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Abstract: The Advanced Himawari Imager (AHI) aboard the Himawari-8, a new generation of
geostationary meteorological satellite, has high-frequency observation, which allows it to effectively
capture atmospheric variations. In this paper, we have proposed an Improved Bi-angle Aerosol optical
depth (AOD) retrieval Algorithm (IBAA) from AHI data. The algorithm ignores the aerosol effect at
2.3 µm and assumes that the aerosol optical depth does not change within one hour. According to the
property that the reflectivity ratio K of two observations at 2.3 µm does not change with wavelength,
we constructed the equation for two observations of AHI 0.47 µm band. Then Particle Swarm
Optimization (PSO) was used to solve the nonlinear equation. The algorithm was applied to the AHI
observations over the Chinese mainland (80◦–135◦E, 15◦–60◦N) between April and June 2019 and
hourly AOD at 0.47 µm was retrieved. We validated IBAA AOD against the Aerosol Robotic Network
(AERONET) sites observation, including surrounding regions as well as the Chinese mainland,
and compared it with the AHI L3 V030 hourly AOD product. Validation with AERONET of 2079
matching points shows a correlation coefficient R = 0.82, root-mean-square error RMSE = 0.27, and
more than 62% AOD retrieval results within the expected error of ±(0.05 + 0.2 × AODAERONET).
Although IBAA does not perform very well in the case of coarse-particle aerosols, the comparison
and validation demonstrate it can estimate AHI AOD with good accuracy and wide coverage over
land on the whole.

Keywords: AHI AOD; IBAA; PSO

1. Introduction

Aerosols are solid and liquid particles suspended in the atmosphere with a particle
size between 0.001 and 100 µm. They come from a wide range of sources, including natural
and anthropogenic source aerosols, such as pollen, sea salt particles, dust, smoke, haze, and
so on. The scattering and absorption effects of aerosols directly affect radiation reaching
the earth and atmospheric temperature, which is of great significance to the study of global
climate change and radiative forcing [1,2]. Furthermore, heavy aerosol loading reduces
atmospheric visibility and causes harm to people’s health [3]. Therefore, it is necessary
to monitor the state of atmospheric aerosols. Although there are many ground-based
monitoring stations, such as AERONET (Aerosol Robotic Network) and SONET (Sun-sky
radiometer Observation Network) observation networks, which can obtain accurate aerosol
information, they are too sparse to meet the needs of large-scale monitoring over a long
period of time. Retrieving aerosol information from satellite observation is an effective
solution to solve the problem. Geostationary meteorological satellites can provide high-
frequency observations with broad coverage. Thus, they can monitor the evolution of
sandstorms and the occurrence, dissipation, and movement of haze in near real-time [4–6].
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Aerosol optical depth (AOD) is one of the most important aerosol properties and
is widely recognized as a critical indicator in understanding atmospheric physics and
regional air quality [7]. There have been many studies on the quantitative measurement
of AOD using geostationary satellite observations. Knapp et al. (2005) obtained AOD of
GOES-8 (Geosynchronous Earth Orbit Satellite) in the United States every 30 min using
the time-series method [8]. The time-series method determined the surface contribution
from temporal compositing of visible imagery with a 14-day window, where darker pixels
correspond to less atmospheric attenuation and surface reflectance is deduced from the
composite using radiative transfer. In addition, the method has also been applied to the
Spinning Enhanced Visible and InfraRed Imager (SEVIRI) aboard the Meteosat Second-
Generation (MSG) satellite [9], Geostationary Ocean Color Imager (GOCI) onboard the
Communication, Ocean, and Meteorological Satellite (COMS) [10,11], MTSAT-1R [12],
CMOS/ Meteorological Imager (MI) [13], etc. Though the time-series method has been
used widely, the selection of reflectance over the time window is uncertain due to the
existence of clouds and shadows and the complex relationship between aerosol, surface
reflectance, and the top of atmosphere reflectance (TOAR) [8].

Moreover, the surface reflectance changes during a period cannot be ignored. Relying
on the high-frequency observation characteristics of the geostationary satellite, certain
multi-temporal and multi-angle algorithms have been successfully applied to geostationary
satellite AOD inversion. Thomas et al. (2009) applied the AATSR (Advanced Along-Track
Scanning Radiometer) ORAC (Oxford-RAL retrieval of Aerosols and Clouds) algorithm to
SEVIRI AOD inversion [14]. Zhang et al. (2011) applied the MAIAC algorithm to GOES
observation and obtained the surface bidirectional reflectance distribution function and
AOD [15]. Mei et al. (2012) utilized the k-ratio approach (k-ratio is the ratio of surface
reflectance for two subsequent observations, which was approximated by the ratio of the
reflectance at 1.6 µm) and time-series technique for joint retrieval of AOD and aerosol
type from MSG/SEVIRI [16]. Additionally, the optimal estimation (OE) method is used
to invert AOD and the surface bidirectional reflectance factor [17]. Zhang et al. (2020)
used an empirical bias correction algorithm to improve the diurnal bias in the GOES-
16 Advanced Baseline Imager AOD due to deficiencies in the land-surface–reflectance
relationship currently applied in the ABI AOD retrieval algorithm [18], which is developed
from the Dark Target (DT) algorithm [19]. It is worth noting that Xie et al. (2019) derived a
global and hourly dataset of AOD from GOES-16, MSG-1, MSG-4, and Himawari-8 [20].
For Himawari-8 AHI AOD, the famous DT algorithm was tested and produced a good
result [21–23]. She et al. (2018) obtained the hourly AOD and surface reflectance by the OE
method [24]. Su et al. (2020) proposed an algorithm combining DT and DB (Deep Blue) by
building a monthly spectral base reflectance ratio library, which is a ratio library of 0.47 µm
and 0.51 µm to 2.3 µm [25]. Many other studies have also greatly enriched AHI aerosol
inversion [26–29].

This paper is based on the theory of a bi-angle approach to retrieve the earth’s surface
albedo proposed by Xue and Cracknell (1995) [30], which has been applied to MODIS
(Moderate Resolution Imaging Spectroradiometer) AOD retrieval [31,32]. In this paper,
we make the following assumptions: (1) AOD does not vary over one hour; (2) AHI
observations at 2.3 µm are not affected by aerosols; and (3) the surface reflectance ratio of
the two observations does not depend on wavelength. Then, based on the simultaneous
equations of two observations, we used particle swarm optimization to solve the optimal
solution. The framework of the paper is as follows: Section 2 presents the introduction
of the data used in the paper. Section 3 shows the detailed algorithm including the basic
theory of the bi-angle approach, PSO, and the process of AHI AOD retrieval. Section 4
describes the algorithm results and validation results and the change of surface albedo.
The section also analyzes the setting of PSO boundaries and IBAA performance in a coarse
aerosol situation. The conclusion is given in Section 5 and the future plan is also discussed
in this part.
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2. Data

In this paper, we used Himawari-8 L1 2 KM gridded data and L3 V030 hourly AOD,
MODIS L2 10 KM AOD, MCD12C1 land cover type data, and ground-based aerosol
monitoring network AERONET data. The detailed data description is as follows.

2.1. Himawari-8 AHI Data

Himawari-8 is a new-generation geostationary meteorological satellite launched by
the Japan Meteorological Agency (JMA) in October 2014. AHI onboard the satellite can
observe at 120◦ × 120◦ (80◦E–20◦W, 60◦N–60◦S), covering East Asia, the Western Pacific
Ocean, Australia, and other large areas. It provides observations every 10 min with 16
bands and high spatial resolution. In the study, Himawari-8 L1 data, which have been
corrected for radiation and gridded at 2 km, were used for algorithm testing, and Japan
Aerospace Exploration Agency (JAXA) L3 V030 products were used for comparison [33,34].
These data can be downloaded free from the JAXA Himawari Monitor (https://www.eorc.
jaxa.jp/ptree/index.html, last accessed date: 19 November 2021).

2.2. MODIS Data

MODIS sensors aboard Terra and Aqua have been widely used in many research
fields. They can provide visible observations twice every day. In this paper, we used
MODIS Collection 6.1 10 km aerosol products, which provide AOD from DT and DB
algorithms, and combined AOD from DB and DT [35]. These MODIS AOD products have
good accuracy in China [36–38]. The combined AOD was used to calculate the maximum
value of each month in the region and DB AOD was used to compare with IBAA AOD
at 0.47 µm. The MCD12C1 product provides the dominant land cover type and sub-grid
frequency distribution of land cover classes. It is mainly applied to the water mask. These
products can be obtained from the website https://ladsweb.modaps.eosdis.nasa.gov (last
access: 19 November 2021)).

2.3. AERONET Data

AERONET is a global ground-based remote sensing aerosol observation network
established by NASA and PHOTONS. It provides a long-term, continuous, and readily
accessible public domain database of aerosol optical, microphysical, and radiative prop-
erties for aerosol research and characterization. The available Version 3 AERONET AOD
data are computed for three data quality levels: Level 1.0 (unscreened), Level 1.5 (cloud-
screened), and Level 2.0 (cloud screened and quality-assured) [39]. In order to evaluate the
IBAA algorithm more comprehensively in space, as Figure 1 shows, we have selected 14
AERONET stations (Level 2.0 products are preferred; if not, level 1.5 products are chosen)
in the Chinese mainland and surrounding areas for IBAA AOD validation. The distribution
of selected stations is shown in Figure 1.

https://www.eorc.jaxa.jp/ptree/index.html
https://www.eorc.jaxa.jp/ptree/index.html
https://ladsweb.modaps.eosdis.nasa.gov
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Figure 1. Study area. The solid red circles represent the locations of AERONET sites, and the color
strip shows the altitude of the study area.

3. Principle and Method
3.1. Theory of Bi-Angle AOD Inversion

In 1995, Xue and Cracknell (1995) proposed an operational bi-angle approach to
retrieve the earth surface albedo from AVHRR data [30]. They obtained a formula for the
relationship between the surface albedo and the atmospheric optical depth by solving the
radiative transfer equation. The formula is as follows.

A =
(A′b− a) + a(1− A′)e[(a−b)ετλ

0 sec θ′ ]

(A′b− a) + b(1− A′)e[(a−b)ετλ
0 sec θ′ ]

(1)

where A is the surface albedo and A′ is the apparent reflectance at wavelength λ. a = sec θ,
b = 2, ε is the backscattering coefficient, designed to be 0.1 according to previous stud-
ies [30–32]. τλ

0 is the atmospheric optical depth and τλ
0 = τr + τa, where τr is the Rayleigh

optical depth that can be accurately calculated by τr = 0.00864 · λ(−3.916+0.074λ+0.05/λ) (the
units for λ is micrometer) and τa is the atmospheric aerosol optical depth. θ represents the
solar zenith angle and θ′ denotes the zenith angle of the sensor.

For a single observation of a single band, there are two unknown parameters, AOD
and surface albedo. In this study, AOD and surface albedo were retrieved using an aerosol-
sensitive 0.47 µm band. The 0.47 µm band is more sensitive to aerosols because it samples
a part of the electromagnetic spectrum where clear-sky atmospheric scattering is important.
It is assumed that AOD does not change in the observation interval of one hour, which
is consistent with the verification of ground stations [40]. Then, we ignored the aerosols
influence in 2.3 µm band, that is, the apparent reflectance is assumed to be equal to its
surface albedo. The error analysis of coarse-particle aerosols is given in Section 4. Some
studies have shown that the surface reflectance ratio of two observations is only related
to the geometric influence factor, which is independent of wavelength [41,42]. It can be
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expressed as Equation (2). K is the ratio of two observations at 2.3 and 0.47 µm. A1
0.47µm

and A2
0.47µm represent the first and second observations at 0.47 µm.

K =
A1

2.3µm

A2
2.3µm

=
A1

0.47µm

A2
0.47µm

(2)

Thus, the hourly AOD and the surface albedo can be calculated according to two
observations with an interval of one hour. It is necessary to note that, since two observa-
tions are involved, accurate pixel location matching is very important. AHI’s positioning
accuracy is less than 1 km with stability and effectiveness [43]. However, this positioning
accuracy is too rough for the 2 km resolution in the joint inversion with two observations.
In order to reduce the error caused by pixel matching, we reduce the AHI spatial resolution
to 10 km.

3.2. Particle Swarm Optimization

Among the existing inverse numerical solutions based on physical models, direct iter-
ative solutions and optimization methods are widely applied [24,44,45]. These algorithms
involve iterative processes that require an initial value, and in some cases where the truth
value is far from the initial value, larger deviations tend to occur [46–48]. Particle Swarm
Optimization (PSO) is a bionic algorithm proposed by Kennedy and Eberhart in 1995 [49].
It is a random search algorithm based on group cooperation and it does not need to be
given an initial value, but a valid range to effectively solve the optimal solution.

PSO simulates a flock of birds searching for food at random. With only one piece
of food in the area, none of the birds know where the food is. However, they know
how close they are to the food, and the easiest and most effective way is to search the
area around the bird closest to the food. In the PSO algorithm, the solution of each
optimization problem is a bird in the search space, called a “particle”. It is initialized as
a group of random particles (random solutions), and then the optimal solution is found
through iteration: The bird is abstracted as a particle (point) without mass and volume,
and extended to the N-dimensional space. The position of particle i in the N-dimensional
space is expressed as the vector Xi = (Xi1, Xi2 · · ·XiN), and the flight speed is expressed
as the vector Vi = (Vi1, Vi2 · · ·ViN). Each particle has a fitness value determined by the
objective function and knows the best position and the current position (Xk

id) it has found
so far. This can be thought of as the particle’s own flight experience. In addition, each
particle knows the best position found so far for all the particles in the entire population.
This can be thought of as the experience of particle companions. The particle is determined
by its own experience and the best experience of its peers. The PSO algorithm can be boiled
down to the following two iteration processes.

Vk+1
id = ωVk

id + c1r1

(
Pk

id − Xk
id

)
+ c2r2

(
Pk

gd − Xk
id

)
(3)

Xk+1
id = Xk

id + Vk+1
id (4)

where i is the ith particle in the solution space, d is the dth dimension of the N-dimension,
and k refers to the kth iteration. V is the velocity of the particle and ω is the inertia weight
factor, which is a constant greater than zero, determining the global and local optimization
capabilities. c1 and c2 are the acceleration constants. r1 and r2 are random numbers
distributed in the interval [0,1]. Pk

id represents the dth dimension of the best position (value)
of the ith particle in the kth iteration and Pk

gd denotes the dth dimension of the global
optimal solution at the kth iteration.
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For the optimization solution of the mentioned variables, PSO randomly initializes
multiple group solutions (random particles). By constructing the cost function, every group
solution’s fitness is calculated. The overall flow of the PSO algorithm is shown in the
Figure 2. It is simple, easy to implement, has fewer parameters, no gradient information,
performs well in a variety of complex optimization problems, and it has been widely used
in many fields [50–53]. In this study, we applied it to jointly retrieve AOD and the surface
albedo from AHI.
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3.3. IBAA Algorithm Scheme

The study focuses on AOD retrieval of AHI over the Chinese mainland, and the
geographical range is 80◦E–135◦E, 15◦N–60◦N. Figure 1 shows the elevation of the study
area and the distribution of AERONET sites.

The main inversion procedures in this paper include AHI data extraction, clipping to
the study area, cloud and water mask, resampling, gas absorption correction, and a PSO
solution.

Due to the requirement of two clear-sky observations, the accurate cloud mask will
help improve the accuracy of the retrieval results. In this study, the process of the cloud
mask algorithm is shown in Figure 3 [54–56].

The algorithm is suitable for AOD retrieval over various surface types including the
water body [32]. However, we focus on AOD inversion over land. Thus, the MCD12C1
product is applied to mask the water body in the study area. In this way, the iterative
computation time is also reduced.
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Before the joint solution, we revised the TOAR observations for gas absorption accord-
ing to the following formulas. Through multiplying TOAR by the reciprocal of total atmo-
spheric transmittance Tλ

Gas, we obtained gas-corrected TOAR TOARλ
Cor. The atmospheric

gases taken into consideration mainly include H2O and O3. Tλ
other is the transmittance of

other gases. For the convenience of calculation, the optical thickness of each gas uses the
fixed values in Table 1.

Table 1. The optical depth of gases used in gas absorption correction.

Wavelength (µm) τλ
H2O τλ

O3
τλ

other

0.47 8.0× 10−5 2.9× 10−3 1.25× 10−3

2.3 2.53× 10−2 2.0× 10−5 1.63× 10−2

TOARλ
Cor = TOARλ/Tλ

Gas (5)

Tλ
Gas = Tλ

H2O · Tλ
O3
· Tλ

other (6)

The gas transmittance of each part is calculated as follows:

Tλ
H2O = exp

(
G · τλ

H2O

)
, Tλ

O3
= exp

(
G · τλ

O3

)
, Tλ

other = exp
(

G · τλ
other

)
(7)

G =
1

cos(θS)
+

1
cos(θV)

(8)

where G is air mass factor. θS and θV represent the zenith angle of the sun and sensor.
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For every hour of cloud-free observation over the land, the following cost function is
constructed for each matching pixel pair:

J(x) =

(
A1

0.47µm

A2
0.47µm

−
A1

2.3µm

A2
2.3µm

)2

(9)

The PSO algorithm is used to minimize the cost function. Here, three terminal con-
ditions are used to end PSO: (1) The cost function is less than the specified threshold,
1.0× 10−7; (2) the change of the optimal particle (AOD in the paper) is less than 1.0× 10−7,
which means the solution tends to be stable; and (3) the number of iterations reaches 200.
If any of the above conditions are met, PSO stops the iteration and outputs the results. It
should be pointed out that the MODIS aerosol products were used to calculate the monthly
maximum AOD value (MODISAODmax) of the study area, and the missing part was given
by interpolation. The range of inversion value was set as [0, 2 × MODISAODmax] (if the
upper limit of the range exceeds 4, set it to 4).

4. Result and Analysis

We applied the IBAA algorithm to AHI data to estimate hourly AOD over the Chinese
mainland region from April to June 2019. In this section, we focus on evaluating IBAA
AOD through comparisons with AERONET measurements, JAXA aerosol products, and
MODIS C6.1 DB AOD. Furthermore, we analyzed the surface albedo result and IBAA
performance in the coarse-particle aerosols case and evaluated the global optimization
capability of PSO.

4.1. AOD Validation

In order to validate our algorithm, the ground-based measurements of 14 AERONET
sites introduced in Section 2.3 were quantitatively compared with AHI-derived AOD of
IBAA. In the meantime, we compared the JAXA AOD product of the same period with
AERONET.

Because AERONET products do not provide AOD at 470 nm (τAERONET
470 ), we utilize

the following formula to calculate τAERONET
470 based on the parameters “AOD_440 nm” and

“440-675_Angstrom_Exponent” provided by AERONET [57]:

τAERONET
470 = τAERONET

440

(
470
440

)−α

(10)

where α refers to Angstrom exponent, and here it is the parameter “440-675_Angstrom_Exponent”.
τAERONET

440 is AERONET AOD at 440 nm, and here it is the parameter “AOD_440 nm”. We
also calculated JAXA AOD at 470 nm (τAHI

470 ) by the Equation (9) due to only AOD at 500
nm (τAHI

500 ) provided.

τAHI
470 = τAHI

500

(
470
500

)−α

(11)

Due to the assumption that AOD does not vary in an hour, only AERONET AOD
measurements matched within the two AHI observations’ intervals are averaged for
validation. The AHI-derived AODs were averaged at a 50 km × 50 km spatial window
centered on AERONET sites. JAXA AODs were also averaged at a 50 km × 50 km
spatial window, but with AERONET AOD, they averaged within ±30 min of the satellite
observation time [40]. Figure 4a shows the scatter plot of AHI IBAA AOD and AERONET
AOD. The solid red and blue lines are the 1:1 line and EE ± (0.05 + 0.2 × AODAERONET)
envelope lines. There are a total of 2079 matched points of AHI and AERONET AODs with
good agreement in temporal variation and spatial distribution. The correlation coefficient
R is 0.82, the RMSE is 0.27, and MD is 0.059. A total of 62.77% retrieval AODs fall within
the uncertainty of ∆AOD = ±(0.05 + 0.2 × AODAERONET). The IBAA algorithm shows
a slight underestimation with 20.54% matched points below EE. AHI-derived AODs in
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almost all sites show great agreement with ground measurements. Only at the Pokhara
and Lumbini_North sites are there obvious underestimates. The errors may be caused by
the high satellite zenith angle (about 70 degrees), but the results still capture AOD variation
over time as shown in Figure 5.
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Site Name Latitude, 
Longitude 

Altitude Land Use 
and Cover 

N-
IBAA 

R-
IBAA

RMSE-
IBAA 

MD-
IBAA 

WEE-
IBAA 

(%) 

UpEE-
IBAA 

(%) 

LowEE-
IBAA 

(%) 

N-
JAX

A 

R-
JAXA 

RMSE-
JAXA 

MD-
JAXA 

WEE-
JAXA 

(%) 

UpEE-
JAXA 

(%) 

LowEE
-JAXA 

(%) 

AOE_Baotou 40.85° N, 
109.63° E 

1314 Grasslands 146 0.83 0.11 −0.01 70.6 18.5 10.9 100 0.80 0.13 0.08 52.0 3.0 45.0 

Beijing_PKU 
39.99° N, 
116.31° E 

53 
Urban and 
Build-Up 

Land 
285 0.91 0.21 0.01 66.0 21.5 12.5 174 0.85 0.23 0.09 49.4 9.8 40.8 

Beijing-CAMS 
39.93° N, 
116.32° E 

106 
Urban and 
Build-Up 

Land 
288 0.88 0.25 0.06 60.3 17.9 21.8 176 0.88 0.21 0.06 51.7 9.1 39.2 

Bhola 
22.23° N, 
90.76° E 7 Croplands 27 0.39 0.18 −0.12 77.8 22.2 0 40 0.66 0.42 0.34 32.5 0 67.5 

Hankuk_UFS 
37.34° N, 
127.27° E 

167 
Deciduous 
Broadleaf 

Forest 
249 0.80 0.15 −0.02 69.9 20.9 9.2 54 0.88 0.15 0.08 57.4 7.4 35.2 

Hong_Kong_S
heung 

22.48° N, 
114.12° E 

40 Savannas 17 0.85 0.21 −0.14 41.2 58.8 0 0 - - - - - - 

Lulin 
23.47° N, 
120.87° E 

2868 
Evergreen 
Broadleaf 

Forest 
48 0.81 0.16 −0.14 31.3 68.7 0 30 0.82 0.08 0.05 80.0 0 20.0 

Lum-
bini_North 

27.50° N, 
83.28° E 

89 Croplands 225 0.55 0.38 0.23 55.1 4.0 40.9 181 0.31 0.59 0.33 30.4 10.5 59.1 

Pokhara 
28.19° N, 
83.98° E 

800 Savannas 230 0.63 0.48 0.33 33.9 3.9 62.2 152 0.82 0.42 0.32 29.6 0.7 69.7 

Thimphu 
27.47° N, 
89.64° E 

2314 
Evergreen 
Needleleaf 

Forest 
6 0.94 0.04 0.02 100.0 0 0 0 - - - - - - 

Figure 5. Variation curves of the hourly AOD (0.47 µm) from AHI IBAA and the AERONET product in eight AERONET
stations during the study period. The red lines represent the matched AOD from AERONET and the blue lines are that
from AHI.

The validation result of JAXA AOD is illustrated as Figure 4b. JAXA AOD has fewer
matched points, with an R of 0.74 and RMSE of 0.34. It shows a large overestimation with
47.20% below EE, which is higher than the 44.40% falling within the EE line. Figure 6a,b
shows the frequency of the distribution of AHI AOD and AERONET AOD differences,
respectively. In general, the results of the IBAA algorithm are closer to the AERONET
measurements. Additionally, we provide a detailed comparison of each site in Table 2,
which illustrates our algorithm has high coverage and better accuracy over the Chinese
mainland. In order to intuitively show the consistency between IBAA results and ground-
based measurements on this time scale, we created the variation curves shown in Figure 5
for AERONET sites with matching points greater than 100. The time series of IBAA AHI
AOD is consistent with the ground-based observation AOD at all 14 sites. However, the
IBAA method slightly underestimates AOD, especially for high aerosol loading. This may
be caused by aerosols with strong absorption, and IBAA does not take into account the
specific aerosol type.
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of frequency distribution of JAXA AOD - AERONET AOD.

Moreover, we compared IBAA AOD and MODIS DB AOD on 2 May 2019. Figure 7
shows the hourly variation of AHI AOD with good coverage and Figure 8 shows MODIS
DB AOD of Terra and Aqua on the same day. From these two pictures, we can see that
AHI-retrieved AOD has a similar spatial distribution to MODIS DB AOD. However, AHI
seems to have lower AOD than MODIS in the dust area (especially Taklimakan Desert),
which might be related to the assumption that the effect of aerosol is ignored at 2.3 µm.
This will be analyzed in more detail in Section 4.3.
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Table 2. The detailed AERONET stations information and comparisons between AERONET AOD with IBAA AOD and JAXA AOD.

Site Name
Latitude,

Longi-
tude

Altitude Land Use
and Cover N-IBAA R-IBAA RMSE-

IBAA
MD-

IBAA
WEE-
IBAA
(%)

UpEE-
IBAA
(%)

LowEE-
IBAA
(%)

N-JAXA R-
JAXA

RMSE-
JAXA

MD-
JAXA

WEE-
JAXA

(%)

UpEE-
JAXA

(%)

LowEE-
JAXA

(%)

AOE_Baotou
40.85◦ N,
109.63◦

E
1314 Grasslands 146 0.83 0.11 −0.01 70.6 18.5 10.9 100 0.80 0.13 0.08 52.0 3.0 45.0

Beijing_PKU
39.99◦ N,
116.31◦

E
53

Urban and
Build-Up

Land
285 0.91 0.21 0.01 66.0 21.5 12.5 174 0.85 0.23 0.09 49.4 9.8 40.8

Beijing-CAMS
39.93◦ N,
116.32◦

E
106

Urban and
Build-Up

Land
288 0.88 0.25 0.06 60.3 17.9 21.8 176 0.88 0.21 0.06 51.7 9.1 39.2

Bhola 22.23◦ N,
90.76◦ E 7 Croplands 27 0.39 0.18 −0.12 77.8 22.2 0 40 0.66 0.42 0.34 32.5 0 67.5

Hankuk_UFS
37.34◦ N,
127.27◦

E
167

Deciduous
Broadleaf

Forest
249 0.80 0.15 −0.02 69.9 20.9 9.2 54 0.88 0.15 0.08 57.4 7.4 35.2

Hong_Kong_
Sheung

22.48◦ N,
114.12◦

E
40 Savannas 17 0.85 0.21 −0.14 41.2 58.8 0 0 - - - - - -

Lulin
23.47◦ N,
120.87◦

E
2868

Evergreen
Broadleaf

Forest
48 0.81 0.16 −0.14 31.3 68.7 0 30 0.82 0.08 0.05 80.0 0 20.0

Lumbini_
North

27.50◦ N,
83.28◦ E 89 Croplands 225 0.55 0.38 0.23 55.1 4.0 40.9 181 0.31 0.59 0.33 30.4 10.5 59.1

Pokhara 28.19◦ N,
83.98◦ E 800 Savannas 230 0.63 0.48 0.33 33.9 3.9 62.2 152 0.82 0.42 0.32 29.6 0.7 69.7

Thimphu 27.47◦ N,
89.64◦ E 2314

Evergreen
Needle-

leaf
Forest

6 0.94 0.04 0.02 100.0 0 0 0 - - - - - -

Xianghe
39.75◦ N,
116.96◦

E
36 Croplands 213 0.92 0.23 −0.06 77.9 16.4 5.7 158 0.81 0.25 0.02 46.8 21.5 31.7

Xuzhou-
CUMT

34.22◦ N,
117.14◦

E
59.7

Urban and
Build-Up

Land
48 0.80 0.19 −0.02 79.2 12.5 8.3 46 0.89 0.35 0.33 8.7 0 91.3

Yanqihu
40.41◦ N,
116.67◦

E
100 Grasslands 41 0.98 0.29 0.17 68.3 2.4 29.3 13 0.86 0.37 0.19 76.9 0 23.1

Yonsei_
University

37.56◦ N,
126.94◦

E
97

Urban and
Build-Up

Land
256 0.76 0.17 −0.01 71.5 18.0 10.5 54 0.63 0.22 0.07 70.4 9.3 20.3

The land use and cover types are from MCD12C1 product. N is the total matched points of each AERONET station. R is the correlation coefficient and RMSE is the root-mean-square error, MD is the mean
difference and represents the average value of all AERONET-matched AOD minus AHI AOD. EE is the expected error of ±(0.05 + 0.2 × AODAERONET) according to other studies [24,25]. WEE is the percentage of
points falling within the EE envelope and UpEE and LowEE are above and below EE envelope. ‘-’ means no valid value here.
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4.2. Surface Albedo Result

The IBAA algorithm also obtained the surface albedo at 0.47 µm. Here, we conducted
a preliminary analysis of the results. For those observations that were used for inversion by
both the previous and the later time, we combined the albedo results obtained from the two
times to obtain better spatial coverage (taking the average when both have valid values).
As Figure 9 shows, the surface albedo at 0.47 µm changes significantly, and this variation
seems to be independent of the change in the solar elevation angle [58]. To determine this
factor, we analyzed the surface albedo at 2.3 µm (as illustrated in Figure 10) and found
that the surface albedo of AHI at 0.47 and 2.3 µm has the same change trend over time.
According to Equation (2), the ratio of surface albedo at 0.47 µm at adjacent times is equal
to the ratio of the surface albedo at 2.3 µm. Therefore, the surface albedo at 0.47 µm has the
same daily variation trend as that at 2.3 µm.
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4.3. PSO and Coarse Aerosols Analysis

First, in order to test the PSO capability of global optimization and the suitability of
the AOD inversion range setting, we selected the observations over the Beijing-CAMS site
on 3 April 2019 for analysis. AHI observations are available for AOD inversion from 00:00
UTC to 08:00 UTC on this day. Through changing the value of the upper boundary of the
AOD range, we found that as the upper boundary increases, IBAA AODs are close to the
final retrieval results and remain unchanged when the upper boundary is greater than
1 as illustrated in Figure 11. Here, the upper limit calculated according to MODIS AOD
is 1.77 and it completely satisfies the condition of obtaining a global optimal solution by
PSO. Because the initialization of particles is random and the AOD result is stable, there is
no need to worry that the algorithm will enter a local optimal solution. In addition, the
boundaries of the AOD range in the paper are reasonable and almost all IBAA AODs are
within the set range.
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the upper limit of AOD range in PSO. The black line with the star mark is Beijing-CAMS observation AOD.

Second, we evaluated the performance of the IBAA algorithm in the large-particle
aerosols situation. The assumption regarding neglecting the aerosol effect at 2.3 µm is
unreasonable in the coarse-aerosol model. The Angstrom exponent α can indicate the
aerosol particle size (the smaller the α value, the larger the particle diameter), so we
analyzed the distribution of α and the IBAA AOD relative error. As Figure 12 shows, we
find that IBAA AOD has lower relative error when α is large. However, the big difference
from our prediction is that when α is less than 0.3, the relative error is small. We examined
this and found that most of the AOD is also small (less than 0.3). This may result from
sampling uncertainties due to having very few samples for such small alpha values. In
addition, we analyzed IBAA AOD when AERONET AOD is greater than 0.5 and α is less
than 1. We were able to find fairly large errors with RMSE = 0.33 and a low correlation
between IBAA AOD and AERONET AOD from Figure 13 in this case.
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Figure 13. The scatter plot of IBAA AOD and AERONET AOD at 470 nm with AERONET AOD >
0.5 and Angstrom exponent < 1.

5. Conclusions

In this paper, we proposed an algorithm IBAA to jointly retrieve Himawari-8 AHI
AOD and the surface albedo. The algorithm is applied to the Chinese mainland from
April to June 2019. Using the theory of Xue and Cracknell’s two-angle inversion of the
surface albedo [30], we retrieved AOD and the surface albedo at 0.47 µm using the particle
swarm optimization method with the assumption that AOD does not vary between two
observations within a one-hour interval. The IBAA algorithm is applicable for different
land cover types and does not consider aerosol types.

The AHI-derived AODs from the entire study period were evaluated against 14
ground-based AERONET measurements and qualitatively compared with JAXA AODs.
AHI IBAA AOD shows good agreement with AERONET measurements with 62.77%
retrieval falling within the uncertainty of ∆AOD = ±(0.05 + 0.2 × AODAERONET) and a
high correlation coefficient of 0.82, which is better than JAXA AOD (44.4% and 0.74). We
also compared IBAA AOD with the MODIS C6.1 DB AOD product, and they generally
show similar spatial distributions. Moreover, the PSO solution displays an excellent ability
to achieve global optimization of AHI AOD. Though IBAA does not perform well in the
case of coarse-particle aerosols, IBAA AOD has better accuracy and coverage than JAXA
V030 AOD overall.

With the comparison between Himawari-8 IBAA and other AHI algorithms in previ-
ous papers, such as different improved DT algorithms (R = 0.86 and RMSE = 0.12 in [21],
2018; R = 0.9 and RMSE = 0.15 in [22]; R > 0.8 in [23]), an improved time-series algorithm (R
> 0.8 and RMSE < 0.2 in [59]), the OE method (R = 0.88, RMSE = 0.17 and 69.9% of retrievals
falling within EE = ±(0.05 + 0.2 × AODAERONET) in [24]), and the monthly spectral base
reflectance ratio library method (R = 0.939, RMSE = 0.113 and 82.5% of retrievals falling
within EE = ±(0.05 + 0.2 × AODAERONET in [25]), the IBAA algorithm has certain precision
and a simple process. Due to different time range and regions and different ground-based
station observation selected for algorithm validation applied in the above papers, there are
great uncertainties in such comparisons. The PSO method in the paper performs well in
global optimization, which may be a better method of numerical solutions in quantitative
inversion in remote sensing.

In the future, there will be additional work to be conducted to address several issues.
First, more spectral band information needs to be taken into consideration to retrieve AOD.
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Second, certain parameters in the IBAA algorithm, such as the backscattering coefficient
and the optical depth of atmospheric gases, need to be determined more accurately, which
may be obtained from other products containing these parameters or through improving
the algorithm. Third, more results should be calculated to better evaluate the IBAA AOD
from a longer period. Moreover, more attention should be paid to analyzing the surface
albedo in detail.

Author Contributions: Conceptualization, Y.X.; methodology, C.J.; software, C.J.; validation, X.J. and
C.J.; formal analysis, X.J.; investigation, S.W. and X.J.; resources, Y.X.; data curation, Y.S.; writing—
original draft preparation, CL.J.; writing—review and editing, Y.X. and CL.J.; visualization, C.J.;
supervision, Y.X.; project administration, Y.X.; funding acquisition, Y.X. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
(NSFC) under Grant No. 41871260.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank all data providers for their effort in making the data available:
MODIS data from NASA MODIS LAADS, AHI data from P-Tree System, Japan Aerospace Exploration
Agency, and AERONET products from NASA and PHO-TONS.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hansen, J.; Sato, M.; Ruedy, R. Radiative forcing and climate response. J. Geophys. Res. Atmos. 1997, 102, 6831–6864. [CrossRef]
2. Anderson, T.L.; Charison, R.J.; Schwartz, S.E.; Knutti, R.; Boucher, O.; Rodhe, H. Climate forcing by aerosols—A hazy picture.

Science 2003, 300, 1103–1104. [CrossRef] [PubMed]
3. Colbeck, I.; Lazaridis, M. Aerosols and environmental pollution. Naturwissenschaften 2009, 97, 117–131. [CrossRef] [PubMed]
4. Hu, X.Q.; Lu, N.M.; Niu, T.; Zhang, P. Operational retrieval of Asian sand and dust storm from FY-2C geostationary meteorological

satellite and its application to real time forecast in Asia. Atmos. Chem. Phys. Discuss. 2008, 8, 1649–1659. [CrossRef]
5. Sowden, M.; Mueller, U.; Blake, D. Review of surface particulate monitoring of dust events using geostationary satellite remote

sensing. Atmos. Environ. 2018, 183, 154–164. [CrossRef]
6. Shin, Y.-R.; Sohn, E.-H.; Park, K.-H.; Ryu, G.-H.; Lee, S.; Lee, S.-Y.; Park, N.-Y. Improved dust detection over east asia using

geostationary satellite data. Asia-Pac. J. Atmos. Sci. 2021, 57, 787–798. [CrossRef]
7. Wei, X.; Chang, N.-B.; Bai, K.; Gao, W. Satellite remote sensing of aerosol optical depth: advances, challenges, and perspectives.

Crit. Rev. Environ. Sci. Technol. 2020, 50, 1640–1725. [CrossRef]
8. Knapp, K.; Frouin, R.; Kondragunta, S.; Prados, A. Toward aerosol optical depth retrievals over land from GOES visible radiances:

determining surface reflectance. Int. J. Remote Sens. 2005, 26, 4097–4116. [CrossRef]
9. Popp, C.; Hauser, A.; Foppa, N.; Wunderle, S. Remote sensing of aerosol optical depth over central Europe from MSG-SEVIRI

data and accuracy assessment with ground-based AERONET measurements. J. Geophys. Res. Space Phys. 2007, 112, D24S11.1-16.
[CrossRef]

10. Lee, J.; Kim, J.; Song, C.H.; Ryu, J.-H.; Ahn, Y.-H. Algorithm for retrieval of aerosol optical properties over the ocean from the
Geostationary Ocean Color Imager. Remote Sens. Environ. 2010, 114, 1077–1088. [CrossRef]

11. Choi, M.; Kim, J.; Lee, J.; Kim, M.; Park, Y.-J.; Jeong, U.; Kim, W.; Hong, H.; Holben, B.; Eck, T.F.; et al. GOCI Yonsei Aerosol
Retrieval (YAER) algorithm and validation during the DRAGON-NE Asia 2012 campaign. Atmos. Meas. Tech. 2016, 9, 1377–1398.
[CrossRef]

12. Kim, J.; Yoon, J.; Ahn, M.H.; Sohn, B.J.; Lim, H.S. Retrieving aerosol optical depth using visible and mid-IR channels from
geostationary satellite MTSAT-1R. Int. J. Remote Sens. 2008, 29, 6181–6192. [CrossRef]

13. Kim, M.; Kim, J.; Wong, M.S.; Yoon, J.; Lee, J.; Wu, D.; Chan, P.W.; Nichol, J.E.; Chung, C.-Y.; Ou, M.-L. Improvement of aerosol
optical depth retrieval over Hong Kong from a geostationary meteorological satellite using critical reflectance with background
optical depth correction. Remote Sens. Environ. 2014, 142, 176–187. [CrossRef]

14. Thomas, G.E.; Carboni, E.; Sayer, A.M.; Poulsen, C.A.; Grainger, R.G. Oxford-RAL Aerosol and Cloud (ORAC): Aerosol retrievals
from satellite radiometers. In Satellite Aerosol Remote Sensing over Land; Kokhanovsky, A.A., de Leeuw, G., Eds.; Springer Praxis
Books: Berlin/Heidelberg, Germany, 2009. [CrossRef]

http://doi.org/10.1029/96JD03436
http://doi.org/10.1126/science.1084777
http://www.ncbi.nlm.nih.gov/pubmed/12750507
http://doi.org/10.1007/s00114-009-0594-x
http://www.ncbi.nlm.nih.gov/pubmed/19727639
http://doi.org/10.5194/acp-8-1649-2008
http://doi.org/10.1016/j.atmosenv.2018.04.020
http://doi.org/10.1007/s13143-021-00230-9
http://doi.org/10.1080/10643389.2019.1665944
http://doi.org/10.1080/01431160500099329
http://doi.org/10.1029/2007JD008423
http://doi.org/10.1016/j.rse.2009.12.021
http://doi.org/10.5194/amt-9-1377-2016
http://doi.org/10.1080/01431160802175553
http://doi.org/10.1016/j.rse.2013.12.003
http://doi.org/10.1007/978-3-540-69397-0_7


Remote Sens. 2021, 13, 4689 18 of 19

15. Zhang, H.; Lyapustin, A.; Wang, Y.; Kondragunta, S.; Laszlo, I.; Ciren, P.; Hoff, R.M. A multi-angle aerosol optical depth retrieval
algorithm for geostationary satellite data over the United States. Atmos. Chem. Phys. Discuss. 2011, 11, 11977–11991. [CrossRef]

16. Mei, L.; Xue, Y.; De Leeuw, G.; Holzer-Popp, T.; Guang, J.; Li, Y.; Yang, L.; Xu, H.; Xu, X.; Li, C.; et al. Retrieval of aerosol optical
depth over land based on a time series technique using MSG/SEVIRI data. Atmos. Chem. Phys. 2012, 12, 9167–9185. [CrossRef]

17. Govaerts, Y.; Wagner, S.; Lattanzio, A.; Watts, P. Application of the Optimal Estimation Method to the Joint Retrieval of Aerosol
Load and Surface Reflectance from MSG/SEVIRI. Observations 2009, 1100, 255–258. [CrossRef]

18. Zhang, T.; Zang, L.; Mao, F.; Wan, Y.; Zhu, Y. Evaluation of Himawari-8/AHI, MERRA-2, and CAMS Aerosol Products over
China. Remote Sens. 2020, 12, 1684. [CrossRef]

19. ABI AOD ATBD. GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document for Suspended Matter/Aerosol
Optical Depth and Aerosol Size Parameter. NOAA/NESDIS/STAR, Version 4.2. 14 February 2018. Available online: https://www.
star.nesdis.noaa.gov/goesr/documents/ATBDs/Baseline/ATBD_GOES-R_Aerosol_Optical_Depth_v4.2_Feb2018.pdf (accessed
on 14 November 2021).

20. Xie, Y.; Xue, Y.; Guang, J.; Mei, L.; She, L.; Li, Y.; Che, Y.; Fan, C. Deriving a Global and Hourly Data Set of Aerosol Optical Depth
Over Land Using Data From Four Geostationary Satellites: GOES-16, MSG-1, MSG-4, and Himawari-8. IEEE Trans. Geosci. Remote
Sens. 2019, 58, 1538–1549. [CrossRef]

21. Zhang, W.; Xu, H.; Zheng, F. Aerosol optical depth retrieval over east Asia using Himawari-8/AHI data. Remote Sens. 2018, 10,
137. [CrossRef]

22. Ge, B.; Li, Z.; Liu, L.; Yang, L.; Chen, X.; Hou, W.; Zhang, Y.; Li, D.; Li, L.; Qie, L. A Dark Target method for Himawari-8/AHI
aerosol retrieval: Application and validation. IEEE Trans. Geosci. Remote. Sens. 2018, 57, 381–394. [CrossRef]

23. Gao, L.; Chen, L.; Li, J.; Zhu, L. An improved dark target method for aerosol optical depth retrieval over China from Himawari-8.
Atmos. Res. 2021, 250. [CrossRef]

24. She, L.; Xue, Y.; Yang, X.; Leys, J.; Guang, J.; Che, Y.; Fan, C.; Xie, Y.; Li, Y. Joint Retrieval of Aerosol Optical Depth and Surface
Reflectance Over Land Using Geostationary Satellite Data. IEEE Trans. Geosci. Remote Sens. 2018, 57, 1489–1501. [CrossRef]

25. Su, X.; Wang, L.; Zhang, M.; Qin, W.; Bilal, M. A High-Precision Aerosol Retrieval Algorithm (HiPARA) for Advanced Himawari
Imager (AHI) data: Development and verification. Remote Sens. Environ. 2020, 253, 112221. [CrossRef]

26. Yan, X.; Li, Z.; Luo, N.; Shi, W.; Zhao, W.; Yang, X.; Jin, J. A minimum albedo aerosol retrieval method for the new-generation
geostationary meteorological satellite Himawari-8. Atmos. Res. 2018, 207, 14–27. [CrossRef]

27. Shi, S.; Cheng, T.; Gu, X.; Letu, H.; Guo, H.; Chen, H.; Wang, Y.; Wu, Y. Synergistic Retrieval of Multitemporal Aerosol Optical
Depth Over North China Plain Using Geostationary Satellite Data of Himawari-8. J. Geophys. Res. Atmos. 2018, 123, 5525–5537.
[CrossRef]

28. Zhang, H.; Kondragunta, S.; Laszlo, I.; Zhou, M. Improving GOES Advanced Baseline Imager (ABI) aerosol optical depth (AOD)
retrievals using an empirical bias correction algorithm. Atmos. Meas. Tech. 2020, 13, 5955–5975. [CrossRef]

29. Zang, Z.; Li, D.; Guo, Y.; Shi, W.; Yan, X. Superior PM2.5 Estimation by Integrating Aerosol Fine Mode Data from the Himawari-8
Satellite in Deep and Classical Machine Learning Models. Remote Sens. 2021, 13, 2779. [CrossRef]

30. Xue, Y.; Cracknell, A.P. Operational bi-angle approach to retrieve the Earth surface albedo from AVHRR data in the visible band.
Int. J. Remote Sens. 1995, 16, 417–429. [CrossRef]

31. Li, Y.; Xue, Y.; He, X.; Guang, J. High-resolution aerosol remote sensing retrieval over urban areas by synergetic use of HJ-1 CCD
and MODIS data. Atmos. Environ. 2011. [CrossRef]

32. Xue, Y.; He, X.; Xu, H.; Guang, J.; Guo, J.; Mei, L. China Collection 2.0: The aerosol optical depth dataset from the synergetic
retrieval of aerosol properties algorithm. Atmos. Environ. 2014, 95, 45–58. [CrossRef]

33. Kikuchi, M.; Murakami, H.; Suzuki, K.; Nagao, T.M.; Higurashi, A. Improved Hourly Estimates of Aerosol Optical Thickness
Using Spatiotemporal Variability Derived From Himawari-8 Geostationary Satellite. IEEE Trans. Geosci. Remote Sens. 2018, 56,
3442–3455. [CrossRef]

34. Yoshida, M.; Kikuchi, M.; Nagao, T.M.; Murakami, H.; Nomaki, T.; Higurashi, A. Common Retrieval of Aerosol Properties for
Imaging Satellite Sensors. J. Meteorol. Soc. Jpn. 2018, 193–209. [CrossRef]

35. Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS aerosol products
over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [CrossRef]

36. Che, H.; Yang, L.; Liu, C.; Xia, X.; Wang, Y.; Wang, H.; Wang, H.; Lu, X.; Zhang, X. Long-term validation of MODIS C6 and C6.1
Dark Target aerosol products over China using CARSNET and AERONET. Chemosphere 2019, 236, 124268. [CrossRef]

37. Wang, Y.; Yuan, Q.; Li, T.; Shen, H.; Zheng, L.; Zhang, L. Evaluation and comparison of MODIS Collection 6.1 aerosol optical
depth against AERONET over regions in China with multifarious underlying surfaces. Atmos. Environ. 2018, 200, 280–301.
[CrossRef]

38. Huang, G.; Chen, Y.; Li, Z.; Liu, Q.; Wang, Y.; He, Q.; Liu, T.; Liu, X.; Zhang, Y.; Gao, J.; et al. Validation and accuracy analysis of
the Collection 6.1 MODIS aerosol optical depth over the westernmost city in china based on the sun-sky radiometer observations
from SONET. Earth Space Sci. 2020, 7, e2019EA001041. [CrossRef]

39. Giles, D.M.; Sinyuk, A.; Sorokin, M.G.; Schafer, J.S.; Smirnov, A.; Slutsker, I.; Eck, T.F.; Holben, B.N.; Lewis, J.R.; Campbell, J.R.;
et al. Advancements in the Aerosol Robotic Network (AERONET) Version 3 database–automated near-real-time quality control
algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech.
2019, 12, 169–209. [CrossRef]

http://doi.org/10.5194/acp-11-11977-2011
http://doi.org/10.5194/acp-12-9167-2012
http://doi.org/10.1063/1.3116963
http://doi.org/10.3390/rs12101684
https://www.star.nesdis.noaa.gov/goesr/documents/ATBDs/Baseline/ATBD_GOES-R_Aerosol_Optical_Depth_v4.2_Feb2018.pdf
https://www.star.nesdis.noaa.gov/goesr/documents/ATBDs/Baseline/ATBD_GOES-R_Aerosol_Optical_Depth_v4.2_Feb2018.pdf
http://doi.org/10.1109/TGRS.2019.2944949
http://doi.org/10.3390/rs10010137
http://doi.org/10.1109/TGRS.2018.2854743
http://doi.org/10.1016/j.atmosres.2020.105399
http://doi.org/10.1109/TGRS.2018.2867000
http://doi.org/10.1016/j.rse.2020.112221
http://doi.org/10.1016/j.atmosres.2018.02.021
http://doi.org/10.1029/2017JD027963
http://doi.org/10.5194/amt-13-5955-2020
http://doi.org/10.3390/rs13142779
http://doi.org/10.1080/01431169508954410
http://doi.org/10.1016/j.atmosenv.2011.10.002
http://doi.org/10.1016/j.atmosenv.2014.06.019
http://doi.org/10.1109/TGRS.2018.2800060
http://doi.org/10.2151/jmsj.2018-039
http://doi.org/10.5194/amt-6-2989-2013
http://doi.org/10.1016/j.chemosphere.2019.06.238
http://doi.org/10.1016/j.atmosenv.2018.12.023
http://doi.org/10.1029/2019EA001041
http://doi.org/10.5194/amt-12-169-2019


Remote Sens. 2021, 13, 4689 19 of 19

40. Ichoku, C.; Chu, D.A.; Mattoo, S.; Kaufman, Y.J.; Remer, L.A.; Tanré, D.; Slutsker, I.; Holben, B.N. A spatio-temporal approach for
global validation and analysis of MODIS aerosol products. Geophys. Res. Lett. 2002, 29. [CrossRef]

41. Flowerdew, R.J.; Haigh, J.D. Retrieval of aerosol optical thickness over land using the ATSR-2 Dual-Look Satellite Radiometer.
Geophys. Res. Lett. 1996, 23, 351–354. [CrossRef]

42. Veefkind, J.P.; De Leeuw, G.; Stammes, P.; Koelemeijer, R.B. Regional distribution of aerosol over land, derived from ATSR-2 and
GOME. Remote Sens. Environ. 2000, 74, 377–386. [CrossRef]

43. Yamamoto, Y.; Ichii, K.; Higuchi, A.; Takenaka, H. Geolocation accuracy assessment of Himawari-8/AHI imagery for application
to terrestrial monitoring. Remote Sens. 2020, 12, 1372. [CrossRef]

44. Govaerts, Y.M.; Wagner, S.; Lattanzio, A.; Watts, P. Joint retrieval of surface reflectance and aerosol optical depth from MSG/SEVIRI
observations with an optimal estimation approach: 1 Theory. J. Geophys. Res. 2010, 115, D02203.1-16. [CrossRef]

45. Dubovik, O.; Herman, M.; Holdak, A.; Lapyonok, T.; Tanré, D.; Deuzé, J.L.; Ducos, F.; Sinyuk, A.; Lopatin, A. Statistically
optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite
observations. Atmos. Meas. Tech. 2011, 4, 975–1018. [CrossRef]

46. Saleh, K.; Wigneron, J.P.; Waldteufel, P.; De Rosnay, P.; Schwank, M.; Calvet, J.C.; Kerr, Y.H. Estimates of surface soil moisture
under grass covers using L-band radiometry. Remote Sens. Environ. 2007, 109, 42–53. [CrossRef]

47. Baret, F.; Buis, S. Estimating canopy characteristics from remote sensing observations: Review of methods and associated
problems. Adv. Land Remote Sens. 2008, 173–201.

48. Wigneron, J.P.; Jackson, T.J.; O’neill, P.; De Lannoy, G.; De Rosnay, P.; Walker, J.P.; Ferrazzoli, P.; Mironov, V.; Bircher, S.; Grant, J.P.;
et al. Modelling the passive microwave signature from land surfaces: A review of recent results and application to the L-band
SMOS & SMAP soil moisture retrieval algorithms. Remote Sens. Environ. 2017, 192, 238–262.

49. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural
Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948.

50. Wang, L.; Geng, H.; Liu, P.; Lu, K.; Kolodziej, J.; Ranjan, R.; Zomaya, A.Y. Particle Swarm Optimization based dictionary learning
for remote sensing big data. Knowl. Based Syst. 2015, 79, 43–50. [CrossRef]

51. Venkateswaran, K.; Sowmya Shree, T.; Kousika, N.; Kasthuri, N. Performance analysis of ga and pso based feature selection
techniques for improving classification accuracy in remote sensing images. Indian J. Sci. Technol. 2016, 9, 1–7. [CrossRef]

52. Shen, L.; Huang, X.; Fan, C. Double-Group Particle Swarm Optimization and Its Application in Remote Sensing Image Segmenta-
tion. Sensors 2018, 18, 1393. [CrossRef] [PubMed]

53. Gao, Y.; Li, Q.; Wang, S.; Gao, J. Adaptive neural network based on segmented particle swarm optimization for remote-sensing
estimations of vegetation biomass. Remote Sens. Environ. 2018, 211, 248–260. [CrossRef]

54. Hsu, N.C.; Jeong, M.-J.; Bettenhausen, C.; Sayer, A.; Hansell, R.; Seftor, C.S.; Huang, J.; Tsay, S.-C. Enhanced Deep Blue aerosol
retrieval algorithm: The second generation. J. Geophys. Res. Atmos. 2013, 118, 9296–9315. [CrossRef]

55. Wang, Y.; Chen, P.; Liu, C.; Zhang, Y. Size effect of circular concrete-filled steel tubular short columns subjected to axial
compression. Thin-Walled Struct. 2017, 120, 397–407. [CrossRef]

56. Lim, H.; Choi, M.; Kim, J.; Kasai, Y.; Chan, P.W. AHI/Himawari-8 Yonsei Aerosol Retrieval (YAER): Algorithm, Validation and
Merged Products. Remote Sens. 2018, 10, 699. [CrossRef]

57. Roman, M.O.; Gatebe, C.K.; Shuai, Y.; Wang, Z.; Gao, F.; Masek, J.G.; He, T.; Liang, S.; Schaaf, C.B. Use of In Situ and Airborne
Multiangle Data to Assess MODIS- and Landsat-Based Estimates of Directional Reflectance and Albedo. IEEE Trans. Geosci.
Remote Sens. 2013, 51, 1393–1404. [CrossRef]

58. Ångström, A. The parameters of atmospheric turbidity. Tellus 1964, 16, 64–75. [CrossRef]
59. Li, D.; Qin, K.; Wu, L.; Mei, L.; De Leeuw, G.; Xue, Y.; Shi, Y.; Li, Y. Himawari-8-Derived Aerosol Optical Depth Using an Improved

Time Series Algorithm Over Eastern China. Remote Sens. 2020, 12, 978. [CrossRef]

http://doi.org/10.1029/2001GL013206
http://doi.org/10.1029/96GL00153
http://doi.org/10.1016/S0034-4257(00)00106-1
http://doi.org/10.3390/rs12091372
http://doi.org/10.1029/2009JD011779
http://doi.org/10.5194/amt-4-975-2011
http://doi.org/10.1016/j.rse.2006.12.002
http://doi.org/10.1016/j.knosys.2014.10.004
http://doi.org/10.17485/ijst/2016/v9i16/87457
http://doi.org/10.3390/s18051393
http://www.ncbi.nlm.nih.gov/pubmed/29724013
http://doi.org/10.1016/j.rse.2018.04.026
http://doi.org/10.1002/jgrd.50712
http://doi.org/10.1016/j.tws.2017.09.010
http://doi.org/10.3390/rs10050699
http://doi.org/10.1109/TGRS.2013.2243457
http://doi.org/10.3402/tellusa.v16i1.8885
http://doi.org/10.3390/rs12060978

	Introduction 
	Data 
	Himawari-8 AHI Data 
	MODIS Data 
	AERONET Data 

	Principle and Method 
	Theory of Bi-Angle AOD Inversion 
	Particle Swarm Optimization 
	IBAA Algorithm Scheme 

	Result and Analysis 
	AOD Validation 
	Surface Albedo Result 
	PSO and Coarse Aerosols Analysis 

	Conclusions 
	References

