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Abstract: The aim of this study was to assess the utility of Sentinel-2 images in the monitoring of the
fractional vegetation cover (FVC) of rainfed alfalfa in semiarid areas such as that of Bardenas Reales
in Spain. FVC was sampled in situ using 1 m2 surfaces at 172 points inside 18 alfalfa fields from
late spring to early summer in 2017 and 2018. Different vegetation indices derived from a series of
Sentinel-2 images were calculated and were then correlated with the FVC measurements at the pixel
and parcel levels using different types of equations. The results indicate that the normalized difference
vegetation index (NDVI) and FVC were highly correlated at the parcel level (R2 = 0.712), whereas
the correlation at the pixel level remained moderate across each of the years studied. Based on the
findings, another 29 alfalfa plots (28 rainfed; 1 irrigated) were remotely monitored operationally
for 3 years (2017–2019), revealing that location and weather conditions were strong determinants
of alfalfa growth in Bardenas Reales. The results of this study indicate that Sentinel-2 imagery is a
suitable tool for monitoring rainfed alfalfa pastures in semiarid areas, thus increasing the potential
success of pasture management.

Keywords: satellite; vegetation indices; semiarid environment; Bardenas Reales; legumes; forage
crops; sustainable agrosystems

1. Introduction

Grain forage legumes are present in approximately 15% of the world’s cultivated
land, and are one of the most important protein sources both in the human diet (33%)
and animal feed [1]. Legumes in symbiosis with soil Rhizobium bacteria fix nitrogen,
which naturally minimizes the use of mineral fertilizers, making legumes environmentally
sustainable crops [2]. Among grain forage legumes, the perennial species, alfalfa (Medicago
sativa), which is cultivated in more than 80 countries, accounting for 35 million hectares, is
considered one of the most important foraged crops [3]. Compared with grain legumes,
alfalfa is considered a drought-tolerant species [4]. As a temperate legume that usually
grows in arid and semiarid regions, alfalfa can reach deep soils to obtain water through
its well-developed root system [5,6]. In this context, Medicago species, such as alfalfa,
have been promoted in countries, such as the United States, Canada, Australia, and New
Zealand, in order to improve and reduce the feeding of herds in rainfed areas [7]. In Spain,
several initiatives have been successfully conducted which extend alfalfa cultivation to
large areas of arid and semiarid land for grazing use [8]. In 2016, the Governing Board
of Bardenas Reales, a semiarid area (41.818 ha) in the north of Spain, aimed to explore
the ecological utility of an alfalfa–wheat cropping system and the nutritional value of
rainfed alfalfa as a perennial forage crop for seasonal sheep grazing. Thus, 28 plots (~48 ha
extension) of this crop were sown in this territory.
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The global crop yield is estimated to decrease by approximately 70% due to the fact of
environmental stresses, with drought as the main environmental stress in agriculture [9].
Alfalfa can adapt to water-limited regions, but a water deficit negatively affects the produc-
tivity of this crop [10]. Hence, rainfed alfalfa monitoring at different times of its annual
cycle is important for evaluating the possibilities of this crop in the Bardenas Reales area.

Fractional vegetation cover (FVC) is a useful indicator of crop growth status, rep-
resenting the ratio of the vertical projected area of vegetation to the total surface area,
and it is widely used to indirectly determine crop photosynthesis, transpiration, and
water-use efficiency.

Traditionally, in situ field inspections are the method used to estimate the FVC of
a crop and to analyze its growth [11], which are time consuming and expensive [12].
Remote sensing has proven to be an effective tool for monitoring the growth of crops
both spatially and temporally (or for monitoring the growth of crops during cultivation
campaigns) [12]. Over the last few years, the availability of high spatial and temporal
resolution satellite images has increased, which makes it possible to periodically monitor
crop growth [13–16]. The Sentinel-2A and Sentinel-2B satellites, included in the Europe’s
Monitoring for Environment and Security (GMES) program [17], were launched on the 23rd
of June 2015 and 7th of March 2017, respectively. The Sentinel-2 satellites provide global
coverage every 5 days in several spectral bands in the visible, red-edge, NIR, and SWIR
regions, with resolutions from 10 to 60 m. Several authors have explored the potential of
Sentinel-2 imagery for the monitoring of different crops such as alfalfa [3], maize [15,18],
potato [14,18], and sisal [19]. Thus, sorghum, pearl millet, and cowpea production have
been temporally monitored using Sentinel-2 data [20]. Veloso et al. (2017) analyzed the
evolution of different winter and summer crops (wheat, rapeseed, maize, soybean, and
sunflower) using Sentinel-2 imagery [21].

The observation of vegetation has traditionally been carried out through the use of
vegetation indices (VIs) derived from multispectral images. These indices relate to a few
spectral bands with biophysical properties of vegetation, such as greenness, photosynthetic
activity, and water content, while minimizing the soil and atmospheric effects [18–20,22,23].

The normalized difference vegetation index (NDVI) has been widely used to identify
and monitor areas covered with vegetation [24,25]. This index exploits the fact that green,
healthy vegetation displays contrast-reflecting behavior between the red and near-infrared
spectral bands, providing a good indication of the vegetation “greenness” [26]. Different
authors have shown the correlation of NDVI with FVC [27,28] and with leaf area index
(LAI) [16,22,29–32]. Although the phenological development, yield, LAI, and height of
alfalfa have also been monitored using remote sensing techniques [3,33–38], there is a lack
of information on the FVC assessment of alfalfa using satellite images; more specifically,
there is a lack of this information on semiarid agrosystems.

Soil background conditions exert considerable influence on partial canopy spectra
when using NDVI [39], and to minimize this factor, other VIs, such as soil adjusted VI (SAVI)
and perpendicular VI (PVI), have been proposed [39,40]. The green normalized difference
VI (GNDVI) presents band variations to NDVI and uses green reflectance instead of red
reflectance, reporting high efficiency in crop monitoring [41]. The normalized difference
water index (NDWI) and the specific leaf area VI (SLAVI), which use SWIR regions and are
directly related to leaf water content, are highly recommended for semiarid areas [42,43].
Recently, concerns have increasingly been raised regarding the red-edge region, which was
introduced to increase the sensitivity of biomass estimation, leading to the development of
several VIs: Sentinel-2 LAIgreen (SeLI) [44], NDVI705 [45], MERIS terrestrial chlorophyll
index (MTCI) [46], and the modified chlorophyll absorption in ratio index (MCARI) [47].
For VIs that use the red-edge region, there has been reported a significant improvement
in indices using the saturated bands in the red [44]. Recently, a new kernel-based NDVI
(kNDVI) has been shown to improve accuracy in monitoring key vegetation parameters
such as LAI or gross primary productivity [48].
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The aim of this study was to assess Sentinel-2 images for their suitability in the
monitoring of the FVC of rainfed alfalfa in semiarid areas. Together with some cereal
crops, rainfed alfalfa participates in the rotation system used for cattle grazing in this type
of environment.

The natural reserve of Bardenas Reales, Spain, is a typical semiarid environment used
for cattle grazing, and it was selected as the study area. The relationships established be-
tween FVC field measurements and several vegetation indices derived from Sentinel-2 data
were used to produce time series over the cultivation period in twenty-eight experimental
rainfed alfalfa fields throughout the study area.

2. Material and Methods
2.1. Study Area

Bardenas Reales comprises 41,845 ha located in the Ebro Basin (NE Spain, SW Navarra)
(Figure 1). The climate is Mediterranean with an average annual precipitation of 427.5 mm.
This area is characterized by a 3 month dry season from June to August (74.4 mm) with
a mean annual temperature of 13.3 ◦C and sharp contrasts between winter (5.7 ◦C) and
summer (21.5 ◦C) [49].
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Figure 1. Chartered community of the situation of Navarra in the Iberian Peninsula. The reserve of Bardenas Reales is
located in the southern area of Navarra. Location of the Experiment 1 plots (195, 199, 11, 221, 257, 59, 63, and 347) in the
Bardenas Reales area.

The main land use is for sheep grazing, and approximately half of the area is cul-
tivated by dryland farming [50]. Dry grasslands, garrigues, and scrub are among the
natural habitats in this area [51]. Bardenas Reales is a fragile, unique area that is quite
sensitive to environmental changes due to the fact of its erodible materials and water stress
conditions [52]. Therefore, it has been an MAB Biosphere Reserve since 2000.

In the first experiment (E1), eight rainfed alfalfa plots were selected in the area of
Bardenas Reales (195, 199, 221, 257, 11, 63, 59, and 347). These plots reported differences in
slope and orientation. In the second experiment (E2), 28 rainfed alfalfa plots and 1 irrigated
alfalfa plot were monitored (Table 1).
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Table 1. Bardenas Reales rainfed alfalfa plots included in the study from July 2016 to April 2019. A
quality label was assigned depending on the soil characteristics of the different plots and following
the ranking established by Bardenas Reales. Area (ha), altitude (m), and slope (degrees). The
orientations of 0, 90, 180, and 270 represent north-, east-, south-, and west-facing, respectively. The
altitude was defined by the centroid of the polygon. The column E (experiments) indicates the plots
employed for Experiment 1 and/or Experiment 2 as explained in Section 2. The records in bold
represent the parcels that were used in both Experiments 1 and 2.

ID Quality Area (ha) Altitude (m) Orientation Slope (Degrees) E

195 High 1.06 301.08 98 10.15 1–2
199 High 1.42 302.67 99 8.01 1–2
221 Regular 1.34 424.42 147 3.05 1–2
257 Regular 2.60 419.36 165 4.19 1–2
11 Regular 2.67 417.46 191 3.66 1–2
63 Good 3.13 546.48 173 2.32 1–2
59 Good 1.98 544.63 155 2.48 1–2
347 Good 4.19 538.86 182 2.54 1–2
126 High 1.40 430.71 206 8.84 2
129 High 1.18 433.64 202 3.70 2

8 Regular 0.29 416.49 178 3.93 2
188 Regular 1.28 418.50 284 8.53 2
193 Regular 1.22 407.48 176 7.84 2
228 Regular 0.94 421.24 257 8.87 2
231 Regular 1.03 421.43 122 6.78 2
232 Regular 0.26 427.56 162 3.51 2
313 Regular 3.01 421.71 168 4.95 2
355 Good 0.74 405.13 72 9.58 2
30 Regular 2.41 440.09 171 3.64 2
66 Regular 1.04 425.55 157 3.35 2
67 Regular 0.27 427.95 147 3.69 2
71 Regular 3.33 428.91 151 3.05 2
157 Regular 2.56 431.06 175 5.23 2
187 Regular 5.15 379.18 231 9.22 2
494 Regular 0.86 376.18 185 3.83 2
253 Regular 0.27 475.8 72 6.02 2
58 Good 0.97 563.19 194 2.84 2
74 Good 1.34 534.07 171 2.77 2

2.2. In Situ FVC Measurement

To estimate the on-field FVC of the experimental parcels, an average of 3–4 sampling
points in each parcel, representative of the plot average vegetation density, were visually
selected in each. In the most heterogeneous plots, 4–5 sampling points were visually
selected, while in the most homogeneous plots, 2–3 points were selected in each. In total,
172 measurements were made inside the eight selected plots in Experiment 1.

The FVC of each sampling point was measured over a square meter quadrant, using
nadiral images acquired with a 13 megapixel mobile camera from a height of 1 m above the
ground. The fieldwork was carried out on three different days in 2017 and three days in
2018, coinciding with different rainfed alfalfa phenological cycle stages. After the data were
acquired, the images were cropped at the edge of the sampling plot using the PhotoscapeX
imaging software.

A supervised image classification procedure was applied to measure the area covered
by alfalfa in the nadiral image taken at each sampling point. Taking into account that
the spectral separability between the green vegetation and the background soil was high
in these images, a simple maximum likelihood algorithm was selected to carry out this
classification. This algorithm was trained using several aleatory defined training areas
in each image by photointerpretation, which corresponded to the different categories, for
classification: alfalfa in the sun, alfalfa in the shade, soil in the sun, soil in the shade, and
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unclassified. Training areas represented between 3% and 5% of the total area and were
defined specifically for each image (Figure 2).

1m

1m

A

B

0: Unclassified
1: Alfalfa in the sun
2: Alfalfa in the shade
3: Soil in the sun
4: Soil in the shade

Figure 2. FVC assessment in a high-FVC image (A) and low-FVC image (B) for 257 and 195 plots, respectively, on the
25th of May 2018. The images on the left show the definition of different categories in some areas: alfalfa in the sun (red),
alfalfa in the shade (green), soil in the sun (yellow), and soil in the shade (blue). After the classification of the maximum
likelihood supervised algorithm, the images on the right show the classification of the total pixels of the images in the
different categories. Unclassified pixels are shown in black.

The classified accuracy assessment was carried out using validation areas, defined by
photointerpretation and representing between 1% and 2% of the total area of each image.
The overall accuracy was between 95.9% and 99.47% for all plots, and the kappa coefficient
was above 0.94.

FVC represents the total area of alfalfa, which is the result of the total alfalfa in the
shade and alfalfa in the sun in each of the 1 m2 sampling points, expressed in percentage.
Parcel FVC was assessed by the mean of the different individual FVCs inside each parcel.

2.3. Sentinel-2 Data

Sentinel-2 provides high-resolution imagery that is available from the European
Space Agency (ESA) for free. With a 290 km field of view, its MultiSpectral Instrument
(MSI) carries 13 spectral bands ranging from the visible and near-infrared to short-wave
infrared (Table 2). Depending on the spectral band, the spatial resolution ranges from
10 to 60 m. This unique combination of high spatial resolution, wide field of view, and
broad spectral coverage, together with their free availability as ready-to-use products in an
atmospherically corrected reflectance mode, has opened up a new window in operational
ecosystem monitoring [53,54]. Table 3 provides an overview of the Sentinel-2 images
available for the study site during 2016–2019.

Surface spectral reflectance data were used to calculate twelve vegetation indices:
NDVI [55]; SAVI [39]; RVI [56]; PVI [40]; GNDVI [41], kNDVI [48]; NDWI [42]; SLAVI [43];
MCARI [47]; MTCI [46]; SeLI [44]; NDVI705 [45]. The VIs were computed in SNAP ESA’s
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software using the equations shown in Table 4. Prior to the study, squared plots were se-
lected to obtain representative VI values in each plot, especially in small plots. Furthermore,
a 5 m buffer was applied, reducing its variability and eliminating the border effect.

Table 2. Sentinel-2 bands’ setting.

Band Number Function Central Wavelength (nm) Spatial Resolution (m)

1 Coastal aerosol 443 60
2 Blue 490 10
3 Green 560 10
4 Red 665 10
5 Red edge 705 20
6 Red edge 740 20
7 Red edge 783 20
8 NIR 842 10

8a Red edge 865 20
9 Water vapor 945 60

10 SWIR 1380 60
11 SWIR 1610 20
12 SWIR 2190 20

Table 3. Overview of the Sentinel-2 images available for the study site during the 2016–2019 seasons: Experiment 1
(E1; marked in black) analyzed the images corresponding to 3–4 days in the spring of 2018 and 2017, respectively. Experiment
2 (E2) analyzed the images for all of the dates from July 2016 to May 2019.

Date E1 E2 Date E1 E2 Date E1 E2 Date E1 E2

14/05/2019 X 03/07/2018 X 26/10/2017 X 10/03/2017 X
29/04/2019 X 28/06/2018 X 16/10/2017 X 19/01/2017 X
30/03/2019 X 23/06/2018 X X 06/10/2017 X 10/11/2016 X
05/03/2019 X 19/05/2018 X X 17/08/2017 X X 21/10/2016 X
13/02/2019 X 04/05/2018 X 28/07/2017 X X 01/10/2016 X
30/11/2018 X 24/04/2018 X 18/07/2017 X X 11/09/2016 X
16/10/2018 X 19/04/2018 X 18/06/2017 X X 22/08/2016 X
01/09/2018 X 29/01/2018 X 19/04/2017 X 12/08/2016 X
02/08/2018 X 04/01/2018 X 09/04/2017 X 02/08/2016 X
28/07/2018 X X 30/12/2017 X 30/03/2017 X 03/07/2016 X

23/07/2018 X 05/12/2017 X 20/03/2017 X

Table 4. Equations described for the different vegetation indices evaluated in the present study. ρ represents reflectance
values; l represents the leaf area index defined as 0.5; a represents the angle between the soil line and the NIR axis in degrees
and is established in 49◦.

Vegetation Index Equation Reference

Normalized difference VI NDVI = ρ8−ρ4
ρ8+ρ4

Rouse et al. (1974)

Soil adjusted VI SAVI = (ρ8−ρ4)
(ρ8+ρ4+l) ∗ (1 + l) Huete (1988)

Ratio VI RVI = ρ8
ρ4

Birth and McVey (1968)
Perpendicular VI PVI = sin a ∗ ρ8 − cos a ∗ ρ4 Richardson and Wiegand (1977)

Green normalized difference VI GNDVI = ρ8−ρ3
ρ8+ρ3

Gitelson et al. (1996)
Kernel-based NDVI kNDVI = tanH

(
NDVI2) Camps-Valls et al. (2021)

Normalized difference water index NDWI = ρ8−ρ12
ρ8+ρ12

Cibula et al. (1992)
Specific leaf area vegetation index SLAVI = ρ8

ρ12+ρ4
Lymburner et al. (2000)

Modified chlorophyll absorption in ratio index MCARI = [(ρ5−ρ4)− 0.2(ρ5−ρ3)](ρ5−ρ4) Daughtry et al. (2000)
MERIS terrestrial chlorophyll Index MTCI = ρ6−ρ5

ρ5−ρ4
Dash et al. (2010)

NDVI705 NDVI705 =
ρ7−ρ5
ρ7+ρ5

Sims (2002)
Sentinel-2 LAI index SeLI = ρ8−ρ5

ρ8+ρ5
Pasqualotto et al. (2019)

2.4. Data Analysis

The FVC values at the pixel or parcel level were calculated as described in Section 2.2.
The VI values at the pixel or parcel level were calculated from Sentinel-2 images as described
in Section 2.3.
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In the first experiment (E1), FVC values from the 1 m2 sampling points were compared
with the VI values derived from Sentinel-2 images at the parcel level. Eight plots (195, 199,
221, 11, 257, 59, 63, and 347) were used to check the correlation obtained between the in situ
FVC measurements and VI values (Table 5; Figure 3A). At the pixel level, the correlation
between FVC and NDVI data derived from the Sentinel-2 satellite multispectral images
was calculated considering the data for each year (i.e., 2017 and 2018) separately and both
years together (Figure 3B). The accuracy of each index was specifically analyzed with linear
(f(x) = ax + b), polynomial of second order (f(x) = ax2 + bx + c), and exponential fitting
(f(x) = a × exp(bx)). At both the parcel and pixel levels, the coefficient of determination (R2)
was selected as the indicator of the accuracy of the statistical estimation models. The main
steps of the procedure for the assessment and in situ analysis of remote sensing vegetation
indices are provided in Supplementary Materials Figure S1.
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in situ sampling and the Sentinel-2 images was 5 days.
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During the second experiment (E2), the temporal evolution of the average NDVI
values was assessed between July 2016 and April 2019 for the three different areas (I, II,
and III) (Figure 4A) and from January 2017 to May 2019 for the 29 alfalfa plots (28 rainfed;
1 irrigated) in the Bardenas Reales area (Figure 4B).
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Figure 4. (A) Evolution of the NDVI alfalfa plots in different areas of Bardenas Reales: zone I
included 195 and 199 high-soil-quality plots in a low-altitude area; zone II comprised 11, 221, and
257 plots, described as regular-quality areas in a medium altitude territory; zone III consisted of 59,
63, and 347 good soil quality plots in a high-elevation area. Finally, the average NDVI evolution
of the 28 rainfed alfalfa in the territory is also shown. The data are from Experiment 2, which was
conducted between July 2016 and April 2019. (B) The NDVI evolution between January 2017 and
May 2019 for the 28 rainfed alfalfa plots compared to an irrigated alfalfa plot in the Bardenas Reales
area from Experiment 2.
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Table 5. Statistics obtained with a linear, polynomial of second order, and exponential order fitting
for each index. Thirty-eight sample points were used for the FVC calculation in this experiment. The
best fitting is represented in bold.

Index Linear Fitting Polynomial Fitting,
Second Order Exponential Fitting

NDVI 0.713 0.727 0.463
PVI 0.700 0.705 0.437

kNDVI 0.659 0.705 0.400
SAVI 0.695 0.700 0.431
RVI 0.606 0.686 0.350
SeLI 0.680 0.680 0.570

NDVI705 0.678 0.680 0.600
MCARI 0.653 0.670 0.437
GNDVI 0.658 0.658 0.497
SLAVI 0.614 0.652 0.345
NDWI 0.628 0.628 0.468
MTCI 0.506 0.510 0.518

3. Results and Discussion
3.1. FVC–NDVI Correlation

The examination of the correlations between the FVC and the different spectral indices
used in this study indicated that polynomial fitting reported the best correlations followed
by linear fitting correlation values, while exponential fitting correlations showed lower
values for all indexes. Furthermore, NDVI resulted in the highest correlation values among
all the indices, both for polynomial and for lineal fitting (Table 5). Similar results have been
reported in previous studies [11,14,15,57].

Figure 3A,B show the correlation between the in situ FVC values and NDVI values
derived from Sentinel-2 images at the parcel and pixel levels, respectively. At the parcel
level, R2 = 0.727 (Figure 3A; Table 5), while at the pixel level, the correlation was higher in
2018 (R2 = 0.586) than in 2017 (R2 = 0.196) (Figure 3B).

Plots where alfalfa was not sufficiently developed may influence the correlations
between in situ FVC measurements and NDVI values from Sentinel-2A images, as Figure 3A
shows a higher dispersion in these areas, where FVC seemed underestimated. High spatial
resolution images are essential when working with yield or FVC values. Thus, the 10 m
spatial resolution Sentinel-2 images in red, green, blue, and NIR wavelengths, defined in
bands 2, 3, 4, and 8, respectively, are interesting when working with small plots as in the
present study.

Another key advantage of the Sentinel-2 satellite is the 5 day revisit period, which is
especially relevant for temporal monitoring studies in cloudy areas [58]. In addition, ESA
free-access imagery represents an advantage in economic terms when working with remote
sensing satellite data in contrast to SPOT or Quickbird-2 on-demand remote sensing data.

3.2. Temporal Analysis

Regarding the rainfed alfalfa temporal development, Figure 4A shows the NDVI
average value evolution in three different zones of Bardenas Reales, characterized as (I)
high, (II) regular, and (III) good quality (Figure 1), and the average values for a total of
28 rainfed alfalfa plots analyzed between July 2016 and April 2019. The rainfed alfalfa crops
in the Bardenas Reales were sown in May 2016. During the first year, we checked the in situ
crop establishment in plots 195, 199, 221, 257, 11, 59, 63, and 347. We also checked the NDVI
values from Sentinel-2, which showed a basal development of the crop (approximately
0.15 in July 2016). The alfalfa crop implantation improved progressively over the following
years and, thus, in the 2017 season, the NDVI values reached approximately 0.25–0.35 in
the three zones. In the 2018 season, NDVI reached its maximum values of 0.30 for zone I,
0.55 for zone II, and over 0.70 in zone III.
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Overall, it should be remarked that an important variation in FVC was observed over
the different years (Figure 4A). While 2019 was the third year of the alfalfa crop plantation,
which is important for better establishing the crop, rain during the spring season was very
limited; thus, crop growth remained quite slow (358, 375, 598, and 188 L per m2 in the 2016,
2017, 2018, and 2019 seasons, respectively). As can be observed, the NDVI values strongly
increased in all zones from May to June in 2018, while in the same period of 2019, the NDVI
showed an overall decrease due to the drought period in the Bardenas Reales area. It can
also be inferred that the alfalfa crops in zone III developed earlier than those in zone II and
zone I for all years studied. Thus, for example, in May 2018, the NDVI values were 0.72,
0.58, and 0.40 for zones III, II, and I, respectively. The advanced development in zone III
may be related to the higher altitude of the plots in this zone compared to those in zone II
and zone I (Table 1), which would contribute to the better establishment of the crop year
by year.

To evaluate the differences in development between the rainfed plots, the irrigated
alfalfa NDVI average values of one irrigated plot (UTMX: 614734; UTMY: 4678413), adjacent
to the area of Bardenas Reales, was assessed between January 2017 and May 2019. The
NDVI value for the irrigated plot was compared to the average value of the 28 rainfed
plots spread along Bardenas Reales (Figure 4B). The NDVI values of the irrigated alfalfa
plot were much higher than those observed in the rainfed alfalfa plots as previously
expected. It should be remarked that the irrigated alfalfa reached maximum development
between February and June. The different NDVI minimum peaks observed in the irrigated
alfalfa plots may be the consequence of consecutive harvests during the year (Figure 4B).
Conversely, the stability of the rainfed alfalfa NDVI values indicated that there was no
harvesting activity in these plots. Contrary to the use of forage production associated with
the irrigated alfalfa plots, the rainfed alfalfa plots are intended for in situ sheep feeding.
Thus, the use of remote sensing data for detecting mowing or grazing practices [59–62]
represents a great opportunity for crop management compared to cattle feeding, especially
in scenarios where it is difficult to access the plots, which is the case in some areas of
Bardenas Reales.

4. Conclusions

In this work, we explored the suitability of Sentinel-2 imagery for the monitoring of
rainfed alfalfa crop establishment in the semiarid Bardenas Reales area. For this purpose,
172 in situ FVC samples were compared with different VI values derived from Sentinel-2
imagery. In situ images of an area of one square meter were processed using a maximum
likelihood supervised algorithm in order to calculate the FVC of each sample. The non-
destructive methodology of this study represents an advantage compared to other studies
that used a destructive methodology, where estimations were only possible during the
harvesting period [14,57]. Furthermore, FVC estimation using multitemporal Sentinel-
2 images makes it possible to monitor crop growth, assisting farmers in making well-
informed management decisions [13].

Sentinel-2 imagery is useful for assessing the rainfed alfalfa establishment in Bardenas
Reales. The NDVI showed the best correlation (R2 = 0.727) between FVC and VI at the
parcel level.

We detected that the parcels in zone III, located to the south at a higher altitude (540 m),
exhibited the best altitude for the optimum development of alfalfa crop compared to the
plots in the north and middle zone of Bardenas Reales. Therefore, we conclude that NDVI
values derived from Sentinel-2 images are suitable for monitoring rainfed alfalfa plots in
a semiarid area, such as Bardenas Reales, and allows for good decisions to be made in
traditional practices such as crop and cattle feeding management.

The improvements in Sentinel-2 imagery in terms of accessibility (i.e., free), spectral
range, and spatial and temporal resolution make it a very interesting option for crop
monitoring, especially over high-extension areas. Sentinel-2 effectivity estimated alfalfa
FVC in Bardenas Reales at the parcel level, reporting a good accuracy, and may help farmers
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monitor rainfed alfalfa growth in semiarid areas. Accurate observation of alfalfa crop yields
will enhance decision making on agricultural management and ecosystem services for
transhumant cattle feeding management in the semiarid agrosystem of Bardenas Reales.
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