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Abstract: Gravity Recovery and Climate Experiment (GRACE) satellites can effectively monitor 
terrestrial water storage (TWS) changes in large-scale areas. However, due to the coarse resolution 
of GRACE products, there is still a large number of deficiencies that need to be considered when 
investigating TWS changes in small-scale areas. Hence, it is necessary to downscale the GRACE 
products with a coarse resolution. First, in order to solve this problem, the present study employs 
modeling windows of different sizes (Window Size, WS) combined with multiple machine learning 
algorithms to develop a new machine learning spatial downscaling method (MLSDM) in the spatial 
dimension. Second, The MLSDM is used to improve the spatial resolution of GRACE observations 
from 0.5° to 0.25°, which is applied to Guantao County. The present study has verified the 
downscaling accuracy of the model developed through the combination of WS3, WS5, WS7, and 
WS9 and jointed with Random Forest (RF), Extra Tree Regressor (ETR), Adaptive Boosting 
Regressor (ABR), and Gradient Boosting Regressor (GBR) algorithms. The analysis shows that the 
accuracy of each combined model is improved after adding the residuals to the high-
resolution downscaled results. In each modeling window, the accuracy of RF is better than 
that of ETR, ABR, and GBR. Additionally, compared to the changes in the TWS time series 
that are derived by the model before and after downscaling, the results indicate that the 
downscaling accuracy of WS5 is slightly more superior compared to that of WS3, WS7, 
and WS9. Third, the spatial resolution of the GRACE data was increased from 0.5° to 0.05° 
by integrating the WS5 and RF algorithm. The results are as follows: (1) The TWS (GWS) 
changes before and after downscaling are consistent, decreasing at −20.86 mm/yr and 
−21.79 mm/yr (−14.53 mm/yr and −15.46 mm/yr), respectively, and the Nash–Sutcliffe 
efficiency coefficient (NSE) and correlation coefficient (CC) values of both are above 0.99 
(0.98). (2) The CC between the 80% deep groundwater well data and the downscaled GWS 
changes are above 0.70. Overall, the MLSDM can not only effectively improve the spatial 
resolution of GRACE products but also can preserve the spatial distribution of the original signal, 
which can provide a reference scheme for research focusing on the downscaling of GRACE 
products. 
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1. Introduction 
Water resources are some of the most indispensable material resources for human 

survival and social development. As the main component of freshwater resources, 
groundwater is essential for industrial production, agricultural irrigation, and domestic 
water [1,2]. Affected by climate change, groundwater overexploitation, and lack of 
effective replenishment, groundwater has been severely depleted in many regions [3–5]. 
Therefore, an accurate estimation of groundwater storage (GWS) changes is necessary for 
the effective management of water resources and to be able to ensure food security. In 
particular, irregular changes in factors such as the global surface temperature, rainfall, 
and evapotranspiration affect water storage balance, leading to droughts, floods, and 
other disasters [6,7]. This requires some reliable methods that can be used to monitor 
changes in terrestrial water storage (TWS) and GWS. However, it takes a lot of manpower 
and material resources to monitor GWS changes through traditional methods such as 
large-scale monitoring networks. In addition, the use of sparsely and unevenly distributed 
groundwater observation wells makes it difficult to continuously estimate GWS changes 
in large-scale areas [8]. Hence, many attempts have been made to improve the 
spatiotemporal characteristics of GWS changes in recent years, such as hydrological 
models and satellite remote sensing. 

The GRACE satellite, which was successfully launched in 2002, provides an 
unprecedented approach for the time-continuous, large-scale regional monitoring of TWS 
changes [9]. Previous studies have demonstrated that GRACE observations can estimate 
mass changes with an accuracy of 1 to 1.5 cm equivalent water height (EWH) over large-
scale areas (~20,000 km2) [10–12]. At present, GRACE products have important 
applications in the study of global TWS changes [13,14], droughts and floods [15,16], 
glacier melting [17,18], and so on. GRACE-derived TWS changes contain different water 
storage components, e.g., soil moisture, groundwater, snow mass, and canopy water. 
According to the water storage balance equation, the corresponding components are 
subtracted from the TWS to estimate regional GWS changes [19,20]. Through the 
integration of hydrological simulations, the GRACE satellites have been widely used to 
analyze the TWS and GWS changes in large-scale areas, such as the Amazon basin [21,22], 
the Yangtze River basin [23,24], northwestern India [25–27], the North China Plain 
[4,28,29], and California’s Central Valley [5,30–32]. Nevertheless, it is challenging to 
employ GRACE data to profoundly investigate TWS changes in small-scale areas due to 
the coarse image resolution. Therefore, it is essential to obtain high-resolution GRACE 
data to analyze changes in terrestrial water and groundwater storage in small-scale areas. 

At present, the downscaling of coarse-resolution products is an effective approach 
that can be used to obtain high-resolution products and mainly include dynamical and 
statistical downscaling [33,34]. The computational process of dynamical downscaling is 
complicated and requires extensive computation times and resources [35]. Therefore, it is 
difficult to implement under normal working conditions, limiting the promotion of this 
method. Correspondingly, the statistical downscaling method establishes regression 
models between low-resolution target data and variable data and then inputs high-
resolution variable data into the regression model to output high-resolution target data 
[36]. The statistical downscaling method is easy to implement, and the downscaled results 
can satisfy the accuracy requirements. Therefore, this method has been widely used to 
obtain high-resolution hydrological and climate data, such as those pertaining to soil 
moisture [37–39], precipitation [40–42], temperature [40,43], and evapotranspiration 
[44,45]. 

Many studies attempting to obtain high-resolution GRACE data based on statistical 
downscaling methods have been conducted. Several earlier studies downscaled GRACE 
data in different regions through empirical regression relationships and achieved 
reasonable performance [46–48]. For example, Ning et al. (2014) improved the spatial 
resolution of GRCAE products in Yunnan Province to 0.25° through the statistical 
regression downscaling method [47]. Specifically, because machine learning algorithms 
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can solve nonlinear regression problems and can simulate complex hydrological 
processes, these methods are widely utilized in GRACE data downscaling research. For 
instance, Miro et al. (2018) estimated high-resolution GWS changes from the groundwater 
basins in the San Joaquin Valley in California using an artificial neural network (ANN) 
[49]. Seyoum et al. (2019) trained a Boosted Regression Tree (BRT) model to estimate 
groundwater storage anomalies (GWSA) in a ~150,000 km2 Glacial Aquifer System in the 
state of Illinois based on terrestrial water storage anomalies (TWSA) and other land 
surface and hydro-climatic variables [50]. Milewski et al. (2019) downscaled GRACE 
TWSA products based on the BRT algorithm and obtained groundwater level anomaly 
maps at a 5 km resolution over the Upper Floridan Aquifer in Georgia [51]. Sahour et al. 
(2020) introduced three machine learning algorithms to downscale TWSA across the 
Lower Peninsula of Michigan from a coarse-scale (13,700–33,100 km2) resolution to a fine-
scale (0.125° × 0.125° or 120 km2) resolution [52]. 

Currently, several studies have established downscaling models in terms of temporal 
dimensions, which are mainly used to analyze large-scale regional TWS changes. 
However, few studies have established downscaling models in spatial dimensions and 
applied them to analyze TWS changes in small-scale regions. Unlike previous studies, the 
new machine learning spatial downscaling method (MLSDM) proposes the cross-
combining of multiple machine learning algorithms with differently sized modeling 
windows in spatial dimensions; the algorithm and the size of the modeling windows are 
optimized according to the training results. Moreover, this study analyzes the consistency 
of TWS changes before and after downscaling using root mean square error (RMSE), mean 
absolute error (MAE), the Nash–Sutcliffe efficiency coefficient (NSE), and the correlation 
coefficient (CC). Finally, the in situ groundwater well observations are used to analyze the 
reliability of the downscaled GWSA, providing a certain reference basis for regional 
groundwater management. 

2. The MLSDM for Spatial Downscaling 
Generally, a great deal of research focusing on GRACE data downscaling aim to 

establish the downscaling models of each grid in the temporal dimension (Equation (1)). 
First, this method establishes the regression relationship between the TWSA and 
hydrological variables in a specific grid (such as the red grid) (Figure 1a). Then, it 
gradually establishes the downscaling models of all of the grids through iteration. In this 
method, the signals that are produced before and after downscaling have good 
consistency in the spatial distribution. Still, the downscaled signal has a relatively obvious 
boundary between the grids and does not conform to the characteristics of continuously 
changing hydrological signals. Hence, some studies have tried to establish downscaling 
models for GRACE data in the spatial dimension. Figure 1b shows that this method first 
establishes the regression relationship between the TWSA and hydrological variables in a 
specific month (such as M1) (Equation (1)). It gradually establishes downscaling models 
for all of the monthly data through iteration. However, these studies establish spatial 
downscaling models for the entire region and lack the analysis of the impact of the size of 
the modeling window on the downscaling accuracy. 

This study establishes downscaling models that are based on the spatial dimension 
and discusses the influence of the size of the modelling window on the downscaling 
accuracy of the GRACE data, as shown in Figure 1c and Equation (2). In addition, the 
accuracy of the RF, ETR, ABR, and GBR algorithms for GRACE data downscaling has also 
been analyzed and compared. The TWS changes are closely related to the hydrological 
changes in the surrounding area. Hence, an in-depth study on how large an area to 
establish spatial dimensional downscaling models to better detect the hydrological change 
process in small-scale areas needs to be is worthy of attention. 
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Figure 1. Establish TWSA downscaling models (a) in the temporal dimension and (b) in the spatial 
dimension; M1, M2, …, Mn represent the monthly resolution grid data used to establish the 
downscaling model. (c) Set up of the modeling window, the green grid represents the study area; 
the blue grid represents the modeling window. 

According to the relationship between TWSA and the hydrological variables, some 
studies establish downscaling models in the temporal dimension or in the spatial 
dimension. The equation is as follows: 
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(1) 

when establishing the downscaling models in the temporal dimension, ( )1,2,3 ...iT i = ，

represents the TWSA of the ith grid, ( )1,2,3 ... 1, 2,3 ...ijv i j= =，； ，  represents the 

hydrological variables of the ith grid and the jth type, and ( )1,2,3 ...if i = ，  represents the 
downscaling model of the ith grid. When establishing the downscaling model in the 
spatial dimension, ( )1,2,3 ...iT i = ， represents the TWSA of the ith month, 

( )1,2,3 ... 1, 2,3 ...ijv i j= =，； ， represents the hydrological variables of the ith month and 

the jth type, and ( )1,2,3 ...if i = ， represents the downscaling model of the ith month. 
This study establishes the downscaling models between TWSA and hydrological 

variables in the spatial dimension and discusses the influence of different modeling 
windows on the downscaling accuracy. The equation is as follows: 



Remote Sens. 2021, 13, 4760 5 of 21 
 

 

( )
( )
( )

( )

1 1 11 12 1

2 2 21 22 2

3 3 31 32 3

1 2

, , ,

, , ,

, , ,

, , ,

n n n j

n n n j

n n n j

i i n i n i n ij

T f w v w v w v

T f w v w v w v

T f w v w v w v

T f w v w v w v

 =

 =

 =


 =











 
(2) 

where ( )1,2,3 ...iT i = ，  represents the TWSA of the ith month, 

( )1,2,3 ... 1, 2,3 ...ijv i j= =，； ，  represents the ith month and jth type for the hydrological 

variables, ( )1,2,3 ...if i = ，  represents the downscaling model for the ith month, and 

( )3,5,7,9nw n =  represents the size of the modeling window. 

3. Materials and Methods 
3.1. Study Area 

Guantao County and its surrounding region (115°06′–115°40′E, 36°27′–36°47′N) is 
located in the southern Hebei Province, China, and has an area of approximately 456 km2 

[53], as shown in Figure 2. The terrain of the study area slopes from the southwest to the 
northeast and is generally flat, with an elevation of about 43 m in the south and 36 m in 
the north (Figure 2). Additionally, Guantao County is in a typical warm-temperate semi-
humid continental monsoon climate area that receives plenty of sunshine. The annual 
average temperature is 14 °C, and the average temperatures of the coldest month 
(January) and the hottest month (July) are −2.5 °C and 27 °C, respectively [53]. Due to the 
lack of rational utilization and effective management of water resources, the groundwater 
in Guantao County is seriously over-exploited. Generally, the depletion of groundwater 
has induced a series of ecological and geological problems (e.g., land subsidence, ground 
fissures, soil salinization) that affect the sustainable economic and social development of 
the region. Thus, it is crucial to analyze water resources storage changes in Guantao 
County. 

 
Figure 2. Location and digital elevation model map of the Guantao County, (a) China; (b) Hebei 
Province; (c) Guantao County. 
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3.2. Materials 
The research data used in this study include CSR RL06 Mascon, GLDAS, MODIS, 

TEMP, and in situ observations, as shown in Table 1. Previous studies have revealed that 
these climate variables are closely related to TWS changes [50,52]. 

Table 1. Summary of variables (Sources, Scale, Unit, and Website) employed in the study. 

Variables Sources Scale Unit Website 

TWSA 
CSR RL06 
Mascon 

0.25°; Monthly cm 
http://www2.csr.utexas.edu/grace/RL0
6_mascons.html (access on 1 May 2021) 

Soil Moisture GLDAS 0.25°; Monthly mm 
https://disc.gsfc.nasa.gov/datasets?key
words=GLDAS (access on1 May 2021) 

Evapotranspiration MODIS 16A2 500 m; 8 day kg/m²/8 day 
https://lpdaac.usgs.gov/products/mod1

6a2v006/ (access on 1 May 2021) 
Day Land Surface 

Temperature 
MODIS 11C3 0.05°; Monthly Kelvin 

https://lpdaac.usgs.gov/products/mod1
1c3v006/ (access on 1 May 2021) 

Night Land Surface 
Temperature 

MODIS 11C3 0.05°; Monthly Kelvin 
https://lpdaac.usgs.gov/products/mod1

1c3v006/ (access on 1 May 2021) 

TEMP TPDC 1 km; Monthly °C 
http://data.tpdc.ac.cn/zh-hans/ (access 

on 1 May 2021) 

Groundwater Level 
In situ 

observations 
point; sub-yearly m -- 

3.2.1. GRACE Solutions 
The GRACE satellites were jointly developed by the National Aeronautics and Space 

Administration (NASA) and Deutsches Zentrum für Luft- und Raumfahrt (DLR). They 
were successfully launched in March 2002 and ended their mission in October 2017. 
Currently, GRACE solutions are mainly divided into two categories: Spherical Harmonic 
Coefficient (SHC) and Mass Concentration solutions (Mascon). The high-degree and high-
order coefficients of SHC products are dominated by high-frequency noise and correlated 
errors in the north–south direction. Therefore, when applying SHC to estimate global 
TWS changes, data post-processing such as filtering and de-correlated error algorithms 
are required [54,55]. Since pre-processing methods, such as degree 1 corrections, C20 
(degree 2 order 0) replacement, and the glacial isostatic adjustment (GIA) correction, have 
been applied to Mascon solutions, post-processing is no longer required when using them. 
For more detailed information, please refer to the literature [56]. Due to the regularization 
constraints, Mascon solutions have a higher signal-to-noise ratio than SHC products 
[57,58]. Hence, this study will analyze the regional TWS changes based on the CSR RL06 
Mascon (CSR-M06) that was released by the Center for Space Research (CSR). CSR-M06 
has a spatiotemporal resolution of 0.25° × 0.25°, and the monthly average values from 
January 2004 to December 2009 have been deducted. 

3.2.2. GLDAS Model 
The Global Land Data Assimilation System (GLDAS) was jointly developed by the 

Goddard Space Flight Center (GSFC) and the National Centers for Environmental 
Prediction (NCEP) [59]. Using satellite and surface observation data as the primary 
material, GLDAS outputs global surface state and flux data based on advanced land 
surface models and data assimilation methods. Currently, GLDAS products include four 
land surface models: Noah, Mosaic, CLM, and VIC. This study applies the soil moisture 
from the Noah, which has spatial resolutions of 0.25° × 0.25° and temporal resolutions of 
one month, including four different soil moisture depths (SM) (i.e., 0~10 cm, 10~40 cm, 
40~100 cm, and 100~200 cm). Since the spatial resolution cannot satisfy the requirements, 
we resampled the resolution of the GLDAS products to 0.05°. 

http://www2.csr.utexas.edu/grace/RL06_mascons.html
http://www2.csr.utexas.edu/grace/RL06_mascons.html
https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS
https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS
https://lpdaac.usgs.gov/products/mod16a2v006/
https://lpdaac.usgs.gov/products/mod16a2v006/
https://lpdaac.usgs.gov/products/mod11c3v006/
https://lpdaac.usgs.gov/products/mod11c3v006/
https://lpdaac.usgs.gov/products/mod11c3v006/
https://lpdaac.usgs.gov/products/mod11c3v006/
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3.2.3. MODIS Data 
The Moderate-resolution Imaging Spectroradiometer (MODIS), which is mounted on 

the Terra and Aqua satellites, is an essential instrument in the US Earth Observation 
System (EOS), and it is mainly used to detect the global biological and physical processes. 
Based on the Penman–Monteith equation and Mu’s improved ET algorithm, the MODIS-
MOD16 product uses daily meteorological reanalysis data, land cover, albedo, leaf area 
index, and enhanced vegetation index as input variables to calculate global land surface 
evaporation [60–62]. The datasets include global evapotranspiration (ET), latent heat flux 
(LE), potential evapotranspiration (PET), and potential latent heat flux (PLE). The spatial 
resolution of the MODIS-MOD16 product is 500 m, and its temporal resolution is eight 
days (MOD16A2) and one year (MOD16A3). This study extracted ET components from 
the MOD16A2 products, and the 8-day results were averaged to obtain monthly temporal 
resolution products. The day and night land surface temperature (LST_day and 
LST_night) with a spatial resolution of 0.05° × 0.05° (~ 5.6 × 5.6 km) and the temporal 
resolution of one month were obtained from the MODIS-MOD11C3 product (version 6) 
[63]. 

3.2.4. TEMP Data 
The TEMP is China’s monthly average temperature dataset that is released at the 

National Qinghai-Tibet Plateau Science Data Center (TPDC) and has a spatial resolution 
of about 1 km and a period from January 1901 to December 2017. According to the global 
0.5° climate data released by CRU and the global high-resolution climate products 
released by WorldClim, this dataset was downscaled in China through the Delta spatial 
downscaling method. The observation data of 496 independent weather stations were 
applied to verify the dataset, which performed well [64,65]. 

3.2.5. In Situ Observations 
The measured data from 21 groundwater wells were collected from the Guantao 

County Groundwater Monitoring and Management Department to verify the high-
resolution GWS results after downscaling. These include shallow groundwater wells and 
deep groundwater wells. In Figure 2, the black dots show the spatial distribution of the 
groundwater wells. The groundwater level (GWL) changes can be obtained by subtracting 
the groundwater depth from the elevation of the groundwater well. The groundwater 
level anomalies (GWLA) can be obtained by subtracting its own average value from the 
GWL changes, which can be compared with the GRACE-derived GWSA. 

3.3. Machine Learning Algorithms 
The ensemble learning algorithm, a research hotspot of machine learning, integrates 

the training results of multiple “weak learners” to form a “strong learner”. This can 
improve the generalization ability of the model, thereby improving the prediction 
accuracy [66,67]. The ensemble learning algorithm has higher accuracy, robustness, and 
flexibility than the single learning algorithm, and it mainly includes the bagging and 
boosting algorithm. 

The idea of bagging is to form sub-training samples by extracting data from the 
training dataset according to a specified ratio, and the training results of the sub-training 
samples are averaged as the final prediction result. Random Forest (RF) [68] and Extra 
Trees Regressor (ETR) [69] are the representative bagging algorithms. RF, which was first 
proposed by Breiman in 2001, is an ensemble machine learning algorithm that has 
demonstrated superior performance [68] and is a popular tool for classification and 
regression. The randomness in the RF is mainly manifested in two aspects: on the one 
hand, the same amount of samples is randomly selected from the original training data as 
training samples; on the other hand, partial features are randomly selected to construct 
decision trees. This randomness creates a low correlation between the different decision 
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trees, which can improve the robustness and accuracy of the model [68]. ETR, which was 
developed based on the RF, is a relatively novel ensemble machine learning algorithm. 
Compared to RF, the ETR splits the descriptors at the node entirely randomly, and each 
tree is trained with the entire dataset instead of sampling. 

Unlike the bagging, boosting is an iterative algorithm that trains the same training 
samples multiple times. The next iteration adjusts the sample weight according to the 
previous training dataset and outputs the final result after meeting the requirements. The 
Adaptive Boosting Regressor (ABR) [70] is a representative boosting algorithm. The ABR 
algorithm first assigns equal weight to each sample, and the next iteration uses the error 
of the previous weak learner to update the weight of the sample. Thus, the iteration 
terminates after meeting the accuracy requirements. The Gradient Boosting Regressor 
(GBR) is also designed based on boosting and is often used for comparisons with the ABR 
[71]. Different from the iterative conditions of the ABR algorithm, the GBR algorithm 
rebuilds the model in the gradient descent direction of the loss function of the previous 
iteration. Generally, the smaller the loss function, the better the model performance. We 
can improve the model performance of by decreasing the loss function along the gradient 
direction. The ensemble learning algorithm is widely used in the field of earth science 
because of its strong ability to deal with nonlinear problems. In the research focusing on 
the downscaling of GRACE data, RF and GBR have more applications, but there are few 
discussions about ETR and ABR. Therefore, this study utilizes RF, ETR, ABR, and GBR to 
downscale GRACE data and selects the best performing algorithm for analysis in the next 
section. These four machine learning algorithms can be called in Python’s scikit-learn 
function library [72]. 

3.4. Data Processing Flow 
The data processing in the research aims to set up modeling windows, optimize the 

combined model, obtain high-resolution TWSA and GWSA, and use in situ groundwater 
well observations to verify the downscaled results. The downscaling process is shown in 
Figure 3. The red arrow represents the input data, the blue arrow represents the output 
downscaling models and results, and the green arrow represents the validation data: 

(1) Firstly, to analyze the influence of the modeling window on the downscaled 
results, we set up modeling windows with the sizes of 3 × 3 (WS3), 5 × 5 (WS5), 7 × 7 (WS7), 
and 9 × 9 (WS9) based on a 0.5° grid with Guantao County as the center (Figure 1c). 

(2) Secondly, due to the inconsistent spatiotemporal resolution, the research data 
needed to be preprocessed (Part I). The spatial resolution of TWSA was resampled to 0.5° 
and 0.25°; the spatial resolution of ET, SM, LST_day, LST_night, and TEMP was 
resampled to 0.5°, 0.25°, and 0.05°. With the exception of the in situ groundwater well 
observations, the temporal resolution of other research data is unified as one month. 

(3) Thirdly, The MLSDM is employed to establish the regression models between 
TWSA and five hydrological variables at a spatiotemporal resolution of 0.5° × 0.5° and one 
month (Figure 1b,c and Part II) (WS3, WS5, WS7, WS9 modeling window cross joint RF, 
ETR, GBR, ABR algorithm, such as WS3 + RF). We input the hydrological variables of 0.25° 
into the regression model of the corresponding month (the red arrow in Part II) to obtain 
the downscaled 0.25° TWSA. Then, this study compared RMSE, MAE, NSE, and CC 
between downscaled 0.25° TWSA and CSR-M06-derived TWSA on spatiotemporal signals 
to determine the best combined model. 

(4) Finally, the optimal combined model in Part II was applied to the hydrological 
variables at a spatial resolution of 0.05° to obtain the estimated 0.05° TWSA. According to 
the water storage balance equation, the soil moisture anomalies (SMA) were subtracted 
from the TWSA to estimate a 0.05° GWSA. Subsequently, the in situ groundwater well 
observations in Guantao County were used to compare and verify the downscaled GWSA 
(Part III). 
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Figure 3. Flowchart of the downscaling approach. 

3.5. Model Evaluation Metrics 
In this study, four metrics were utilized to evaluate the downscaled results of the 

above design schemes, namely RMSE, MAE, NSE, and CC. The calculation equations are 
as follows [73–77]: 
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where Y is the observed value, X is the predicted value, Y and X  are the mean values 
of Y and X, respectively, and n is the number of datasets. For the model construction, the 
higher the correlation coefficient NSE and CC between the observed value and predicted 
value, the better the model accuracy. The smaller the RMSE and MAE, the closer the 
predicted value was to the observed value and the higher the accuracy of the model. 
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4. Results 
4.1. Accuracy Analysis of Downscaling Method 
4.1.1. Performance of Downscaling Model 

According to Section 3.4, the monthly regression relationship between TWSA and 
five hydrological variables was established using the WS3, WS5, WS7, and WS9 modeling 
windows cross-combined with the RF, ETR, ABR, and GBR. In this way, the TWSA data 
was downscaled from 0.5° to 0.25°. Figure 4 shows the average RMSE, MAE, NSE, and CC 
of the validation set of the combined downscaling model. Overall, the results of each 
combined downscaling model have satisfactory performance. The RMSE and MAE are 
between 6.77~13.62 mm and 3.36~10.21 mm, respectively. Meanwhile, the NSE and CC are 
not less than 0.51 and 0.76. In WS3, WS5, WS7, and WS9, the RMSE of the ETR were6.77 
mm, 9.94 mm, 9.56 mm, and 10.90 mm, respectively (the MAE of the ETR are 3.36 mm, 
4.62 mm, 4.32 mm, and 4.85 mm, respectively), which are better than other algorithms, 
and the NSE and CC of the ETR have the maximum value in each modeling window. The 
comparison indicates that the ETR is slightly superior to RF, ABR, and GBR in terms of 
the model accuracy statistics. 

 
Figure 4. Accuracy statistics of different combined downscaling models. 

4.1.2. Spatial Analysis of Downscaled TWSA before and after Adding Residuals 
After training the low-resolution hydrological variables with the combined 

downscaling models, there is a residual error between the output predicted value and the 
original value. Previous studies have shown that it can improve the downscaling accuracy 
by interpolating the residuals to a higher resolution through the Kriging method and then 
adding them to the downscaled results with a high resolution [42,78,79]. Therefore, 
although the ETR algorithm has slightly better performance, it is necessary to further 
evaluate the accuracy of each combined downscaling model. In order to display the 
distribution of the TWSA signals in the entire study area, Figure 5 shows the spatial 
distribution of the TWSA trends from 0.5° downscaling to 0.25° in WS9. Figure 5a shows 
the TWSA trend with a spatial resolution of 0.25° derived by CSR-M06 from January 2003 
to December 2016; Figure 5b shows the TWSA trend from 0.25° resampling to 0.5°; Figure 
5c–j are the results of different combined downscaling models. On the whole, the spatial 
distribution of the downscaled signal and the original signal have great consistency, both 
of which show that the TWSA declines severely in the southwest and slightly declines in 
the northeast (Figure 5c–f). After adding the residuals, the consistency of the spatial 
distribution of the downscaled TWSA and original TWSA is improved (Figure 5g–j). The 
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downscaled signals of the WS3, WS5, and WS7 modeling windows all demonstrated 
similar performance. 

 
Figure 5. The spatial distribution of the TWSA trends before and after downscaling (take WS9 as an example); (a) is the 
original signal of CSR-M06; (b) is the signal of (a) resampled to 0.5°; (c–f) is the result of downscaling the (b) signal using 
four machine learning algorithms (without adding residuals); (g–j) are the downscaled results of (c–f) after adding the 
residuals. 

To further analyze the accuracy, we calculated the spatial distribution consistency of 
the CSR-M06 TWSA and downscaled TWSA, including the signal before and after adding 
residuals (Figure 6). After adding residuals, the accuracy of each combined downscaling 
model is improved. The RMSE values decreased from 1.69~2.55 mm/yr to 1.36~1.89 
mm/yr; The MAE values decreased from 1.19~2.10 mm/yr to 1.03~1.53 mm/yr; The NSE 
values increased from 0.28~0.69 to 0.51~0.87; The CC values increased from 0.73~0.88 to 
0.75~0.94 (Figure 6). The RMSE, MAE, NSE, and CC increased by 20%~26%, 13%~27%, 
20%~82%, and 3%~7%, respectively. The downscaling accuracy of the RF in each modeling 
window is better than other that of the algorithms after adding the residuals. Taking WS5 
as an example, the RMSE and MAE of RF are the smallest, at 1.36 mm/yr and 1.12 mm/yr, 
respectively, and NSE and CC are both the largest, at 0.82 and 0.93, respectively. These 
results indicate that after the GRACE grid data are downscaled by the RF, the downscaled 
signal is closer to the original signal in spatial distribution. 
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Figure 6. Accuracy statistics of the signal spatial distribution between the 0.25° downscaled result and the CSR-M06. ((a): 
RMSE, (b): MAE, (c): NSE, (d): CC). 

4.1.3. Time Series Analysis of TWSA in Guantao County before and after Downscaling 
From the spatial signal analysis in Section 4.1.2, it is known that the downscaling 

accuracy of the RF is better. Subsequently, this section analyzes the downscaling accuracy 
of the WS3, WS5, WS7, and WS9 modeling windows combined with RF from the temporal 
dimension. Figure 7 shows the TWSA time series in Guantao County (the small rectangle 
in Figure 5: 115.0°–115.5°E, 36.5°–36.75°N), including the CSR-M06 and the downscaled 
results of different modeling windows combined with RF. With the exception of several 
time nodes (e.g., the beginning of 2004, the beginning of 2014, the end of 2015), the TWSA 
time series in Guantao County derived by the downscaled results and the CSR-M06 model 
are in good agreement (Figure 7). To analyze the accuracy of each combination model in 
Figure 7, regression analysis was performed on the downscaled results and the CSR-M06 
model (Figure 8). The NSE and CC of the downscaled results of the four modeling 
windows combined with the RF are both greater than 0.98. This demonstrates that the 
downscaled results of each modeling window combined with RF have high accuracy 
(Figure 8). The RMSE, MAE, NSE, and CC values of WS5 are 9.67 mm, 6.80 mm, 0.990, and 
0.997, respectively, which are better than WS3, WS7, and WS9. The statistical accuracy of 
the WS3 and WS7 modeling windows is the second best, and the statistical accuracy of the 
WS9 modeling window is the worst. 
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Figure 7. The time series of the downscaled results and CSR-M06 in Guantao County. 

 
Figure 8. Regression analysis between the downscaled results and CSR-M06 model in Guantao 
County. ((a): WS3, (b): WS5, (c): WS7, (d): WS9)). 

4.2. Downscaled Results with High Spatial Resolution 
4.2.1. Spatiotemporal Distribution of TWSA Downscaled Signal 

To further satisfy the analysis of the TWS changes in Guantao County, this section 
utilizes WS5 combined with RF to obtain TWSA with a spatial resolution of 0.05°. Figure 
9 shows the spatial distribution of the TWSA trends before and after downscaling from 
January 2003 to December 2016. In the WS5 modeling window, the spatial distribution of 
the signals is highly consistent before and after downscaling, which shows that the TWS 
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decreases rapidly in the southwest and central regions and decreases slowly in the 
northeast. Moreover, the downscaled signal can better reflect the detailed characteristics 
of the TWS changes. Meanwhile, the CSR-M06 TWSA and 0.05°downscaling results are 
used to calculate the TWSA time series in Guantao County (Figure 10). The NSE and CC 
of the two time series are above 0.99 and decrease at −20.86 mm/yr and −21.79 mm/yr, 
respectively. 

 
Figure 9. Spatial distribution of TWSA trends (a) before and (b) after downscaling in WS5. 

 
Figure 10. Time series of TWSA before and after downscaling in Guantao County. (Notice that the 
time series is the average signal of the small blue rectangle in Figure 9: 115.0°–115.5°E, 36.5°–
36.75°N). 

4.2.2. Spatiotemporal Distribution of GWSA Downscaled Signal 
According to the water storage balance equation, the SM are subtracted from the TWS 

to estimate the regional GWS. Figure 11 shows the spatial distribution of the GWSA after 
removing the SMA from the same spatial resolution from the CSR-M06 TWSA and 0.05° 
downscaled TWSA. The spatial distribution of GWSA before and after downscaling is in 
good agreement, with a severe decrease in the western region and a slight decrease in the 
eastern region (Figure 11). Similarly, the GWSA time series in Guantao County are 
calculated (Figure 12). The NSE and CC of the downscaled GWSA and the CSR-M06-
derived GWSA are 0.980 and 0.994, respectively. The GWSA trends in Guantao County 
calculated by CSR-M06 model and the 0.05° downscaled results are −14.53 mm/yr and 
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−15.46 mm/yr, respectively (Figure 12). The discussion shows that the downscaling 
method proposed in this study can not only improve the spatial resolution of GRACE data 
but also effectively preserves the original signal. 

 
Figure 11. Spatial distribution of GWSA trend (a) before and (b) after downscaling in WS5. 

 
Figure 12. Time series of GWSA before and after downscaling in Guantao County. (Notice that the 
time series is the average signal of the small blue rectangle in Figure 11: 115.0°–115.5°E, 36.5°–
36.75°N). 

5. Discussion 
5.1. Validation Analysis of In Situ Observations 

To analyze the reliability of high-resolution GWSA (0.05°) after downscaling, this 
study collects observational data from 21 groundwater wells in Guantao County for 
verification. There are 11 shallow groundwater wells (No. 1~11) and 10 deep groundwater 
wells (No. 12~21). The public period for GWSA and measured groundwater data is from 
2012~2016. Due to the significant uncertainty of the specific yield, this study mainly 
analyzes the GWSA and measured groundwater change trends and their correlations. 
Figure 13 shows the spatial distribution of groundwater logging and part of the GWS time 
series. The black dots and red dots represent shallow and deep groundwater wells, 
respectively. We calculated the correlation coefficients (CC_monthly and CC_yearly) of the 
measured and inverted groundwater on the monthly and yearly time scales, as shown in 
Figure 13 and Table 2. Most of the measured data and the GWSA show a downward trend 
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(Figure 13). Table 2 shows the CC between the GWLA and the GWSA. The observation 
data from the shallow groundwater wells have poor consistency with the downscaled 
GWSA. The CC of observation wells 3, 5, and 6 are positive, and the others are negative. 
With the exception of the poor correlation between observation wells 18 and 19, the 
CC_monthly and CC_yearly of other deep groundwater wells are above 0.43 and 0.70, 
respectively. By comparing the observation wells at different depths with the GWSA, it is 
shown that the overexploitation of deep groundwater may mainly cause groundwater 
loss in Guantao County. Furthermore, compared to the CC before downscaling, most of 
the CC after downscaling are improved, indicating that the downscaling work is effective 
(Table 2). 

 
Figure 13. Time series of GWLA and GWSA after downscaling in Guantao County. 
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Table 2. CC of GWSA and GWLA on the monthly and yearly time scale. 

Shallow Groundwater Well Deep Groundwater Well 

Well Id 
Before Downscaling After Downscaling 1 

Well Id 
Before Downscaling After Downscaling 1 

CC_monthly CC_yearly CC_monthly CC_yearly CC_monthly CC_yearly CC_monthly CC_yearly 
1 0.27 0.29 −0.09 −0.08 12 0.38 0.76 0.61↑ 0.71 
2 −0.24 −0.35 −0.20↑ −0.18↑ 13 0.05 0.47 0.44↑ 0.81↑ 
3 0.21 0.91 0.47↑ 0.80 14 0.43 0.88 0.90↑ 0.95↑ 
4 −0.16 −0.28 −0.07↑ −0.24↑ 15 0.51 0.81 0.72↑ 0.74 
5 0.69 0.82 0.47 0.94↑ 16 0.30 0.83 0.64↑ 0.90↑ 
6 0.45 0.71 0.67↑ 0.87↑ 17 0.40 0.81 0.69↑ 0.76 
7 −0.55 −0.65 −0.28↑ −0.56↑ 18 −0.05 0.01 0.05↑ 0.09↑ 
8 −0.82 −0.87 −0.70↑ −0.84↑ 19 0.12 0.33 0.42↑ 0.48↑ 
9 −0.68 −0.70 −0.34↑ −0.65↑ 20 0.43 0.90 0.65↑ 0.86 

10 −0.39 −0.56 −0.34↑ −0.52↑ 21 0.37 0.95 0.43↑ 0.91 
11 −0.63 −0.64 −0.26↑ −0.59↑ -- -- -- -- -- 

1 The column label with “↑” means that the correlation coefficient has improved after downscaling. 

5.2. Limitation and Outlook 
From the above discussion, we know that the MLSDM proposed in this study can 

achieve good results when TWSA is downscaled. The downscaling model established in 
WS5 (~250 km × 250 km) has the best accuracy, indicating that the modeling window size 
needs to be analyzed when the downscaling model is established in the spatial dimension. 
Therefore, it is necessary to consider the influence of surrounding hydrological conditions 
on the study region during the downscaling process. Meanwhile, compared to 
downscaling in the temporal dimension, downscaling in the spatial dimension effectively 
alleviates the spatial discontinuity of the downscaled results between grids. In this study, 
the downscaled results of GWSA are compared with the in situ groundwater well 
observations. However, the in situ groundwater well observations are limited, and there 
is only 5 years of overlap with GRACE products. The long-term changes of the 
downscaled GWSA result cannot be effectively verified. In later work, we hope to obtain 
more measured data spanning a longer time period and a regular observation time to 
compare and analyze the seasonal changes of the downscaled GRACE products. In 
addition, follow-up work can consider integrating the downscaling results and the 
measured data that have good accuracy through data assimilation. This process can 
correct the downscaling results to further improve the downscaling accuracy. Generally, 
the method of establishing the TWSA downscaling model in the spatial dimension can 
achieve good results in Guantao County. Nevertheless, we still need more experimental 
analysis in other regions. 

6. Conclusions 
Fully understanding the changes in regional water resources is essential for its 

rational utilization and effective management. GRACE products have been widely used 
to analyze the TWS and GWS changes in large areas, but it is still a challenge to analyze 
the water storage changes in small areas. To satisfy small-scale regional water resources 
monitoring needs in smaller areas, this research proposes a new machine learning spatial 
downscaling method (MLSDM) that can effectively improve the spatial resolution of 
TWSA/GWSA. Compared to building downscaling models on a single grid, the MLSDM 
can improve the spatial discontinuity of the downscaled signals. This study discusses the 
accuracy of the downscaled results obtained by combining RF, ETR, ABR, and GBR for 
WS3, WS5, WS7, and WS9. The results are as follows: 

(1) To improve the spatial resolution of TWSA products, the MLSDM was 
constructed using different modeling windows combined with multiple machine learning 
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algorithms. The verification results show that the downscaled results obtained by 
MLSDM are consistent with the original CSR-M06 model in the spatial distribution. 
Furthermore, after adding residuals, the downscaling accuracy of each combined model 
was improved, and the RMSE, MAE, NSE, and CC values increased by 20%~26%, 
13%~27%, and 20%~82%, and 3%~7%. Specifically, the accuracy of RF in each modeling 
window is slightly better than ETR, ABR, and GBR. 

(2) To further analyze the impact of the modeling windows, this study compared the 
TWS time series changes in Guantao County that were derived from the downscaled 
results of RF combined with different modeling windows. The RMSE, MAE, NSE, and CC 
of WS5 combined with RF were 9.67 mm, 6.80 mm, 0.990, and 0.997, respectively, which 
are slightly superior to the downscaled results of WS3, WS7, and WS9. 

(3) The combined model of WS5 and RF was utilized to downscale the TWSA/GWSA 
data to 0.05°, and the signals before and after downscaling demonstrated high 
consistency. The NSE and CC of the TWSA time series before and after downscaling are 
0.990 and 0.997, respectively, and the NSE and CC of GWSA time series before and after 
downscaling are 0.980 and 0.994, respectively. Subsequently, the measured groundwater 
level data was used to verify the high-resolution GWSA results. The CC between the high-
resolution GWSA and 80% of the deep groundwater well data was above 0.70, but the 
correlation between shallow groundwater was relatively poor. 

Through the above results, we conclude that the downscaled work based on the 
MLSDM not only improved the spatial resolution of TWSA/GWSA, but also maintained 
the spatial distribution of the original TWSA/GWSA signal. Data with a high spatial 
resolution can provide relevant guidance for in-depth investigations of regional water 
resources and can help improve future hydrological research in small-scale areas, thereby 
enhancing the sustainable water resource management. Nevertheless, we realize that the 
downscaling of TWSA/GWSA is still a challenge, and more discussions on this issue are 
needed in the future. 
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