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Abstract: Spectral unmixing remains the most popular method for estimating the composition of
mixed pixels. However, the spectral-based unmixing method cannot easily distinguish vegetation
with similar spectral characteristics (e.g., different forest tree species). Furthermore, in large areas with
significant heterogeneity, extracting a large number of pure endmember samples is challenging. Here,
we implement a fractional evergreen forest cover-self-adaptive parameter (FEVC-SAP) approach
to measure FEVC at the regional scale from continuous intra-year time-series normalized differ-
ence vegetation index (NDVI) values derived from moderate resolution imaging spectroradiometer
(MODIS) imagery acquired over southern China, an area with a complex mixture of temperate,
subtropical, and tropical climates containing evergreen and deciduous forests. Considering the
cover of evergreen forest as a fraction of total forest (evergreen forest plus non-evergreen forest),
the dimidiate pixel model combined with an index of evergreen forest phenological characteristics
(NDVIann-min: intra-annual minimum NDVI value) was used to distinguish between evergreen and
non-evergreen forests within a pixel. Due to spatial heterogeneity, the optimal model parameters
differ among regions. By dividing the study area into grids, our method converts image spectral
information into gray level information and uses the Otsu threshold segmentation method to simulate
the appropriate parameters for each grid for adaptive acquisition of FEVC parameters. Mapping
accuracy was assessed at the pixel and sub-pixel scales. At the pixel scale, a confusion matrix was
constructed with higher overall accuracy (87.5%) of evergreen forest classification than existing land
cover products, including GLC 30 and MOD12. At the sub-pixel scale, a strong linear correlation
was found between the cover fraction predicted by our method and the reference cover fraction
obtained from GF-1 images (R2 = 0.86). Compared to other methods, the FEVC-SAP had a lower
estimation deviation (root mean square error = 8.6%). Moreover, the proposed method had greater
estimation accuracy in densely than sparsely forested areas. Our results highlight the utility of the
adaptive-parameter linear unmixing model for quantitative evaluation of the coverage of evergreen
forest and other vegetation types at large scales.

Keywords: cover fraction; evergreen forest; FEVC-SAP; large scale; time series

1. Introduction

Forests have unique ecological value, depending on their species composition [1]. The
spatial distribution pattern of tree species determines the uniqueness of their ecosystem
service functions, including carbon sequestration, water and soil conservation, and biodi-
versity [2–4]. As the dominant forest species in most tropical areas and some subtropical
areas, evergreen trees exhibit significant differences in seasonal evapotranspiration and
carbon and nitrogen cycling compared to deciduous tree [5–7]. Therefore, up-to-date
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evergreen forest spatial distribution information at very large scales is essential for effec-
tive quantitative assessment of forest ecosystem services [8,9]. Remote sensing provides
the opportunity to monitor evergreen forest information quickly and effectively at large
scales [10,11]. Numerous land cover classification and object extraction techniques, such as
machine learning algorithms, have been developed to process remotely sensed data [12–14].

The mixed pixel problem presents a great challenge to accurate land cover mapping,
especially at large scales using coarse-resolution images [15–17]. The spectrum of a mixed
pixel is a combination of the spectra of the multiple land cover classes within it. Over
the past few decades, researchers have proposed a series of spectral unmixing models to
obtain fractional vegetation cover (FVC) at the sub-pixel scale, including models based on
linear unmixing, regression, and machine learning methods [18–20]. Regression models
establish a relationship between vegetation indexes and fractional vegetation cover, which
are usually applicable only to specific areas; such relationships vary among vegetation
types and regions [21]. Linear unmixing and machine learning methods are supervised
approaches that require pure endmember samples from field surveys or high spatial reso-
lution images [22,23]. However, training signatures obtained from samples may not fully
represent the diversity and variability of vegetation cover types among regions or time
periods [24], since they vary according to multiple factors such as surface conditions, atmo-
spheric conditions, withered vegetation, and soil types [25,26]. In particular, differences in
the underlying surface are more significant across larger regions due to spatial heterogene-
ity [27], which leads to time-consuming sample selection and a lack of representation for
complex surfaces by unmixing models. One potential approach to solve this problem is
obtaining the parameters of the pixel unmixing model automatically. This would eliminate
dependence on samples, especially for large areas.

Refined vegetation type cover fraction extraction presents another serious problem.
Due to the spectral similarity between fine vegetation types (e.g., deciduous forest and ev-
ergreen forest), it is difficult for spectral unmixing methods to extract fine FVC information
within mixed vegetation pixels [28]. An unmixing model using multi-temporal remote
sensing images has been proposed to efficiently extract the fraction of cover occupied by
a range of vegetation types [29,30]. However, the FVC models based on multi-temporal
images are limited to small or specific areas due to the requirement of vast quantities of data.
Most studies have focused on the use of phenological features to extract fine vegetation
type cover fraction information [14,31–33]. However, the extraction of large-scale FVC
information based on phenological characteristics is hindered by a critical problem. The ac-
quisition of key phenological characteristics requires dense intra-year time-series data, but
collection of the required images for the study period may be impeded by clouds [34–36].
Thus, fine temporal resolution images would enhance the accuracy of FVC extraction.

To extract evergreen forest cover fraction data for a large area, a suitable unmixing
model that considers evergreen forest phenological characteristics is needed. Moderate
resolution imaging spectroradiometer (MODIS) has a short revisit period (observations
repeated twice per day), which enables continuous monitoring of vegetation phenological
information over a large scale [37–43]. Although a recent study developed a linear ever-
green forest cover fraction extraction model using MODIS intra-year time series data, the
spatial heterogeneity and large workload issues have not been resolved at large regional
scales [44].

Therefore, in this study, we developed a self-adaptive parameter (SAP) linear decom-
position model to estimate fractional evergreen forest cover (FEVC) at large scales. Using
the MODIS normalized difference vegetation index (NDVI) intra-year time-series dataset
and Google Earth Engine (GEE), we extracted FEVC information for southern China. To
reduce spatial heterogeneity, this approach divides the study area into grids and obtains
optimal parameter values for the unmixing model in each grid cell. After transforming
the spectral information into gray level information, the parameters are automatically
optimized using an automatic threshold selection method based on gray level histograms
(Otsu) and vegetation cover differences among grid cells. The Otsu method automatically
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obtains the optimal threshold for object and background segmentation [45]. The FEVC-SAP
model does not require many endmember samples, which improves its efficiency and
ensures the accuracy of sub-pixel evergreen forest mapping across a large area. The pixel
unmixing model with SAPs can also be used to estimate other types of vegetation cover
within a pixel, even at the national or global scale.

2. Materials and Methods
2.1. Study Area

The study area is southern China and includes 13 provinces. The total land area
is 2.6 million square kilometers, which is approximately 30% of the total area of China.
Most of the study area is located in the subtropical zone; only small parts are located in
the tropical and warm temperate zones. The average annual precipitation throughout
the study area is >800 mm, and the average winter temperature is >0 ◦C. Forest cover
accounts for more than half of the total study area, with diverse forest tree species including
evergreen needle, deciduous needle, deciduous broadleaf, and evergreen broadleaf species
(Figure 1). Evergreen species are dominant throughout the study area, accounting for >80%
of the total forest area (http://www.forestry.gov.cn/data.html, accessed on 7 January 2020).
Significant spatial heterogeneity exists in this large region due to differences in topography,
light angle, sensor angle, atmospheric conditions, and vegetation and soil types.

Figure 1. Forest distribution in southern China in 2010.

2.2. Data Preprocessing

MODIS NDVI data were used to derive the FEVC. We collected 16-day 250 m MODIS
NDVI products for 2017 and 2018 (MOD13Q1 and MYD13Q1) from the National Aero-
nautics and Space Administration (NASA) Earth data website (https://search.earthdata.
nasa.gov/search, accessed on 2 March 2020). Both data preprocessing and evergreen forest
cover fraction estimates were carried out using the GEE platform [46]. Combining the

http://www.forestry.gov.cn/data.html
https://search.earthdata.nasa.gov/search
https://search.earthdata.nasa.gov/search
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MOD13Q1 and MYD13Q1 products, the intra-annual NDVI time-series dataset consists of
46 scene images per year for 2017 and 2018. Although MOD13Q1 and MYD13Q1 include
the highest-quality pixels within the 16-day period, some pixels were affected by clouds
and thus showed abnormal values; removing the effects of clouds is crucial. The maximum
value composite (MVC) method was used to minimize contamination and atmospheric vari-
ability by combining 8-day MOD13Q1 and MYD13Q1 NDVI data into a single dataset with
16-day temporal resolution [47]. Cloud-free images from 2017 replaced cloud-contaminated
images taken on the same date in 2018 (i.e., DOY 161 in 2017 and DOY 161 in 2018) based
on the modified neighborhood similar pixel interpolator (MNSPI) method [48,49]. MNSPI
removed most clouds from images taken across the study area. Temporal filtering was not
performed in this study since both the MVC method and MNSPI removed 99% of cloud
and other noise contamination, and temporal filtering could smooth the minimum NDVI
of the time series data, which is an important signal for vegetation withering.

Some auxiliary data were also collected. GF-1 panchromatic/multi-spectral (PMS)
in Table 1 and Google Earth images were used to evaluate the accuracy of evergreen
forest extraction due to their high spatial resolution. The GF-1 PMS sensor observes solar
radiation reflected by the Earth in four spectral channels distributed in the visible and
near-infrared spectral ranges. GF-1 PMS has a spatial resolution of 2 m, achieved by fusing
the multi-spectral and panchromatic bands. Google Earth images have a spatial resolution
of 0.5 m. All GF-1 and Google Earth data were evenly distributed throughout the study
area and were co-registered to the MODIS dataset. The high spatial resolution images are
evenly distributed across the study area (total of 30 “scenes”). Geometric and atmospheric
corrections of the GF-1 data were performed. Next, the Gaofen-1 panchromatic band and
multi-spectral bands were fused into a 2-m resolution multi-spectral image. Global land
cover (GLC) data for 2017 were employed to distinguish impervious surface from other
land cover types, based on the unique characteristics of impervious surface such as extreme
fragmentation (http://data.ess.tsinghua.edu.cn/, accessed on 5 March 2020). Based on
GF-1 samples, the evergreen forest classification results calculated from the two products
(30-m GLC 2015 and MODIS 500-m land cover product MCD 12Q1) were compared with
our extraction results.

Table 1. Description of Gaofen-1 images.

Number of Scenes Acquisition Date Coverage Cloud Cover

8 scenes 1 January 2017~25 February 2017
E 99.3◦~E 119.7◦,
N 21.6◦~E 36.8◦

<4%13 scenes 1 December 2017~27 February 2018
11 scenes 1 December 2018~15 February 2019

2.3. Otsu Threshold Selection Method

The Otsu method is a nonparametric, unsupervised method of automatic threshold
selection for image segmentation proposed by [50]. The optimal threshold for distinguish-
ing an object from the background based on the gray level is determined based on the
discriminant criterion. The procedure is simple, as the gray level histogram consists of only
two image classes (object and background).

The principle of this algorithm is as follows. Pixels of a given picture are represented
in L gray levels [1,2, . . . , L]. The number of pixels at level i is n, the total number of pixels
is N, and the probability of each gray value (pi) is given by:

pi = n/N i = 1, 2, 3, . . . L (1)

and,

∑L
i=1 pi = 1 (2)

http://data.ess.tsinghua.edu.cn/
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Threshold T dichotomizes the pixels in the image into two classes (object and back-
ground) C0(1,2,3, . . . ,T) and C1(T + 1,T + 2,T + 3, . . . ,L). Then, the probability of occurrence
(ω0) of class C0 is calculated as follows:

ω0 = ∑T
i=1 pi= ωT (3)

The probability of occurrence (ω1) of class C1 is calculated as follows:

ω1 = 1−ωT (4)

The total mean level (µT) of the entire image is calculated as follows:

µT = ∑L
i=1 ipi (5)

The mean levels of class C0 and C1 are µ0 and µ1, respectively:

µ0 = ∑T
i=1 ipi/ω0, µ1 = ∑L

i=T+1 ipi/ω1 (6)

Therefore,
µT = ω0µ0 +ω1µ1 (7)

The class variances σ2T are determined as follows:

σ2T = ω0µ0 − µT
2 +ω1µ1 − µT

2 = ω0ω1µ0 − µ1
2 (8)

The value of T ranges from 1 to L, and represents the optimal threshold of the Otsu
algorithm when between-class variance is maximized. At present, the Otsu algorithm is
the most popular method for automatically segmenting the object and background based
on a gray level histogram.

2.4. FEVC Model Based on the Linear Unmixing Model and NDVIann-min Image

The dimidiate pixel model is a linear unmixing model, which assumes that the target
vegetation and soil are invariant in terms of surface reflectance, and that a pixel signal
comprises two components: soil and vegetation [51,52]. The equation is approximated by:

NDVI = fc ×NDVIveg + (1− fc)×NDVIsoil (9)

and,

fc =
NDVI−NDVIsoil

NDVIveg −NDVIsoil
(10)

where fc is the fractional green vegetation cover within the pixel, NDVIveg is the NDVI
value of a pure vegetation pixel, and NDVIsoil is the NDVI value of a pure soil pixel. In
previous studies, the parameters NDVIveg and NDVIsoil have typically been determined
by collecting a large number of pure endmember samples (soil and vegetation) [53].

Based on the image of the minimum value of intra-year time-series NDVI (NDVIann-min),
we assumed that only two components (evergreen forest and non-evergreen forest, if
present; small bodies of water are neglected) within the pixels. Non-evergreen forest pixels
were treated as pure endmembers since all vegetation the NDVIann-min image had entered
dormancy except evergreen forest. If the NDVI of non-evergreen endmembers is regarded
as an invariant parameter in the whole study area, the FEVC model can be converted as
follows [44]:

FEVC =
NDVIannmin −NDVInon−ef

NDVIef −NDVInon−ef
(11)

where NDVIannmin is the NDVIann-min of an estimated pixel, NDVInon-ef is the NDVIann-min
value of a pure non-evergreen forest pixel, and NDVIef is the NDVIann-min value of a pure
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evergreen forest pixel. NDVIef and NDVInon-ef correspond to NDVIveg and NDVIsoil in
Equation (10).

To eliminate crop and deciduous forest, the coefficient of variation (CV) was combined
with the FEVC model. CV is the ratio of the standard deviation to the mean of the NDVI
time series for each pixel.

For an entire vegetation growth cycle, a smaller CV value indicates a flatter vegetation
growth status. Therefore, evergreen forest should have a smaller CV value than all other
vegetation types; CV is calculated as follows:

CV =

√
1

n−1

[
∑n

i=1(NDVIi)
2 − (∑n

i=1 NDVIi)
2
]

1
n ∑n

i=1(NDVIi)
(12)

For a pixel of the image i in the time-series dataset, where NDVIi is the NDVI value of
the pixel and n is the total number of images for the year. A CV threshold of 0.2 has been
established to distinguish evergreen forest pixels from crop or deciduous forest pixels [44].

2.5. Automatic Acquisition of FEVC Model Parameters

An image with two components, soil and vegetation, could be converted to gray
space [54], such that all pixels in the image are treated as vegetation pixels with varying
proportions of vegetation. A gray level histogram of all pixels within the NDVIann-min
image is shown in Figure 2a. Pure soil and pure vegetation pixels were the least numerous,
whereas pixels with moderate vegetation cover accounted for the largest proportion of
all pixels. This pattern corresponds to a normal distribution [55], as shown in Figure 2b.
Generally, the NDVI maximum value within an image is considered to represent a fully
vegetated pixel (NDVIveg in the dimidiate pixel model) and the minimum NDVI value
represents a full soil pixel (NDVIsoil) [56]. To remove interference from noise and outliers
(extreme maximum or minimum NDVI values), the maximum and minimum values within
a certain confidence interval (e.g., 95%) were generally used as model parameters NDVIveg
and NDVIsoil [57].

In Equation (11), NDVIef and NDVInon-ef were determined under the assumption that
NDVIann-min of the non-evergreen forest endmembers remained unchanged. However,
actual land surface cover characteristics are often highly complex, especially for the purpose
of FEVC model estimation. In the NDVIann-min image, non-evergreen forest pixels usually
contain bare soil and withered vegetation. Due to the effects of withered vegetation,
the NDVI values of non-evergreen forest pixels vary within a certain range (Figure 2c).
Afterwards, all non-evergreen forest pixels in the image resemble a single curve. Finally, a
bimodal curve that includes both object (evergreen forest pixels with varying proportions
of evergreen forest) and background (soil mixed with withered vegetation) is formed
(Figure 2d).

According to the FEVC model, when the parameter (NDVInon-ef) was underestimated,
some non-evergreen forest pixels with a higher NDVIann-min values than NDVInon-ef would
be mistakenly classified as evergreen forest. Considering this characteristic, the NDVI of the
valley between the two peaks should be the optimal value to distinguish the object from the
background (it is the highest NDVIann-min value of all background pixels). Meanwhile, the
NDVI value of the valley of the bimodal curve in Figure 2d is correspond to the NDVIsoil
of the single curve in Figure 2b. Therefore, our goal was converted to automatically obtain
the NDVI value of the curve valley, which is the parameter NDVInon-ef of the FEVC model.
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Figure 2. Gray level histograms of NDVI in single-value and binary space. (b) Curve fitting the NDVI frequency histogram
shown in (a). The parameters and R2 of the fitted Gaussian function are listed in Table in (b,d). (d) Bimodal curve fitting of
the NDVI frequency histogram in shown in (c). Peak 1 is the Gaussian curve of the background (non-evergreen forest); Peak
2 is the Gaussian curve for object (evergreen forest).

The NDVI value of the curve valley is the optimal threshold that maximizes between-
class (object and background) variance. For gray level histograms with significant double
peaks, we used the Otsu method to determine the optimal threshold for distinguishing the
object and background. However, due to the complex spatial distribution of land cover,
double peaks that are curve-fitted based on different NDVI gray level histograms differ
greatly, which causes the T values calculated using the Otsu method to deviate from the
NDVI of the curve valley.

Therefore, we performed a deviation correction to ensure that the T value was as close
as possible to the optimal curve valley NDVI threshold, which maximizes between-class
variance. We found that forest canopy closure in the image affected the distribution of the
histogram, changing the shapes of the double peaks. Generally, NDVI > 0.5 indicates a
high proportion of vegetation within the pixel [58]. Therefore, pixels at NDVIann-min > 0.5
were identified as evergreen forest pixels and the proportion of these pixels in the image
(fvcoa) was calculated. Figure 3 shows the different gray level histograms of evergreen
forest (object) pixels and non-evergreen forest (background) pixels in various NDVIann-min
images. As the proportion of forest cover in the image increased, the T value approached
the curve valley (optimal threshold).
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Figure 3. The influence of forest coverage on the shape of gray level histogram. (a–c) Gray level histograms of the “overall
forest coverage”; (d) linear fit between overall forest coverage (fvcoa) and (T–T’).

Next, we divided the entire study area image into small pieces and extracted >90 pieces
as samples. Each sample could be regarded as a small image to generate a gray level his-
togram. Fvcoa, T, and the optimal threshold were calculated for each sample. Linear
correlations were established among T, the optimal threshold, and fvcoa as follows:

T− T′ = K× fvcoa + b (13)

where T′ (is also the optimal threhold of Otsu) is the optimal threshold that maximizes
between-class variance (NDVIann-min from the curve valley), and K and b are obtained
from regression analysis of the samples, as shown in Figure 3d. The final equation is:

T− T′ = 0.3× fvcoa + 0.0083 (14)

The FEVC model parameter (NDVInon-ef) that takes actual surface characteristics into
account is automatically obtained, and replaced with. The other parameter of the FEVC
model (NDVIef) is estimated based on the maximum value, within a confidence interval
defined according to previous studies [51]. NDVIef is not affected by complex soil types or
withered vegetation.

2.6. Gridded Adaptive Parameters Estimation Model

Complex terrain and uneven land cover lead to spatial heterogeneity of the land
surface. The parameters of the FEVC model are sensitive to spatial heterogeneity. Variations
caused by terrain undulations, sun altitude differences, sensor angle differences, and
physical properties generate spectral reflectance differences within a given type of land
cover [59]. We analyzed seven soil and vegetation samples from various regions. Evergreen
forest samples differed markedly in texture and color depth, whereas color difference
between soil samples were more obvious (Figure 4). Vegetation spectral reflectance is
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influenced by vegetation color and growth period, while soil spectral reflectance is affected
by soil type, color, and roughness, resulting in differences between NDVIsoil and NDVIveg.
Therefore, selecting only one set of parameters for the whole study area is unreasonable.

Figure 4. Spatial heterogeneity among vegetation and soil. (A) a~f: color contrasts indicate differences among vegetation
and soil cover in different regions; (B) data from the United States Geological Survey (USGS) Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) spectral library. a and b, reflectance differences between forest with different
leaf colors and growth period; c, reflectance difference among three soils.

We developed an FEVC-SAP model to estimate the fraction of evergreen forest at
the grid scale. The entire study area was divided into multiple smaller images of equal
size by applying gridding. In each grid cell, the image was converted into binary space.
The two main parameters (NDVInon-ef and NDVIef) were calculated using the corrected
Otsu method, and automatically optimized and adjusted according to the characteristics
of the gray level histogram for each grid cell (Figure 5). The grid is similar to a sliding
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window. After the necessary parameters are obtained by FEVC-SAP for one grid cell, the
calculations for the adjacent cell begin.

Figure 5. Schematic of the evergreen forest extraction process using the FEVC-SAP model. (P1′ and P2′ represent the optimal
parameters in the grid respectively; and P1′ ′ and P2′ ′ represent the optimal parameters in another grid, respectively).

The size of the grid is pivotal to the results of the FEVC-SAP model and should be set
carefully, as the degree of interference of spatial heterogeneity with the FEVC parameters
is strongly related to grid size. In general, spatial heterogeneity is greater in a larger area.
Therefore, a larger grid size increases the complexity of spatial heterogeneity within the
grid, whereas an extremely small grid lacks many typical land use types. Therefore, we
established three grid sizes (20 km × 20 km, 60 km × 60 km, and 100 km × 1000 km) and
analyzed the effect of grid size on model parameter evaluation accuracy.
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Next, we evaluated the accuracy of NDVInon-ef and NDVIef parameter estimation in
grids with different sizes according to the deviation between reference values and sample
predicted values. Samples representing pure non-evergreen forest and pure evergreen
forest endmembers were collected from GF-1 2 m resolution images.

2.7. Accuracy Assessment

We assessed the estimation accuracy of FEVC-SAP for evergreen forest cover using
2 m resolution GF-1 and 0.5 m resolution Google Earth images taken in winter. We selected
a total of 2044 samples (0.5 km × 0.5 km) that were randomly distributed in the study area.
Each sample covered four MODIS pixels; the mean of evergreen cover fraction of these four
MODIS pixels was calculated to reduce the registration deviation between the MODIS and
Gaofen-1 data. The resulting confusion matrix (Table 2) was used to assess the accuracy of
evergreen forest cover pixel extraction.

Table 2. Confusion matrix.

Actual Results

Class 1 Class 2 Class n

Predicted results

Class 1 P11 P12 P1n
Class 2 P21 P22 P2n

. . . . . . . . . . . .
Class n Pn1 Pn2 Pnn

Using the confusion matrix, we calculated the producer’s accuracy (PA), user’s accu-
racy (UA), and overall accuracy (OA), where j is the jth class of predicted results and i is
the ith class of actual results (in Table 2); classification accuracy was compared between the
GLC 30 and MCD12Q1 products [60]

PA =
Pj,j

∑n
i=1 Pi,j

(15)

UA =
Pi,i

∑n
j=1 Pi,j

(16)

OA =
∑n

i=1 Pi,i

∑n
i=1 ∑n

j=1 Pi,j
(17)

We also calculated the root mean square error (RMSE) and mean relative error (MRE)
to assess sub-pixel-scale accuracy [61].

RMSE =

√
1
n ∑n

i=1(Pi − Ri)
2 (18)

MRE =
1
n ∑n

i=1

∣∣∣∣Pi − Ri

Ri

∣∣∣∣× 100% (19)

where n is the number of samples, Pi is the value predicted by the FEVC-SAP model for
sample i, and Ri is the reference value of sample i.

Forest spatial distribution presents a significant imbalance at the scale of the study
area. To compare the accuracy of the FEVC-SAP model estimates for different regions
within the study area, we divided the study area into densely forested regions (i.e., Yunnan,
Guangxi, Guizhou, Guangdong, Zhejiang, Fujian, Jiangxi, and Hunan Provinces), with
an overall forest cover fraction of >50%, sparsely forested regions (i.e., Anhui, Jiangsu,
Shanghai, and Chongqing Provinces and part of Sichuan Province), with an overall forest
cover fraction of <50%, and snow-covered regions (mainly in Sichuan Province).
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3. Results
3.1. Determination of Grid Size

The parameter values predicted by the FEVC-SAP model for each grid cell are shown
in Figure 6. Reference values were obtained for these parameters by collecting and analyz-
ing pure evergreen and non-evergreen forest samples. In most 20 km × 20 km grid cells,
the reference NDVInon-ef values fluctuated slightly around the predicted values. Due to the
effect of mixed withered vegetation, significant deviations (>0.2) were found between the
reference and predicted NDVInon-ef values in a few grid cells. Despite those discrepancies,
no reference NDVInon-ef value had a standard deviation exceeding 0.015. Compared to
20 km × 20 km grid cells, the prediction accuracy of NDVInon-ef is lower in 60 km × 60 km
and 100 km× 100 km grid cells. As grid size increases, spatial heterogeneity becomes more
prominent. Consequently, the reference NDVInon-ef values deviated widely from the 1:1
line in 60 km × 60 km grid cells, and even more widely in 100 km × 100 km cells.

Figure 6. Parameter simulation accuracy by grid size. Red line represents the error between reference value and prediction
value of NDVInon-ef, Green line represents the error between reference value and prediction value of NDVIef.

NDVI non-ef was predicted less accurately than NDVIef. For 20 km × 20 km grid cells,
the median reference NDVIef values approximate the predicted ones. Similarly, for both the
60 km × 60 km and 100 km × 100 km grid cells, the deviations of NDVIef reference values
were smaller than those of NDVI non-ef. The main reason for the higher prediction accuracy
of NDVIef is that pure evergreen forest pixels are less affected by spatial heterogeneity than
by the complexity of the soil background (i.e., soil type, soil color, soil moisture content,
and mixing of withered vegetation). In addition to interference from forest litter or straw,
soil in non-evergreen forest pixels is more diverse in terms of type, color and moisture,
increasing the uncertainty of NDVI non-ef estimations.

The prediction accuracy of NDVIef was highest for 20 km × 20 km grid cells. Overall,
the prediction accuracy of FEVC parameters is reduced when the size of grids increases
due to increased spatial heterogeneity. To ensure that sufficient background and object
pixels are present in the grid to generate a gray level histogram, the grid should be ≥20 km
× 20 km in size, as determined experimentally.
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3.2. Mapping of Fractional Evergreen Forest Cover

FEVC in the study area, as determined by the FEVC-SAP model, is shown in Figure
7. Evergreen forest, especially evergreen broadleaf forest, is dominant in southern China.
High evergreen forest cover fractions of 50–100% were observed throughout the study area,
except for small areas in the northeast and northwest (0–30%) including Jiangsu Province,
Anhui Province, Hubei Province, and high-altitude areas of northwestern Sichuan Province.
Extremely low cover fractions (0–10%) were obtained for scattered evergreen trees in urban
areas and cultivated fields. Moderate cover fractions (30–50%) corresponded to mixed
forest in the northern provinces and regions of southern provinces where forest is adjacent
to agricultural land. Notably, although the area of snow-covered evergreen forest is less
than 5% of the total evergreen forest area, evergreen forest information for these areas was
still considered.

Figure 7. Evergreen forest cover in the study area. 1(a), 2(a), and 3(a) are false-color composite images produced by
combining GF-1 blue, green, and red bands obtained in winter (31 December 2017; 16 January 2018; and 2 February 2018) for
areas corresponding to red boxes 1–3 on the map. 1(b), 2(b), and 3(b) are magnifications of 1(a), 2(a), and 3(a), respectively.
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Evergreen forest cover was mapped at three sites with a high degree of fidelity
compared to high-resolution GF-1 images (Figure 7a). The mapping results of these
three sites (designated 1–3) were enlarged, as shown in Figure 7b. The fractional cover
information was generally consistent with the GF-1 images at two sites (1 and 2). At the
third site, although the region was covered with snow, evergreen forest was still extracted
relatively accurately.

3.3. Model Accuracy Validation

The confusion matrix shown in Table 3, based on the FEVC-SAP method and MODIS
dataset, revealed higher classification accuracy at the pixel scale, including PA, UA, and
OA, compared with the MCD 12 land cover product; these accuracy results exceeded those
of the 30 m resolution GLC 30 data. The OA of evergreen forest extraction using FEVC-SAP
was 87.5%, the PA was 83.3%, and the UA was >90%. The OAs of MCD 12 and GLC 30
were 63.1% and 81.0%, respectively.

Table 3. Comparison of extraction accuracy of FEVC-SAP model with those of other products. UA,
user accuracy; PA, producer accuracy; OA, overall accuracy.

Product
Validation Data (Number)

Evergreen Forest Other UA

FEVC-SAP

Evergreen forest 828 86 90.7%
Other 170 960 84.9%

PA 83.3% 91.7%
OA

87.5%

MCD 12

Evergreen forest 457 750 37.9%
Other 161 1104 87.2%

PA 73.9% 59.5%
OA

63.1%

GLC 30

Evergreen forest 1016 135 88.3%
Other 350 1055 75.1%

PA 74.3% 88.6%
OA

81.0%

The classification accuracy for each of the three regions with different forest cover
characteristics are shown in Table 4. In densely forested regions, the FEVC-SAP model
achieved the highest OA (88.2%) and producer accuracy of 91.9% and UA of 90.4%. The OA
for sparsely forested areas was slightly lower (88%), and the lowest accuracy was obtained
for snow-covered regions. In sparsely forested regions, the double peak distribution
shown by the gray level histogram was unclear due to an insufficient number of object
(forest) pixels, which reduced prediction accuracy. Additionally, thick snow obscures
evergreen forest.

Differences between the reference and predicted cover fractions (obtained using the
FEVC-SAP method) at the sub-pixel scale showed similar trends to the classification
accuracy (Figure 8). The prediction accuracy of FEVC-SAP was highest for the densely
forest area, with a RMSE of 6.6% and MRE of 9.0%. The slope value was 0.88 and R2

exceeded 0.9. When both the slope and R2 are equal to 1, prediction accuracy is 100%. Both
the sparsely forested and snow-covered regions had poor prediction results, with RMSE
and MRE values above 10%. The R2 and slope in those two regions were also lower than in
the densely forest area.
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Table 4. Comparison of extraction accuracy values among three regions based on FEVC-SAP model.

FEVC-SAP Validation Data (Number)

Regions Evergreen Forest Other UA

Dense forest

Evergreen forest 456 48 90.4%
Other 40 204 83.6%

PA 91.9% 80.9%
OA

88.2%

Sparse forest

Evergreen forest 214 30 87.7%
Other 48 358 88.1%

PA 81.6% 92.2
OA

88.0%

Snow region

Evergreen forest 178 18 90.8%
Other 82 398 82.9%

PA 68.4% 95.6%
OA

85.2%

Figure 8. Predicted and reference evergreen forest cover values for regions dominated by three types of land cover, obtained
using the fixed-parameter method and SMACC methods. (a–c are accuracy comparisons in different regions and d–f are
accuracy comparisons of different models).

For the entire study area, we also evaluated the estimation accuracy of evergreen
forest cover using two other methods: the fixed-parameter method (only one set of FEVC
parameters used for the entire area) and the sequential maximum angle convex cone
(SMACC) method [62]. We obtained the cover fraction of multiple endmembers based
on SMACC values derived from the time-series NDVI dataset. Comparing the FEVC-
SAP with the other two methods (Figure 8), we found that FEVC-SAP achieved the best
prediction results for FEVC, with the lowest MRE (12%) and RMSE (8.6%) values. In
contrast, the evergreen forest cover prediction accuracy was relatively poor using the
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fixed-parameter method and SMACC, reflected in low R2 and slope values, and high RMSE
and MRE values.

Evergreen forest fraction results obtained from the FEVC-SAP model and two other
methods for regions dominated by three types of land cover are shown in Figure 9. Com-
pared to the reference fractions of evergreen forest cover, both the fixed-parameter method
and SMACC tended to overestimate and underestimate low and high fractions of ever-
green forest, respectively, in different regions. The FEVC-SAP model achieved the highest
accuracy in densely-forested areas. In both sparsely forested areas and those containing
adjacent forest and city, the FEVC-SAP model underestimated the fraction of evergreen
forest cover when the total forest cover fraction was <0.5, and overestimated it when the
total forest cover fraction was >0.8.

Figure 9. Evergreen forest fractions for three different sites (urban forest, urban area, and a region
containing their border) generated using the FEVC-SAP model, the fixed-parameter method, and
SMACC. The reference fractions were derived from GF-1 images taken in winter. Fractions range
from 0 (blue) to 1 (yellow).

4. Discussion
4.1. Elimination of Large-Scale Spatial Heterogeneity Based on Grids

The dimidiate pixel model, a type of LSMM (linear spectral mixing model), is widely
used to estimate fractional vegetation cover due to its sound physical basis and simple
implementation. However, this model is easily affected by the complexity of surface
components. For example, LSMM assumes that pure endmembers exist, and that only two
components (vegetation and soil) are present in the study area [63]. These assumptions are
generally applicable to an ideal case where spectral reflectance variation within each land
cover class is sufficiently small. However, high spatial heterogeneity exists across large
areas, leading to spectral reflectance differences within land cover classes. For extraction
of the evergreen forest cover fraction, although we assumed that the two endmember
components (vegetation and soil) could be replaced with evergreen and non-evergreen
forest in the NDVIann-min image, both the evergreen and non-evergreen forest pixels were
impacted by spatial heterogeneity across the large study area (Figure 4).

Taking full account of spatial heterogeneity, the FEVC-SAP model achieved relatively
high estimation accuracy for fractional evergreen forest across a large area (Figure 8). We
divided the study area into grid cells and ignored spatial heterogeneity within individual
cells due to their small areas. Therefore, the FEVC-SAP model parameters for a single
grid cell were minimally affected by spatial heterogeneity. Previous models have been
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unable to solve spatial heterogeneity. As shown in Figure 9, the fixed-parameter method,
which is based on one set of model parameters, and the non-parametric SMACC method,
simulating factors such as spatial heterogeneity in the context of an extremely complex land
surface, is difficult due to a lack of training samples from evergreen and non-evergreen
forest areas [64].

By applying the corrected Otsu method to the parameter selection process for the
FEVC model, SAPs were automatically obtained for each grid cell. In previous vegetation
cover studies that applied the dimidiate pixel model, NDVIsoil and NDVIveg have generally
been determined empirically, or based on pure soil and pure vegetation samples obtained
from field sampling and high-resolution images [56]. At the national or global scale, sample
collection is time-consuming, labor-intensive, and subjective [65]. In contrast, the FEVC-
SAP method is less dependent on samples. This method allows rapid extraction of the
evergreen forest cover fraction with high accuracy. Therefore, it is more suitable for large
regions (i.e., for national and global scale studies). Moreover, FEVC-SAP makes full use of
time-series data. In contrast to existing pixel decomposition methods based on spectral
unmixing, the FEVC-SAP can distinguish vegetation types with high spectral similarity,
such as evergreen and deciduous forests.

4.2. Applicability and Sensitivity of the FEVC-SAP Method

Due to the small number and uneven distribution of pure evergreen forest pixels in
the grid, the NDVIef value determined from the 95% confidence intervals of the gray level
histogram was lower than the true value, leading to overestimation of pixels with cover
fractions near 100%. Due to the high proportion of soil (including withered vegetation),
the NDVInon-ef derived using the corrected Otsu method was higher than the actual value,
resulting in underestimation of pixels with low fractions of evergreen forest. Therefore, the
FEVC-SAP is most applicable in densely forested areas.

The FEVC-SAP method is also suitable for the extraction of other types of vegetation
cover. The NDVI is a good indicator of vegetation growth and is also the most popular [66].
Most remote sensing images contain red and near-infrared bands, and this model can use
a variety of image types. In addition, in contrast to other supervised spectral unmixing
models, the Otsu method converts spectral information into gray level information, and
thus does not rely on vegetation spectral features for unmixing. Once the land cover
types of the study area are divided into object and background, the proposed method can
be applied. Importantly, as there is no need for a large quantity of high-resolution field
samples, this approach is practical at the national or global scale, but is not necessary for
small areas.

4.3. Uncertainty and Future Research

In this study, we assessed the potential for evergreen forest mapping across a large and
complex area using intra-year time-series NDVI data. However, there are limitations to the
application of the proposed method. Although previous studies have reported advances in
the use of LSMM for detailed mapping of dominant vegetation classes at the sub-pixel scale,
linear decomposition may be inadequate in areas with a complex underlying surface [67].
In the proposed model, NDVInon-ef was simulated through linear correlation using the
Otsu threshold and proportion of forest in the grid. Then, NDVIef was predicted based on
gray level confidence intervals. Complex land surfaces are difficult to simulate based on
simple correlation analyses. Therefore, our method cannot guarantee high accuracy for
all sites.

Time-series analysis of vegetation indexes has demonstrated utility for distinguishing
among land cover types based on phenological characteristics [68]. Time-series and spectral
data can be combined to accurately distinguish among vegetation types and obtain cover
fractions at the sub-pixel scale in future pixel unmixing research [69]. In this paper, an
attempt was made to extract information about the evergreen forest cover fraction using
time-series data, and to obtain model parameters using an adaptive method. Future
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research should focus on improving parameter prediction accuracy. Unmixing methods
that combine spectral and time-spectral data should also be further studied.

5. Conclusions

In this study, we proposed an FEVC-SAP model for estimating the fraction of evergreen
forest cover. Using intra-year time-series NDVI data from MODIS, this method improved
the dimidiate pixel model through adaptive parameter selection. Without relying on
high-resolution images, extraction of the evergreen forest cover fraction was achieved
across a large area. Despite the complexity of the land cover in the study area, the overall
unmixing accuracy for evergreen forest fractions exceeded 85%. In previous studies, the
FEVC model, which applies the dimidiate pixel model to time-series characteristics of
evergreen forest, was effective at regional and single-city scales. Considering the influence
of spatial heterogeneity on the parameters of the dimidiate pixel model, we divided the
study area into grid cells and used the Otsu method to adaptively simulate the parameters
in each cell. In contrast to existing studies of pixel decomposition, which obtain parameters
through training with numerous samples, the FEVC-SAP method optimizes the parameters
automatically according to evergreen forest distribution within the grid. Our FEVC-SAP
model will allow for rapid and accurate mapping of evergreen forest cover at the sub-pixel
scale. Our method has notable advantages, especially for dealing with the significant spatial
heterogeneity present at national or global scales. In particular, the method presented in
this study can be used to obtain high-quality information about vegetation composition in
other areas around the world. Such information will be especially important in regions
where field sampling is difficult or high-resolution images are scarce.
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