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Abstract: The Sentinel-1 Synthetic Aperture Radar (SAR) satellites allow global monitoring of the
Earth’s land surface with unprecedented spatio-temporal coverage. Yet, implementing large-scale
monitoring capabilities is a challenging task given the large volume of data from Sentinel-1 and the
complex algorithms needed to convert the SAR intensity data into higher-level geophysical data
products. While on-demand processing solutions have been proposed to cope with the petabyte-scale
data volumes, in practice many applications require preprocessed datacubes that permit fast access
to multi-year time series and image stacks. To serve near-real-time as well as offline land monitoring
applications, we have created a Sentinel-1 backscatter datacube for all continents (except Antarctica)
that is constantly being updated and maintained to ensure consistency and completeness of the data
record over time. In this technical note, we present the technical specifications of the datacube, means
of access and analysis capabilities, and its use in scientific and operational applications.

Keywords: datacube; Sentinel-1; analysis-ready data; land monitoring; global

1. Introduction

Sentinel-1 is the first multi-satellite Synthetic Aperture Radar (SAR) mission that has
been providing global coverage with up to 9 local observations per 12 day repeat cycle
(depending on region) at high spatial resolution (20 m) [1]. Like the more recently launched
Radarsat Constellation Mission [2], Sentinel-1 acquires backscatter imagery at C-band in
multiple polarisations undisturbed by cloud cover and lightning conditions. The Sentinel-1
satellites achieve with their dedicated observation scenario an unprecedented ground
coverage and allow capturing dynamic land surfaces changes and processes over large
areas, without missing out on important events as was the case with past SAR missions.
This is not only of utmost importance for practical applications, it is also key to realise
better scientific algorithms that are trained using dense and long time series.

C-band backscatter as measured by Sentinel-1 is highly sensitive to the dielectric and
geometric properties of the land surface [3]. In particular, changes in the distribution
of water or its phase transitions may quickly modify the local dielectric properties, and
consequently, the Sentinel-1 backscatter may exhibit a high variability in both space and
time. This high natural variability is both a hurdle to and a chance for using Sentinel-1
data in land cover classification and biogeophysical retrievals. As exemplified by many
recent Sentinel-1 studies (e.g., [4–6]), the most promising approach is to use dense and
long backscatter time series as the basis for the scientific analysis and the development
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of advanced algorithms. Unfortunately, implementing such an approach may be quite
difficult for an individual user, particularly when one would like to work with several
years of data over large regions. This problem is not unique to Sentinel-1, but a general
problem for users of Earth Observation (EO) data. One solution is to work with cubes of
analysis-ready data (ARD) hosted in the cloud and provided to the users via tailored cloud-
and web services [7]. While there is an increasing number of cloud platforms offering such
kinds of services, most notably the Google Earth Engine (GEE) [8], they all differ in several
important ways (e.g., internal data processing and manipulation), which are not always
fully documented and hence hard to comprehend by the users. Therefore, in this technical
note, we aim to describe our solution to creating a cloud-hosted Sentinel-1 backscatter
intensity datacube system for global land monitoring applications. Our requirements when
designing and setting up the datacube system were:

• The datacube represents a complete collection of Sentinel-1 data over land surfaces
and covers all continents except Antarctica;

• The system enables both offline analyses of multi-year time series and near-real-time
image-based applications;

• There should be maximum flexibility regarding the type of scientific algorithms to be
deployed on the data;

• It shall be accessible and usable for a large number of users with different backgrounds
and interests;

• Reprocessing of the complete petabyte-scale data collection must be possible to ensure
that the data are consistent and comply with the latest processing standards.

This technical note is a revised and extended version of our contribution to the 2021
Conference on Big Data from Space [9], providing a more in-depth presentation of the
technical specifications of our datacube and its scientific and operational use cases.

2. Materials and Methods
2.1. Cloud Infrastructure

We deployed our Sentinel-1 datacube on a collaborative, multi-owner infrastructure
(Figure 1) managed by the Earth Observation Data Centre for Water Resources Monitoring
(EODC). The EODC is an organisation that was founded to foster the cooperation between
public and private partners in order to develop the scientific and technical capabilities
needed to take full advantage of the wealth of Earth observation data brought by Coper-
nicus and other space programmes [10]. Since its foundation in 2014, the EODC and
its partners have built a federated IT infrastructure capable of hosting, accessing, and
processing worldwide satellite data collections. Besides Sentinel-1, the EODC also hosts
collections of Sentinel-2, Sentinel-3, and climate data.

Figure 1. Cloud infrastructure on which the Sentinel-1 datacube is deployed.
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The central component of the infrastructure is a petabyte-scale storage system that
holds all public and private data. It is a two-tiered storage system with currently about
10 PB hard disk drive (HDD) storage and about 10 PB tape storage. The data are backed up
on a second tape library situated in a separate building. Depending on the use case, the
data can be accessed with the same file logic from three computing environments: a cloud
platform for data exploration and scientific analysis, a supercomputing facility for large
scale processing, and a cluster dedicated to operational near-real-time (NRT) processing.
Each of these computing environments plays a role in the creation, maintenance, and use
of the Sentinel-1 backscatter datacube:

• Cloud Platform [11]: The cloud platform is based on the open-source cloud software
OpenStack [12]. Users can request and setup virtual machines (VMs) according to
their needs (virtual CPUs, RAM, hybrid-SSD storage, open-source software) and
directly access the global Sentinel-1 backscatter datacube along with the other datasets
hosted in the EODC data repository (Sentinel-2 Level-1C, etc.). This environment
is particularly suited for scientific analysis, code development, and testing. Larger
processing jobs, involving e.g., the analysis of the entire Sentinel-1 period for a few
tiles, are possible. Nonetheless, for very large processing activities, e.g., covering
bigger countries or whole continents, moving to supercomputers may be necessary.

• High-Performance Computing (HPC) [13]: Thanks to dedicated high-throughput I/O
connections (InfiniBand and OmniPath), it is possible to process the Sentinel-1 data
on one of the HPC-clusters of the Vienna Scientific Cluster (VSC) facility. Normally,
two supercomputers are operational at the same time. So far, Sentinel-1 data pro-
cessing has taken place using the oil-cooled VSC-3 cluster and its air-cooled VSC-3+
extension. At present, Sentinel-1 processing is being moved to the VSC-4, the cur-
rent flagship that reaches a performance of 2.7 PFlop/s with its 790 water-cooled
nodes. The EODC storage can be accessed from VSC in the same logic, but with less
visualisation/development functions than on the cloud platform. The benefit is that
processing of Sentinel-1 images at hundreds of compute nodes in parallel is possible.
Nonetheless, tailoring of the processing routines to balance I/O, storage, and compute
resources is usually required.

• Operational Processing Cluster: This dedicated cluster serves operational near-real-time
(NRT) applications and is used for fully automatic updating of the global datacube as
soon as new Sentinel-1 images become available.

2.2. Sentinel-1 Data

Sentinel-1 belongs to the space component of Copernicus, the European Union’s Earth
Observation Programme, and primarily serves environmental monitoring applications. The
mission has been developed and is being operated by the European Space Agency (ESA).
To meet the needs of operational users, Sentinel-1 acquires C-band (5.4 GHz) SAR imagery
in a systematic fashion, whereas all data are sequentially processed and distributed within
24 h [1]. Each of the (currently) two satellites is flown in a near-polar sun-synchronous
orbit with a 12-day repeat cycle and local crossing times at ∼6 a.m. (descending orbit) and
∼6 p.m. (ascending orbit). Over land, the Sentinel-1 sensors are per default operated in In-
terferometric Wide-swath (IW) mode that covers a 250 km wide swath at two polarisations
(usually VV and VH) with a spatial resolution of 20 × 5 m2. The IW images are distributed
as either Single Look Complex (SLC) data (with typical file sizes of 8 GB/product) for SAR
interferometric applications or Ground Range Detected (GRD) images (∼1 GB/product)
for backscatter intensity applications. Both SLC and GRD data are useful inputs to create
Sentinel-1 datacubes containing e.g., backscatter intensity and interferometric coherence
data [14]. Yet, given the much greater processing and storage demand of the SLC data, we
have so far used only IW GRD data.
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Sentinel-1 IW GRD data can be obtained from several Copernicus data hubs, including
the Copernicus Open Access Hub that serves the general user community and hubs
dedicated to the Copernicus services [15]. These hubs provide access to recent Sentinel-1
data through their rolling archives (12 months in case of the Copernicus Open Access
Hub), but do not allow the download of older data. Therefore, if a user, for instance,
would like to access Sentinel-1 data from the complete mission record, he or she needs to
resort to cloud platform services that host the required data. Worldwide Sentinel-1 data
archives are available from, for instance, the Copernicus Data and Information Access
Service (DIAS) cloud platforms, GEE, and Amazon Web Services. As we need the historic
data for reprocessing activities, and repeated transfer of such huge data volumes over the
internet is not feasible, we also keep a worldwide Sentinel-1 IW GDR data record on the
EODC storage, which users can access along with the backscatter datacube.

2.3. Data Preparation

Given that the Sentinel-1 IW GDR images are provided in swath geometry and are
not referenced to a fixed Earth grid, directly comparing two or more Sentinel-1 images is
not possible. Therefore, when one would like to work with time series, the data have to
be firstly co-aligned in an Earth-fixed reference system. Given our requirement to be able
to read and process multi-year Sentinel-1 backscatter time series fast and efficiently, our
approach to creating the Sentinel-1 backscatter datacube system has been to preprocess the
Sentinel-1 images and store the generated image tiles as GeoTIFF files. The upfront costs for
creating such a preprocessed file-based datacube system are large, but there are important
practical advantages for the users: (i) there are essentially no constraints on the type and
complexity of algorithms to be applied on the Sentinel-1 datacube, and (ii) accessing the
complete and consistent time series of Sentinel-1A and -1B acquisitions is fast, irrespective
of working with e.g., individual data points or 300 × 300 km2 large tiles.

The preprocessing workflow for creating the Sentinel-1 backscatter datacube from
the Sentinel-1 IW GRD image collection was written in Python and makes use of the
open-source Sentinel Application Platform (SNAP) toolbox [16] (Figure 2). For optimising
performance, we integrated open libraries such as gdal [17] and numba [18] in our workflow.
Its overall setup is similar to ARD workflows for creating SAR backscatter datacubes
as described by [14,19], with the big exception that, so far, we have only computed the
commonly used backscattering coefficient Sigma Nought (σ◦) and not the terrain-flattened
Gamma Nought coefficient (γ◦

rt f ) as introduced by Small [20]. The latter representation
of backscatter is superior to the former in mountainous regions because it accounts for
terrain-related changes in the radar illumination area. This minimises radiometric terrain
effects, which is beneficial to SAR applications particularly over undulating and rugged
terrain [21,22]. Therefore, the Committee of Earth Observation Satellites (CEOS) has
selected γ◦

rt f over σ◦ in its ARD standard for normalised radar backscatter. However, the
computation of γ◦

rt f takes much longer than for σ◦ (in SNAP, a factor of 2–3 longer), which
has so far prevented us to carry out this additional preprocessing step in our workflow.
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Figure 2. Our preprocessing and datacube ingestion workflow for a Sentinel-1 IW GRDH scene. Blue blocks represent
operations steered with SNAP’s processing graphs, brown blocks represent in-house developed modules.

Besides the Sentinel-1 IW GRD images, our preprocessing workflow requires as inputs
Sentinel-1 orbit files and a Digital Elevation Model (DEM). The orbit files can be down-
loaded from the Copernicus Precise Orbit Determination (POD) service, whereas for the
near-real-time updating of the datacube we use the so-called restituted orbits (RESORB)
and in our reprocessing campaigns the precise orbit files (POEORB). Fortunately, already
the restituted orbits are very accurate (RMS ∼10 cm), making it possible to mix data pro-
cessed with these two types of orbit files in one datacube. As for the DEM, we have initially
used the 90 m Shuttle Radar Topography Mission (SRTM) terrain model, which is called
for by SNAP by default. In our latest reprocessing as reported here in this paper, we have
used the 30 m Copernicus DEM that was released to the public in late 2020 [23]. To use
this new DEM in SNAP, we had to mosaic it into one global DEM file. Due to the DEM’s
varying sampling along latitude, we first merged single files with the same pixel spacing
to homogeneous latitude bands. After resampling each band to the highest sampling all
bands were finally concatenated to one single file with global extent. Before using it as an
external DEM in SNAP, we transformed its orthometric height values—which are given in
the Earth Gravitational Model 2008 (EGM2008)—to ellipsoid heights.

Figure 2 shows the complete workflow for the processing and ingestion of one
Sentinel-1 IW GRD scene. The first step performs a cutout of the Copernicus DEM
to the relevant Sentinel-1 scene extent. Then, elevation, orbit, and backscatter data
are fed into our own Sentinel-1 preprocessing chain embedding several operators of
SNAP’s Graph Processing Framework (GPF) [24]: (a) Apply-Orbit-File (orbit correction)
(b) ThermalNoiseRemoval (thermal noise removal) (c) Calibration (radiometric calibration)
(d) Subset (e) Slice-Assembly (f) Terrain-Correction (Range-Doppler terrain correction).
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In between, border noise effects, which are not removed fully by SNAP, are eliminated
with the bidirectional all-samples approach (border noise removal) described by Ali et al. [25].
Such noise removal operations affect the border of the Sentinel-1 scene, which results in
narrow data gaps (a few pixels wide) between adjacent scenes after geocoding. As an
effective workaround, we add a buffer to the scene border by utilising SNAP’s Subset and
Slice-Assembly operators with respect to the neighbouring scene in flight direction (slice
gap filling).

Finally, the geocoded images are projected with gdalwarp’s bilinear resampling onto
the Equi7Grid as introduced by Bauer-Marschallinger et al. [26] and cut into tiles to create
manageable image stacks (Figure 3). The advantage of such a tiling system is that any pixel
block or pixel location can be addressed by a simple equation that defines the name and
location of the file, and the array-indices within [7]. While all internal processing steps
run on 10 m grids, the output of the workflow is twofold: 100 × 100 km2 large backscatter
images with 10 m sampling and 300 × 300 km2 large images with 20 m sampling. The 20 m
images are resampled representations of the 10 m images using gdalwarp’s cubic spline
resampling and feature significantly less noise and speckle.

Figure 3. Illustration of the Equi7Grid, its continental zoning, its tiling, and the resulting data structure. Each layer of
the individual image stacks corresponds to one Sentinel-1 acquisition with a unique timestamp. Sentinel-1 IW scenes are
generally split into multiple tiles (20 m sampled data into 300 km tiles [T3], 10 m sampled data into 100 km tiles [T1]), and
the corresponding tiles are filled up with no-data values where the satellite image has no overlap.

The Equi7Grid was specifically designed to host large-scale land monitoring appli-
cations based on high-resolution satellite datasets [26]. It is based on azimuthal equidis-
tant projections for seven continental areas that avoid—other than undivided-global and
continental-scale equal-area projections—large pixel deformations in the border regions.
In this respect, the Equi7Grid was recently found to preserve the accuracy of geometric-
analytical measures around the globe, being most beneficial for terrain analysis [27]. The
Equi7Grid’s geometric fidelity has another important consequence, as its oversampling
over land is minimal (only 2% on average), which is a significant advantage when, for
example, compared to global latitude-longitude grids (cf. 35% on average). In respect to
the Universal Transverse Mercator (UTM) system that is used for Sentinel-2, the advantage
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of the Equi7Grid is the reduction from 62 zones to 7 continental areas, which eases the
handling and processing of larger areas, and avoids significant duplication of data for
images and products covering more than one UTM zone. Depending on the geographic
location, the actual data duplication stemming from the overlaps reaches 30–50% for the
Sentinel-2 Level-1C data shipped as UTM tiles [28]. Moreover, considering that even a
small country like Austria is covered by 3 UTM zones, a continental zoning approach
instead eases day-to-day operations and reduces the processing overhead. The Equi7Grid
and its tiling system are open-source and can be accessed via GitHub [29].

3. Datacube
3.1. Production

The production of the Sentinel-1 backscatter datacube has so far been taking place on
the VSC-3 and VSC-3+ clusters. We have carried out numerous computing experiments to
find suitable setups for massive parallel processing that balance—amongst other technical
aspects—file sizes, I/O, Random-Access Memory (RAM), and the number of processing
cores. In our first experiments several years ago, we used SAR image collections acquired
by the Sentinel-1 predecessor instrument, the Advanced Synthetic Aperture Radar (ASAR)
flown on board ENVISAT. One challenge with the ASAR Global Monitoring (GM) and
Wide Swath (WS) image collections turned out to be the large number of relatively small
files, which could quickly lead to an overstretching of the read/write capacities of the
system [30]. After packaging of the data, it became possible to reprocess the complete ASAR
GM and WS mission archives in a matter of days. This experience has taught us to avoid
small files for massive parallel processing on the EODC infrastructure, which is why we
use relatively large tiles for the Sentinel-1 backscatter datacube, i.e., 10,000 × 10,000 pixels
at 10 m sampling and 15,000 × 15,000 pixels at 20 m sampling.

In our first Sentinel-1 experiments on the VSC-3, the average processing time of
Sentinel-1 IW GRD image collections was in the order of 2.5–3 s per MB [30], meaning that
the average processing time of one IW GRD scene was about 45–50 min. With successive
versions of our workflow and SNAP, this number improved steadily to ∼2.0 s/MB [31],
with an increase to ∼2.3 s/MB for the latest release of our workflow, which performs
resampling to 20 m and several quality checks in addition to previous versions. However,
we could improve the throughput to ∼1.1 s/MB by processing two scenes in parallel at
the VSC-3 compute nodes. A factor of three does not sound much, but one needs to
consider that some improvements in our processing line, in particular the replacement
of the 3 arc-seconds (90 m) SRTM with the 30 m Copernicus DEM, enhanced the output
quality but counteracted the speed-up. In our most recent re-processing campaign, which
took place from April to September 2021, we processed the complete Sentinel-1 IW GRD
mission archive for the period January 2015 to June 2021, comprising more than 1,800,000
Sentinel-1 acquisitions with a total storage volume of about 1.4 PB. For the geocoding of the
IW GRD images on a 10 m grid, we first used SNAP 7.0 and later SNAP 8.0 (after checking
for identical backscatter results).

Updating this latest version of the datacube is now done fully automatic using EODC’s
operational processing cluster and a so-called “Hubwatcher”. The latter tool monitors and
cross-checks different data resources and hubs, most importantly the Copernicus Services
Data Hub [32] and the Collaborative Data Hub [33]. New Sentinel-1 images are fetched as
soon as they become available on one of the Copernicus hubs. The average time for fetching
the latest IW GDR images is about 2 h, and processing (including potential queuing times)
about 1 h. Thus, all in all, newly released Sentinel-1 images are added to our datacube
within a time frame of only 3 h.

3.2. Technical Specifications

Our Sentinel-1 data preparation workflow outputs are tiled Sentinel-1 backscatter
images stored as GeoTIFF files with a 10 m and 20 m pixel sampling. For our global
datacube, we only keep the 20 m images, while the 10 m images are used for creating
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monthly composites and are then deleted except if needed for specific applications such as
regional datacubes. This setup with a base pixel sampling of 20 m reduces costs (less disk
space) and makes working with the data easier (shorter processing times, less stringent IT
requirements as regards I/O, RAM, etc.). A further benefit is that the radiometric quality of
the 20 m images is better than of their 10 m counterparts due to reduced speckle and noise.
Nonetheless, the size of the worldwide 20 m datacube is still significant (Table 1), with
more than 300 TB for the 2015–2020 period and an increasing yearly volume (in particular
since 2017, when both Sentinel-1A and Sentinel-1B have been in operation).

Table 1. Size of the Level-1 Sentinel-1 IW GRD input data (top), and of the file-based 20 m Sentinel-1
backscatter datacube resulting from our preprocessing (bottom), per continent and year in TB.
NA: North America, SA: South America.

Level-1 Sentinel-1 IW GRD Data

Year Africa Asia Europe NA Oceania SA Total

2015 12.7 15.1 22.0 6.2 4.9 5.3 66.2
2016 20.6 19.2 31.9 11.5 6.6 9.0 98.8
2017 45.0 53.9 71.8 31.4 18.4 23.1 243.6
2018 48.0 58.1 70.3 35.3 20.2 24.7 256.6
2019 94.4 61.1 119.9 38.5 21.1 26.9 361.9
2020 97.3 63.3 130.7 41.4 21.3 28.6 382.6

Total 318.0 270.7 446.6 164.3 92.5 117.6 1409.7

20 m Sentinel-1 Datacube

Year Africa Asia Europe NA Oceania SA Total

2015 2.5 2.9 4.3 1.2 1.1 1.0 13.0
2016 4.4 4.0 6.4 2.5 1.5 1.9 20.7
2017 9.8 11.9 14.6 6.9 4.3 4.9 52.4
2018 10.3 12.8 12.8 7.6 4.7 5.2 53.4
2019 16.9 19.4 23.5 13.4 7.6 8.6 89.4
2020 17.3 20.1 25.0 14.6 7.7 9.4 94.1

Total 61.2 71.1 86.6 46.1 26.9 31.0 323.0

The image stacks defining our datacube system are subject to the hierarchical structure
of the Equi7Grid, which orders them by continent and tile name. Each Equi7Grid tile
folder contains the final data files at the lowest level. Each filename follows a naming
convention enabling an intuitive interaction on the file system and with GIS software.
This naming convention prescribes the specification of several spatiotemporal, semantic,
and traceability attributes of our specific (and also generic) EO datasets: (a) variable
name (b) start timestamp (c) stop timestamp (d) band/polarisation (e) orbit pass direction
and relative orbit number (f) tile name (g) continent and pixel spacing (h) data version
(i) sensor/product name identifier. A specific example is given below:

SIG0_20190113T051705__VH_D095_E048N015T3_EU020M_V1M1R1_S1BIWGRDH.tif

For the Sentinel-1 datacube, the physical unit of the pixel values is the backscattering
coefficient σ◦ (SIG0) in dB, which we encoded through scaling the values by factor 10
and then converting to Int16. This encoding has proven to be a good trade-off between
disk usage and radiometric accuracy. The timestamp attached to an image relates to the
exact start time of the corresponding Sentinel-1 data acquisition. A stop timestamp is
only provided for temporally aggregated data products, e.g., for our monthly aggregated
(“MAG”) mean images, as listed below:

SIG0-MAG-MEAN_20200201T010000_20200301T010000_VH__E048N015T1_EU010M_V1M1R1_S1IWGRDH.tif
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Similar to the Level-1 GRD input data, we do not group different polarisations in
one file and keep them separated as single-band GeoTIFF files. For assuring traceability
and consistency, a data versioning system is a prerequisite. The workflow described in
Section 2.3 is tagged with a certain software version, which is incorporated into the data
version, where “V” stands for a major-, and “M” for a minor-version. “R” is the run number,
which is an increment steered by the data producer in case the software stays the same, but
the input data (e.g., DEM) or the output data encoding (e.g., data compression) changes.
The tail of the file name is a placeholder for the name of the sensor, the acquisition mode,
and the input product type.

3.3. Access

Access to our Sentinel-1 datacube is designed to be available at many levels and can be
chosen depending on a user’s needs. For access to the actual data, EODC offers connections
via its OpenStack cloud platform, and via the VSC (cf. Section 2.1). Both platforms reveal
the datacube in its puristic form on the file system (cf. Section 3.2) and do not hide anything
from the user. Compared to complex and abstract data structures, like those utilised in GEE
for instance, this approach yields full flexibility, especially when analysing and processing
data with standard open-source software (Python, QGIS, etc.). Currently in development,
the primary starting point for interacting on a meta-level with the global datacube will be a
catalogue service for the web (CSW) application programming interface (API) [34], which
will enable a performant (pre-)filtering of a huge amount of files.

To facilitate the efficient data tiling and ordering of our Sentinel-1 datacube, we have
been developing a dedicated open-source software called yeoda [35]. yeoda stands for
your earth observation data access and has been designed to support straightforward and
generic access to manifold EO datasets available as GeoTIFF or NetCDF files. In addition,
it provides lower and higher-level datacube classes allowing to filter, split, and load data
independently from the way they are structured on the hard disk.

In respect to other datacube architectures, e.g., Open Data Cube [36,37], yeoda does
not rely on a database containing stringently defined datasets in the background. Instead,
it stays closer to the data by interpreting the file names and metadata of each file. The
great advantage is that users can derive higher-level products from the basic σ◦ backscatter
data and can immediately access it with yeoda, since it does not need to be ingested in a
database before.

Figure 4 shows a hands-on example tailored to our Sentinel-1 datacube providing a
brief glimpse on what one can do with yeoda. First, one needs to prepare the input data, i.e.,
a list of file paths, which either can be retrieved by crawling through the file system or by
making use of the upcoming CSW API. The file naming scheme presented in Section 3.2 is
implemented in the YeodaFilename class, which decodes each part of the file name and
assigns a certain identifier. A selection of these identifiers (dimensions), the file paths, and
the file naming class serve as input to the subsequent initialisation of the SIG0DataCube
class, which provides the necessary wrapper functions to properly en- and decode σ◦

backscatter data. The instance generated this way is then used to show the file-based
content of the datacube, to select data only from the year 2020, and to create two datacubes
for both polarisation VV and VH. Finally, we load the decoded σ◦ backscatter time series
for a certain location and visualise it.
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[1]: import os, osr, glob
import matplotlib.pyplot as plt
from datetime import datetime
# import TUW packages
from yeoda.products.preprocessed import SIG0DataCube
from geopathfinder.naming_conventions.yeoda_naming import YeodaFilename

[3]: # full directory path to a tile folder, where all files are contained
tile_dirpath = r"/eodc/products/eodc.eu/S1_CSAR_IWGRDH/SIG0/V1M1R1/EQUI7_EU020M/E048N015T3"
# our dimensions of interest in compliance with the file naming convention
dimensions = ['time', 'band', 'extra_field', 'sensor_field']

[4]: # collecting all GeoTIFF images
filepaths = glob.glob(os.path.join(tile_dirpath, "*.tif"))

[5]: # initialising the Sigma Nought data cube
sig0_dc = SIG0DataCube(filepaths=filepaths, dimensions=dimensions,␣

↪→filename_class=YeodaFilename, sres=20, continent='EU')
# showing the content of the data cube
sig0_dc.inventory[dimensions]

[5]: time band extra_field sensor_field
0 2019-01-01 05:17:05 VH D095 S1BIWGRDH
1 2019-01-01 05:17:05 VV D095 S1BIWGRDH
2 2019-01-01 05:17:30 VH D095 S1BIWGRDH
... ... ... ... ...
5915 2020-12-31 05:34:08 VV D066 S1BIWGRDH
5916 2020-12-31 05:34:33 VH D066 S1BIWGRDH
5917 2020-12-31 05:34:33 VV D066 S1BIWGRDH

[5918 rows x 4 columns]

[6]: # filtering for 2020 data
toi_start, toi_end = datetime(2020, 1, 1), datetime(2021, 1, 1)
sig0_dc.filter_by_dimension([(toi_start, toi_end)], [(">", "<")], name="time", inplace=True)

[7]: # creating two data cubes, one for VV and one for VH polarised backscatter data
sig0_vv_dc = sig0_dc.filter_by_dimension('VV', name='band')
sig0_vh_dc = sig0_dc.filter_by_dimension('VH', name='band')

[8]: # loading a time series of a point near Innsbruck, Austria, for both data cubes
poi = (11.356533, 47.241899)
sref = osr.SpatialReference()
sref.ImportFromEPSG(4326)
sig0_vv_ts = sig0_vv_dc.load_by_coords(*poi, sref=sref, dtype='numpy')
sig0_vh_ts = sig0_vh_dc.load_by_coords(*poi, sref=sref, dtype='numpy')

[9]: # visualising the retrieved Sigma Nought data for both polarisations
...
plt.scatter(sig0_vv_dc['time'], sig0_vv_ts, ...)
plt.scatter(sig0_vh_dc['time'], sig0_vh_ts, ...)
...

1Figure 4. Jupyter Notebook script demonstrating time series access of our Sentinel-1 20 m σ◦ backscatter datacube by
employing the (python) tools provided by yeoda.
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This small use-case exemplifies the straightforward and user-friendly access to our
Sentinel-1 datacube using yeoda, but naturally does not cover all of its functionality. For
more details and examples, we would like to point the interested reader to yeoda’s docu-
mentation [38]. Future releases will contain several additional features:

• datacube instances may persist in memory for consecutive access
• it will be possible to jointly load data beyond the tile boundaries of the Equi7Grid
• more efficient data management in the background
• coupling of datacubes to a database for more performant queries, mimicking Open

Data Cube’s software architecture

3.4. Applications

Our Sentinel-1 datacube system has already served many scientific investigations
covering topics such as rice mapping [39], vegetation monitoring [40], soil moisture re-
trieval [41], forest type classification [6], and building height estimation [42]. For an ESA
funded study, we used the first version of our worldwide Sentinel-1 datacube system to
perform global-scale data aggregation and image mosaicking. The goal was to create a
normalised 10 m global backscatter model in support of the design, testing, and verification
of future C-band radar missions (Sentinel-1C/D, Sentinel-1 Next Generation, Harmony,
etc.), related SAR-processor performance simulations, raw data compression optimisation,
and for visualisation purposes [43]. Furthermore, it has been the basis for generating
the Sentinel-1 soil moisture data products [41] provided by the Copernicus Global Land
Service (CGLS) [44] and the upcoming Sentinel-1 Global Flood Monitoring (GFM) service
to be provided by the Copernicus Emergency Management Service [45].

A key feature of our Sentinel-1 datacube system is that it enables offline training of
complex retrieval algorithms and usage of calibrated models for NRT processing. This is
illustrated by Figure 5 which shows the potential layout of operational processing lines,
which transform incoming Sentinel-1 IW GRD scenes (Level-1) into biogeophysical datasets
(Level-2) such as soil moisture, snow depth, vegetation optical depth, or flood extent. All
these Level-2 datasets have in common that their retrieval is normally impossible when
just based on single Sentinel-1 images. Instead, state-of-the-art biogeophysical retrieval
algorithms for Sentinel-1 are based on some form of change detection algorithm or require
the training of physical models or machine learning methods on the basis of Sentinel-1
backscatter time series [46–49]. Therefore, in their assessment of the system requirements
for a fully automatic flood monitoring system based on Sentinel-1, an expert group or-
ganised by the Joint Research Centre of the European Commission recommended using a
datacube architecture for the implementation of such a potential monitoring system [50].
While such an architecture is demanding in terms of storage and compute capacities, it
allows training offline advanced change detection or machine-learning methods and using
them directly thereafter for seamless online processing (Figure 5). Such offline and online
workflows are both important for achieving high accuracy, transferability, and data quality
characterisation of the Level-2 data products [51].
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Figure 5. Datacube-based processing architecture for land monitoring applications using Sentinel-1 SAR observational
data, consisting of a near-teal-time (NRT) data flow (in brown) and and an offline processing line for calibration and
parametrisation (in blue). Modified from [51].

4. Discussion

Our solution for a Sentinel-1 backscatter datacube system has been strongly shaped
by our scientific interest in improving the understanding of the interaction of the Sentinel-1
co-polarised (VV and VH) pulses with the land surface. We aim to develop and operate
scientific algorithms (change detection, radiative transfer models, neural networks, etc.)
that are fit for retrieving biogeophysical variables on continental to global scales. It is
important to us to directly work on the data with the algorithms of our choice, and
retain a complete understanding of how the Sentinel-1 data are preprocessed or otherwise
manipulated.

Our file-based datacube system meets these requirements. Nonetheless, to reach
a larger and more diverse user community, additional mechanisms to access and work
with the Sentinel-1 datacube are needed. There are many routes to achieve this, including
the use of advanced datacube software such as the Open Data Cube or rasdaman [52,53],
or on a more basic level, through APIs. While we have successfully deployed the Open
Data Cube in combination with JupyterHub [54] and GeoServer [55] for serving Sentinel-1
applications over Austria (Austrian Data Cube) [51,56], we have focused on the use of the
openEO API [57] as an additional access mechanism to our worldwide datacube. This API
standardises contracts between local clients (R, Python, and JavaScript) and cloud service
providers regarding data access and processing, mimicking the functionalities of a virtual
EO raster datacube independent of the providers’ data storage system. In other words, the
openEO API grants users simplified access to the datacube, using the local clients’ Python,
R, or JavaScript, hiding the complexity of accessing and processing the Sentinel-1 data in
the cloud.

One of the first openEO use cases that we tested was the compositing of Sentinel-1
backscatter images extracted from GEE and our 10 m Sentinel-1 datacube for Austria.
Despite the very different nature of the two back-ends, openEO allowed us to use identical
code at both back-ends for generating Sentinel-1 RGB (red-green-blue) composite images.
As illustrated in Figure 6, thematically, they provide visually intuitive feedback on the local
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land-use and vegetation status, depending on the ratio between the two SAR acquisition
channels for VV and VH polarisation. The two individually extracted RGB composites
are almost identical, with the only notable discrepancies appearing on closer inspection
at the hills in the west of Vienna, stemming most likely from different DEMs used during
Sentinel-1 preprocessing. GEE’s Sentinel-1 backscatter datacube used the worldwide 90 m
SRTM DEM, whereas for the Austrian Data Cube available in the EODC back-end we could
profit from a 10 m sampled DEM based on a national airborne laser scanning campaign.

Figure 6. Sentinel-1 VH/VV-polarisation RGB composite (R = daily mean of VV, G = daily mean
of VH, and B = VH/VV), showing Vienna on 2 March 2017, created via openEO, at GEE (a), and at
EODC back-end (b).

In general, GEE follows the strategy to store the ingested satellite data in their origi-
nal format in order to preserve their original information [8]. Re-projected or otherwise
transformed data products are normally calculated only on-demand without storing in-
termediate or final data layers. As described by Gorelick [8], when satellite images are
ingested into GEE, the “... images are cut into tiles in the image’s original projection and
resolution and stored in an efficient and replicated tile database. A tile size of 256 × 256
was chosen as a practical trade-off between loading unneeded data vs. the overhead
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of issuing additional reads. In contrast to conventional “datacube” systems, this data
ingestion process is information-preserving: the data are always maintained in their orig-
inal projection, resolution and bit depth, avoiding the data degradation that would be
inherent in resampling all data to a fixed grid that may or may not be appropriate for any
particular application”.

However, other than we what assumed in our BiDS contribution [9], for Sentinel-1
GEE deviates from this strategy by firstly preprocessing and only then tiling the Sentinel-1
images (Gore lick, personal communication, 28 August 2021). The preprocessing is carried
out using the Sentinel-1 Toolbox (which is part of SNAP) and involves thermal noise
removal, data calibration, multi-looking, and range-doppler terrain correction [58]. Hence,
at the very basic level, Google’s approach for offering Sentinel-1 via its Earth engine
platform is very similar to our Sentinel-1 datacube system presented in this paper, and
access to Sentinel-1 time series is also quite fast on GEE [59,60]. Nonetheless, GEE should
face similar issues such as large upfront costs caused by the need to preprocess the data
upon ingestion and the need for re-processing campaigns in case of algorithmic updates or
changes in the data.

5. Conclusions

In this technical note, we have presented a Sentinel-1 backscatter datacube system
designed for enabling global land monitoring applications. Like the Google Earth Engine,
it solves the problem of providing fast and efficient access to Sentinel-1 backscatter time
series by projecting the Sentinel-1 IW GRD images onto a fixed Earth grid before tiling. This
is a costly but nonetheless necessary step given that the Range-Doppler terrain correction
of IW GRD images simply takes too long to be carried out on demand when covering
larger regions and/or longer time periods. This problem could be avoided if the Sentinel-1
SAR images—similarly to the optical Sentinel-2 images—would be provided in a fixed
Earth grid. That said, we would not recommend the UTM system used for Sentinel-2,
given that this grid system leads to a significant duplication of the data. In contrast, the
Equi7Grid that we use for the Sentinel-1 datacube minimises the data volume, works
with only 7 continental regions (instead of 62 UTM zones), and in contrast to equal-area
projections, it minimises signal degradation from pixel deformations and thus allows
shape-sensitive operations.

An important improvement to our Sentinel-1 backscatter datacube would be to use
the γ◦

rt f backscattering coefficient as proposed by Small [20] and recommended by CEOS
as an ARD standard for normalised radar backscatter [61]. As the processing of γ◦

rt f with
SNAP takes about 2–3 times as long as for σ◦, we have not yet implemented this. However,
investigations are ongoing to reduce the processing times by taking benefit of the high
stability of the repeating Sentinel-1 orbits.

Our Sentinel-1 backscatter datacube is open to all interested users (but not free-of-
charge). At present, accessing and working with the data is only possible within the EODC
cloud environment, but efforts are ongoing to improve the accessibility to the Sentinel-1
backscatter datacube also for other users by implementing additional access mechanisms
and analysis capabilities. Our present work focuses on further developing the openEO
API within the ESA funded openEO Platform project [62]. The longer-term vision is the
formalisation of the data and service access by a larger user community, e.g., by making it
available through the European Open Science Cloud or through other platforms such as
the WEkEO DIAS [63].
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