drought monitoring and climate change. LST from satellite data
provides consistent estimates over large scales but is only available for cloud-free pixels, greatly
limiting applications over frequently cloud-covered regions. With this study, we propose a method
for estimating all-weather 1 km LST by combining passive microwave and thermal infrared data. The
product is based on clear-sky LST retrieved from Moderate-resolution Imaging Spectroradiometer
(MODIS) thermal infrared measurements complemented by LST estimated from the Advanced
Microwave Scanning Radiometer Version 2 (AMSR2) brightness temperature to fill gaps caused by
clouds. Terrain, vegetation conditions, and AMSR2 multiband information were selected as the
auxiliary variables. The random forest algorithm was used to establish the non-linear relationship
between the auxiliary variables and LST over the Tibetan Plateau. To assess the error of this method,
we performed a validation experiment using clear-sky MODIS LST and in situ measurements. The
estimated all-weather LST approximated MODIS LST with an acceptable error, with a coefficient of
correlation (r) between 0.87 and 0.99 and a root mean square error (RMSE) between 2.24 K and 5.35 K
during the day. At night-time, r was between 0.89 and 0.99 and the RMSE was between 1.02 K and
3.39 K. The error between the estimated LST and in situ LST was also found to be acceptable, with
the RMSE for cloudy pixels between 5.15 K and 6.99 K. This method reveals a significant potential to
derive all-weather 1 km LST using AMSR2 and MODIS data at a regional and global scale, which
will be explored in the future.

Keywords: land surface temperature; all-weather; fusion; random forest; AMSR-2; Tibetan Plateau

1. Introduction

Land surface temperature (LST) is an important environmental variable that con-
trols land surface energy exchanges and water balance [1–4]. LST data sets are essential
for a wide range of applications in urban heat islands [5–8], drought monitoring [9–11],
climate change [12,13], hydrological processes [14–16] and crop yield estimation [17,18].
Traditionally, LST is calculated from ground-measured radiation, but this approach is time-
consuming, labor-intensive and does not provide consistent LST measurements over large
areas. The development of remote sensing technologies made it possible to consistently
estimate LST at regional to global scales at high temporal and spatial resolutions.

Thermal infrared (TIR) sensors are widely used to retrieve satellite-based LST. There
are several TIR LST retrieval algorithms, such as the single-window algorithm, the split-
window algorithm and the multi-channel algorithm [19–22]. TIR-derived LST has a rela-
tively low error (approximately 0.3–2 K) and moderate spatial resolution (approximately
1 km). However, because the thermal infrared signal cannot penetrate clouds, LST products
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tend to have a number of missing data pixels [23]. Compared to the TIR signal, the passive
microwave (PMW) signal can penetrate clouds and capture the information on the land
surface, so some studies have proposed methodologies using the brightness temperature
(BT) data of PMW sensors to estimate LST [24–26]. Unfortunately, PMW-derived LST
is characterized by low spatial resolution (10–36 km) and larger errors (4–5 K), greatly
limiting their applications. Another critical limitation of PMW-derived LST is that the
signal penetrates the soil at different depths (depending on the soil state and texture), and
therefore, the measurement does not truly represent surface temperature.

Many studies have attempted to estimate the LST of cloudy pixels, mainly based on
spatio-temporal neighboring clear pixels. For example, Jin and Dickinson [27] estimated
the LST of cloudy pixels from neighboring clear pixels with a surface energy balance-
based algorithm; however, this method can only be used where there are spatially and
temporally neighboring clear pixels. Lu [28] proposed a methodology to estimate the
LST of cloudy pixels using a Meteosat Second Generation/Scanning-Enhanced Visible
and Infrared Imager (MSG/SEVIRI, EUMETSAT: Darmstadt, Germany) developed by the
European Space Agency (ESA) and a temporal neighboring-pixel approach. This method
only works on daytime measurements. Hengl [29] estimated daily LST using time-series
of MODIS LST images, ground measurements and topographic predictors. However, in
their study, additional ground measurements were required, but these are very difficult
to obtain in harsh environment such as the Tibet Plateau. In this regard, PMW-derived
LST can complement the TIR LST. Therefore, blending PMW-derived LST and TIR LST
has become a preferred method for obtaining all-weather and good-resolution LST in
recent years [30–36]. These blending methods can be divided into two groups: One group
assumes that the relationship between LST and spatial descriptors (e.g., vegetation index,
microwave polarization difference index-MPDI, elevation, longitude and latitude) is scale-
invariant. These methods establish a relationship between the PMW-derived LST and
spatial descriptors at a low resolution, then apply this relationship to the high-resolution
spatial descriptors to obtain high-resolution PMW-derived LST [37–41]. The other group
of methods directly resamples PMW BT data to a 1 km resolution to predict 1 km PMW-
derived LST [38]. However, these methods are region-dependent; consequently, they tend
to be characterized by large errors when applied to extended areas [42].

In the Tibetan Plateau, the mean cloud coverage from the daily MODIS LST from
January to August exceeds 40% [43]. The average altitude of the Tibetan Plateau is over
4000 m, with a complex topography and climate [44,45]. Therefore, traditional temporal
or spatial neighboring interpolation methods cannot be successfully applied. Most fusing
methods are not proposed for the Tibet Plateau, so their suitability remains to be verified.

This study aims at evaluating the performance of a random forest (RF) regression
method for constructing a nonlinear relationship between TIR LST and other surface
variables, blending PMW and TIR observations to estimate all-weather 1 km LST. The
remainder of this paper is organized as follows: The study area and data employed are
described in Section 2. The proposed method is presented in Section 3. The validation
of the all-weather 1 km LST product and the comparison of RF with other methods are
provided in Section 4. In Section 5, the conclusions of this paper are presented.

2. Study Area and Data
2.1. Study Area

The Tibetan Plateau is located in Central Asia, between 26◦00′ N~39◦47′ N and
73◦19′ E~104◦47′ E. With an area of about 2.5 × 106 km2 and an average altitude >4000 m,
it is the largest and highest plateau in the world. The terrain is higher in the west and lower
in the east. The annual average air temperature in the central region of the plateau is below
0 ◦C. The Tibetan Plateau belongs to the alpine climate zone and is highly sensitive to global
climate change. LST is of great significance to the study of climate change in the plateau
and the world. Because of the complex topography and the harsh natural environment,
ground measurements of LST are very difficult to take here. At present, remote sensing is
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the main way to obtain spatiotemporally continuous LST measurements here. In recent
years, soil temperature and moisture observation networks have been established in the
Tibetan Plateau that can be used to validate remote sensing LST data in this region. Figure 1
shows the study area and soil temperature sites.
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Figure 1. Study area and soil temperature measurement sites. (a) DEM data were downloaded
from the geospatial data cloud platform of the computer network information center of the Chinese
Academy of Sciences. (b) AL02, SQ16, PL01, PL03, PL05, PL11, PL12 are the names of soil temperature
sites, AL, SQ, PL represent different prefectures. (c) Land cover data were downloaded from the
national Tibetan Plateau scientific data center.

2.2. Data Sets
2.2.1. Satellite Observations

AMSR2 is the second generation of the Advanced Microwave Scanning Radiometer
carried on the Global Change Observation Mission-Water (GCOM-W). GCOM-W was
successfully launched by the Japan Aerospace Exploration Agency (JAXA) on 18 May 2012.
In July of the same year, JAXA began to release global microwave brightness temperature
observation data. The orbit height of AMSR2 is 700 km and its scanning width is 1450 km.
Its radiometer includes 14 horizontal/vertical polarization channels at 6.9, 7.3, 10.65, 18.7,
23.8, 36.5 and 89.0 GHz. AMSR2 is mainly used to monitor global water distribution and
energy cycles [46,47]. AMSR2 L3 10 km daily brightness temperature can be downloaded
from the JAXA website https://gportal.jaxa.jp (accessed on 10 September 2019).

Aqua is an earth observation satellite that was launched by the National Aeronautics
and Space Administration (NASA) on 4 May 2002. MODIS is an important sensor on Aqua.
The overpass times of Aqua are 1:30 am and 1:30 pm local solar time, which are the same
as those of AMSR2. The MODIS/Aqua LST daily L3 global 1 km grid product (MYD11A1,
V5) was downloaded from https://search.earthdata.nasa.gov/search (accessed on 10
September 2019). The MODIS vegetation index product MYD13A2 was downloaded
from https://earthexplorer.usgs.gov/ (accessed on 10 September 2019). MYD13A2 is a
16-day synthetic product with a spatial resolution of 1 km. The algorithm for this product

https://gportal.jaxa.jp
https://search.earthdata.nasa.gov/search
https://earthexplorer.usgs.gov/
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chooses the best available pixel value from all the acquisitions from the 16 day period. The
criteria used are low clouds, low view angle and the highest NDVI value. Daily or eight-
day composite products were excluded because they contain spatial gaps. Shuttle Radar
Topography Mission (SRTM) 90 m elevation data were downloaded from the geospatial
data cloud platform of the computer network information center of the Chinese Academy
of Sciences http://www.gscloud.cn (accessed on 10 September 2019).

Table 1 shows the details of the datasets used in this paper. The first four datasets
were used to produce all-weather 1 km LST. The last two datasets were used to find ground
station whose soil temperature can reasonably represent the 1 km LST of the station pixel.
Land use data V1.0 of the Tibetan Plateau were obtained by fusing and revising many
datasets, including GlobCover of the European Space Agency, MCD12Q1 of NASA, UMD
Land Cover, and IGBP DISCover of USGS. Monthly vegetation index data from China were
derived from SPOT/VEGETATION NDVI data by the maximum value composite method,
which has been recording the monthly vegetation index of China since 1998 at a spatial
resolution of 30 m. Land use and monthly vegetation index datasets were downloaded
from the national Tibetan Plateau scientific data center https://data.tpdc.ac.cn/zh-hans/
(accessed on 10 September 2019).

Table 1. Details of the data sets used in this study.

Dataset Variable Spatial Resolution Temporal Resolution

AMSR2 Brightness Temperatures 10 km Daily
MYD11A1 Land surface temperature 1 km Daily
MYD13A2 NDVI 1 km 16 day

SRTM Elevation 90 m -
Land use Types of land use 300 m -

NDVI Monthly NDVI 30 m -

In order to compare RF with other methods, we downloaded the GEOS-5 soil temper-
ature (ST) dataset from https://portal.nccs.nasa.gov/datashare/gmao_ops/pub/fp/das/
(accessed on 10 September 2019). The GEOS-5 FP (forward processing) products are gen-
erated by the GMAO (Global Modeling and Assimilation Office), and provide forecasts
and assimilation products for near-real-time production. The ST dataset in GEOS-5 FP is
hourly, at a spatial resolution of 0.3125◦ by 0.25◦. In this study, 0–5 cm soil temperature
was selected. We choose this ST dataset as a reference because Ma et al. (2021) had used
ground soil temperature observations of approximately 800 stations worldwide to fully
assess six model- and satellite-based surface ST products from April 2015 to December
2017; their results showed that the GEOS-5 exhibits the smallest averaged unbiased root
mean square difference of 1.84 K [48]. All datasets mentioned above are from 1 May 2015
to 30 April 2016.

2.2.2. In Situ Measurements

To evaluate the error of the proposed method, the soil temperature dataset was also
downloaded from the national Tibetan Plateau scientific data center https://data.tpdc.
ac.cn/zh-hans/ (accessed on 10 September 2019). The soil temperature and moisture
observation dataset of the Tibetan Plateau (2008–2016) records soil information every
hour. The multi-scale soil temperature and moisture observation network dataset of
the central Tibetan Plateau (2010–2016) records soil information every 30 min. In this
study, 0–5 cm soil temperature was used to validate the all-weather 1 km LST product.
Although soil surface temperature and LST are slightly different, the in-situ soil surface
temperature can reasonably represent the LST in the 1 km grid domain because of the
following reasons: (1) the land cover types of the sites are consistent with the station pixels;
(2) the maximum NDVI of the station pixels is no more than 0.18 in 2015 and 2016, indicating
there is no vegetation or little vegetation in these pixels; (3) the data acquisition time of the
station is close to the transit time of the satellite [42]. Table 2 shows the details of each in
situ station used in this study and their locations are shown in Figure 1.

http://www.gscloud.cn
https://data.tpdc.ac.cn/zh-hans/
https://portal.nccs.nasa.gov/datashare/gmao_ops/pub/fp/das/
https://data.tpdc.ac.cn/zh-hans/
https://data.tpdc.ac.cn/zh-hans/
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Table 2. Details of the ground observations.

Sites Longitude Latitude Land Cover Max NDVI Acquisition Interval (min)

PL01 89.2758 28.0777 grass 0.16 3
PL03 89.2657 28.0393 grass 0.12 3
PL05 89.2432 28.0136 grass 0.16 4
PL11 89.2069 27.9109 grass 0.10 3
PL12 89.1510 27.9160 grass 0.17 4
AL02 79.6167 33.4500 grass 0.18 12
SQ16 80.0667 32.4333 grass 0.09 10

3. Methodology
3.1. Data Pre-Processing

In this study, vertical polarization (v-pol) brightness temperatures at 10.65, 18.7 and
36.5 GHz of AMSR2 were used. As heavy rainfall, ice or snow have a great influence on
the brightness temperature, the corresponding pixels need to be filtered. The Scattering
Index (SI; Equation (1)) was used to find the pixels affected by heavy rainfall [49]:

SI = 451.9− 0.44Tb,19v − 1.775Tb,23v + 0.00575Tb,23v2 − Tb,89v (1)

where Tb,19v, Tb,23v and Tb,89v denote brightness temperatures at v-pol at 18.7, 23.8 and
89.0 GHz. Pixels with SI > 10 were identified as those affected by heavy rainfall.

Equation (2) was used to filter the pixels affected by ice and snow [50]:

Tb,37v
〈
259.8 K and Tb,19v − Tb,37v

〉
3 K (2)

where Tb,37v denotes brightness temperature at v-pol at 36.5 GHz.
To ensure that all datasets were consistent with each other, the MODIS products

sinusoidal projection was resampled to AMSR2 geographical projection using the MODIS
reprojection tool developed by NASA. To estimate the passive microwave LST under a
high resolution, the brightness temperature data of AMSR2 were resampled from 10 km
to 1 km using the cubic convolution method [38]. In addition, we tested the method by
comparing the correlation coefficient (r) between brightness temperature (36.5 GHz) and
MODIS LST before and after cubic interpolation (Figure 2); r changed from 0.62 to 0.61,
which showed that cubic interpolation is suitable in the case of brightness temperature.
LST data (LST_Day_1km, LST_Night_1km) and quality control data (QC_Day, QC_Night)
were extracted from MYD11A1. The pixels with quality control data of “cloud”, “average
emission error > 0.04” or “average LST error > 3 K” were regarded as cloud-affected pixels
and were removed. The NDVI data (1km_16_days_NDVI) were extracted from MYD13A2.
SRTM DEM was also resampled from 90 m to a MODIS resolution of 1 km.

3.2. RF-Based LST Estimation

The spatial and temporal dynamics of LST are very complex since they depend on a
variety of land surface variables, such as land cover and topography. The v-pol brightness
temperature has been shown to be more sensitive to LST than the h-pol brightness tem-
perature [44]. In addition, the 37 GHz v-pol brightness temperature shows a good linear
relationship with LST and is thus considered the best microwave band for LST retrieval.
However, it is not ideal to retrieve LST using 37 GHz v-pol brightness temperature in
sparse and open shrubs because the brightness temperature in 37 GHz is affected by vege-
tation and soil water [24]. To identify the best variables for the RF regression, we created
different groups of variables using 10.65 GHz,18.7 GHz and 36.5 GHz v-pol brightness
temperatures. Each group also included DEM and NDVI, and half of them also included
the microwave polarization difference index (MPDI). For each group, we performed 10-fold
cross-validation, and the error was evaluated using the root mean square error (RMSE;
Table 3). The plot of feature importance shows that the 37 GHz v-pol brightness tempera-
ture is of the highest importance and plays a leading role in LST retrieval (Figure 3). The
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second most important variable is DEM, which describes the influence of topography
on the LST in the Tibetan Plateau. We found that when the number of estimators is 131
and the max depth is 39, the RF yields the smallest RMSE. Consequently, the 36.5 GHz
v-pol brightness temperature was used to constrain the range of LST, and the 10.65 GHz
and 18.7 GHz v-pol brightness temperature were used to correct the effects of vegetation
and soil moisture.
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RF has been widely used in classification and nonlinear regression problems in re-
mote sensing [51,52]. RF is robust to outliers and to unbalanced data, ensuring efficient
performance. The proposed RF method is based on the statistical relationship between LST
and auxiliary variables and involves the following two phases (Figure 4): (1) training and
(2) prediction. During training, we ensured that the brightness temperature, MODIS LST,
NDVI and DEM had the same spatial resolution and that pixels acquired under clear-sky
conditions were used to train the retrieval model with both ascending and descending
acquisition. In the prediction phase, the model built through training was applied to the
resampled brightness temperature and other auxiliary data to predict the 1 km LST for
cloudy pixels.
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At present, there are two ways to retrieve high-resolution LST from passive microwave
brightness temperature, namely, inversion–disaggregation and disaggregation–inversion.
The first way uses the brightness temperature to retrieve low-resolution LST, then down-
scales the LST to a high resolution. The second way disaggregates the brightness tempera-
ture to a MODIS resolution, then uses the resampled brightness temperature to retrieve
high-resolution LST. It should be noted that the process of retrieving LST from AMSR2
introduces great uncertainty, which is inherited by the downscaled results. Therefore, we
compared these two methods at a 10 km resolution. First, we trained the RF model at a
10 km resolution and estimated the 10 km LST. Then, the 1 km resolution LST estimated
by the RF disaggregation–inversion method was aggregated to the resolution of AMSR2.
Finally, we calculated r and RMSE between the estimated 10 km LST and MODIS LST. As
shown in Figure 5, the second method had smaller errors; thus, disaggregation–inversion
was chosen in the present study.
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Figure 5. The estimated LST compared to MODIS LST. (a) inversion-disaggregation.
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3.3. LST Fusion

The 1 km LST estimated can be merged directly with MODIS LST. After the fusion of
1 km LST for cloudy pixels and MODIS LST, some areas still had missing data because of the
AMSR2 scanning gaps. In this study, we first used a temporally neighboring interpolation,
and then used a spatially neighboring interpolation to supplement the gap. Because the
gap is particularly wide at low latitudes, we were unable to obtain an acceptable error if
we used spatially neighboring interpolation directly. Temporally neighboring interpolation
assumed that the cloud coverage was the same on adjacent days, and used the LST of the
day before and after to interpolate the LST of a given date. If the data was still missing
after the temporally neighboring interpolation, spatially neighboring interpolation was
performed. The procedure for the estimation method of 1 km LST is shown in Figure 6.

Remote Sens. 2021, 13, 4574 8 of 21 
 

 

At present, there are two ways to retrieve high-resolution LST from passive micro-
wave brightness temperature, namely, inversion–disaggregation and disaggregation–in-
version. The first way uses the brightness temperature to retrieve low-resolution LST, then 
downscales the LST to a high resolution. The second way disaggregates the brightness 
temperature to a MODIS resolution, then uses the resampled brightness temperature to 
retrieve high-resolution LST. It should be noted that the process of retrieving LST from 
AMSR2 introduces great uncertainty, which is inherited by the downscaled results. There-
fore, we compared these two methods at a 10 km resolution. First, we trained the RF model 
at a 10 km resolution and estimated the 10 km LST. Then, the 1 km resolution LST esti-
mated by the RF disaggregation–inversion method was aggregated to the resolution of 
AMSR2. Finally, we calculated r and RMSE between the estimated 10 km LST and MODIS 
LST. As shown in Figure 5, the second method had smaller errors; thus, disaggregation–
inversion was chosen in the present study. 

 

Figure 5. The estimated LST compared to MODIS LST. (a) inversion-disaggregation. (b) disaggregation-inversion. The 
darker color indicates a stronger correlation between two variables. 

3.3. LST Fusion 
The 1 km LST estimated can be merged directly with MODIS LST. After the fusion of 

1 km LST for cloudy pixels and MODIS LST, some areas still had missing data because of 
the AMSR2 scanning gaps. In this study, we first used a temporally neighboring interpo-
lation, and then used a spatially neighboring interpolation to supplement the gap. Because 
the gap is particularly wide at low latitudes, we were unable to obtain an acceptable error 
if we used spatially neighboring interpolation directly. Temporally neighboring interpo-
lation assumed that the cloud coverage was the same on adjacent days, and used the LST 
of the day before and after to interpolate the LST of a given date. If the data was still 
missing after the temporally neighboring interpolation, spatially neighboring interpola-
tion was performed. The procedure for the estimation method of 1 km LST is shown in 
Figure 6. 

Merged 
LST

Still exist 
missing value?

Spatio-temporal 
interpolation All-weather LST

1km LST on cloudy pixels

MODIS LST on clear days

Merge

 
Figure 6. Procedure for merging estimated LST on cloudy pixels with MODIS LST. Figure 6. Procedure for merging estimated LST on cloudy pixels with MODIS LST.

Inverse distance weighting (IDW), regular kriging (Kriging) and regular spline func-
tion (Spline) are three widely used spatial interpolation methods. To find better spatially
neighboring interpolation methods, the errors of three spatial interpolation methods in
different land use types of the Tibetan Plateau were compared. Firstly, we used land cover
products as criteria to obtain MODIS LST data under every land cover type. Secondly, we
assumed the same cloud coverage area for every land cover type, and used three spatial
interpolation methods to estimate the LST value under the assumed cloud coverage area.
Finally, we calculated the RMSE between the estimated LST and original LST (Figure 7).
For urban, cropland, water, forest, bare land and grass, Spline had the smallest error. For
snow/ice, Kriging had the smallest error. As Spline interpolation had, in general, smaller
errors (0.10–2.73 K) under different land use/covers, it was selected.
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3.4. Algorithm Evaluation Strategy

Because the LST retrieved by AMSR2 has a large uncertainty, it is necessary to evaluate
its error to better evaluate the RF algorithm used in this paper, using r and RMSE as
performance metrics. The AMSR2 LST under clear-sky pixels was compared to MODIS LST
and in situ soil temperature. The AMSR2 LST under cloudy sky pixels was only compared
to soil temperature because there was no MODIS LST for cloudy sky pixels. In addition,
we chose the ST dataset from the GEOS-5 FP products as the reference to evaluate the RF
method in this paper using the methods of Holmes, Zhao, and Zeng [24,44,53]. Since the
datasets are spatially inconsistent (0.3125◦ by 0.25◦ for GEOS-5 ST, 1 km for the RF method,
10 km for the other three methods), the estimated LST was resampled to 0.25◦ by 0.25◦ by
using the nearest-neighbor interpolation method, which is a feasible sampling approach
and is extensively adopted in existing validation studies [54–57].

Holmes et al. (2009) developed a simple linear relationship of 37 GHz v-pol brightness
temperature to obtain LST. The deviation of this method is within 1 K for 70% of the
vegetated pixels. Due to its simple expression, it has been widely used as a soil temperature
retrieval algorithm and in corresponding research [58–60]. It can be expressed as:

Ts
MW = 1.11Tb,37v − 15.2 f or Tb,37v > 259.8 (3)

where Tb,37v is the brightness temperature of 36.5 GHz v-pol.
Zeng et al. (2014) established the LST inversion model in the Tibetan Plateau using

ascending and descending AMSR-E brightness temperature. It can be expressed with
Equations (4) and (5):

Ts = 0.6885TB,36.5V[dsc] + 99.219 (4)

Ts = 0.7664TB,36.5V[asc] + 72.206 (5)

where Ts denotes LST, and TB,36.5V[dsc], TB,36.5V[asc] respectively represent the brightness
temperature of 36.5 GHz V-pol of AMSR-E in descending and ascending modes.

Zhao et al. (2011) established the LST inversion model in the Tibetan Plateau using
AMSR-E brightness temperature and soil temperature. The minimum RMSE was 3.8046 K.
It can be expressed as Equation (6). We found that there is 4-digit precision in coefficient
values of Equation (6). To assess whether 4-digit precision is necessary, we have con-
ducted an additional experiment; the experiment is based on the MODIS LST and AMSR2
brightness temperature. Firstly, we used 4-digit, 3-digit, 2-digit and 1-digit coefficients to
estimate the 10 km LST. Then, we resampled the 1 km MODIS LST into 10 km. Finally,
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we calculated the correlation coefficients (R) and RMSE between the estimated LST and
MODIS LST. The RMSE value of 3-digit coefficients increased by 0.02 K compared with the
4-digit coefficients, which clearly showed that 4-digit precision in coefficients is necessary.

TS =−0.0764TBv(10.65) + 12.6656MPDI(10.65)

+1.0312TBv(18.7)− 22.6005MPDI(18.7)

−0.2835TBv(36.5) + 10.6500MPDI(36.5) + 89.3601

(6)

where TBv denotes the brightness temperature at the corresponding frequency. MPDI can
be expressed with Equation (7), where a is 100 and f denotes frequency:

MPDI(f) = a·[TBv(f)− TBh(f)]/[TBv(f) + TBh(f)] (7)

There are a lot of alternatives to random forest; to make sure that the choice of random
forest is justified, we made a comparison between the classic MLR-based methodology
and regression techniques in machine learning (neural networks, nearest neighbor, ensem-
bles such as random forests). The evaluated algorithms included MLR (multiple linear
regression), MLP (multilayer perceptron), CART (Classification and Regression Tree), KNR
(K-nearest neighbor regression), GBRT (gradient boost regression tree) and RF (random
forest). These are representative regression models; however, few studies have been con-
ducted to compare their quality in predicting LST [38,61,62]. For each model, we did
10-fold cross-validation to find the optimized parameters. Then, we calculated the R2 and
RMSE of each model under the optimized parameters.

4. Results and Discussion
4.1. LST Maps

Figure 8 shows the original MODIS LST (first row) and the all-weather 1 km LST
(second row) over the Tibetan Plateau from May 2015 to April 2016. The original MODIS
LST had some missing data due to cloud contamination, and was thus spatio-temporally
discontinuous. Compared with the original MODIS LST, the results are spatio-temporally
continuous. Spatially, the LST on the second row continues the spatial variation trend of the
original MODIS LST. The LST decreases from southeast to northwest, which is consistent
with the terrain of the Tibetan Plateau, which is higher in the northwest and lower in the
southeast. Temporally, the all-weather 1 km LST captures well the monthly variation of
temperature in the Tibetan Plateau, with a higher LST in summer (from June to August).

4.2. Different Methods Comparison

Based on the descending orbit data of 2 June 2015, we calculated the probability
density histogram of the difference between the estimated LST and GEOS-5 LST (Figure 9).
The distribution of the difference is close to the normal distribution for each method. The
expectations (µ) for Holmes, Zhao, and our method are less than zero, which indicates
an underestimation. In contrast, the µ of the Zeng method is 5.28, which indicates an
overestimation. In addition, the µ of the Holmes method (µ = −2.23) and the method in
this paper (µ = −2.84) are closer to zero. In terms of standard deviation (σ), the method in
this paper yields the smallest σ of 6.19, which shows that the errors are more centralized.
In conclusion, compared with other methods, the method in this paper yields better
expectation and standard deviation, with a difference that is more centralized around zero.
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We calculated the r and RMSE between the estimated LST/MODIS LST and GEOS-5
LST. As shown in Figure 10, the Holmes method yields the worst result (r = 0.66 and
RMSE = 12.48 K). This was followed by the Zhao method, which had an r of 0.33 and an
RMSE of 12.15 K. The Holmes method and the Zeng method have the same r (0.66); the
Zeng method has a smaller RMSE (8.89 K), indicating that the Zeng method performs
better—perhaps because it is an improvement of the Holmes method. As the Zeng method
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is based on the 0–5 cm in situ soil temperature data from the Tibetan Plateau, it may be
more suitable for the Tibetan Plateau. In conclusion, the RMSE values of the Holmes and
the Zeng methods are both large: 12.48 K and 8.89 K, respectively. The r and RMSE of
the method in this paper are 0.5 and 6.81 K; the error is close to that of the MODIS LST,
showing that the RF method predicts LST with the smallest error compared with other
methods. This could be because the RF method in this paper used the MODIS LST for
training and therefore the LST it predicted was more similar to the GEOS-5 LST; in contrast,
other methods used ground measurements as the true values.
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Figure 9. Probability density histogram of the difference between the estimated LST/MODIS LST
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paper. (e) MODIS LST. In blue is the kernel density estimate (KDE); the red line represents the fitting
standard normal distribution (norm).
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Figure 10. Coefficient of correlation (R) and root mean square error (RMSE) between the estimated
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(d) Method in this paper. (e) MODIS LST. The darker color indicates a stronger correlation between
two variables.

Table 4 is the comparison between the classic MLR-based methodology and regression
techniques in machine learning. The results confirm that classic MLR is outperformed by
machine learning techniques and concretely, our experiments suggest that random forest
regression outperforms the rest of the techniques.

Table 4. Comparison between the classic MLR-based methodology and regression techniques imachine learning.

Models Optimized Parameters R2 RMSE, K Training Time

MLR NA 0.44 5.39 0:00:08
MLP 1 hidden layer with 2000 neurons 0.63 4.39 12:08:58

CART Max_depth = 16 0.66 4.22 0:10:34
KNR N_neighbors = 5 0.74 3.67 0:12:14
GBRT N_estimators = 282 Max_depth = 18 0.79 3.26 21:36:33

RF N_estimators = 131 Max_depth = 39 0.81 3.17 0:14:38

MLR (multiple linear regression), MLP (multilayer perceptron), CART (classification and regression tree), KNR (K-neighbor regressor),
GBRT (gradient boost regression tree), RF (random forest).
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4.3. Evaluation Using MODIS LST

Since MODIS LST products have been evaluated to have an error of less than 1 K
at most areas, the AMSR2 LST predicted by RF were compared with the MODIS LST for
validation using r and RMSE as performance metrics. We selected the dates of 1 July 2015,
1 October 2015, 1 January 2016 and 1 April 2016 to represent the summer, autumn, winter,
and spring of the Tibetan Plateau, respectively. Figure 11 shows the scatter plot of predicted
LST and MODIS LST. At night-time, the r was between 0.92 and 0.97, and the RMSE was
between 1.16 K and 2.4 K. At daytime, the r was between 0.9 and 0.93, and the RMSE was
between 2.35 K and 4.67 K. This shows that the night-time error is smaller than that of the
daytime. This may be because the spatial heterogeneity of LST at night is smaller than
that during the day, so the relationship between the LST and its predictors (NDVI, DEM,
AMSR2 BT) is simpler and the RF model we obtain is more accurate. The figure also shows
that the prediction error is smaller in autumn, winter, and spring than that in summer.
The reason may be that there is more rainfall in summer, and the microwave signal is
interfered with by the water vapor in the atmosphere, so the radiation transmission process
is more complex.

To understand the error for the entire year, we calculated the r and RMSE between
the predicted LST and MODIS LST for every day and night from 1 May 2015 to 30 April
2016. The predicted LST at night has a higher correlation with the MODIS LST (Figure 12).
During the night-time, most r values are close to 0.94. During the daytime, most r values
are close to 0.92. The predicted LST at night has a smaller RMSE with the MODIS LST
(Figure 13). During the nighttime, the RMSE is in the range between 1.02 K and 3.39 K.
During the daytime, the RMSE is in the range between 2.24 K and 5.35 K. The r and RMSE
values can be compared with the r and RMSE values of previous machine learning methods.
The ANN method Shwetha used to predict high spatio-temporal resolution land surface
temperatures under cloudy conditions shows r values from 0.56 to 0.90 and RMSE values
from 1.70 K to 2.12 K during the night-time, and has r values from 0.78 to 0.96 and RMSE
values from 1.86 K to 4.00 K during the daytime [38]. Overall, there is a significant r and a
small RMSE between the predicted LST and the MODIS LST both during the day and at
night, indicating the ability of RF in predicting the LST.

4.4. Evaluation Using In Situ Measurements

The LST estimated by AMSR2 brightness temperature and RF was validated with a
0–5 cm soil temperature. The soil temperature was measured by a high-precision tempera-
ture measuring instrument. According to the station screening rules mentioned in the data
preprocessing, the in situ soil surface temperature reasonably represents the 1 km LST in
this study because these stations have an acceptable spatial heterogeneity. The stations are
PL01, PL03, PL05, PL11, PL12, AL02 and SQ16. Figure 14 shows the scatter plot between
the estimated LST and the in situ soil surface temperature. The estimated LST is close to
the in situ surface temperature, and the RMSE is from 5.60 K to 10.56 K.

The retrieved AMSR2 LST under clear and cloudy conditions were respectively com-
pared with the in-situ soil temperature. There is a scale difference between the in situ soil
temperature and the 1 km LST, so the error caused by scale mismatch should be measured.
Because the MODIS LST products have been verified to have an error of less than 1 K,
this paper calculated the RMSE between the MODIS LST and in situ soil temperature to
represent the error caused by the scale mismatch. Figure 15 shows the scatter plot between
the in situ soil temperature and MODIS LST, and the AMSR2 LST under clear and cloudy
conditions. Compared to the MODIS LST, the LST retrieved by RF is closer to the in-situ soil
temperature. The retrieved LST under cloudy skies is closer to the in situ soil temperature
than that under clear skies.
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Figure 11. Scatterplot of predicted LST and MODIS LST (a) 2015/07/01 night. (b) 2015/07/01 day. (c) 
2015/10/01 night. (d) 2015/10/01 day. (e) 2016/01/01 night. (f) 2016/01/01 day. (g) 2016/04/01 night. 
(h) 2016/04/01 day. The darker color indicates a stronger correlation between two variables. 

 
Figure 12. R between the predicted LST and MODIS LST at night and daytime. (a) night. (b) day. 

Figure 11. Scatterplot of predicted LST and MODIS LST (a) 1 July 2015 night. (b) 1 July 2015 day.
(c) 1 October 2015 night. (d) 1 October 2015 day. (e) 1 January 2016 night. (f) 1 January 2016 day.
(g) 1 April 2016 night. (h) 1 April 2016 day. The darker color indicates a stronger correlation between
two variables.
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The r and RMSE between the remote sensing LST and in situ soil temperature were
calculated for each in situ station for both clear and cloudy sky pixels (Table 5). For MODIS
LST under clear-sky pixels, r ranged from 0.324 (PL12) to 0.926 (AL02) and RMSE ranged
from 5.398 K (AL02) to 13.143 K (SQ16). For the AMSR2 LST under a clear sky, r ranged
from 0.385 (PL05) to 0.908 (AL02) and RMSE ranged from 5.132 K (AL02) to 12.349 K (SQ16).
For the AMSR2 LST under a cloudy sky, the r ranged from 0.324 (PL12) to 0.745 (SQ16) and
the RMSE ranged from 5.152 K (PL01) to 6.995 K (AL02). Overall, Table 5 indicates that
the estimated AMSR2 LST has a similar error as the MODIS LST. In addition, the RMSE of
the AMSR2 LST under a cloudy sky is similar with that under a clear sky—this shows that
RF can yield the same satisfactory accuracy under a cloudy sky as under a clear sky. The
RMSE of the AMSR2 LST under a cloudy sky (5.152–6.995 K) is comparable to the RMSE of
the ANN method proposed by Shwetha (2.9 K to 6.2 K for a cloudy sky) [38].

Table 5. R and RMSE between predicted LST and soil temperature.

Site

Clear-Sky Cloud-Sky

LST_MODIS/Ta LST_AMSR2/Ta LST_AMSR2/Ta

R RMSE/K R RMSE/K R RMSE/K

PL01 0.715 8.451 0.661 6.139 0.654 5.152
PL03 0.731 10.585 0.54 8.775 0.574 6.804
PL05 0.676 11.34 0.385 9.475 0.678 6.635
PL11 0.81 8.923 0.776 7.574 0.674 5.825
PL12 0.324 7.921 0.463 6.754 0.324 6.579
AL02 0.926 5.398 0.908 5.132 0.649 6.995
SQ16 0.611 13.143 0.649 12.349 0.745 5.429

5. Conclusions

In this paper, a machine learning method was proposed to estimate all-weather
1 km LST over the Tibetan Plateau. The method resampled the brightness temperature of
AMSR2 into a 1 km resolution, then used RF regression to define a nonlinear relationship
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between MODIS LST and surface variables to estimate the 1 km LST under cloudy skies.
Following LST fusion and interpolation, all-weather 1 km LST data was generated.

In situ measurements and MODIS LST were used to evaluate the algorithm. The
results show that the LST predicted by RF is consistent with the MODIS LST and 0–5 cm
soil temperature. Additionally, the method fills the gaps caused by cloud cover, which can
lead to incomplete data over a large area. The gap-filled LST captures the spatiotemporal
variation trend of MODIS LST. This method makes it possible to obtain all-weather 1 km
LST datasets, which can support regional and even global climate change research. Never-
theless, there is still room for further improvement of the method regarding the following
aspects: (1) an AMSR2-derived LST downscaling method should be developed; down-
scaling is an important research topic that was simplified for this paper. State-of-the-art
downscaling approaches should be further explored; (2) a more accurate time interpolation
method is needed, which may use meteorological or other satellite data to decrease errors;
(3) although this study has focused on the Tibetan Plateau, we believe that this method
could be used over other regions—but additional validation will be needed.
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