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Abstract: While annual crop rotations play a crucial role for agricultural optimization, they have been
largely ignored for automated crop type mapping. In this paper, we take advantage of the increasing
quantity of annotated satellite data to propose to model simultaneously the inter- and intra-annual
agricultural dynamics of yearly parcel classification with a deep learning approach. Along with
simple training adjustments, our model provides an improvement of over 6.3% mIoU over the current
state-of-the-art of crop classification, and a reduction of over 21% of the error rate. Furthermore, we
release the first large-scale multi-year agricultural dataset with over 300,000 annotated parcels.

Keywords: crop mapping; crop rotation; Sentinel-2

1. Introduction

The Common Agricultural Policy (CAP) is responsible for the allocation of agricul-
tural subsidies in the European Union, which nears EUR 50 billion each year [1]. As
a consequence, monitoring the crop types of for subsidy allocation represents a major
challenge for payment agencies, which have encouraged the development of automated
crop classification tools based on machine learning [2]. In particular, The Sentinels for
Common Agricultural Policy (Sen4CAP) project [3] aims to provide EU member states
with algorithmic solutions and best practice studies on crop monitoring based on satellite
data from the Sentinel constellation [4]. Despite the inherent difficulty of differentiating
between the complex growth patterns of plants, this task is made possible by the near
limitless access to data and annotations. Indeed, Sentinel-2 offers multi-spectral obser-
vations at a high revisit time of five days on average, which are particularly appropriate
for characterizing the complex spectral and temporal characteristics of crop phenology.
Moreover, farmers declare the crop cultivated in each of their parcels every year. This
represents over 10 million of annotations each year for France alone [5], all open accessible
in the Land-Parcel Identification System (LPIS). However, the sheer scale of the problem
raises interesting computational challenges: Sentinel-2 gathers over 25Tb of data each year
over Europe.

The state-of-the-art of yearly parcel-based crop type classification from Satellite Image
Time Series (SITS) is particularly dynamic, especially since the adoption of deep learning
methods [6–8]. However, most methods operate on a single year worth of temporal
acquisitions and ignore inter-annual crop rotations. In this paper, we propose the first deep
learning framework for classifying yearly crop types from information spanning several
years, as represented in Figure 1. We show that with straightforward alterations of the
top-performing models and their training protocols, we can improve their predictions by a
large margin.

1.1. Single-Year Crop-Type Classification

Single-year crop-type classification involves the classification of the crop grown in a
parcel from a single year worth of observation. Pre-deep learning parcel-based classification
methods rely on such as support vector machines [9] or random forests [10] operating on
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handcrafted descriptors such as the Normalized Difference Vegetation Index. The temporal
dynamics are typically handled with stacking [10], probabilistic graphical models [11], or
dynamic warping method [12].

The adoption of deep learning-based methods, in conjunction with growing data
availability, has allowed for a large increase in performance for parcel-based crop classi-
fication. The spatial dimension of parcels is typically handled with convolutional neural
networks [13], parcel-based statistics [8], or set-based encoders [14]. The temporal dynam-
ics are modeled with temporal convolutions [7], recurrent neural networks [14], hybrid
convolutional-recurrent networks [15], and temporal attention [6,8,16].

Multiple recent studies [6,17–20] have solidified the PSE+LTAE (Pixel Set Encoder
and Lightweight Temporal Attention) as the state-of-the-art of crop type classification.
Furthermore, this network is particularly parsimonious in terms of computation and
memory usage, which proves well suited for training on multi-year data. Finally, the code is
freely available (https://github.com/VSainteuf/lightweight-temporal-attention-pytorch,
accessed on 10 October 2021). For these reasons, we choose to use this network as the basis
for our analysis and design modifications.

2018 2019 2020
NN

1 km

Oats Win Oats Sum Wheats Mixed cereal
Rapeseed Flow/Frui/Vege Leguminous Alfalfa
Maize Barley Win Barley Sum Wood Pastures
Potato Meadow Rye Soybean
Sorghum Sunflower Triticale Vineyard

Figure 1. Multi-Year Sentinel-2 Data. Details of our area of interest for the three years studied in
this article. The crop type of each parcel is represented by the color of a polygon following their
contour according to the legend above. This color code is used throughout this article for all figures
representing cultivated crops.

1.2. Multi-Year Agricultural Optimization

Most of the literature on multi-year crop rotation focuses on agricultural optimization,
i.e., the improvement of agricultural practices aiming to improve yields. These models
generate suggested rotations according to expert knowledge [21], handcrafted rules [22],
or statistical analysis [23]. Other models are based on a physical analysis of the soil
composition [24] such as the nitrogen cycle [25]. Aurbacher and Dabbert also take a simple
economic model into account in their analysis [26]. More sophisticated models combine
different sources of knowledge for better suggestions, such as ROTOR [27] or CropRota [28].
The RPG Explorer software [29] uses a second order Markov Chain for a more advanced
statistical analysis of rotations.

Given the popularity of these tools, it is clear that the careful choice of cultivated
crops can have a strong impact on agricultural yields and is the object of a meticulous
attention from farmers. This is reinforced by the multi-model, multi-country meta-study
of Kollas et al. [30], showing that multi-year modeling allows for a large increase in yield
prediction. Consequently, we posit that a classification model with access to multi-year
data will be able to learn inter-annual patterns to improve its accuracy.

https://github.com/VSainteuf/lightweight-temporal-attention-pytorch
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1.3. Multi-Year Crop Type Classification

Multi-year crop type classification refer to the leveraging of information (satellite
observations, past declarations) to improve the classification of the grown crop type in agri-
cultural parcels. Osman et al. [31] propose to use probabilistic Markov models to predict
the most probable crop type from the sequence of past cultivated crops of the previous 3 to
5 years. Giordano et al. [32] and Bailly et al. [33] propose to model the multi-year rotation
with a second order chain-Conditional Random Field (CRF). Finally, Yaramasu et al. [34]
were the first to propose to analyze multi-year data with a deep convolutional-recurrent
model. However, they only chose one image per year, and hence do not model both inter-
and intra-annual dynamics. In contrast, we propose to explicitly our model operates at both
the intra-annual scale by using the sequence of yearly observation and the inter-annual
scale by considering past declarations.

We list here the main contributions of this paper:

• We propose a straightforward training scheme to leverage multi-year data and show
its impact on yearly agricultural parcel classification.

• We introduce a modified attention-based temporal encoder able to model both inter-
and intra-annual dynamics of agricultural parcels, yielding a large improvement in
terms of precision.

• We present the first open-access multi-year dataset [35] for crop classification based
on Sentinel-2 images, along with the full implementation of our model.

• Our code in open-source at the following repository: https://github.com/felixquinton1
/deep-crop-rotation, accessed on 11 November 2021.

2. Materials and Methods

We present our dataset and proposed method to model multi-year SITS, along with
several baseline methods to assess the performance of its components. We denote by
[1, I] the set of years for which satellite observations are available to us, and use the
compact pixel-set format to represent the SITS. For a given parcel and a year i ∈ [1, I], we
denote the corresponding SITS by a tensor xi of size C × S × Ti, with C the number of
spectral channels, S the number of pixels within the parcel, and Ti the number of temporal
observation available for year i. Likewise, we denote by li ∈ {0, 1}L the one-hot-encoded
label at year i, denoting which kind of crop is cultivated in the considered parcel among a
set L of crop types. Note that, in this article, we focus on the prediction of the main culture,
i.e., only one crop type per year.

2.1. Dataset

Our proposed dataset, represented in Figure 2, is based on parcels within the 31TFM
Sentinel-2 tile, covering an area of 110× 110 km2 in the South East of France (centered
around 4.31N, 46.44E in WGS84). This area, in the Auvergne-Rhône-Alpes region, is a
major producer of cereal with over 54,000 ha of corn and 30,000 ha of wheat. Extensive
livestock production makes meadow the most crop type with over 60% of declared parcels
in the LPIS. The most frequent crop rotations are permanent cultures (meadows, vineyards,
and pasture) and alternating between corn, wheat, and rapeseed.

Our satellite time series are constituted of Sentinel-2 level 2A images. We discard
the bands B01, B09, and B10, and resample the remaining 10 spectral bands to a spatial
resolution of 10 m per pixel with bilinear interpolation. Our data spans three years of
acquisition: 2018, 2019, and 2020, with, respectively, 36, 27, and 29 valid entries, see Figure 3.
The length of sequences varies due the automatic discarding of cloudy tiles by the data
provider THEIA [36]. We do not apply further pre-processing such as cloud removal or
radiometric calibration than what is already performed by the data provider THEIA.

We select stable parcels, meaning that their contours only undergo minor changes
across the three studied years. We also discard very small parcels (under 800 m2) small or
with very narrow shapes to reflect the resolution of the Sentinel-2 satellite. Each parcel
has a ground truth cultivated crop type for each year corresponding to the main culture

https://github.com/felixquinton1/deep-crop-rotation
https://github.com/felixquinton1/deep-crop-rotation
https://www.theia-land.fr/en/product/sentinel-2-surface-reflectance/
https://www.theia-land.fr/en/product/sentinel-2-surface-reflectance/
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as reported by the French LPIS, whose precision is estimated at over 97% as reported by
the French Payment Agency. Note that we ignore secondary cultures for parcels with
multiple growth cycles. In order to limit class imbalance, we only keep crop types among
a list of 20 of the most cultivated species in the area of interest. In sum, our dataset is
composed of 103,602 parcels, each associated with three image time sequences and three
crop annotations corresponding to the farmers’ declarations for 2018, 2019, and 2020.

NN

20 km

NN

1 km

(a) (b)
Figure 2. Area of Interest. The studied parcels are taken from the 31TFM Sentinel-2 tile, covering an
area of 110× 110 km and containing over 103,602 parcels meeting our size, shape, and stability criteria.
(a) Large view of the tile. (b) Detail of the area.

The Sentinel2Agri dataset [6], composed of parcels from the same area, is composed
of 191,703 parcels. We can estimate that our selection criteria exclude approximately every
other parcel. A more detailed analysis of the evolving parcel partitions across different
plots could lead to retaining a higher proportion of the original parcels.

NN

1 km

NN

1 km

(a) (b) (c)
Figure 3. Intra-Year Dynamics. Evolution of two areas across three seasons of the year 2020. The top
parcels contains mainly meadow parcels, while the bottom one comprises more diverse crops. The
aspect of most parcel drastically changes across one year’s worth of acquisition, corresponding to
different phases in the growth cycle. (a) Winter. (b) Spring. (c) Summer.

As represented in Table 1, the dataset is still imbalanced: more than 60% of declarations
correspond to meadows. In comparison, potato is cultivated in less than 100 parcels each
year in the area of interest.
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Table 1. Crop distribution. We indicate the number of parcels declarations in the LPIS for each class
across all 103,602 parcels and all 3 years.

Class Count Class Count

Meadow 184,489 Triticale 5114
Maize 42,006 Rye 569
Wheat 27,921 Rapeseed 7624
Barley Winter 10,516 Sunflower 1886
Vineyard 15,461 Soybean 6072
Sorghum 820 Alfalfa 2682
Oat Winter 529 Leguminous 1454
Mixed cereal 1061 Flo./fru./veg. 1079
Oat Summer 330 Potato 230
Barley Summer 538 Wood pasture 425

2.2. Pixel-Set and Temporal Attention Encoders

The Pixel Set Encoder (PSE) [6] is an efficient spatio-spectral encoder that learns ex-
pressive descriptors of the spectral distribution of the observations by randomly sampling
pixels within a parcel. Its architecture is inspired by set-encoding deep architecture [13,37],
and dispense us from preprocessing parcels into image patches, saving memory, and
computation. The Temporal Attention Encoder (TAE) [6] and its parsimonious version
Lightweight-TAE (LTAE) [18] are temporal sequence encoders based on the language
processing literature [38] and adapted for processing SITS. Both networks can be used
sequentially to map the sequence of observations xi at year i to a learned yearly spatio-
temporal descriptor ei:

ei = TAE
([

PSE
(

xi
t

)]Ti

t=1

)
. (1)

2.3. Multi-Year Modeling

We now present a simple modification of the PSE+LTAE network to model crop
rotation. In the original PSE+LTAE approach, the descriptor ei is directly mapped to a
vector of class scores zi by a Multi Layer Perceptron (MLP). In order to make the prediction
zi covariant with past cultivated crops, we augment the spatio-temporal descriptors ei

by concatenating the sum of the one-hot-encoded labels l j for the previous two years
j = i− 1, i− 2. Then, a classifier network D, typically an MLP, maps this feature to a vector
zi of L class scores:

zi = D
([

ei
∣∣∣∣∣∣ li−1 + li−2

])
, (2)

with [·||·] the channelwise concatenation operator. We handle the edge effects of the first
two available years by defining l0 and l−1 as vector of zero of size L (temporal zero-
padding). This model can be trained end-to-end to simultaneously learn inter-annual crop
rotations along with the intra-annual evolution of the parcels’ spectral statistics. Our model
makes three simplifying assumptions:

• We only consider the last two previous years because of the limited span of our
available data. However, it would be straightforward to extend our approach to a
longer duration.

• We consider that the history of a parcel is completely described by its past cultivated
crop types, and we do not take the past satellite observations into account. In other
words, the label at year i is independent from past observations conditionally to its
past labels [39] (Chapter 2). This design choice allows the model to stay tractable in
terms of memory requirements.
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• The labels of the past two years are summed and not concatenated. The information
about the order in which the crops were cultivated is then lost, but this results in a
more compact model.

2.4. Baseline Models

In order to meaningfully evaluate the performance of our proposed approach, we
implement different baselines for classifying parcels from multi-year data. In Figure 4, we
represent schematically the main idea behind these baselines and our proposed approach.
Note that the choice of backbone network to handle single-year data is out of the scope of
this paper.

li

observations

labels

xi-2

li-2

xi-1 xi

year i-2 year i-1 year i

target

D

li-1 li

observations

labels

xi-2

li-2

xi-1 xi

year i-2 year i-1 year i

target

D

CRFli-1

T

(a) Single-year model (b) CRF model

li

observations

labels

xi-2

li-2

xi-1 xi

year i-2 year i-1 year i

target

D

li-1 li

observations

labels

xi-2

li-2

xi-1 xi

year  i-2 year i-1 year i

target

D

li-1

(c) Observation bypass (d) Proposed model

Figure 4. Multi-Year Modeling. Different approaches to model crop rotation dynamics: (a) the model
only has access to the current year’s observation; (b) a chain-CRF is used to model the influence of
past cultivated crop; (c) the model has access to the observation of the past two years; (d) proposed
approach: the model has access to the last two declared crops.

Single-Year: Msingle. We simply do not provide the labels of previous years, and
directly map the current year’s observations to a vector of class scores [18].

Conditional Random Fields: MCRF. Based on the work of [32,33], we implement a
simple chain-CRF probabilistic model. We use the prediction of the previous PSE+LTAE,
calibrated with the method of Guo et al. [40] to approximate the posterior probability
p ∈ [0, 1]L of a parcel having the label k for year i:pk = P(li = k | xi) (see Section 3.3 for
more details). We then model the second order transition probability p(li = k | li−1, li−2)
with a three-dimensional tensor T ∈ [0, 1]L×L×L that can be approximated based on the
observed transitions in the training set. As suggested by Bailly et al., we use a Laplace
regularization [41] (Chapter 13) to increase robustness. The resulting probability for a given
year i is given by:

zi
CRF[k] = p� T[li−2, li−1, :] , (3)

with � the Hadamard term-wise multiplication. This method is restricted to i > 2 as edge
effects are not straightforwardly fixed with padding.

Observation Bypass: Mobs. Instead of concatenating the labels of previous years to
the embedding ei, we concatenate the average of the descriptors of the last two years ei−1

for ei−2:

zi
obs = Dobs


ei

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣


1
2 [e

i−1 + ei−2] if i > 1
e0 if i = 1
0 if i = 0


. (4)
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Edge effects are handled with mirror and zero temporal-padding.
Label Concatenation: Mdec-concat. Instead of concatenating the sum of the last two

previous years, we propose to concatenate each one-hot-encoded vector li−1 and li−2 with
the learned descriptor zi. This approach is similar to Equation (2), but leads to a larger
descriptor and a higher parameter count.

Single-Year Label Bypass: Mdec-one-year. In order to evaluate the impact of describing
the history of parcels as the past two cultivated crops, we only concatenate the label of the
previous year to the learned descriptor ei.

2.5. Training Protocol

We propose a simple training protocol to leverage the availability of observations and
farmers’ declarations from multiple years.

2.5.1. Mixed-Year Training

We train a single model with parcels from all available years. Our rationale is that
exposing the model to data from several years will contribute to learning richer and more
resilient descriptors. Indeed, each year has different meteorological conditions influencing
the growth profiles of crops. Moreover, by increasing the size of the dataset, mixed-year
training mitigates the negative impact of rare classes on the performance.

We assess the impact of mixed-year training by considering I = 3 specialized models
whose training set is restricted to a given year: M2018, M2019, and M2020. In contrast, the
model Mmixed is trained with all parcels across all years with no information regarding
of the year of acquisition. All models share the same PSE+LTAE configuration [18]. We
visualize the training protocols in Figure 5, and report the results in Table 2. In the rest of
the paper, we use mixed year training for all models.

Encoder

Year 1

Year 2 Year 3

Classifier

Encoder 2

Year 1

Year 2

Year 3

Classifier 1Encoder 1

Encoder 3 Classifier 3

Classifier 2

(a) Mixed-year training (b) Specialized models

Figure 5. Training Protocol. A single model is trained with parcels taken from all three years (a), and
three specialized models whose training set only comprises observation for a given year (b).

Table 2. Quantitative evaluation. Performance (mIoU and OA) of the different specialized models
M2018, M2019, M2020 and of the mixed-years model Mmixed evaluated on each year individually and
all available years simultaneously with 5-fold cross-validation. The best performances are shown
in bold. Boxed values correspond to evaluations where the training set and the evaluation set are
drawn from the same year. The mixed-year model performs better for all years, even compared to
specialized models.

Model
2018 2019 2020 3 Years

OA mIoU OA mIoU OA mIoU OA mIoU

M2018 97.0 64.7 90.3 45.5 90.8 43.4 92.7 49.1
M2019 88.9 39.5 97.2 70.1 88.7 40.1 91.6 48.0
M2020 91.4 44.2 93.7 51.8 96.7 67.3 93.9 54.0

Mmixed 97.3 69.2 97.4 72.2 96.8 68.7 97.2 70.4

2.5.2. Cross-Validation

We split our data into 5 folds for cross validation. For each fold, we train on
3 folds and use the last fold for calibration and model selection, corresponding to a
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train/validation/test ratio of 60%, 20%, and 20% in each fold. In order to avoid data
contamination and self-correlation, our folds are all spatially separated: the fold separation
is done parcel-wise and not for yearly observations. A parcel cannot appear in multiple
folds for different years.

2.6. Evaluation Metrics

In order to assess the performance of the different approaches evaluated, we report
the Overall Accuracy (OA), corresponding to the rate of correct prediction. If we denote
by Nc the number of correct prediction and N the total number of parcels, the overall
accuracy writes:

OA =
Nc

N
. (5)

To address the high class imbalance, we also report the mean Intersection over Union
(mIoU), defined as the unweighted class-wise average of the intersection over Union (or
Jaccard distance) between the prediction and the ground truth for each class. For a given
class i, IoUi is defined as the ratio between the number of elements that are both predicted
and labeled by class i (the intersection, or true positives, and the number of elements
that are either predicted or labeled as belonging to class i (the union). In terms of binary
classification (class i vs. not class i), this translates into the following formula:

IoUi =
TPi

TPi + FPi + FNi
, (6)

with TPi, FPi and FNi the number of true positives, false positives, and false negatives,
respectively. The mIoU represents the average of the IoU calculated over the K stud-
ied classes:

mIoU =
1
K

K

∑
i=1

IoUi . (7)

3. Results

In this section, we present the quantitative and qualitative impact of our design choice
in terms of training protocol and architecture.

3.1. Training Protocol

Predictably, the specialized models have good performance when evaluated on a
test set composed of parcels from the year they were trained, and poor results for other
years, making this training procedure ill-fitted for the application at hand. In contrast,
the model Mmixed largely outperformed specialized models on average over the three
considered years: over 15 points of mIoU. More surprisingly, the model Mmixed also
outperforms all specialized models even when evaluated on the year of their training set.
This implies that the increased diversity of the mixed year training set allows the model to
learn representations that are more robust and expressive.

In Figure 6, we illustrate the representations learned by the mixed model Mmixed and
the specialized model M2020. We remark that the parcel embeddings of the specialized
model are inconsistent from one year to another, resulting in higher overlap between
classes. In contrast, the mixed year model Mmixed learns year-consistent representations.
This results in embedding clusters with large margins between classes, illustrating the
ability of the model to learn robust and discriminative SITS embeddings.
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Figure 6. Learned Representations. Illustrations of the learned SITS representations of the mixed-
year model Mmixed (a) and the specialized M2020 (b). T-SNE algorithm is used to plot in 2D the
representation for 100 parcels over 10 classes and 3 years. We observe that Mmixed produced
cluster of embeddings that are consistent from one year to another, and with clearer demarcation
between classes.

3.2. Influence of Crop Rotation Modeling

We evaluate all models presented in Sections 2.3 and 2.4, and provide qualitative
illustration in Figure 7. All models are trained with the mixed-year training protocol and
only tested on parcels from the year 2020 to avoid edge effects affecting the evaluation. We
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give quantitative cross-validated results in Table 3. Training our model on one fold takes 4
h, and inference on all parcels takes under 3 min (over 500-parcels per second).

Table 3. Performance by model. Performances (mIoU and OA) of the models Msingle, Mobs, MCRF,
and Mdec tested for the year 2020. Our proposed model Mdec achieve higher performance than
Msingle with a 6.3% mIoU gap.

Model Description OA mIoU

Msingle single-year observation 96.8 68.7
Mobs bypassing 2 years of observation 96.8 69.3
MCRF using past 2 declarations in a CRF 96.8 72.3
Mdec-one-year concatenating last declaration only 97.5 74.3
Mdec-concat concatenating past 2 declarations 97.5 74.4
Mdec proposed method 97.5 75.0

We observe that our model appreciably improved on the single-year model, with over
6 points gained in mIoU. The CRF models also increase the results to a lesser margin. We
attribute this lesser performance to an oversmoothing phenomenon already pointed out by
Bailly et al.: CRFs tends to resolve ambiguities with the most frequent transition regardless
of the specificity of the observation. In contrast, our approach models simultaneously
the current year’s observations and the influence of past cultivated crops. Mobs barely
improves the quality of the single-year model, while this model has indeed access to more
information than Msingle, the same model is used to extract SITS descriptors for all three
years. This means that the model’s ambiguities and errors will be the same for all three
representations, which prevent Mobs from largely improving its prediction. Our approach
injects new information to the model by concatenating the labels of previous years, which is
independent of the model’s limitations. Our method is more susceptible to the propagation
of mistakes in the farmers’ declarations, but provides the largest increase in performance
in practice.

Lastly, we concatenate both past label vectors in order to keep information about the
order in which past crops were cultivated, and observe a small decrease of performance.
This can be explained by the increase in model size, and we conclude that this order is not a
crucial information for our model conditionally to the observation of the target year. Lastly,
the performance of the model with only the declaration of the last year performs almost
as well as our model with two years worth of crop declarations. This suggests that yearly
transition rules are sufficient to capture most inter-year dynamics, such as permanent
culture. Alternatively, our two-year scheme may suffer from sharp edge effects with only
three years worth of data. Only a quantitative analysis over a longer period may resolve
this ambiguity. On average, our Mdec model obtains an mIoU of 84.7% and an overall
accuracy of 98.1% on the training set.

We report the confusion matrix of Mdec in Figure 8, and its performance for each crop
in Table 4. We also compute ∆ = IoU(Mdec)− IoU(Msingle) the gain compared to the single-
year model IoU(Msingle), as well as the ratio of improvement ρ = ∆/(1−mIoU(Msingle)).
This last number indicates the proportion of IoU that have been gained by modeling crop
rotations. We observe that our model provides a large performance increase across all
classes but four. The improvement is particularly stark for classes with strong temporal
stability such as vineyards.

In order to further this analysis, we arrange the crop types into three groups accord-
ing to the crop grown in 2018 and the number of observed class successions over the
2018–2020 period:

• Permanent Culture. Classes within this group are such that at least 90% of the
observed successions are constant over three years. Contains Meadow, Vineyard, and
Wood Pasture.

• Structured Culture. A crop is said to be structured if, when grown in 2018, over
75% of the observed three year successions fall into 10 different rotations or less, and
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is not permanent. Contains Rapeseed, Sunflower, Soybean, Alfalfa, Leguminous,
Flowers/Fruits/vegetables, and Potato.

• Other. All other classes.

NN

2 km

(a) Ground truth (b) Errors
Figure 7. Qualitative Illustration. Detail of the area of interest with the ground truth in (a) and the
qualification of the prediction in (b) with correct prediction in blue and errors in red.
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Figure 8. Confusion Matrix. Confusion matrix of the prediction ofMdec for the year 2020. The area
of each entry corresponds to the square root of the number of predictions.

We report the unweighted class average for this three groups in Table 5. Predictably,
our approach considerably improves the results for permanent cultures. Our model is
also able to learn non-trivial rotations as the improvement for structured classes is also
noticeable. On average, our method also improves the performance for other nonstructured
classes, albeit to a lesser degree. This indicates that our model is able to learn multi-year
patterns not easily captured by simple rotation statistics.
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Table 4. Performance by class. IoU per class of our model Mdec for the year 2020, as well as the
improvement ∆ compared to the single-year model Msingle, and the ratio of improvement ρ. All
values are given in %, and we sort the classes according to decreasing ρ.

Class IoU ∆ ρ Class IoU ∆ ρ

Wood Pasture 92.4 +48.2 86.3 Oat Summer 52.8 +3.6 7.0
Vineyard 99.3 +1.4 68.7 Rapeseed 98.3 +0.1 6.6
Alfalfa 68.7 +23.9 49.9 Maize 95.7 +0.2 6.3
Flo./Fru./Veg. 83.4 +14.5 46.5 Wheat 91.9 +0.3 3.9
Meadow 98.4 +0.9 36.9 Barley Summer 64.3 +1.1 3.1
Leguminous 45.2 +14.6 21.1 Potato 57.1 +0.5 1.2
Rye 54.7 +6.4 12.4 Sunflower 92.2 −0.1 −0.3
Oat Winter 57.7 +4.5 9.7 Sorghum 56.6 −0.2 −0.4
Triticale 68.7 2.6 7.8 Soybean 91.8 −0.2 −3.1
Mix. Cereals 31.0 +5.1 6.8 Barley Winter 92.8 −0.6 −8.5

Table 5. Improvement Relative to Structure. Classwise IoU and mean improvement of our model
compared to the single-year model according to the rotation structure of the cultivated crops.

Category mIoU Mean ∆

Permanent 97.3 16.9
Structured 77.7 7.6
Other 66.6 2.3

3.3. Model Calibration

Crop mapping can be used for a variety of downstream applications, such as en-
vironmental monitoring, subsidy allocation, and price prediction. These applications
carry crucial economical and ecological stakes, and hence benefit from properly calibrated
prediction. A prediction is said to be calibrated when the confidence (i.e., the probabil-
ity associated with a given class) of the prediction corresponds to the empirical rate of
correct prediction: we want 90% of the prediction with a 90% confidence to be correct.
This allows for a more precise risk estimation and improves control on the rate of false
positives/negatives.

Deep learning methods such as ours are notoriously badly calibrated. However, this
can be corrected with the simple technique proposed by Guo et al. [40]. This method,
called temperature scaling, consists of minimizing the discrepancy between the predicted
confidence and the rate of errors binned into quantiles (we chose here 15 bins) on the validation
set by adjusting the temperature parameters in the last softmax layer [42] (Chapter 2.4). As
represented in Figure 9, we are able to improve the calibration and observe a 43% decrease
of the Expected Calibration Error (ECE) at a small computation cost.
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Figure 9. Model calibration. Empirical rate of correct prediction by predicted confidence.
We quantize the predicted confidence into 100 bins for visualization purposes. For a
perfectly calibrated prediction, the blue histogram would exactly follow the orange line.
We observe that a simple post-processing step can considerably improves calibration. (a)
No calibration, ECE=1.4%. (b) Calibration, ECE = 0.8%.

4. Discussion

In this paper, we set out to develop a deep learning method to leverage both the inter-
and intra-annual dynamics of crop growth for crop mapping. We propose to enrich the
learned spatio-temporal features with the last two declared cultures. Our experiments
show that this simple method leads to an appreciable increase in performance compared
to models operating on a single year, and that our method outperforms other approaches
such as CRF smoothing or observation stacking. This improvement can be observed for
most crop types, including those with rotation patterns beyond permanent culture. We
now discuss the limitations of our method and of our analysis.

4.1. Choice of Backbone Network

Our method can be adapted to any network with a distinct classifier module mapping
a spatio-temporal learned feature vector to a predicted vector of class scores. However, the
choice of spatio-temporal encoder (backbone) is out of the scope of this article. While it may
be relevant to explore the effect of our modification on other architectures, we limited our
investigation to the PSE+LTAE as it is the current state-of-the-art network for crop type
mapping by a large margin.

4.2. Operational Setting

We showed that training our model with samples from all available years leads
to considerably improved results. However, this scenario is not compatible with the
operational setting of crop monitoring, in which payment agencies may want to detect
erroneous declarations before all farmers’ declarations have been received. Instead, we use
the same setting than the vast majority of work in parcel classification and whose task is to
classify parcels after the year is over [6–20].

As the Sentinel-2 mission was only operational starting in 2017, we only have access
to full-year coverage since 2018. This means that, at the time of writing this paper, we only
have three years worth of data. In our opinion, this prevents us from a realistic setting in
which the last year is withheld from the training set. Indeed, the inter-year meteorological
variations between two years are typically too great to simply test for a third year and
reasonably expect good results, as corroborated with preliminary experiments not shown
in this paper. As more Sentinel-2 data become available, we will be able to evaluate our
approach in a more realistic setting.

Figure 9. Model calibration. Empirical rate of correct prediction by predicted confidence. We
quantize the predicted confidence into 100 bins for visualization purposes. For a perfectly calibrated
prediction, the blue histogram would exactly follow the orange line. We observe that a simple post-
processing step can considerably improves calibration. (a) No calibration, ECE = 1.4%. (b) Calibration,
ECE = 0.8%.

4. Discussion

In this paper, we set out to develop a deep learning method to leverage both the inter-
and intra-annual dynamics of crop growth for crop mapping. We propose to enrich the
learned spatio-temporal features with the last two declared cultures. Our experiments
show that this simple method leads to an appreciable increase in performance compared
to models operating on a single year, and that our method outperforms other approaches
such as CRF smoothing or observation stacking. This improvement can be observed for
most crop types, including those with rotation patterns beyond permanent culture. We
now discuss the limitations of our method and of our analysis.

4.1. Choice of Backbone Network

Our method can be adapted to any network with a distinct classifier module mapping
a spatio-temporal learned feature vector to a predicted vector of class scores. However, the
choice of spatio-temporal encoder (backbone) is out of the scope of this article, while it may
be relevant to explore the effect of our modification on other architectures, we limited our
investigation to the PSE+LTAE as it is the current state-of-the-art network for crop type
mapping by a large margin.

4.2. Operational Setting

We showed that training our model with samples from all available years leads
to considerably improved results. However, this scenario is not compatible with the
operational setting of crop monitoring, in which payment agencies may want to detect
erroneous declarations before all farmers’ declarations have been received. Instead, we use
the same setting than the vast majority of work in parcel classification and whose task is to
classify parcels after the year is over [6–20].

As the Sentinel-2 mission was only operational starting in 2017, we only have access
to full-year coverage since 2018. This means that, at the time of writing this paper, we only
have three years worth of data. In our opinion, this prevents us from a realistic setting in
which the last year is withheld from the training set. Indeed, the inter-year meteorological
variations between two years are typically too great to simply test for a third year and
reasonably expect good results, as corroborated with preliminary experiments not shown
in this paper. As more Sentinel-2 data become available, we will be able to evaluate our
approach in a more realistic setting.
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4.3. Scope of the Study

Given the large amount of data involved and the complexity of data collection, we
have limited our analysis and our proposed open-access dataset to a single area of the
French Metropolitan territory, while nothing in our method is specific to this area, some of
our analysis may be biased by the preponderance of stable cultures such as vineyards in
this area. In order to confirm the generality of our conclusions, we would require a dataset
with parcels taken from regions across the world with various meteorological conditions
and agricultural practices. This task is made complicated by the lack of harmonization
between LPIS in terms of open-access policy and even nomenclature. We hope that our
results will encourage mapping agencies across the world to release multi-year LPIS in
open-source to help constitute a truly global dataset, allowing the community to assess the
spatial generalizability of state-of-the-art methods. We also limit ourselves to predicting
the main culture in each parcel while ignoring cases with multiple growth cycles within
one year. This may be particularly detrimental to its application in subtropical regions.

4.4. Applicability of Our Model

By requiring the last two grown crops to classify a parcel, our method cannot be
applied to areas for which the LPIS is not easily accessible. Furthermore, our training
setting requires to only select stable parcels. This can be easily obtained from the LPIS if it
also contains information about the extent and position of each parcel, as is the case for the
French LPIS. As a consequence, the effect of parcel with changing contours is out of the
scope of our investigation.

5. Conclusions

We explored the impact of using multi-year data to improve the quality of the auto-
matic classification of parcels from satellite image time series. We showed that training a
deep learning model from multi-year observations improved its ability to generalize and
resulted in across-the-board better precision. We proposed a simple modification to a state-
of-the-art network in order to model both inter- and intra-year dynamics. This resulted in
an increase of +6.3% of mIoU when compared to models operating on single-year data.
The effect is strongest for classes with strong temporal structures, but also impact other
crop types. We also showed how a simple post-processing can improve the calibration of
the models considered.

Finally, we release both our code and our data. We hope that our promising results
will encourage the SITS community to develop methods modeling multiple time scales
simultaneously, and to release more datasets spanning several years.
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Abbreviations
The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
MLP Multi Layer Perceptron
RNN Recurrent Neural Network
PSE Pixel Set encoder
TAE Temporal Attention Encoder
LTAE Lightweight Temporal Attention Encodeur
ECE Expected Calibration Error
CAP Common Agricultural Policy
LPIS Land-Parcel Identification System
SITS Satellite Image Time Series
CRF Conditional Random Fields
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