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Abstract: Image classification has always been a hot research direction in the world, and the emer-
gence of deep learning has promoted the development of this field. Convolutional neural networks
(CNNs) have gradually become the mainstream algorithm for image classification since 2012, and
the CNN architecture applied to other visual recognition tasks (such as object detection, object
localization, and semantic segmentation) is generally derived from the network architecture in image
classification. In the wake of these successes, CNN-based methods have emerged in remote sensing
image scene classification and achieved advanced classification accuracy. In this review, which
focuses on the application of CNNs to image classification tasks, we cover their development, from
their predecessors up to recent state-of-the-art (SOAT) network architectures. Along the way, we
analyze (1) the basic structure of artificial neural networks (ANNs) and the basic network layers of
CNNs, (2) the classic predecessor network models, (3) the recent SOAT network algorithms, (4) com-
prehensive comparison of various image classification methods mentioned in this article. Finally, we
have also summarized the main analysis and discussion in this article, as well as introduce some of
the current trends.

Keywords: image classification; convolutional neural networks; deep learning

1. Introduction

Image classification, as a classical research topic in recent years, is one of the core issues
of computer vision and the basis of various fields of visual recognition. The improvement
of classification network performance tends to significantly improve its application level [1],
for example to object-detection [2], segmentation [3], human pose estimation [4], video
classification [5], object tracking [6], and super-resolution technology [7]. Improving image
classification technology is an important part of promoting the development of computer
vision. Its main process includes image data preprocessing [8], feature extraction and
representation [9], and classifier design [10].

The focus of image classification research has always been image feature extraction,
which is the basis of image classification. Traditional image feature extraction algorithms
focus more on manually setting specific image features. This method has poor general-
ization ability and portability. So, letting a computer have the ability to process images
similar to biological vision is what researchers dream of. ANN is an abstract biological
neural network, which is a mathematical operation model composed of a large number
of interconnected neurons. It approximately simulates the neural network processing of
neural signals. Initially, McCulloch and Pitts analyzed biological neural networks and
proposed an internal logical operation mathematical model of neuron activity—MP neuron
model [11]. Rosenblatt added learning functions to the MP model and proposed a single-
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layer perceptron model, putting the research on neural networks into practice for the first
time [12].

After that, Huber and Wiese et al. studied the visual cortex of the cat’s brain and found
that biological visual neurons perceive information based on local regional stimulation, they
concluded that visual perception is stimulated layer by layer through multi-level receptive
fields [13]. Later, researchers have tried to use the multilayer perceptron to learn features
and trained the model with the backpropagation (BP) algorithm [14]. This discovery
inspired researchers to construct a computer neural network similar to a biological vision
system has become a reality, and CNN was born. Lecun et al. presented the first batch of
the CNN model—LeNet-5 [15]. However, due to the lack of large-scale training data, it is
also limited by the theoretical foundation and computer computing power, the recognition
results of LeNet-5 on complex images were not ideal [16]. At that time, this model only
had an excellent performance on handwriting recognition tasks.

Hinton et al. proposed an effective learning algorithm for learning difficulties in
multi-hidden-layer neural networks [17], thus opening a new chapter in deep learning.
Subsequently, researchers realized the convolution operation on the GPU, which greatly
improved the computational efficiency of the network. Compared with the CPU operation
speed, it increased by 2–24 times [18]. Since then, deep learning has attracted more and
more attention. Krizhevsky et al. built the AlexNet model based on the LeNet-5 [19].
In the ILSVRC2012 ImageNet competition, it surpassed the second-best entry by a huge
advantage. After AlexNet achieved excellent results in the ImageNet image classification
competition, researchers began to study CNN more deeply, Zeiler and Fergus proposed
a visualization technique to understand CNNs and proposed ZFNet [20]. Min Lin et al.
proposed NIN network [21], which contributed to the control of the parameter amount
and the number of channels. Next, refs. [22–27] yielded high performance during the
ILSVRC2014-2017 classification challenge, they all made great innovations on the original
basis. From 2017 to the present, more models with superior performance have appeared
one after another. CNNs have increasingly demonstrated irreplaceable superiority in image
classification.

With the successful application of CNN to large-scale visual classification tasks, around
2015, the application of CNNs has finally taken off in the remote sensing image analysis
field [28,29]. A variety of CNN-based scene classification methods have emerged by using
different strategies of exploiting CNNs [30–36]. Generally, CNN-based remote sensing
image scene classification methods can be divided into three types: (i) The pre-trained
CNNs is used as a feature extractor [37–44]. (ii) Fine-tune the pre-trained CNNs on the
dataset [30,45–52]. (iii) Globally initialize the weights of CNNs for training [31,53–55].
As we all know, the CNN-based image classification method was originally designed for
computer vision. However, many researchers have successfully applied them to the field
of the remote sensing. It is necessary to systematically summarize the image classification
methods based on CNN to make researchers get inspiration in their new work. Although
there are some surveys on CNNs [56–58], they have not comprehensively introduced
almost all classic CNN architectures. This review is dedicated to detailing the development
of almost all typical CNNs in image classification tasks and hopes to provide more help for
the inspiration of designing CNN models in remote sensing image scene classification field.

Section 2 of this article introduces the basic structure and principle of classic neural
networks and the necessary network layers of convolutional neural networks; Section 3
explains the network structure, operating principles, and advantages of the classic net-
work model in the image classification algorithm. It also summarizes the strong training
strategy and representative pure/mixed/non-CNN models that has superior performance
from 1998 to 2021; Section 4 introduces the commonly used datasets for image classifica-
tion and compares the performance and characteristics of the network mentioned in the
previous section; finally, our review and the work direction on image classification are
itemized analysis.
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2. Overview of CNNs

This section will introduce the basic concepts of CNNs, which will lead the reader to a
preliminary underlying of its fundamental data transmission and its components so that
the comprehension of the following sections will be easier.

2.1. Neural Network
2.1.1. Neuron

The biological nervous system is a network composed of many neurons. Similarly,
neurons are also the basic processing unit of artificial neural networks. The principle of
operation is that multiple input values undergo mathematical transformation to obtain an
output value (Figure 1). The mathematical transformation relationship between the input
signal and the output value is

f

(
b +

n

∑
i=1

(xi × wi)

)
(1)

f (·) is the activation function, there are many activation functions, such as ReLU, Sigmoid,
Tanh, etc.

Figure 1. Neuron model, xi is the input signal, n is the number of signals, the weight value of the
input signal is wi, bias is b and output of neurons is y.

2.1.2. Multilayer Perceptron (MLP)

MLP is composed of the Input layer, Hidden layer (one or more), and Output layer.
It contains multiple basic unit neurons, which conduct signal transmission through layer-
by-layer conduction between neurons. Figure 2 is an example of the structure of MLP. H is
the vector of output value of the hidden unit H = F(WhX + Bh), Y is the vector of output
value of the output unit Y = F

(
WyH + By

)
. Here, X is the input value matrix, Wh and Wy

are the weight matrix between layers, Bh and By are the bias matrices.
The BP algorithm is divided into two stages: forward propagation and backpropaga-

tion. After the calculation of the output layer is completed, the forward propagation ends.
The backpropagation involves the update of various parameters, which is an important
part of network learning. The first thing that backpropagation needs to determine is the
loss function of the model. There are many loss functions, see Section 2.2.5. The loss
function in the Figure 2 is L2 Loss:

Loss(y, y∗) =
1
m
×

m

∑
i=1

(y∗i − yi)
2 (2)

By calculating the mean square error between y∗ and y, the network weights w
and bias b can be updated by obtaining the partial derivative of the loss function: w′ =
w− η × (∂Loss/∂w) and b′ = b− η × (∂Loss/∂b). With a suitable learning rate η, the loss
of the y and y∗ can be gradually minimized. That is to make the y closer to y∗, so as to
achieve the effect of network training.
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Figure 2. The structure of the MLP. It has n input values and m output values, including k hidden
units. xn is the input value. The direction of the arrow is the direction in which the input value is
transmitted. The hidden unit is hk, it receives the input value of the previous layer. ym is the output
unit, and the real value is y∗m.

2.2. CNN Architecture

The main structure of CNN is the convolutional layer, pooling layer, nonlinear acti-
vation layer, and fully connected layer. Generally, the image is preprocessed [8] and then
input into the network through the input layer, processed by several alternately arranged
convolutional layers and pooling layers, and then classified by the fully connected layer.

Compared with MLP, CNN [59,60] adds a very characteristic convolutional layer and
pooling layer. In the face of more pixels and larger data sets, CNN will have outstanding
cost performance in terms of model size and the performance will be better. On the one
hand, the convolutional layer has the characteristics of a local receptive field, which retains
the input shape so that the correlation between the features of the image pixels in the length
and width directions can be effectively identified. On the other hand, the convolutional
layer repeatedly calculates the same convolution kernel and different positions of the
input through a sliding window, that is, using parameter sharing and sparse connection
to effectively avoid the training parameter size from being too large. The pooling layer
reduces the computational burden by reducing the number of connections between the
convolutional layers [61] and alleviates the excessive sensitivity of the convolutional layer
to the position. CNN ensures the invariance of the input image pixels in displacement,
scaling, and distortion to a certain degree [62].

2.2.1. Convolutional Layer

For CNNs with a certain depth, the convolution operation of multiple convolution
layers can extract different features of the input. The bottom layer convolution generally
extracts common features such as texture, lines, and edges, while the higher layer extracts
more abstract features. The convolutional layer has several convolution kernels with
learnable parameters. It is a matrix composed of learnable weights, which are generally
3 × 3, 5 × 5, and 7 × 7 weight matrices with equal length and width and an odd number.
Usually, the convolutional layer will input the feature maps. The weight matrix of the
convolution kernel corresponds to the local area of the connection feature map, and the
convolution kernel sequentially performs convolution operations on the area on the feature
map by sliding [63].

Generally, the size of the input feature maps is H ×W × C (height H, width W and
channels C), each convolution kernel is K×K×C, this is, the number of convolution kernel
should be the same as the number of input channels. Figure 3 is a schematic diagram of
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the convolution process of the input feature maps (5 × 5 × 3) and a convolution kernel
(3 × 3 × 3). The flow of data in the convolutional layer can be roughly expressed as:

f eature_sur f aceout = f

(
3

∑
i=3

Mi ∗Wi + B

)
(3)

There, Mi represents a feature surface of the input feature maps, Wi is the weight
matrix of the convolution kernel, the bias matrix is M, f (·) is the nonlinear activation
function and f eature_sur f aceout is an output feature surface.

Figure 3. Schematic diagram of the convolution process.

The specific calculation in the convolution layer is the cross-correlation operation
between the convolution kernel and the feature surfaces. For any input two-dimensional
(2-D) matrix size i, convolution size k, strides s and padding p, the output feature surface
size [64]:

o =

[
i + 2p− k

s

]
+ 1 (4)

As shown in Figure 4, simply assume that one of the above-mentioned feature surfaces
and the cross-correlation operation of the convolution kernel, the input is feature surface
matrix both height and width of 3, the convolution kernel starts from the top left of the
input matrix and slides on the input array in order from left to right and top to bottom.

Figure 4. Convolution operation (2-D), kernel size = 2, strides = 1, padding = 0.

It is worth mentioning that the weight parameters of the convolution kernel are also
updated through gradient backpropagation. When the convolution kernel processes the
same batch of input feature maps, the parameters are fixed. Each pixel area is operated
by the same convolution kernel sliding operation, which is the parameter sharing of
the convolution kernel. This mechanism makes the operation simple and efficient, and
can operate on a very large-scale dataset, which greatly reduces the amount of training
parameters and reduces the risk of overfitting [65].
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2.2.2. Pooling Layer

The pooling layer is generally after the convolutional layer. The main reasons for using
the pooling layer are: Perform down-sampling and dimensionality reduction processing on
the input image to reduce the number of convolutional layer connections, thereby reducing
the burden of network computing [61]; Realize the scale invariance, translation invariance
and rotation invariance of the input image [62]; Make the output feature map more robust
to the distortion and error of a single neuron [66].

Average pooling and maximum pooling are the two most widely used pooling meth-
ods. Although there are max pooling and average pooling, some methods that can more
effectively alleviate the over-fitting of convolutional neural networks are proposed, such
as Lp Pooling [67], Mixed Pooling [68], Stochastic Pooling [69], Spatial Pyramid Pooling
(SPP) [70] and Multi-scale Orderless Pooling [71], etc. For the classic convolutional neural
network model, although the best pooling operation is not average pooling or max pooling,
they are the two most classic methods [72]. In [72] Bourbeau mainly conducted a theoretical
analysis on the performance of average pooling and maximum pooling. Figure 5 shows
the down-sampling process of maximum pooling and average pooling, the relationship
between the input and output matrix sizes in the pooling operation satisfies the following
general relationship [64]:

o =

[
(i− k)

s
+ 1
]

(5)

Figure 5. Max Pooling and Average pooling, it does not involve zero padding.

2.2.3. Nonlinear Activation Function

The activation function is to make the input and output have a functional relationship,
which introduces nonlinear system into the neural network, and having a suitable nonlinear
activation function can significantly improve the performance of the network [61]. Figure 6
shows several common activation functions. Among them, sigmoid and Tanh are called
saturating nonlinearities. It can be seen from the Figure 6 and the formula definition that
when the input is very large or very small, the Sigmoid function saturates at the output
0 or 1, and the Tanh function saturates at the output −1 or 1. To solve the problems
caused by saturating nonlinearities, non-saturating nonlinearities such as ReLU [73], Leaky
ReLU [74], PReLU [75], RReLU [76] and ELU [77] have been proposed. In terms of the time
required for gradient descent training, the former functions are much slower than the latter,
Neurons with non-saturating nonlinearities are called Rectified Linear Units (ReLUs). This
type of deep convolutional neural network with ReLUs is several times faster than similar
networks with tanh as the activation functions [73].
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Figure 6. Pooling operation, it does not involve zero padding.

2.2.4. Fully Connected (FC) Layer

FC Layer is generally behind the continuous convolutional layer and pooling layer,
and the neurons between its different layers are fully connected form. It integrates and
classifies the local information with category discrimination extracted after convolution
and pooling [78], and finally outputs the category information of the image. It contains
several hidden layers, which extract high-level features from the previous network in a
more complex form [77,79]. The number of neurons at the output end is the number of
categories, and then the output vector is used to determine which category the image
belongs to. In layman’s terms, FC Layer acts as a classifier in CNNs.

Under network training, the network output is generally subjected to softmax regres-
sion [61] for probability normalization before the loss function of the FC layer. Of course,
Cu et al. [61] also analyzed the impact of multiple loss functions on network performance.
The parameters of the FC layer are updated using gradient backpropagation. When a
large model with more parameters is trained on a smaller dataset, the FC layer generally
uses L2 regularization and dropout [79]. The fundamental purpose of using them is to
avoid overfitting the model. The classic CNN model basically uses the ReLU plus dropout
method and has achieved good classification performance [80,81].

2.2.5. Loss Function

In addition to the various layer-types of CNN architecture introduced in the previous
section, the final classification is achieved from the output layer that usually the last layer
of the FC layer, as shown in Figure 2. Different loss functions also affect the performance of
the CNN architecture and are applied to different visual tasks (e.g., image classification,
face recognition, and object recognition). Here are some commonly used loss functions in
CNN-based image classification methods (inherit the content of Section 2.1.2), as shown
in Table 1.

All in all, Softmax+Cross-Entropy has become the usual loss function of the CNN
model. There are also many improved versions based on it, such as center-loss [82], L-
Softmax [83], A-Softmax [84], AM-Softmax [85], PEDCC-loss [86], etc., which play an
important role in different visual tasks.
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Table 1. Common loss functions for CNN models.

Loss Function Equation Characteristic

L1 (MAE) Loss(y, y∗) = 1
m ×

m
∑

i=1

∣∣∣∣y∗i − yi

∣∣∣∣ This function is widely used in
regression problems. L1 Loss is called

mean absolute error (MAE)

L2 (MSE) Loss(y, y∗) = 1
m ×

m
∑

i=1

(
y∗i − yi

)2
This function is widely used in

regression problems. L2 Loss is called
mean square error (MSE)

Softmax +
Cross-Entropy Loss(y, y∗) = −∑

i

yi
∑m

i=1 yi
log
(
y∗i
)
, i ∈ [1, m]

This function usually employed as a
substitution of the MSE in multi-class

classification problems. It is also
commonly used in CNN models

2.2.6. Optimizer

The flow of data in the CNN architecture is basically introduced in the above section.
We clearly understand that the training of the network relies on the core step of gradient
update, that is, it needs to compute the objective function (loss function) gradient by
applying a first-order derivative with respect to the network parameters, and then the
gradient information is transferred to the previous network layer in the form of partial
differential calculation to achieve the update of the learning parameters of each network
layer. The function of the optimizer is to provide a way to make the gradient update
more reasonable, namely the macroscopic performance is that the entire network may
converge faster, smaller local optimal value (smaller loss), cheaper calculation, etc. Table 2
ummarizes several commonly used optimizers including methods and characteristics.

Table 2. Different optimizers for CNN model.

Name Method Characteristics

Batch Gradient
Descent (BGD)

It calculates the gradient of the whole
training set and subsequently uses
this gradient to update the
parameters.

1. For a small-sized dataset, the CNN
model converges faster and creates an
extra-stable gradient using BGD.
2. Generally not suitable fora large
training dataset
3. It requires a substantial amount of
resources.

Stochastic Gradient
Descent (SGD)

It samples by arbitrarily selecting part
of the training sample.

1. For a large-sized training dataset, this
technique is both more memory-effective
and much faster than BGD.
2. Randomness and noise are introduced
due to its frequent updates. Its
convergence is not stable, but the
expectation is still equal to the correct
gradient descent.

Mini-batch Gradient
Descent

It partitionss the training samples into
several mini-batches, and then
parameter updating is performed
following gradient computation on
every mini-batch.

This method combines the technical
advantages of SGD and SGD, which has a
steady convergence, more computational
efficiency and extra memory effectiveness.

Momentum
It introduces a momentum parameter
λ into SGD that accumulates historical
gradient information.

When training falls into a local minimum,
the gradient information with momentum
can help the network escape and find the
global minimum

Adaptive Moment
Estimation (Adam)

It calculates an adaptive learning rate
for each parameter in the model

The advantages of momentum and
RMSprop are combined. It is widely used
in deep learning and represents the latest
trend of optimization.

3. Image Classification Based on CNN

In general, image classification describes the whole image by manually extracting
features or feature learning methods, and then uses the classifier to identify the object
category. Therefore, how to extract the features of the image is especially important. Object
classification based on Bag of Words model [87] is widely used before deep learning. The
simplest Bag of Words model framework can be designed as three processes of low-level
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feature extraction, feature coding, and classifier design. The traditional image classification
method before 2012 can be completed in these three steps, but the complete establishment
of image classification model generally includes several processes such as low-level feature
learning [88–90], feature coding [91–94], spatial constraint, classifier design [95], and model
fusion. This type of traditional image classification method was widely used in the image
classification algorithm in the early PASCAL VOC [96]. NEC Lab won the championship
with SIFT and LBP, two nonlinear encoders and SVM classifiers in ILSVRC 2010 [97].

However, the emergence of CNNs has made a series of breakthroughs in the field
of image classification and has achieved excellent performance on large-scale visual
tasks [19,24,77,81]. The great success of deep CNNs (DCNNs) is attributed to its strong
feature learning ability [77]. Different from the traditional image classification method, the
classification method based on CNN is an end-to-end learning process, only the original
image is input, the training and prediction process are carried out in the network, and the
result is finally output. This method abandons the method of manually extracting specific
image features and breaks the bottleneck of traditional classification methods. This is also
the biggest advantage of CNNs for image classification. This section mainly introduces the
image classification model based on CNN and introduces the representative classic models
one by one in the order of the timeline.

3.1. Classic CNN Models
3.1.1. LeNet Network

In 1998, Lecun et al. built the LeNet-5 model used to digitally classify different people
and was superior to all other methods at the time [15]. It was also the first time that the
backpropagation was used in the training of CNNs. The LeNet-5 model is the cornerstone
of the development of deep learning and the source of inspiration for various models in
the future.

The LeNet-5 network has 7 layers and contains approximately 60k parameters. As
shown in Figure 7, the network is divided into two parts: convolution area and FC area.
The basic unit of the convolution area is the convolutional layer (Conv) followed by the
max-pooling layer (Pool), which is constituted by repeated stacking of the basic units of the
convolution layer and the max-pooling layer. FC area contains three FC layers that each
with fixed neurons, which are 120, 84, and 10 in order. This model uses the sigmoid [98]
activation function and uses the softmax classifier in the output layer. When the output
of the convolution area is passed into the FC layer area, the input layer of the FC area
will flatten each feature map in the mini-batch. The vector length in each mini-batch is
channel × height× width.

Although LeNet-5 can achieve good results in early MNIST, its performance on
larger data sets is not satisfactory. First, neural network calculations are complex, and the
calculation efficiency is low under the current hardware level. Secondly, the researchers
did not have a lot of in-depth research in many fields such as parameter initialization
and optimization algorithms, which caused the training of complex neural networks to be
usually difficult. More than ten years after LeNet-5 was proposed, neural networks were
once surpassed by other machine learning methods [99], such as support vector machines
(SVM) [100].

3.1.2. AlexNet Network

In 2012, AlexNet constructed by Krizhevsky et al. turned out [19]. This network won
the ILSVR 2012 with a huge advantage. It proved for the first time that the learned features
can surpass the manually designed features, thus breaking the previous state of computer
vision research in one fell swoop. Because the ability of a single GTX 580 GPU was limited
at that time, it adopted cross-GPU parallel computing processing, which made the original
AlexNet model architecture like the “columnar” CNN of Cireşan et al. [18].

The AlexNet network has 8 layers and contains about 60M parameters. It is very
similar to the LeNet design concept, but there are significant differences. It can be seen in
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Figure 8 that AlexNet contains 8 layers of transformations, including 5 layers of convolution
and 2 layers of FC hidden layers, and 1 FC output layer. The final FC layer brings a huge
amount of parameters to the model. The height and width of most images in ImageNet [101]
are more than 10 times larger than those of MNIST images and occupy more pixels,
so a larger convolution size in first layer is needed to extract object features. And the
improvements of AlexNet are as follows:

• ReLU [73]. The activation function is changed from sigmoid to ReLU, it accelerates
the model convergence and reduces the gradient disappearance.

• Dropout [79]. the model uses dropout to control the model complexity of the fully
connected layer with p = 0.5 to alleviate the overfitting problem.

• Data augmentation. Introduced a large number of Data augmentation, such as flipping,
cropping, and color changes, to further enlarge the datasets to alleviate the overfitting
problem. Dropout and Data augmentation methods are widely used in subsequent
convolutional neural networks.

• Overlapping pooling. There will be overlapping areas between adjacent pooling
windows, which can improve model accuracy and alleviate overfitting.

Figure 7. The architecture of the LeNet-5 network. The output shape is channel × height × width. Each convolutional layer
uses size 5 × 5, padding 0, strides 1. Each pooling layer size 2 × 2 and strides 2.

3.1.3. VGGNet

In 2014, Simonyan et al. proposed the VGG model [24] and won the runner-up of
ILSVR 2014. This model is similar to the AlexNet model, and also uses the structure of
the convolution area followed by the FC area. The composition rule of the VGG module
is to use several identical convolutional layers in succession followed by a maximum
pooling layer, the convolutional layer keeps the input height and width unchanged, while
the pooling layer halves it. The VGG network has a variety of different layer structure
models, (Figure 9) is the VGG-16. It contains 16 weight levels, the network connects five
blocks in series, and finally, two fully connected layers with 4096 and an output layer with
1000 classifications are connected.

Although the author of AlexNet made a lot of adjustments in the convolution size,
the number of output channels, and the construction order, they did not provide regular
ideas for the construction of the network. VGGNet gives the design to follow the idea, the
improvements of AlexNet are as follows:

• Modular network. VGGNet uses a lot of basic modules to construct the model, this
idea has become the construction method of DCNNs.

• Smaller convolution. A lot of 3 × 3 convolution filters are used on VGGNet, which
can ensure that the depth of the network is increased, and the model parameters are
reduced under the same receptive field compared with a larger convolution filter [102].
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• Multi-Scale training. It first scales the input image to a different size S ∈ (256, 512),
and then randomly crops it to a fixed size of 224 × 224 and trains the obtained
data of multiple windows together. This process is regarded as a kind of scale jitter
processing, which can achieve the effect of data augmentation and prevent the model
from overfitting [102].

Figure 8. The architecture of the AlexNet network. The convolution size in the first layer is 11 × 11,
the second layer is reduced to 5 × 5, and then all 3 × 3 is adopted. Conv_1, Conv_2, and Conv_5
layers are followed by a max-pooling layer with size 3 × 3 and strides 2. Finally, there are two fully
connected layers of 4096 and an output layer of 1000 categories.

Figure 9. The architecture of the VGG-16 network. Conv: size = 3 × 3, stride = 1, padding = 1. Pool:
size = 3 × 3, stride = 2.

3.1.4. Network in Network (NIN)

In 2014, Lin et al. proposed a network NIN model with a network-in-network struc-
ture [21]. Different from the linear filter used in the traditional convolutional layer plus the
nonlinear activation function, the NIN model combines the MLP [103] with the convolution
and uses a more complex structure of the micro neural network instead of the traditional
convolutional layer. This new type of layer is called ‘Mlpconv’ (Figure 10).
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Figure 10. Comparison of linear convolution layer and mlpconv layer.

The difference between the NIN network and LeNet, AlexNet, and VGG is concatenat-
ing multiple Mlpconv composed of convolutional layers and MLP to build a deep network.
For deep convolutional neural networks, the convolutional layer to achieve a good abstract
representation usually requires the input data to be highly non-linear. The filter is a gener-
alized linear model (GLM) for the low-level data, and the abstraction of GLM is low [104].
Higher-level filters combine lower-level concepts to generate higher-level abstract concepts.
And MLP has a strong ability to express nonlinear functions, replacing GLM with a more
effective function approximator—MLP can enhance the abstract expression ability of local
models. The author believes that better abstract processing of each partial module before
combining it into higher-level concepts is beneficial to the network, which constructs the
mlpconv micro-network.

NIN was proposed shortly after the advent of AlexNet, and their convolutional layer
settings are similar. But in NIN, those different designs and contributions are summarized
as follows:

• Mlpconv. MLP layer is equivalent to a 1 × 1 convolutional layer. Now, it is usually
used to adjust the channels and the parameters, and there are also explanations that
cross-channel interaction and information integration are possible.

• Global average pooling (GAP). The FC layer is no longer used for output classification,
but a micro-network block with the number of output channels equal to the number
of label categories is used, and then all elements in each channel are averaged through
a GAP layer to obtain the classification confidence.

Ref. [21] pointed out that the reason why the model uses GAP is that it is more
interpretable and more meaningful than the fully connected layer. In addition, the fully
connected layer is prone to overfitting due to too many parameters, and it relies too much
on dropout regularization. The GAP can be regarded as a structural regularization method
and replacing it with the FC layer can greatly reduce the amount of model parameters and
effectively prevent the model from overfitting.

3.2. GoogLeNet/InceptionV1 to V4

In 2014, GoogLeNet [23] proposed by Christian Szegedy et al. won the ILSVR2014
championship. This model absorbs the idea of NIN and the theoretical work of Arora
et al. [105], and introduces the concept of the Inception module. In the following years,
researchers made several improvements to the Inception module, and the performance of
the model also improved.

3.2.1. InceptionV1

GoogLeNet has 22 layers, including about 6M parameters. The basic module of the
network is the Inception module (Figure 11a). This module contains 4 parallel branches.
The first three branches use convolutional layers with different sizes to extract information
under different spatial sizes. Among them, 1 × 1 convolution can reduce the number of
channels and compress information to reduce model complexity. The max-pooling effect
of the last branch is to reduce the resolution, followed by 1 × 1 convolution to adjust the
depth after the pooling. All in all, this unique design increases the width of the network
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model and the adaptability to different scales or even resolutions, achieving the effect of
multi-scale fusion. The GoogLeNet model is similar to VGGNet, and its convolution part
also uses modular splicing.

Figure 11. InceptionV1 to V3 module.

The most direct way to improve network performance is to increase the network depth
and network width (the number of neurons in each layer), but the following disadvantage
is that as the network size increases, the number of parameters increases, which makes
the network more prone to overfitting, and the usage of computing resources will increase
dramatically. Ref. [23] believes that the fundamental way to solve the above shortcomings
is to transform the fully connected layer and even the convolutional layer into sparse
connections. First, the connection of the biological nervous system is also sparse. Second,
the main research results of Arora et al. [105] show that if the probability distribution of
the dataset is representable by a large, very sparse deep neural network, then the optimal
network topology can be constructed layer by layer by analyzing the correlation statistics
of the activations of the last layer and clustering neurons with highly correlated outputs.
Therefore, the progress made by inceptionV1 lies in the following:

• Inception module. Although the early traditional neural networks used random sparse
connections, computer hardware was inefficient in computing non-uniform sparse
connections. The proposed Inception module can not only maintain the sparsity of
the network structure but also use the high computational performance of the dense
matrix, thereby effectively improving the model’s utilization of parameters.

• GAP. Replaced the fully connected layer to reduce the parameters.
• Auxiliary classifier. An auxiliary classifier used for a deeper network is a small CNN

inserted between layers during training, and the loss incurred is added to the main
network loss.

As a result, the parameters of GoogLeNet are only 1/12 of AlexNet, but the perfor-
mance is greatly improved.
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3.2.2. InceptionV2

Compared with inceptionV1, the improvements of inceptionV2 [106] are as follows:

(1) Smaller convolution. The 5 × 5 convolution is replaced by the two 3 × 3 convolutions.
This also decreases computational time and thus increases computational speed
because a 5 × 5 convolution is 2.78 more expensive than a 3 × 3 convolution.

(2) Batch Normalization (BN). BN is a method used to make ANNs faster and more stable
through normalization of the layers’ inputs by re-centering and re-scaling for each
mini-batch.

In CNN, BN is achieved through a normalization step that fixes the means and
variances of each layer’s inputs. Ideally, the normalization would be conducted over the
entire training set, but to use this step jointly with stochastic optimization methods, it
is impractical to use the global information. Thus, normalization is restrained to each
mini-batch in the training process. For a layer with d-dimensional input x =

(
x(1) · · · x(d)

)
,

It will normalize each dimension. And use B = x(i . . . m) to denote a mini-batch of size m
of the entire training set. BN Transform thus be denoted as:

/mini-batch mean: µB = 1
m

m
∑

i=1
xi

/mini-batch variance: σ2
B = 1

m

m
∑

i=1
(xi − µB)

2

/normalize: x̂i = (xi + µB)/
√

σ2
B + ε

/scale and shift: yi = γx̂i + β = BNγ,β(xi)

The parameters γ, β to be learned in the optimization process, ε is a constant added to
the mini-batch variance for numerical stability.

3.2.3. InceptionV3

Inception v3 [1] mainly focuses on burning less computational power by modifying
the previous Inception architectures. Its main improvements are as explained below:

• Factorized convolutions. This helps to reduce the computational efficiency as it
reduces the number of parameters involved in a network. It also keeps a check on the
network efficiency. This part contains the following (2) and (3).

• Smaller convolutions. replacing bigger convolutions with smaller convolutions defi-
nitely leads to faster training.

• Asymmetric convolutions. A 3 × 3 convolution could be replaced by a 1 × 3 con-
volution followed by a 3 × 1 convolution. The number of parameters is reduced
by 33%.

• Grid size reduction. Grid size reduction is usually done by pooling operations. However,
to combat the bottlenecks of computational cost, a more efficient technique is proposed.
Say for example in the Figure 12, 320 feature maps are done by conv with stride 2.
320 feature maps are obtained by max pooling. And these 2 sets of feature maps are
concatenated as 640 feature maps and go to the next level of inception module.

3.2.4. InceptionV4

The main aim of Inception V4 [107] was to reduce the complexity of the Inception
V3 model [1] which made a unified choice for each Inception block. Inception blocks
include Inception modules and Reduction modules as shown in Figure 13. Figure 14 for
the overall architecture of the InceptionV4. All the convolutions not marked with “V” in
the figures are same-padded meaning that their output grid matches the size of their input.
Convolutions marked with “V” are valid padded, meaning that the input patch of each
unit is fully contained in the previous layer and the grid size of the output activation map
is reduced accordingly.
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• The initial set of layers to which the paper refers “stem of the architecture” (Figure 14)
was modified to make it more uniform. These layers are used before the Inception
block in the architecture.

• This model can be trained without partition of replicas unlike the previous versions of
inceptions which required different replicas to fit in memory. This architecture uses
memory optimization on backpropagation to reduce the memory requirement.

Figure 12. Two methods on the red line: the solution on the left violates the principle [1]. The version
on the right is 3 times more expensive computationally. Method under the red line: an efficient grid
size reduction module is both cheap and avoids the representational bottleneck as is suggested by
principle [1].

Figure 13. InceptionV4 blocks. It contains the Inception-A/B/C modules and Reduction-A/B modules.
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Figure 14. Overall Architecture of InceptionV4. The upper part of the picture is the overall structure, the lower part of the
picture is the Stem of the architecture.

3.3. Residual Learning Networks
3.3.1. ResNet

In 2015, the deep residual network ResNet proposed by KaimingHe et al. [25] won
the first prize in ILSVR2015. Looking back at the network development described earlier,
deeper and deeper networks are a common development trend, that is, increasing the depth
of the network will increase the network performance. However, many experiments have
shown that simply increasing the network depth within a certain depth range cannot
effectively improve network performance [108]. Another experiment shows that the
increase in the number of network layers within 20 layers brings about the improvement of
network performance, but if the deep network with more than 20 layers continues to overlay
the number of network layers, the classification accuracy will decrease instead [109].

We may blindly point the finger at the problem of disappearance/exploding gra-
dients [110,111] or the overfitting. However, networks with dozens of layers can easily
converge to the backpropagation of stochastic gradient descent through initial normal-
ization [75,110,112] and batch normalization [106]. The article [25] verifies that network
degradation is not overfitting. In fact, this situation is that the deep network cannot simply
be optimized well—the optimization of Stochastic Gradient Descent (SGD) [113] becomes
difficult. This phenomenon that the accuracy does not increase but decreases is called
“degradation”. It has seriously affected the training of deep nonlinear networks. The
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residual connection in ResNet is a method to break “degradation” and enable deep neural
networks to achieve high accuracy [114]. Based on the residual vector coding representa-
tion of VLAD [115] and Fisher Vector [116] and the research of shortcut connection theory
and practice, the residual network makes the network of the stacked layers’ optimal state
continue to accumulate multiple identity mapping layers. This kind of residual connection
can increase the depth of the network while facilitating optimization, and the accuracy is
also increasing [25].

Let us focus on the residual connection layer of the residual network, as shown in
Figure 15. H(x) is the ideal mapping we want, the left part of Figure 15 is an ordinary CNN
learning, which needs to be directly fitted to the mapping H(x). The residual learning on
the right is to let the residual block not directly learn the target mapping but to fit a residual
mapping related to the identity mapping F(x) = H(x)− x. Assuming that the network
of a certain depth tends to be saturated, to ensure the parameter update and gradient
propagation of the next layer, only the weight and bias of F(x) need to be updated to 0,
and then the identity mapping H(x)→ x can ensure that the input of the next layer is at
least the same as the output of the previous layer. In fact, when the ideal map H(x) is very
close to the identity map, the residual map is also easy to capture the subtle fluctuations
of the identity map. Of course, the non-linear mapping F(x) is much easier to learn than
the direct fitting, which allows the input value to propagate forward faster through the
cross-layer data line.

The residual block contains two 3 × 3 convolutional layers with the same number
of channels, and each convolutional layer is followed by a BN and a ReLU activation
function. Another branch connects the input directly to the last ReLU by skipping the
convolutional layer—a building block as in Figure 16 (left) for ResNet-34. When the
network stack is deep, a 1 × 1 convolution layer can be added after the 3 × 3 convolution
layer to control the number of channels—a “bottleneck” building block as in Figure 16
(right) for ResNet-50/101/152.

ResNet can be said to stand at the very gate of DCNNs in a true sense. By using
ResNet, its important contributions are as follows:

Residual learning

• This method is easy to optimize, but the “plain” networks (that simply stack layers)
show higher training error when the depth increases.

• It can easily gain accuracy from greatly increased depth, producing results that are
better than previous networks.

Figure 15. Comparison of ordinary CNN learning and residual learning.
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Figure 16. Two building blocks for ResNet.

3.3.2. Improvement of ResNet

CNNs with hundreds of layers or more are indeed very competitive, but very DCNNs
have the challenge of difficulty in training and the risk of overfitting. In the case of
limited data sets, researchers have made improvements to the ResNet’s building block are
as follows:

1. ResNet with Pre-activation. He et al. [109] proposed a pre-activation structure to
pre-activate the BN and ReLU to further improve the network performance. Several
experiments were carried out on the layout of BN and ReLU and the best performing
structure was obtained in Figure 17(right). It can successfully train ResNet with
more than 1000 layers. At the same time, they also proved the importance of identity
mapping compared to other shortcut connections.

2. Stochastic depth. The authors of [117] pointed out that there are many layers in the
ResNet network that contribute little to the output result. In the network training
process, the Stochastic depth method is used, and deleting some layers can greatly
shorten the training time and effectively increase the depth of ResNet, even exceeding
1200 layers. The test error and the training time on CIFAR-10/100 still has a good
improvement.

3. Wide Residual Networks (WRNs). With the increasing depth of residual networks,
the diminishing feature reuse will make the training of the network very slow [118].
To alleviate this problem, ref. [119] introduced a wide-dropout block that widens the
weight layer of the original residual unit [25] Figure 15 (right) and adds dropout be-
tween the two weight layers. Compared with deeper ResNet, WRN with fewer layers
greatly reduces the training time and has better performance on the CIFAR&ImageNet
data set.

4. ResNeXt [26]. Although Inception and ResNet have great performance, but these
models are well-suited for several datasets. Due to the many hyperparameters and
computations involved, adapting them to new datasets is no minor task. A new
dimension “Cardinality C”—the number of paths in a block—is used to overcome this
problem, and experiments demonstrate that increasing cardinality C is more effective
than going deeper or wider when we increase the capacity. The authors compared the
completely equivalent structures of the three mathematical calculations in Figure 18.
The experimental results show that block Figure 18c with grouped convolution is
more succinct and faster than the other two forms, and ResNeXt uses this structure as
a basic block.

5. Dilated Residual Networks (DRN). To solve the decrease in the resolution of the
feature map and the loss of feature information caused by downsampling. However,
simply removing subsampling steps in the network will reduce the receptive field. So,
Yu et al. [120] introduced dilated convolutions that are used to increase the receptive
field of the higher layers and replaced a subset of the internal downsampling layer
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based on the residual network, compensating for the reduction in receptive field
induced by removing subsampling. Compared to ResNet with the same parameter
amount, the accuracy of DRN is significantly improved in image classification.

6. Other models. Veit et al. [121] drops some of the layers of a trained ResNet and
still have comparable performance. Resnet in Resnet (RiR) [122] proposed a deep
dual-stream architecture that generalizes ResNets and standard CNNs and is easily
implemented with no computational overhead. DropBlock [123] technique discards
feature in a contiguous correlated area called block, which is a regularization helpful
in avoiding the most common problem data science professionals face i.e., overfitting.
Big Transfer (BiT) [124] proposes a general transfer learning method to be applied to
ResNet, which uses the minimal number of tricks yet attains excellent performance
on many tasks. NFNet [125] proposes a ResNet-based structure without BN layer,
by using adaptive gradient clipping technique to achieve amazing training speed
and accuracy.

Figure 17. (a) original Residual Unit [25]. (b) Residual Unit with full pre-activate [109].

Figure 18. (a–c) Equivalent building blocks of ResNeXt.
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3.3.3. ResNet with Inception

From 2014 to 2017, the residual method and the Inception method have a strong
dominance in image classification tasks. Researchers combined the two structures and
added new methods to achieve better performance, these classic variants deserve to be
discussed as follows:

1. Inception-ResNet [107]. Tried to combine the Inception structure with the resid-
ual structure and achieved good performance. It comes from the same paper as
inceptionV4 [107], and the combination is Inception-ResNet-V1/V2 as shown in
Figures 19 and 20. Inception-ResNet-V1 has roughly the computational cost of
Inception-V3 [1], and it was training much faster but reached slightly worse final
accuracy than InceptionV3. Inception-ResNet-V2 has roughly the computational cost
of Inception-v4, and it was training much faster and reached slightly better final
accuracy than InceptionV4 [107].

2. Xception [126]. It is based on the design point of InceptionV3 [1]. The author believes
that the correlation between channels and spatial correlation should be handled
separately, using modified depthwise separable [127] convolution to replace the
convolution operation in InceptionV3. Refs. [128,129] also show that using separable
convolution can reduce the size and computational cost of CNNs. But the modification
in Xception aims to improve performance. The accuracy of Xception on ImageNet
is slightly higher than that of Inception-v3, while the parameters is slightly reduced.
The experiment in [126] also shows that the residual connection mechanism similar to
ResNet added to Xception can significantly speed up the training times and obtain a
higher accuracy rate.

3. PolyNet [130]. Many studies tend to increase depth and width in image classification
tasks to obtain higher performance. But very deep networks will have trouble that
is a diminishing return and increased training difficulty. A quadratic growth in
both computational cost and memory demand is caused by a widening network.
This method explores the structural diversity of Inception and ResNet that a new
dimension beyond just depth and width, which introduced a better-mixed model
from the perspective of polynomials.

3.3.4. DenseNet

DCNNs often face the dilemma of gradient disappearance and degradation, and
network training has become a problem. The improved residual network described above
proposes some solutions, but here we must mention the excellent work DenseNet [131].
It has the same direction as ResNet [25] and the Highway network [118]. The connection of
traditional convolution is between each layer and the next layer. In DenseNet each layer
connects to every other layer in a feed-forward fashion. In this way, each layer has direct
access to the gradients from the loss function and the original input signal, leading to
implicit deep supervision.

Dense Blocks are shown in Figure 21, each layer obtains additional inputs from
all preceding layers, and passes its own feature maps to all subsequent layers. Simply
expressed as xl = Hl([x0, x1, · · · , xl−1]), and the residual connection is xl = Hl(xl−1) +
xl−1. It also setup growth rate k indicates the added number of input channels when pass
through a layer. Ref. [131] pointed out “BN-ReLU-Conv(1 × 1)-BN-ReLU-Conv(1 × 1)”
called “Bottleneck layers” very effective for DenseNet, as DenseNet-B. In order to require
the same size of feature maps, “Transition layers”—1 × 1 convolution reduce the number
of feature-maps by θ ∈ (0, 1)—are set between different dense blocks to achieve down
sampling, as DenseNet-C. Both Bottleneck layers and Transition layers are called DenseNet-
BC, of course its performance is the best.
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Figure 19. Inception-ResNet-V1.

Figure 20. Inception-ResNet-V2. The number of parameters increase in some layers in comparison to Inception-ResNet-V1.
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Figure 21. Dense block. 5-layer with a growth rate of k = 4.

It is worth mentioning that the Dual Path Networks (DPN) proposed by Yan et al. [132]
explored the relationship between residual learning [25] and dense connection [131], and
combined their advantages. It can also be said that the mathematical expression is unified
between them by DPN. CondenseNet [133] mainly optimizes DenseNet [131] through
group convolution operation and pruning during training, to achieve higher computational
efficiency and fewer parameters.

3.4. Attention Module for CNNs

Attention mechanism can be explained intuitively using the human visual mechanism.
Such as our visual system tends to pay attention to part of the information in the image for
auxiliary judgment and ignore irrelevant information. There is a type of model that absorbs
this idea to improve the performance of the CNN model, by using channel attention or
spatial attention. They can be regarded as small-scale improvements of the entire model
that can be transplanted to any feasible model.

3.4.1. Residual Attention Neural Network

To enable the network to learn aware features of the object, Wang et al. [134] proposed
the Residual Attention Network (RAN or Attention) to incorporate the attention mechanism
into CNN. The main structure of RAN is stacked by residual blocks. The overall architecture
of RAN is shown in the Figure 22.

There are two branches in Residual Attention Network: Trunk branch which is the
upper branch in the attention module for feature extraction can be Pre-Activation ResNet
block or other blocks, with input x and output T(x); Mask branch uses bottom-up top-down
structure [3,135–137] to learn the same-size mask M(x). The output of Attention Module
H is: Hi,c(x) = Mi,c(x) ∗ Ti,c(x), where i ranges over the spatial locations, and c is the
channel index from 1 to C. the attention mask can serve as a feature selector during forward
inference, it also as a gradient update filter during backpropagation. In the soft mask branch,
the gradient of mask for input feature is: (∂M(x, θ)T(x, θ))/∂φ = M(x, θ)∂T(x, φ)/∂φ,
where θ are mask branch parameters and φ are trunk branch parameters. However,
naive stacking Attention Modules will cause performance degradation. This is because
dot production with mask ranges from zero to one repeatedly will degrade the value of
features in deep layers, and soft mask can potentially break good property of trunk branch.
A better mask is constructed as Hi,c(x) = (1 + Mi,c(x)) ∗ Fi,c(x), which is called Attention
Residual Learning. Where F(x) is the original features and M(x)) ranges from [0, 1]. ‘*’
indicates element-wise product. A bottom-up top-down fully convolutional structure is
used in soft mask branch. The activation function uses mixed attention which is simple
sigmoid for each channel and spatial position. The positive effects of RAN are as follows:

• Stacking multi-attention modules has made RAN very effective at recognizing noisy,
complex, and cluttered images.

• RAN’s hierarchical organization gives it the capability to adaptively allocate a weight
for every feature map depending on its importance within the layers.
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• Incorporating three distinct levels of attention (spatial, channel, and mixed) enables
the model to use this ability to capture the object-aware features at these distinct levels.

Figure 22. The architecture of Residual Attention Network. There are three hyper-parameters p, t, r. p is the number of
pre-processing Residual Units before splitting into trunk branch and mask branch. t denotes the number of Residual Units
in trunk branch. r denotes the number of Residual Units between adjacent pooling layer in the mask branch. Ref. [134] set
the hyperparameter to p = 1, t = 2, r = 1.

3.4.2. SENet

In 2017, Wang et al. [27] proposed Squeeze-and-Excitation Networks (SENet) intro-
duce a building block for CNNs that improves channel interdependencies at almost no
computational cost, and it is also the champion of ILSVR2017 on the image classification
task. SE module used channel-attention mechanism can be added to any baseline architec-
ture to get an improvement in performance, with negligible computational overhead. The
schematic diagram of this architecture is shown in Figure 23.

Figure 23. A Squeeze-and-Excitation (SE) block.

Usually, the network weights each of its channels equally when creating the output
feature maps. SE block is all about changing this by adding an attention mechanism to
weight each channel adaptively. First, the input X ∈ RH′×W ′×C′ is mapped to U ∈ RH×W×C

through the transformation Ftr. Afterwards, they get a global understanding of each
channel by squeeze Fsq the feature maps to a vector 1× 1× C, where C is equal to the
number of channels.Then channel-wise dependencies can be completely captured by
excitation Fex : 1× 1× C → 1× 1× C/ r → 1× 1× C , where r is reduction ratio. Finally,
these C values can now be used as weights on the original features maps by Fscale to get X̃,
scaling each channel based on its importance.
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3.4.3. BAM and CBAM

The importance of the feature map utilization and the attention mechanism is certified
via SENet [27] and RAN [134]. Woo et al. proposed Bottleneck Attention Module [138]
(BAM) and Convolutional Block Attention Module [139] (CBAM) that channel attention
module and spatial attention module are introduced. The two models will be introduced
below because of their simple structure and similar ideas.

BAM. It gets an attention map through two separate paths: channel attention and
spatial attention, as shown in Figure 24. For the given input feature map F ∈ RH×W×C,
BAM infers a 3D attention map M ∈ RH×W×C. The refined feature map F′ is computed as:
F′ = F + F ∗M(F). To design an efficient module, they first compute the channel attention
Mc(F) ∈ R1×1×C and the spatial attention Ms(F) ∈ RH×W×1 at two separate branches, and
attention map M(F) = sigmoid(Mc(F) + Ms(F)), M(F) ∈ RH×W×C. Finally, multiply the
attention map M(F) with the original feature map F to get F ∗M(F). The above description
takes the ResNet block [25] as the baseline.

CBAM. It gets an attention map through two concatenated paths: channel attention
and spatial attention, as shown in Figure 25. For the given input feature map F ∈ RH×W×C,
CBAM sequentially infers a 1D channel attention map Mc(F) ∈ R1×1×C and a 2D spatial at-
tention map Ms(F) ∈ RH×W×1. During multiplication, the attention values are broadcasted
accordingly—channel attention values are broadcasted along the spatial dimension. The
channel-refined feature map F′ and channel-spatial-refined feature map F′′ are summarized
as: F′ = Mc(F) ∗ F, F′′ = Ms(F′) ∗ F′.

In simple terms, BAM uses parallel connection and CBAM uses series connection
for channel attention and spatial attention. However, CBAM is slightly better for image
classification in actual performance.

3.4.4. GENet

In 2018, Hu et al. [140] introduced feature context to CNNs, which includes two oper-
ations: Gather ξG and Excite ξE, as shown in Figure 26. For the given input feature maps
X ∈ RH×W×C, it is transformed by gather operator ξG : X ∈ RH×W×C → X̂ ∈ RH′×W ′×C

(H′ = [H/e], W ′ = [W/e]) , where e is an extent ratio. Excite operator ξE uses nearest
neighbor interpolation to resize X̂ → RH×W×C , then after sigmoid, X̂ and the origi-
nal input X perform element-wise product operation: ξE

(
X, X̂

)
= X ∗ f

(
X̂
)
, where

f : RH′×W ′×C → [0, 1]RH×W×C . This method can be added to the baseline architecture for
better performance with slightly increasing parameters.

Figure 24. BAM module architecture. Two hyper-parameters d, r for this module, ref. [138] set d = 4, r = 16.
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Figure 25. CBAM module architecture.

Figure 26. Gather-Excite block.

3.4.5. SKNet

In 2018, Wang et al. [141] proposed Selective Kernel Networks (SKNet), which can
adaptively adjust the size of the receptive field according to multiple scales of input features.
This network is mainly divided into three operations: Split, Fuse and Select, as shown in
Figure 27.

Split: For the given input feature maps X ∈ RH′×W ′×C′ , by default two transforma-
tions are performed F̃ : X → Ũ ∈ RH×W×C and F̂ : X → Û ∈ RH×W×C with 3 × 3 conv
and 5 × 5 conv. F̃ and F̂ are composed of efficient grouped/depthwise convolutions, BN
and ReLU function in sequence.

Fuse: The two branches are fused via an element-wise summation: U = Ũ + Û. After-
wards, the channel-wise information is generated by using GAP: Fgp : RH×W×C → R1×1×C ,
and the number of channels is changed by using two FC layers as Ff c : 1× 1× C → 1× 1× Z
→ 1× 1× C, (Z < C) . Finally, the output matrix is a and b.

Select:a and b are weighted Ũ and Û, and the final output is V = a ∗ Ũ + b ∗
Û, (a + b = 1). ∗ indicates element-wise product.
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Figure 27. Selective Kernel convolution block.

3.4.6. GSoP-Net

In 2019, Gao et al. [142] proposed Global Second-order Pooling Convolutional Net-
works (GSoP-Net), which introduced two-dimensional GAP into the middle part of CNNs.
It embodies the relationship between channels in the form of covariance. Refs. [143–147]
also proved that inserting GSoP into the network can significantly improve performance,
and A2-Net [148] uses GSoP to aggregate and propagate the global features from the entire
space of the input information. This method designs a simple and effective GSoP block,
which has the advantages of high modularity, low memory usage, and low computational
complexity. In addition, it can capture global second-order statistical information along the
channel dimension or location dimension, and can also be easily inserted into the existing
network architecture to further improve its performance with less overhead.

3.4.7. ECA-Net

In 2019, Hu et al. [149] proposed the Efficient Channel Attention (ECA) module to
solve the irrationality of channel dimensionality reduction from SE block [27] (Figure 23
Fex). Ref. [149] show avoiding dimensionality reduction is important for learning channel
attention, and appropriate cross-channel interaction can preserve performance while signif-
icantly decreasing model complexity. ECA-Net proposes a local cross-channel interaction
strategy without dimensionality reduction by using one-dimensional (1D) convolution, as
shown in Figure 28. This method uses 1D convolution with K parameters which is adap-
tively determined via a mapping of channel dimension C to share all channels. Compared
with more sophisticated attention modules, ECA blocks are more efficient to reduce the
complexity of the model and significantly improve the performance of the model with
slightly increasing parameters.

Figure 28. Efficient Channel Attention (ECA) module.
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3.4.8. Coordinate Attention

In 2021, Hou et al. [150] proposed the Coordinate Attention (CA) module for efficient
mobile networks, which uses two 1D GAP to capture feature codes in two spatial directions
(positional information), CA block as shown in Figure 29. For the given input feature maps
X ∈ RH×W×C. First, encoded each channel along the horizontal coordinate direction and
the vertical coordinate direction by X GAP and Y GAP. Secondly, coordinate attention is
generated by Concat + Conv2d, then after the BN + activation function, it is split into two
feature maps with spatial direction features. Finally, the original input X is Re-weighted, r is
the reduction ratio. The CA block captures not only cross-channel but also direction-aware
and position-sensitive information, which helps models to more accurately locate and
recognize the objects of interest. It is a lightweight module designed for mobile networks
and can be flexibly inserted into classic mobile networks to improve performance with
almost no computational overhead.

Figure 29. Coordinate Attention (CA) block.

3.4.9. Other Attention Modules and Summary

SENet [27] is one of the most successful examples of using the attention mechanism for
image classification. Not only the above BAM [138], CBAM [139], GENet [140], SKNet [141],
ECA-Net [149] and CA [150], but also GALA [151], AA-Net [152] and TA [153] developed its
ideas by adopting different spatial attention mechanisms or designing advanced attention
blocks. In addition, GSoP-Net [142], A2Net [148], NLNet [154], GCNet [155], SCNet [156]
and CCNet [157] serve as typical examples of non-local/self-attention networks are recently
very popular due to their capability of building spatial or channel-wise attention. These
attention networks are very helpful in a variety of computer vision tasks, by inserting into
a large network or mobile network. Please note that NLNet [154] and CCNet [157] are not
used for image classification.

3.5. Smaller or More Efficient Network

There is a trend to make deeper and more complicated networks to achieve higher
accuracy. However, in many real-world applications such as mobile phones, robotics, and
self-driving cars, these advances to improve accuracy are not necessarily making networks
more efficient with respect to size and speed. Here we will introduce smaller and more
efficient models that are dedicated to carrying out the recognition tasks in a timely fashion
on a computationally limited platform.

3.5.1. SqueezeNet

In 2016, F. N. Iandola et al. [158] proposed a miniaturized network model structure
SqueezeNet. This network introduced the fire module (Figure 30), which reduces the
network parameters by replacing 3 × 3 filters with 1 × 1 filters and decreasing the number
of input channels to 3 × 3 filters. It places down sampling late in the network so that
convolution layers have large activation maps. Meanwhile, the model is combined with
Deep Compression [159] to scale the volume of the model. Compared with AlexNet,
SqueezeNet reduces the number of parameters by nearly 50 times while ensuring that there
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is no loss of accuracy, and the model volume is compressed to about 510 times the original.
After that, SqueezeNext [160] considered the hardware based on SqueezeNet.

Figure 30. Fire protection module in SqueezeNet architecture.

3.5.2. MobileNet V1 to V3

In 2017, Google proposed MobileNetV1 [161], which is a lightweight network that fo-
cuses on mobile or embedded devices. This network uses depthwise separable convolution
consisting of depthwise convolution and pointwise convolution (1 × 1 conv) to instead
of standard convolution, as shown in Figure 31. It can greatly reduce calculation cost and
parameters. At the same time, MobileNetV1 also provides two hyperparameters (width
multiplier α and resolution multiplier α) to effectively balance calculation and accuracy.

Figure 31. Depthwise Separable convolutions.

In 2018, MobileNetV2 [162] introduced Inverted Residuals and Linear Bottlenecks
to solve the problem that most of the convolution kernel parameters in the depthwise
separable convolution are zero. The reason is that the feature information is easily damaged
by ReLU after being mapped from high-dimensional space to low-dimensional space [162].
The bottleneck residual block of MobileNetV2 is shown in Figure 32. Different from
standard residual block [25] 1 × 1(compression)→3 × 3→1 × 1(expansion), the inverted
residual block is 1 × 1(expansion)→3 × 3→1 × 1(compression). And this block replaces
the last ReLU connected behind 1 × 1conv with linear transformation, to avoid informa-
tion loss.

In 2019, based on the previous work, MobileNetV3 [163] employs the SE block [27]
and Neural Architecture Search (NAS) [164,165] technology to achieve more efficiency and
accuracy. SE block is used to build channel-wise attention. The platform-aware NAS for
block-wise search approach [164] is used to find the global network structures, and then
NetAdapt [165] for layer-wise search approach is used to fine-tune individual layers in a
sequential manner. This model also uses the h-swish activation function that modifies the
sigmoid of the swish function to improve accuracy.
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Figure 32. The bottleneck residual block of MobileNetV2. C is the number of channels, and expansion
ratios are 6.

3.5.3. ShuffleNet V1 to V2

In 2017, ShuffleNetV1 [166], by Face++, focuses on common mobile platforms (e.g.,
drones, robots, and smartphones), using Pointwise Group convolution [19,26,126] and
Channel shuffle to improve residual block [25]. The former is to solve the problem that
the expensive pointwise convolutions result in a limited number of channels to meet the
complexity constraint that the accuracy might be significantly damaged. The latter is to
solve the problem that the group convolution blocks information flow between channel
groups and weakens representation. ShuffleNet unit (stride = 1) replaces the first 1× 1 conv
with pointwise group convolution followed by a channel shuffle operation (see Figure 33c),
as shown in Figure 33a. ShuffleNet unit (stride = 2) make two modifications that a 3 × 3
GAP is added to the shortcut path and the channel concatenation is replaced by element-
wise addition, as shown in Figure 33b. The multiple versions of mobileNetV1 have
experimented with a different number of groups for convolutions (g groups) and different
scaling for the number of filters (s).

Figure 33. (a) ShuffleNetV1 unit with stride = 1. (b) ShuffleNetV1 unit with stride = 2 (down
sampling, 2). (c) Channel shuffle operation.

In 2018, ShuffleNetV2 [167] has higher requirements for speed and accuracy. It not
only considers computational complexity (floating-point operations per second, FLOPs)
but also takes into account other factors such as memory access cost (MAC) and platform
features. According to the experiment, four guidelines are given in [167]: (G1) Equal
channel width minimizes MAC; (G2) Excessive group convolution increases MAC; (G3)
Network fragmentation reduces the degree of parallelism, i.e., such fragmented structure
could decrease efficiency because it is unfriendly for devices with strong parallel computing
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powers like GPU. (G4) Element-wise operations are non-negligible because it also has a
high MAC/FLOPs ratio. The ShuffleNetV2 unit avoids violating the above guidelines, as
shown in Figure 34.

Figure 34. (a) ShuffleNetV2 unit. (b) ShuffleNetV1 unit with stride = 2 (down sampling, 2).

3.5.4. PeleeNet

In 2018, PeleeNet [168] makes improvements based on DenseNet [131], which is an
efficient architecture for embedded platforms. It uses a steam block (see in Figure 35a) to
downsample the input image for the first time. The original dense layer is divided into two
paths to get different scales of receptive fields, called a 2-way dense layer (see in Figure 35b).
It keeps the number of output channels the same as the number of input channels in
transition layers because the compression factor proposed by DenseNet hurts the feature
expression. Another improvement is that the number of channels in the bottleneck layer
varies according to the input shape instead of fixed 4 times of growth rate, which can save
up to 28.5% of the computational cost compared to DenseNet. Finally, it uses post-activation
(Conv→BN→→ReLU) instead of pre-activation [109] to improve actual speed.

Figure 35. (a) Structure of stem block. (b) Structure of 2-way dense layer.
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3.5.5. MnasNet

In 2018, MnasNet [164], by Tan et al., is an automated mobile neural architecture
search network that is used to build mobile models using reinforcement learning (RL).
It incorporates the basic essence of CNN and thereby strikes the right balance between
enhancing accuracy and reducing latency, to depict high performance when the model
is deployed onto a mobile. MnasNet explicitly incorporates the speed information into
the main reward function of the search algorithm and directly measures model speed by
executing the model on a particular platform. This architecture, in general, consists of two
phases are as follows:

Factorized hierarchical search space: The search space supports diverse layer struc-
tures to be included throughout the network. The CNN model is factorized into various
blocks wherein each block has a unique layer architecture. The connections are chosen
such that both the input and output are compatible with each other, and henceforth yield
good results to maintain a higher accuracy rate. Figure 36 shows a schematic diagram of
the search space in MnasNet.

Figure 36. Factorized Hierarchical Search Space. Convolutional ops (ConvOP): regular conv (conv), depthwise conv (dconv),
and mobile inverted bottleneck conv with various expansion ratios. Convolutional kernel size (KernelSize). Skip operations
(SkipOp): max or average pooling, identity residual skip, or no skip path.

Reinforcement search algorithm: It employs a reinforcement learning approach
where the rewards are maximized (multi-objective reward) to achieve two major objectives
(latency and accuracy). Each CNN model as defined in the search space would be mapped
to a sequence of actions that are to be performed by an RL agent. The controller is a Recur-
rent Neural Network (RNN), and the trainer trains the model and outputs the accuracy.
The model is deployed onto a mobile phone to estimate the latency. Both accuracy and
latency are consolidated into a multi-objective reward. This reward is sent to RNN using
which the parameters of RNN are updated, to maximize the total reward. An overview of
Platform-Aware NAS for Mobile is shown in Figure 37.

Figure 37. An Overview of Platform-Aware NAS for Mobile.
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3.5.6. More Backbone Networks for Real-Time Vision Tasks

The above-mentioned smaller and more efficient networks are used to embed plat-
forms. This attribute promotes more models as a backbone to be used in real-time vision
tasks (e.g., object detection or instance segmentation). We have selected several influential
network model series for a brief introduction, as follows:

1. CSPNet. Wu et al. [169] proposed Cross Stage Partial Network (CSPNet) to solve the
problem of heavy inference computations, which is caused by the duplicate gradient
information within network optimization. A large amount of gradient information
in DenseNet [131] is reused for updating weights of different dense layers, which
will result in different dense layers repeatedly learning copied gradient information.
The network modifies the equations of the feed-forward pass and weight updating
that the gradients coming from the dense layers are separately integrated and the
feature map that did not go through the dense layers is also separately integrated.
It preserves the advantages of DenseNet’s feature reuse characteristics but at the same
time prevents an excessive amount of duplicate gradient information by truncating the
gradient flow. It also designed partial transition layers is to maximize the difference
of gradient combination. CSPNet can be easily applied to DenseNet [131], ResNet [25]
and ResNeXt [26].

2. VarGNet. In 2019, Variable Group Network (VarGNet) [170], by Zhang et al. makes
a compromise between the lightweight models and the optimized hardware-side
configurations methods. This embedded-system-friendly network is well suited to
the targeted computation patterns and the ideal data layout because the computation
patterns of a chip in an embedded system is strictly limited. The question of the
State-Of-The-Art (SOTA) network is so complex that some layers can be accelerated
by hardware design while others cannot. VarGNet sets the channel numbers in
a group in a network to be constant, to balance the computation intensity. Later,
VarGFaceNet [171] introduced Variable Group Convolution into the task of face
recognition.

3. VoVNet/OSANet. In 2019, Lee et al. [172] proposed VoVNetV1 that the One-shot
aggregation (OSA) module is designed which is more efficient than Dense Block [131].
Reducing FLOPs and model sizes does not always guarantee the reduction of GPU
inference time and real energy consumption. Dense connections induce high MAC
which is paid by energy and time, and the use of bottleneck structure Figure 21 which
harms the efficiency of GPU parallel computation. The redundant information is
also generated. VoVNet proposed an OSA module to aggregate its feature in the
last layer at once that the MAC is much smaller than dense blocks and the GPU is
more computationally efficient. It is also named as OSANet and further discussed in
Scaled-YOLOv4 [173]. In 2020, the residual connection [25] and SE modules [27] are
used in VoVNetV2 [174].

4. Lite-HRNet. The HRNet proposed by Wang et al. [175] maintains high-resolution
representations by connecting high-to-low resolution convolutions in parallel and
strengthens high-resolution representations by repeatedly performing multi-scale
fusions across parallel convolutions, which is a model with a powerful performance
in multiple visual tasks. Later, in 2021, Lite-HRNet [176] applies efficient shuffle
blocks [166,167] to HRNet [175]. It introduces a lightweight unit, conditional channel
weighting, to replace costly 1 × 1 pointwise convolutions in shuffle blocks.

3.5.7. EfficientNet V1 to V2

The conventional practice for model scaling is to arbitrarily increase the CNN depth [25]
or width [119], or to use larger input image resolution for training and evaluation [177].
Refs. [119,178,179] shows that there is a certain relationship between network depth and
width. While these methods do improve accuracy, they usually require tedious manual
tuning, and still often yield suboptimal performance. In 2019, Tan et al. [180] proposed
EfficientNetV1 that uses a simple yet highly effective compound coefficient φ to scale up
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CNNs in a more structured manner. Unlike the above approaches that arbitrarily scale
network dimensions (such as width w, depth d, and resolution r). This model scaling
method uses φ to uniformly scales network w, d, and r, following [180]:

depth : d = αφ

width : w = βφ

resolution : r = γφ

s.tα·β2·γ2 ≈ 2
α ≥ 1, β ≥ 1, γ ≥ 1

(6)

where α, β, γ are constants that can be determined by a small grid search. φ is a user-
specified coefficient that controls how many more resources are available for model scaling.
Finally, it develops a baseline network by leveraging a multi-objective NAS [164]. The main
building block is mobile inverted bottleneck MBConv [162,164] (see in Figures 32 and 36)
and the SE modules [27] are also be added.

In 2021, EfficientNetV2 [181] proposed a smaller model and a faster training method.
First, EfficientNetV2 applies FixRes [182] to solve the problem that the EfficientNetV1’s [180]
large image size results in significant memory usage [183], by using a smaller image size
for training, but no fine-tuning of any layers after training. Ref. [125] also pointed out
that using a smaller image size for training the accuracy will be slightly better. Secondly,
for the depthwise convolution [127] often cannot fully utilize modern accelerators. Ef-
ficientNetV2 [181] gradually replaced MBConv [162,180] with Fused-MBConv [184] to
better utilize mobile or server accelerators, that is replaced the depthwise 3 × 3 conv and
expansion 1× 1 conv in MBConv with a single 3× 3 conv. Then used NAS to automatically
search for the best combination of MBConv and Fused-MBConv. Finally, this network
proposes a training-aware NAS to search for the best combinations. Another important
point is that EfficientNetV2 uses modified progressive learning, training with different
image sizes also changes the regularization intensity accordingly, to solve the problem of
dropped in accuracy caused by dynamically changing the image sizes during training [185].

3.5.8. Other Technical Support

For mobile terminals and embedded devices, hand-designed CNN models are no
longer the trend of the times. At present, more lightweight models are combined with
other powerful algorithms. It is not difficult to see that some of the above introductions
also includes impure CNN architecture design. Below we will briefly introduce several
popular methods that can be combined with pure CNN:

1. On the trained model: Singular Value Decomposition (SVD) [186] can achieve the
effect of model compression by compressing the weight matrix of the fully connected
layer in the network, Low-rank filter [187] uses two 1 × K conv instead of one
K × K conv to remove redundancy and reduce weight parameters; The network
pruning [188–192] method is to discard the connections with lower weights in the
network, to reduce the network complexity; Quantization [193–199] reduces the space
required for each weight by sacrificing the accuracy of the algorithm; Binarization of
neural networks [195,200] can be regarded as a kind of extreme quantification, which
uses a binary representation of the network weights and greatly reduces the model
size; Deep Compression [159] uses three steps of Pruning, Quantization and Huffman
Coding to compress the original model, and achieves an amazing compression rate
without loss of accuracy. This method is of landmark significance, leading a new
frenzy of miniaturization and accelerated research of CNN models.

2. NAS Search: A lightweight network usually needs to be smaller and faster with
as high an accuracy as possible. There are too many factors to consider, which is a
huge challenge to design an efficient model. To automate the architecture design
process, RL was first introduced to search for efficient architectures with competitive
accuracy [201–205]. A fully configurable search space can grow exponentially large
and intractable. So early works of architecture search focus on the cell level structure
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search, and the same cell is reused in all layers. Ref. [164] explored a block-level hier-
archical search space allowing different layer structures at different resolution blocks
of a network. To reduce the computational cost of search, a differentiable architecture
search framework is used in [206–212] with gradient-based optimization. Focusing on
adapting existing networks to constrained mobile platforms, refs. [164,165,213,214]
proposed more efficient automated network simplification algorithms.

3. Knowledge Distillation (KD): KD [215,216] refers to the idea of model compression
by teaching a smaller network, step by step, exactly what to do using a bigger already
trained network. This training setting is sometimes referred to as “teacher-student”,
where the big one is the teacher, and the small model is the student. In the end, the
student network can achieve a similar performance to the teacher network.

3.6. Competitive Methods and Training Strategy

There are much other works that outperforms pure CNN methods on image clas-
sification, each with advantages and potentials. And a strong training strategy will
bring amazing improvements to the CNN model. We will discuss these representa-
tive models and strategies in this section. Image Classification on ImageNet (https:
//paperswithcode.com/sota/image-classification-on-imagenet (accessed on 1 July 2021))
provides detailed data for learning and reference.

3.6.1. Vision Transformer

Transformers [217] based on self-attention mechanism [218] have achieved great suc-
cess in natural language processing (NLP). Thanks to its strong representation capabilities,
researchers are looking at ways to apply transformer to computer vision tasks. The pure
transformer architectures represented by ViT [219] performs well on the image classifica-
tion task. Recently, more variant ViT models, e.g., DeiT [220], PVT [221], TNT [222], and
Swin [223], have been proposed for the pursuit of stronger performance. There are also
plenty of works trying to augment a pure transformer block or self-attention layer with
a convolution operation, e.g., BoTNet [224], CeiT [225], CoAtNet [226], CvT [227]. Some
works (such as the DETR methods [228–230]) try combining CNN-like architectures with
transformers for object detection. Of course, Transformers have made achievements in
more visual tasks, high/mid/low-level vision and video processing, however, we will not
introduce too much here. Ref. [229] gives a more comprehensive summary if you want
a more detailed understanding. Nowadays, there are still huge challenges in applying
transformer models or mixed methods to computer vision tasks. More research in this
direction is being explored on image classification tasks.

3.6.2. Self-Training

Self-training [231–234] has been applied successfully to improve SOTA models in
image classification [235–237]. This method has three main steps: (i) Train a teacher model
on labeled images. (ii) Use the teacher to generate pseudo labels on unlabeled images. (iii)
Combine labeled images and pseudo labeled images to train the student model. SSL [237]
proposes a semi-supervised deep learning method based on teachers-students to improve
the performance of the large CNNs (like ResNet-50 [25] or ResNeXt [26]). To make students
have stronger learning ability. Noisy Student [236] makes the student larger than or at
least equal to the teacher, and it adds noise to the student such as RandAugment data
augmentation [238], dropout [80], and stochastic depth [117]. The problem of confirmation
bias in pseudo-labeling [239] can make students learn from inaccurate data if the pseudo
labels are inaccurate. Meta Pseudo Labels [235] is constantly adapted through the feedback
of the student’s performance on the labeled dataset so that the student can learn better
pseudo labels from the teacher.

https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet
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3.6.3. Transfer Learning

DCNNs usually require a large amount of task-specific data and compute to obtain
good performance. Applying these SOAT networks to new tasks can be prohibitively ex-
pensive. Transfer learning provides a solution that a network completes training on a large
general data set and its weights to are then used to initialize subsequent tasks [124,240–242].
Many Pre-trained models, e.g., GoogLeNet [23] and ResNet [25], have been trained on
large datasets such as ImageNet for image classification purposes. This method has been
used as a regular solution for new tasks in image classification. In particular, BiT [124]
provides a general recipe to achieve excellent performance in many tasks.

3.6.4. Data Augmentation

CNNs often face the risk of overfitting caused by limited data. Traditional data
augmentation techniques [19,243–246] include a collection of methods, e.g., flipping, color
space, cropping, rotation, translation, and noise injection, that can improve the attributes
and size of the training data set. Not only that, but it also has the potential to significantly
improve the generalization of DL models. Automated data enhancement [238,247–250] has
the potential to address some weaknesses of traditional data augmentation methods, by
training a CNN model with a learned data augmentation policy may significantly improve
accuracy, model robustness, and performance on semi-supervised learning for image
classification. Mixed Sample Data Augmentation (MSDA) [245,246,251] is to randomly
mix two training samples and their labels according to a certain ratio, which can not only
reduce the misidentification of some difficult samples but also improve the robustness of
the model and make it more stable during training.

3.6.5. Other Training Strategies

Achieving better performance is not just about designing an excellent architecture,
training-based optimization methods are also crucial. In addition to the methods described
above, there are several types of reliable options:

1. Optimizer. The optimizer effectively minimizes the loss function to achieve ever
better performance, such as SGD [113], Adam [252], PMSProp [253]. Sharpness-Aware
Minimization (SAM) [254], as the best solution at present, alleviates the relationship
between minimizing loss function and model generalization ability.

2. Normalization. BN [106] is a key component of most image classification models,
which can achieve higher accuracies on both the training set and the test set. More
variants also extend this idea such as layer normalization [255] and group normal-
ization [256]. But the recent research shows that some important flaws of BN will
affect the long-term development of CNN [125,257–260]. NFNet [125] trains deep
model without normalization, by using core technology called Adaptive Gradient
Clipping (AGC).

3. Train-test resolution. Data augmentation is the key to training CNNs. However,
the processed images of different resolutions will have a great impact on the model.
Refs. [182,261] proposes a training strategy that employs different train and test
resolutions, to optimize the classifier performance.

4. Comparison of Various Image Classification Methods
4.1. Common Data Sets for Image Classification

The following are several commonly used classification data sets, with increasing
difficulty in classification.

1. MNIST [262]: The image resolution of this dataset is a 28 × 28 grayscale image. Each
picture has 784-pixel grayscales with an integer value of [0, 255]. It contains a training
set of 60,000 examples and a test set of 10,000 examples. And it is composed of
handwritten numbers (0–9) from 250 different people, see Figure 38a.

2. CIFAR-10 [263]: The image resolution of this dataset is 32× 32 RGB images, including
60,000 images, which are divided into 10 categories and independent of each other.
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Each category contains 6000 images, including 5000 training images and 1000 test
images, see Figure 38b.

3. CIFAR-100 [263]: The dataset image resolution is 32 × 32 RGB images, including
60,000 images, divided into 100 categories and independent of each other. Each
category includes 500 training images and 100 test images. Compared with the data
set CIFAR-10, this dataset divides 100 classes into 20 super classes, see Figure 38c.

4. ImageNet [101]: The dataset has approximately 1.5 million annotated images, at
least 1 million images provide border annotations, and contain more than 20,000
categories, and each category has no less than 500 images. Beginning in 2010, the
ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) held every year will
end after 2017. Competition items include image classification, target positioning,
target detection, video target detection, scene classification, and scene analysis. The
data used in ILSVRC is only a part of the ImageNet dataset, see Figure 38d.

Figure 38. Visual image classification datasest (small part). ImageNet’s original image does not have a fixed size.

4.2. Comparison and Results

The comparison results of various image classification methods are shown in
Tables 3 and 4. The indicators and accuracy considered by the lightweight model are
different from those of the large model, so here is a separate list. In Table 1, the main
comparative factors include model name, year, depth/version, data set, FLOPs (Billion),
model parameters, the accuracy of ImageNet (Top-1) and CIFAR 10/100, main characteris-
tics, and approach (such as quotation of ideas, training strategy, non-pure CNN methods).
In Table 2, the main comparative factors of the lightweight model include model name,
year, depth/baseline, data set, FLOPs (Million), model parameters, accuracy of ImageNet
(Top-1), CPU latency, main characteristics, and approach. The FLOPs in the table are only
for the ImageNet dataset. * indicates that the model uses extra training data.
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Table 3. Comparison of Various Image Classification Methods.

Model Year Depth/Version Data Set BFLOPs Params
Accuracy(%)
ImageNet,

Top-1
Accuracy(%)

CIFAR 10
Accuracy(%)
CIFAR 100 Characteristics Approach

AlexNet 2012 8 ImageNet - 60M 63.3 - - ReLU and Dropout CNN
NIN 2013 3 CIFAR 10/100 - - 91.19 64.33 “mlpconv” layer and GAP CNN

VGGNet 2014 16 ImageNet - 138M 74.4 - - Small filter size, Blocks of layers CNN
InceptionV1
(GoogLeNet) 2014 22 ImageNet 1.45 6.8M - - - Inception block with different

filter size CNN

InceptionV2 2015 - ImageNet 1.94 11.2M 74.8 - - BN, Small filter size CNN

InceptionV3 2015 48 ImageNet 5.73 24M 78.8 - - Using small filter size
to burn less computational power CNN

ResNet 2015 50, 101
110, 1202

ImageNet
CIFAR 10/100 3.86, 7.57 25.6M, 44.5M

1.7M, 10.2M 77.15, 78.25 93.57, 92.07 74.84, 72.18 Residual learning CNN

ResNet
(pre-activation) 2016 200

164, 1001
ImageNet

CIFAR 10/100 - 64.7M
1.7M, 10.2M 79.9 93.63, 95.38 -, 77.29 pre-activation structure CNN

Stochastic Depth 2016 110, 1202 CIFAR 10/100 - 1.7M, 10.2M - 94.77, 95.09 75.09, - Stochastic delete some layers CNN

WRN 2016 50
16, 28

ImageNet
CIFAR 10/100 - 68.9M

11.0M, 36.5M 78.1 95.74, 96.00 79.57, 80.75 Wider and shallower CNN

DRN-A 2016 50 ImageNet - 25.6M 78.7 - - Using Dilated convolutions
to increase the receptive field CNN

DenseNet 2016 264
190

ImageNet
CIFAR 10/100 6 -

25.6M 77.85 96.54 82.82 Each layer connects to every
other layer CNN

Inception-ResNet-
v2 2016 164 ImageNet 11.75 55.8M 80.1 - - Combined residual connection

and Inception CNN

Xception 2016 71 ImageNet 8.4 22.8M 79 - -

Combined residual connection
and Inception

Depthwise separable
convolutions

CNN

InceptionV4 2016 70 ImageNet 13 48M 80 - - Divided transform and
integration concepts CNN

ResNeXt 2016 101(32×4d)
101(64×4d) ImageNet 7.508

32
44.18M
83.6M

78.80
80.90 - -

Combined residual connection
and Inception

Grouped convolution
CNN

DropBlock 2018 50 ImageNet 3.86 25.6M 78.35 - - Dropout the units with a
contiguous region CNN

Attention 2017 92
92, 452

ImageNet
CIFAR 10/100 10.4 51.3M

1.9M, 8.6M
80.50

-
-

95.01, 96.10
-

78.29, 79.55
Stacked attention modules

based on residual connections
CNN

+Attention’

PolyNet 2017 - ImageNet 34.7 92M 81.3 - - Combined residual connection
and Inception CNN

SENet 2017 101
152 ImageNet 8.00

42
49.2M
146M

81.36
82.72 - - Channel attention

Implantable lightweight module
CNN

+Attention’

DPN 2017 131 ImageNet 16 - 81.38 - - Combination of residual learning
and dense connection CNN

NASNet-A 2017 - ImageNet 23.8 88.9M 82.7 - - NASNet search space CNN
+NAS

PNASNet 2017 - ImageNet 25 86.1M 82.9 - -
Smaller NASNet search space

Sequential Model-based
Optimization

CNN
+NAS
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Table 3. Cont.

Model Year Depth/Version Data Set BFLOPs Params
Accuracy(%)
ImageNet,

Top-1
Accuracy(%)

CIFAR 10
Accuracy(%)
CIFAR 100 Characteristics Approach

ResNeXt (32×4d)
+ BAM 2018 101 ImageNet 8.05 44.6M 80.85 - -

Channel attention and spatial
attention

Implantable lightweight module
CNN

+Attention’

ResNeXt (32×4d)
+ CBAM 2018 101 ImageNet 7.519 49.2M 80.58 - -

Channel attention and spatial
attention

Implantable lightweight module
CNN

+Attention’

AmoebaNet-A 2018 - ImageNet 23.1
104

86.7M
469M

82.8
83.9 - - NASNet search space and genetic

algorithm
CNN

+NAS

GPipe 2018 - ImageNet
CIFAR 10/100 - 557M 84.3 99 91.3 Using Pipeline Parallelism to

train effectively CNN

ResNet + GE 2019 101 ImageNet
CIFAR 10/100 7.59 58.4M

-
79.26

-
-

95.07
-

79.15
Feature context exploitation

Implantable lightweight module
CNN

+Attention’

ECA-Net 2019 101 ImageNet 7.35 42.45M 78.65 - -
No channel dimensionality

reduction
Portable lightweight modul

CNN
+Attention’

SKNet 2019 101
29

ImageNet
CIFAR 10/100 8.46 48.9M

27.7M
79.81

-
-

96.53
-

82.67
Adaptively adjust receptive field
Implantable lightweight module

CNN
+Attention’

GSoP-Net 2019 50 ImageNet 6.56 58.65M 78.81 - - Global Second-order Pooling
Implantable lightweight module

CNN
+Attention’

EfficientNetV1 2019 B0 - B7, L2 ImageNet
0.39, 0.70,

1.0,
1.8, 4.2, 9.9,

19, 37, -

5.3M, 7.8M,
9.2M

12M, 19M, 30M
43M, 66M, 480M

77.1, 79.1, 80.1,
81.6, 82.9, 83.6,
84.0, 84.3, 85.5

98.9 (B7) 91.7 (B7)
Utilizes effective compound

coefficient
to scale up CNNs

CNN
+NAS

BiT 2019 -L ImageNet
CIFAR 10/100 - - 87.54* 99.37 93.51

Transfer learning
Better training and fine-tuning

strategies

CNN
Transfer-
learning

NoisyStudent 2019 -L2 ImageNet - 480M 88.4* - - Self traning / Semi-Supervised
add noise to the student

CNN
Semi-

Supervised

FixEfficientNet 2020 -B7
-L2 ImageNet - 66.4M

480M
85.3, 87.1*
85.7, 88.5* - -

A training strategy that employs
different train and test

resolutions
CNN

ViT-H/14 2020 -L, -H ImageNet
CIFAR 10/100 - 307M, 632M 87.76*, 88.55* 99.42, 99.50 90.54, 90.72 Pure transformer model for

Computer vision
Vision

Transformer

Meta Pseudo
Labels 2020 -L2 ImageNet - 480M 90.2* - -

Self traning / Semi-Supervised
Update teacher based on student

performance

CNN
Semi-

Supervised

EfficientNetV2 2021 -S, -M, -L ImageNet
CIFAR 10/100 8.8, 24, 53 22M, 54M, 120M

24M, 55M, 121M 83.9, 85.1, 85.7 98.7, 99.0, 99.1 91.5, 92.2, 92.3 FixRes, Fused-MBConv, NAS CNN
+NAS

NFNet 2021 F6+SAM, F4+ ImageNet 337.28, - 438.4M, 527M 86.5, 89.2* - -
Adaptive gradient clipping

technique,
Without Normalization

CNN

ViT-G/14 2021 -G/14 ImageNet - 1843M 90.45* - - Pure transformer model for
Computer vision

Vision
Transformer

CoAtNet 2021 -7 ImageNet 2586 2440M 90.88* - - Mixed methods, Convolutional +
Transformer

CNN
+

Transformer
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Table 4. Comparison of Various Image Classification Lightweight Methods.

Model Year Version/Baseline Data Set MFLOPs Params Accuracy(%)
Top-1 CPU Latency Characteristics Approach

SqueezeNet 2016 - ImageNet 1700 1.25M 57.5 - Decreased 3×3 conv, deep
compression CNN

MobileNetV1 2017 1.0 ImageNet 569 4.2M 70.6 113ms Depthwise separable convolution CNN

ShuffleNetV1 2017 2×(g=3), +SE ImageNet 527 - 75.3 - Group pointwise convolution, channel
shuffle CNN

PeleeNet 2018 - ImageNet 508M 2.8M 72.6 - Improved DenseNet CNN

MobileNetV2 2018 1.0
1.4 ImageNet 300

585
3.4M
6.9M

72.0
74.7

75ms
143ms Inverted residual block CNN

ShuffleNetV2 2018 2×(g=3), +SE ImageNet 597 - 75.4 - More consideration for MAC CNN

MnasNet 2018 A3 ImageNet 391 5.2M 76.7 103ms Factorized hierarchical search space
Reinforcement search algorithm

CNN
+NAS

ECA-Net 2019 MobileNetV2-1.0 ImageNet 319 3.34M 72.5 - Channel Attention
Implantable lightweight module

CNN
+Attention

MobileNetV3 2019 1.0 Large ImageNet 219 5.4M 75.2 61ms SE block, NAS, h-swish activation
function

CNN
+NAS

MobileNeXt 2020 1.0
1.4 ImageNet 300

590
3.4M
6.1M

74.0
76.1

211ms
-

Improved inverted residual block
Proposed sandglass block CNN

CA 2021 MobileNetV2-1.0
MobileNeXt-1.0 ImageNet 310

330
3.95M
4.09M

74.3
75.2 -

Positional information + channel
attention

Implantable lightweight module

CNN
+Attention
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In many cases, the reasonable setting of hyperparameters and regularization is also
crucial in the successful training of the model. Table 5 provides several representative
model settings during the training process for reference.

Table 5. Model settings during training. ‘32×(50)’ indicates that the distributed machine learning system using 50 replicas
running each on a GPU with batch size 32.

Model Initial LR Batch Size Epochs Optimizer Regularization

VGG 0.01 256 74 SGD + Momentum 0.9
weight decay 0.5× 10−3

Scale augmentation
Dropout 0.5

ResNet 0.1 256 85 SGD + Momentum 0.9
weight decay 0.1× 10−2

Scale augmentation
BN

InceptionV3 0.045 32×(50) 100 RMSProp with decay 0.9
Label Smoothing
Gradient clipping

BN

DenseNet 0.1 256 90 SGD +
Nesterov momentum 0.9

weight decay 0.1× 10−3

Augmentation
BN

ResNeXt 0.1 256 100 SGD + Momentum 0.9
weight decay 0.1× 10−3

Scale augmentation
BN

SENet 0.6 1024 100 SGD + Momentum 0.9
Label Smoothing

Random horizontal flipping
BN

SENet
for mobile network 0.1 256 400 SGD + Momentum 0.9

Label Smoothing
Random horizontal flipping

BN

MobileNetV3 0.1 4096 120
RMSProp with decay 0.99;

momentum 0.9;
batch norm momentum 0.99

weight decay 0.1× 10−4

Exponential moving average
Dropout

BN

EfficientNetV2 0.256 4096 350
RMSProp with decay 0.9;

momentum 0.9;
batch norm momentum 0.99

weight decay 0.1× 10−4

Exponential moving average
RandAugment and Mixup

Dropout andstochastic depth
BN

5. Conclusions

In this survey, we are not limited to a systematic summary of mainstream CNN models
(such as architecture and characteristics), but also related introductions to non-pure CNN
methods, mixed models, and training strategies. These methods are shining points in the
development of image classification field. Next, we are committed to enabling readers
to find inspiration in their work or research, it is mandatory for the inclusion of three
brief discussions:

Summarizing our review

• The classic models from 2012 to 2017 provided the basis for the structural design of
the CNN-based image classification method, so that many later studies have been
established on their basis.

• The attention mechanism is introduced into CNN to form an embedded module,
which can be easily and quickly inserted into any network to improve performance.
For example, many models currently have SE blocks implanted.

• The networks designed for mobile platforms have smaller and more efficient network
structures, which are generally in the extreme use of characteristics. It is the best choice
to consider their characteristics comprehensively on a resource-constrained platform.

• The choice of hyperparameters has a great impact on the performance of CNN. Many
works will reduce the amount of hyperparameters and replace them with other
composite coefficients.

• Manually designing a network to achieve higher performance often requires more
effort. NAS search can make this job much easier. It is a good choice to use NAS as
the main tool or auxiliary tool to design the network.
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• The CNN model relies on sizeable datasets to predict unlabeled data. Transfer learning
and data augmentation can not only alleviate it effectively but also can increase the
performance of the model.

• Not only designing efficient networks can improve performance, but training strate-
gies can also help CNN models gain huge benefits.

The challenges of the CNN model

• Lightweight models often need to sacrifice accuracy to compensate for efficiency.
Currently, the efficiency of using CNN is still being explored in embedded and lim-
ited systems.

• Although some models have achieved great success in semi-supervised learning, most
CNN models have not transitioned to semi-supervised or unsupervised learning to
manage data. In this regard, the NLP field is doing better.

The future directions

• Vision Transformer’s achievements in image classification tasks cannot be underes-
timated. How to effectively combine convolution and Transformer has become one
of the current hot spots. They have their own advantages and can complement each
other such as the current SOTA network CoAtNet. This type of mixed model also
needs further exploration.

• There are some stereotypical components in CNN may become factors hindering
development, such as activation functions, dropout, or batch normalization. Various
studies have achieved amazing results after breaking the convention, and such ideas
are also worthy of further study.

In addition, Table 6 provides a list of acronyms frequently used in this paper for
easy readership.

Table 6. Acronyms in the Paper.

Convolutional Neural Networks CNNs Multilayer Perceptron MLP
Artificial Neural Networks ANNs Convolutional Conv
Deep Convolutional Neural Networks DCNNs Fully Connected FC
Reinforcement Learning RL Global Average Pooling GAP
Natural Language Processing NLP Batch Normalization BN
State-Of-The-Art SOTA Neural Architecture Search NAS
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