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Abstract: Africa has the largest grassland area among all grassland ecosystems in the world. As a
typical agricultural and animal husbandry country in Africa, animal husbandry plays an important
role in this region. The investigation of grassland resources and timely grasping the quantity and
spatial distribution of grassland resources are of great significance to the stable development of local
animal husbandry economy. Therefore, this paper uses Kenya as the study area to investigate the
effective and fast approach for grassland mapping with 100-m resolution using the open resources
in the Google Earth Engine cloud platform. The main conclusions are as follows. (1) In the feature
combination optimization part of this paper, the machine learning algorithm is used to compare the
scores and standard deviations of several common algorithms combined with RFE. It is concluded
that the combination of RFE and random forest algorithm has the highest stability in modeling
and the best feature optimization effect. (2) After feature optimization by the RFE-RF algorithm,
the number of features is reduced from 12 to 8, which compressed the original feature space and
reduced the redundancy of features. The optimal combination features are applied to random
forest classification, and the overall accuracy and Kappa coefficient of classification are 0.87 and
0.85, respectively. The eight features are: elevation, NDVI, EVI, SWIR, RVI, BLUE, RED, and LSWI.
(3) There are great differences in topographic features among the local land types in the study area,
and the addition of topographic features is more conducive to the recognition and classification
of various land types. There exists “salt-and-pepper phenomenon” in pixel-oriented classification.
Later research focus will combine the RFE-RF algorithm and the segmentation algorithm to achieve
object-oriented land cover classification.

Keywords: Kenya; RFE-RF algorithm; grassland; random forest classifier; GEE

1. Introduction

Traditional land resource survey methods are slow to update, have high labor costs,
and are not conducive to long-term and continuous detection. In contrast, satellite remote
sensing has the advantages of wide coverage, high monitoring frequency, and low labor
cost, and is the most advanced means to carry out land resources surveys in Africa. The
data commonly used for remote sensing classification are data from a moderate resolution
imaging spectroradiometer (MODIS). For example, Chen et al. [1] used MODIS-EVI time
series data to monitor winter wheat information in Hebei, showing these data to be
feasible with great potential for extracting spatial distribution information of crops in
large areas. Compared with MODIS data, Sentinel-2 data have the advantages of higher
spatial resolution and several spectral bands. Peng Fang et al. [2] used Sentinel-2 10-m
resolution data to extract winter wheat planting areas in the Henan province based on a
machine learning algorithm. Fang P et al. [3] used a correlation study of biomass based
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on extracted spring and autumn crops in the Shijin irrigation area using Sentinel-2 data.
Liu. [4] extracted the planting structure of crops in irrigation areas based on Sentinel-2
images, which has important reference significance for the classification of regional planting
structures at the county level. Among the indices, many scholars have conducted relevant
studies using different indices for different vegetation, different regions, and different
scales of vegetation. The commonly used indices include normalized difference vegetation
index (NDVI), enhanced vegetation index (EVI), soil-adjusted vegetation Index (SAVI), and
land surface water index (LSWI). For example, Xi-Wang Zhang et al. [5] combined multi-
resolution remote sensing data to identify the spectral and temporal information of winter
wheat. Pengyu Hao et al. [6] used a time series of NDVI and improved the discrimination
between crops using a hybrid classifier, which improved accuracy by 1–2% compared to a
single classifier. A.B. Potgieter et al. [7] used a smoothed EVI index to identify cereals in
Australia and obtained better classification results. Other scholars combined auxiliary data
to achieve the classification of remote sensing images, such as Cheng et al. [8], who used
slope combined with MODIS image data, NDVI, and EVI to extract rice planting areas.
Xiwang Zhang et al. [9] identified winter wheat by using temporal change information
and Kullback–Leibler divergence. He et al. [10] extracted the planting structure of summer
crops in Jiangsu province by adding topographic features and various vegetation indexes in
the study area. When there are too many features in remote sensing image classification, it
inevitably causes a redundancy of features; thus, the selection and optimization of features
is particularly important.

Feature selection plays an important role in avoiding over-fitting and improving
the performance of classification. Feature selection is the process of ranking features
according to a relevant criterion or of finding a set of features with the lowest number of
features and the best effect under the premise of not affecting the learning performance as
much as possible [11]. Using the combined of feature set and machine algorithm, feature
selection can be divided into three types: filters, packing methods, and embedded [12].
Embedded feature selection is a development and extension of the wrapper method, and
its typical algorithm is the support vector machine algorithm [13] and the random forest
algorithm. The support vector machine-recursive feature elimination (SVM-RFE) algorithm
was proposed by Guyon et al. [14] in 2002 and deals with binary classification problems,
which must be extended if it is to be applied to multi-classification problems. The random
forest algorithm was proposed by Breiman et al., and has many advantages when used for
feature selection, such as high classification accuracy, a lack of concern regarding overfitting,
the ability to determine the importance of variables in the estimation process, and the ability
to predict complex interaction modelling between variables. Recursive feature elimination
for feature optimization can be used in many ways, such as land classification, biomass,
etc. Lou et al. [15] used the RFE algorithm and an improved random forest algorithm to
extract information on freshwater wetlands in a national nature reserve in northeastern
China and found that the classification was accurate up to 84% with 95% confidence
intervals. Demarchi et al. [16] used the RFE-RF algorithm to extract biomass from arid
grasslands with an accuracy of 0.80–0.85. Han et al. [17] Luo et al. [18] combined the RFE
algorithm for biomass-related studies. Pullanagari et al. [19] combined aerial hyperspectral
data, topographic data, and soil data to estimate forage quality using recursive feature
elimination and random forest regression algorithms. By using both of these algorithms,
the accuracy was further improved and the results are of great relevance. An Yu et al. [20]
used random forest-recursive feature elimination (RF-RFE) applied to a soybean precursor
MicroRNA prediction model study, which improved the accuracy of the model by about
18% compared to that constructed by SVM-REF; it can also be used in medicine [21–23].
Recursive feature elimination is an effective variable selection tool [24]. It is popular
because it is easy to configure and use, and is very effective in selecting those features in
the training dataset that are more or most relevant to the predicted target variable.

Africa has some of the most extensive grassland ecosystems in the world. Kenya is
a typical agricultural and pastoralist country in Africa. Pastoralism plays an important
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role in Kenya. Grasslands are essential for developing the local livestock economy and
maintaining ecological stability. It is important to carry out grassland resource surveys and
keep track of the quantity and spatial distribution of grassland resources to maintain the
stable development of Kenya’s livestock economy. Few studies considered the effect of the
internal iteration model when using the recursive feature elimination algorithm. Normally
one specific iteration model was used directly [16,20]. In this paper, the four internal
iteration models which are commonly used for land cover classification, i.e., random forest
(RF), nearest neighbor, decision tress, and neural network, were analyzed to explore the best
one to be applied to the recursive feature elimination algorithm, and, in turn, to propose
a practical approach for the internal iteration model of the recursive feature elimination
algorithms. This then enables the extraction of grassland types in the study area, providing
a new approach to grassland monitoring at high spatial and grassland mapping at 100 m
resolution in Africa.

2. Materials and Methods
2.1. Study Area

Kenya is located in east of Africa (33◦52′–41◦53′E, 4◦41′N–4◦36′S, Area 582646 m2),
the equator crosses the center of Kenya, Somalia is to the east, Tanzania is to the south,
Uganda is to the west, Ethiopia and South Sudan are to the north, and the Indian Ocean
is to the southeast (as shown in Figure 1). Kenya was the African arrival point of China’s
ancient Maritime Silk Road. The 800-km stretch of the East African Rift Valley runs north to
south, with pearl-shaped lakes and volcanoes, plains with scrubs, grassland and farmland
along the coast, and desert and semi-desert areas in the north. Kenya is located in a tropical
monsoon zone, and most of the country has a savannah climate, with a humid climate in
coastal areas and a mild climate in the highlands. Due to the monsoon climate, Kenya has
no four distinct seasons, and only a difference between the rainy season and the dry season
(the rainy season occurs from March to May and October to December, and the remaining
months constitute the dry season). The annual rainfall decreases from 1500 mm to 200 mm
from southwest to northeast, and the terrain greatly fluctuates. There are many rivers and
lakes in Kenya, among which the Tana River is the longest river in Kenya.
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2.2. Datasets and Processing
2.2.1. PROBA-V Image Data

On 7 May 2013, the ESA PROBA-V microsatellite, where V stands for vegetation, was
successfully launched. The satellite has a size of 76 mm× 73 mm× 84 mm, a mass of 160 kg,
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and an inclination angle of 98.1◦ to its orbit. This satellite is the fourth in the PROBA series
and is primarily used for global vegetation observation [25]. PROBA-V supports a number
of applications, such as land cover, crop monitoring for global vegetation classification,
forecasting, famine, food security, disaster management, and biosphere research [26]. Its
spectral range is roughly the same as that of the SPOT series of vegetation sensors, but it
has a higher spatial resolution. PROBA-V data are available in five bands: BLUE, RED,
NIR, SWIR, and NDVI. The satellite provides daily images at 100 m and 333 m. A small
amount of data and a larger number of available images are used in this paper. The data
are based on the GEE platform for the relevant calculations. As the study area is located in
the equatorial region, it receives more solar radiation and water vapor than other regions,
and the vertical air currents develop more vigorously and has more cloud cover than other
places. Therefore, the data are preprocessed, including converting the DN value of each
band into reflectivity, cloud screening, etc. The cloud removal function is constructed
according to the SM band in the data, and the data are processed. Because the study area
distinguishes between rainy season and dry season, the images of rainy season and dry
season are extracted respectively. The time span is 1 year, and the cloud amount is set to less
than 20%. The figure below shows the number of images in each month after preprocessing
(Figure 2).
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2.2.2. SRTMGL1_003 Data

The Shuttle Radar Topography Mission (SRTM) [27] produces digital elevation data
referred to as SRTUGL1_003, which are used to calculate elevation information for the
study area. The data were provided by NASA JPL, with a spatial resolution of 30 m. It is
converted to the same spatial resolution as the PROBA-V data by means of the resampling
function in the GEE platform and finally cropped using Kenya’s boundary data.

2.2.3. Sample Point Data

The classification system in this paper refers to the first land cover approach in the
MCD12Q1 data (IGBP’s global vegetation classification scheme) and the project needs to
divide land types into nine land classes: forest, cropland, water, barren, closed shrubland,
open shrubland, woody savanna, savanna, and grassland.

The method of selecting samples only through visual interpretation cannot guarantee
the objectivity of classification evaluation and the accuracy of samples. Therefore, sample
data in this paper are determined by field survey data and existing data sets. Field survey
data are obtained through GVG sampling (sampling time: 2018), and the existing data
sets mainly include global land cover data (Forest Observations Europa, EU) provided by
the European Commission and global dynamic land cover maps (CGLS-LC100) provided
by the Copernicus Global Land Service, combined with high-resolution Google Earth
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images which were used to identify monitoring sites in Kenya, Africa. Nine types of
sample points were selected (due to the small area of artificial surface coverage, the sample
points were not listed separately), with a total of 3779 sample points (as shown in Table 1).
There are 695 forest, 545 farmland, 263 closed shrubland, 1098 open shrubland, 237 woody
savanna, 192 savanna, 360 grassland, 121 water and 268 bare. Then, the sample points
were randomly divided into two parts: 50% of the sample points were used as training
data sets, and the remaining 50% were used as validation data sets. Figure 3 shows the
spatial distribution of various points and field sampling points.

Table 1. Sample point data.

Ground Class Code Land Class Name Number of Samples

1 Water 121
2 Savanna 192
3 Woody savanna 237
4 Closed shrubland 263
5 Barren 268
6 Grassland 360
7 Cropland 545
8 Forest 695
9 Open shrubland 1098
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2.3. Methods

In this paper, the remote sensing data of the study area were acquired and processed
through the GEE platform, and the construction and optimization of spectral features
and topographic features were completed. The random forest algorithm was used and
the accuracy of the classification was evaluated to finally obtain the spatial distribution
information of Kenya’s land cover in 2018. The technical flowchart of this paper is shown
in Figure 4.
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2.3.1. Spectral and Index Features

The selection of feature variables plays an important role in the classification process of
remote sensing images. The appropriate use of multiple feature variables and combinations
of feature variables can effectively improve the classification accuracy of remote sensing
image [28]. In this paper, spectral features, index features, and topographic features are
selected, and the following is the construction of these features on the GEE platform.

The spectral information of surface vegetation varies over time, so this paper analyses
the effect of time on vegetation before constructing the spectral features. In this paper,
monthly NDVI data were extracted for the dry and wet seasons and synthesized using the
GEE platform for different land types. The graph below shows the variation of NDVI mean
values for various land types in different months (as shown in Figure 5). As can be seen
from the graph, the trend of NDVI curves for vegetation tends to be consistent, showing
a rising–falling–rising trend, with an overall change in the alternation of wet–dry–wet
seasons in the study area. The NDVI time series for water bodies and bare ground in the
study area is relatively smooth and easily identifiable as it differs from other land types
in the study area. March to May is the first rainy season of the year in the study area,
also known as the ‘long rainy season’. The NDVI values of all vegetation species begin
to rise. The short rainy season crops in Kenya are planted in December and harvested in
February–March of the following year; therefore, the NDVI of farmland during this period
is lower than that of grassland, followed by the planting of long rainy season crops, mainly
wheat and maize, resulting in a higher NDVI in farmland than in grassland. In addition
to this, the NDVI of open shrubland and grassland differed less between the two during
this period, whereas during the dry season, the difference in NDVI values between the
two was relatively large. Therefore, it is easier to achieve a classification for both in the dry
season as opposed to the wet season. The NDVI values of woody savanna are consistently
higher than those of savanna, but the difference between the two NDVI values during the
wet season is also smaller, which is not conducive to better classification between the two.
In summary, the dry season images were chosen for the identification of the study area as
the NDVI values of some of the species in the study area differed less in the wet season
and more in the dry season, making the dry season more favorable than the wet season for
differentiating between the less diverse species.
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After screening using the time, the location of the study area, and cloud removal, a
total of 148 landscape images were obtained in the dry season, and each image contained
4 original spectral bands (Table 2) and a spectral index of NDVI. As the best indicator
reflecting vegetation growth and coverage, NDVI is regarded as one of the effective indi-
cators to monitor ecological environment and vegetation change. It not only eliminates
the effects of satellite observation angles, solar elevation, topography, and cloud shadows,
but it also reduces the effects of atmospheric and other related radiation changes. It has
also been widely used for land use/cover classification, but the index is not sensitive when
assessing areas with high vegetation cover and is prone to saturation problems. The EVI
not only reduces the impact of soil background and aerosols, but also reduces the impact
of saturated NDVI data. The LSWI can provide a reference indicator for the classification
of water present in the study area. Kenya’s bare land is mainly distributed in the lack of
rain of the northwest desert area. The ratio vegetation index (RVI) can accurately reflect
the difference between the reflection of green vegetation in the visible band and near
infrared band as well as the soil background. It can enhance the vegetation information,
weaken the non-vegetation information and provide reference index for the classification
of vegetation area and non-vegetation area. In summary, in this paper, NDVI, EVI, LSWI,
and RVI were selected for the classification of different land cover patterns in Kenya, and
the corresponding codes were written according to the formulae for calculating remote
sensing indices. The band selection was prepared for subsequent classification. The various
vegetation indices are calculated using the following formulae.

EVI = 2.5× ρNIR − ρRED
ρNIR + 6× ρRED − 7.5× ρBLUE + 1

(1)

LSWI =
ρNIR − ρSWIR
ρNIR + ρSWIR

(2)

RVI =
ρNIR

ρRED
(3)

where ρNIR, ρSWIR, ρRED, and ρBLUE represent reflectance values in the NIR, SWIR, RED,
and BLUE bands, respectively.
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Table 2. Band parameters of PROBA-V data.

PROBA-V Spectral Bands Centred at (nm) Width Span (nm)

BLUE 463 46
RED 655 79
NIR 85 144

SWIR 1600 73

2.3.2. Topographic Features

Topography is an important basis for land resources. The undulation, slope, and
aspect of land surface affect the distribution, planting structure, and soil erosion of forest
land, farmland, and other land cover modes, and restrict the difficulty and mode of land
resource utilization [29]. Therefore, the inclusion of topographic parameters as features
in the later classification can improve the classification accuracy of land classes affected
by topographic elements. This study uses SRTMGL1_003 data to construct four features:
elevation, slope, slope orientation, and hill shading. These can be calculated using the ee.
terrain. Products (input) function are provided by the GEE platform. This is then used as
4 separate bands to participate in the construction of the original features where the input
to this function is the SRTMGL1_003 data.

2.3.3. Feature Optimization Methods

There are tens, hundreds, or even more features used for remote sensing image
classification. If all the features are involved in the training of the classifier, not only will
the operation become cumbersome, which will greatly reduce the processing speed of the
data, but also in the case of limited samples, too many features may lead to the reduction
in the classification accuracy, which is called “dimensional disaster” [30,31]. It is therefore
essential to optimize the features involved in image classification.

Recursive feature elimination (RFE) is a feature selection algorithm for packaging
classification. The main purpose of RFE is to select the features that are most helpful for
identifying and distinguishing the target object category in the study area. It can obtain
as few input feature sets as possible without reducing the final classification accuracy. In
this paper, forward iteration is used to optimize feature selection. It is a gradual process
of feature addition, which requires all features to be ranked in order of importance first.
Then, according to the characteristics of all order (according to the characteristics of the
descending order of importance), the characteristics of the first importance to score high,
modeling, and then gradually add the next characteristics, modeling, again from the
current new feature set classification ability evaluation results. Until all features are added
into the model, the feature set with the highest score and the least number of features is
selected as the optimal feature set to participate in the final classification process. The
stability of the algorithm largely depends on the model selected during iteration. Therefore,
before feature optimization, this paper first compares the score and standard deviation
of packaging algorithm formed by the RFE algorithm and several common algorithms,
and then determines which common algorithm and packaging algorithm formed by RFE
algorithm can achieve feature optimization.

2.3.4. Classification Methods

Random Forest (RF) is an ensemble learning classifier, which is a machine learning
algorithm formed by the combination of many CART decision trees and voting mecha-
nisms [32]. Its greatest advantage lies in the importance of measurement variables [33]. The
random forest algorithm uses a collection of classification trees to generate highly unbiased
and accurate predictions based on voting across adaptive repetitions, which largely avoids
overfitting [34]. When classifying remote sensing images, RF is faster to classify than other
classifiers and easier to implement [35]. Its classification results are obtained by voting
by multiple weak classifiers, so it is more robust than other classifiers. Random forest
can also process continuous data and discrete data, and the data set does not need to be
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standardized. The introduction of two randomness makes the random forest not prone to
overfitting of the decision tree, and at the same time it saves the pruning of the decision
tree, and the computational burden is small. The advantages of random forest enable it
to classify more complex remote sensing images, which is suitable for multi-category and
multi-features [36–38]. In addition, it can also estimate the advantages of missing data [13].
Therefore, this article uses random forest classifiers to classify images.

A random forest is a classifier that uses multiple trees to train and predict samples. The
classifier was proposed by Breiman and Cutler in 2011. It contains two important methods,
namely random feature subspace and out-of-bag estimation [39]. The basic principles of
the random forest algorithm are as follows. (1) with the bagging method, N samples from
the original sample points are randomly selected and put back to form a new training
sample point. When N is large enough, and about one third of the samples are not in the
training sample point, these data are called out of bag (OOB) data. (2) Under the Gini
coefficient minimum principle, multiple CART decision trees are constructed and random
forest is formed by randomly selecting the subset of each node variable after N decision
trees are split internally. (3) The generated random forest classifier is used to classify the
data. For accuracy evaluation, when each sample belongs to the OOB sample, the number
of votes is counted every time and the majority vote determines the classification category.
Since the OOB sample does not participate in the establishment of a decision tree, it can
be used to estimate prediction errors, to evaluate model performance, and to quantify the
importance of variables using OOB errors [32,40].

2.3.5. Accuracy Verification Methods

The accuracy verification method used in this paper is the confusion matrix. The
confusion matrix is a common method for verifying the accuracy of various land clas-
sifications and is also known as the error matrix, represented in the form of an N × N
matrix. In this paper, after identifying nine land types, i.e., forest, cropland, water, barren,
closed shrublands, open shrublands, woody savanna, savanna, and grassland, the accuracy
of each type of grassland identified is evaluated using the confusion matrix, the overall
accuracy (OA), producer accuracy/mapping accuracy (producer accuracy (PA)), consumer
accuracy (UA), and kappa coefficient [41]. The calculation process is as follows:

OA =
∑n

i=1 Xii

n
× 100% (4)

PA =
Xii
Xi+
× 100% (5)

UA =
Xii
X+i
× 100% (6)

Kappa =
n ∑n

i=1 Xii −∑n
i=1 Xi+X+i

n2 −∑n
i=1 Xi+X+i

(7)

where Xii is the number of pixels in class i that are correctly classified, which in the
confusion matrix is the number of images on the diagonal; Xi+ is the number of images
classified in class i; X+i is the number of true reference pixels in class i; and N is the number
of all pixels in the classification process.

3. Results
3.1. Feature Optimization Results

Commonly used classification algorithms include random forest algorithm, decision
tree algorithms, neural network algorithms, and nearest neighbor algorithms [42]. The
selection of different algorithms as iterative models affects the feature optimization in
the later stage. Therefore, this paper first compares the scores and standard deviations
of several different machine learning algorithms after RFE packing, and the results are
shown in Figure 6. From the figure, it can be seen that the scores and standard deviations
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of different algorithms are different when they are wrapped by RFE. The recursive fea-
ture elimination-random forest algorithm (RFE-RF) and the recursive feature elimination
decision tree algorithm have higher scores and smaller standard deviations. However,
the former scored the highest in comparison. The score and standard deviation were
0.903 and 0.012, respectively. The standard deviation of the neural network-recursive fea-
ture elimination algorithm was the highest at 0.059. It is further illustrated that, compared
with other algorithms combined with RFE, the stability of searching for the optimal feature
combination is higher.
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The process of using the RFE-RF algorithm for feature selection is as follows. The first
is the process of random forest. The bootstrap sampling method is used to extract multiple
samples from the original samples, and a decision tree is constructed for each bootstrap
sample. All decision trees form a RF, and calculate feature importance in the model. Subse-
quently, the feature evaluation of forward iteration is introduced, corresponding features
are added in sequence according to the feature importance score until all features are
added to the model to participate in modeling, and finally the optimal feature combination
participating in classification is determined. In the process of feature selection with the
recursive feature elimination random forest algorithm (RFE-RF), the average standard
deviation is used to evaluate the quality of the feature optimization results. In the process
of feature selection by RFE-RF, the average standard deviation is used to evaluate the result
of feature optimization. In the feature selection process, the first features selected were
those with the top two feature importance scores, i.e., elevation and normalized difference
vegetation index (NDVI), and the RFE-RF algorithm is used to calculate the mean standard
deviation of feature optimization selection using these two features. Then, one feature was
added in order of importance according to the remaining features, and the mean variance
value of the added feature was calculated using RFE-RF algorithm until all 12 features
participated in the modelling. After iteration, the optimal feature combination was selected
according to the average standard deviation value. In Figure 7, it can be seen that, as the
number of features continues to increase, the average standard deviation value shows the
general trend of first decreasing and then increasing until the average standard deviation
value reaches the maximum when all of the features are added. The larger the average
standard deviation value, the less effective the RFE-RF is in optimizing the features. The
optimal number of features after RFE-RF feature selection is eight, and the optimal feature
combinations are elevation, NDVI, EVI, SWIR, RVI BLUE, RED, and LSWI. Table 3 shows
the comparison of feature numbers before and after optimization by the RFE-RF algorithm.
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Table 3. Original features and optimized features.

Features Type Original Features Number Optimized Features Number

Spectral features BLUE, RED, NIR, SWIR 4 BLUE, RED, SWIR 3

Index features NDVI, EVI, LSWI, RVI 4 NDVI, EVI, LSWI, RVI 4

Topographic features Elevation, Aspect, Slope, Hillshade 4 Elevation 1

Total 12 8

3.2. Classification Results and Analysis

Based on the RFE-RF algorithm, nine land types in Kenya, Africa, including forest,
farmland, water, barren, closed shrublands, open shrublands, woody savanna, savanna,
and grassland, were extracted in 2018. As the research object of this paper is mainly
grassland, forest, farmland, water, and barren, it is combined into other land types. The
land cover classification map is shown in Figure 8. As can be seen from the map of land
classification results, Kenya’s open shrublands are the most widespread of the five land
cover types and are mainly found in the North Eastern province and parts of the Eastern
and Rift Valley provinces of Kenya, with a few in the Western province within the study
area. The next most widespread is grassland, which are mainly found in the Eastern and
Rift Valley provinces of the study area. Closed shrublands, woody savanna, and savanna
have a relatively small distribution range and are mainly distributed in parts of the Central
province within the study area.

Table 4 shows the confusion matrix results for the classification. As can be seen from
the table, out of the 1853 validation points selected, the true number of forest samples was
341, of which 314 were classified correctly and 27 were missed. The true sample number
of cropland was 253, among which 223 were classified correctly and 30 were classified
incorrectly. The spectrum of water differs greatly from that of other land types; thus, it is the
best classification effect and there is no leakage phenomenon. There were 123 real samples
of barren, of which 115 were classified correctly and 8 were missed. The true sample size
for closed shrubland was 124, of which 112 were correctly classified and 12 were missed.
The true sample size for open shrubland was 547, of which 478 were correctly classified
and 69 were missed. The true sample size for woody savanna was 128, of which 115 were
correctly classified and 13 were missed. The true sample size for savanna was 95, of which
84 were correctly classified and 11 were missed. The true sample size for grasslands was
182, of which 119 were correctly classified and 63 were missed. The producer accuracies
of different land types can easily be deciphered as 0.92, 0.88, 0.90, 0.87, 0.89, 0.88, 0.65,
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1, and 0.93, and it can be concluded that the errors of missing scores for the five land
types were 0.08, 0.12, 0.10, 0.13, 0.11, 0.12, 0.35, 0, and 0.07. As can be seen above, water
had the highest producer accuracy and the lowest omission error among the nine land
classes. Of the five categories of grassland, closed shrubland had the highest classification
accuracy, followed by savanna, woody savanna, and closed grassland, while grassland had
the lowest classification accuracy and was mainly misclassified as open shrubland. The
overall validation accuracy of the classification was 0.87, with a kappa coefficient of 0.85.
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Table 4. Confusion matrix.

Confusion
Matrix

Forecast Category

1 2 3 4 5 6 7 8 9 Total PA

Category

1 314 5 3 5 11 3 0 0 0 341 0.92
2 8 223 0 17 0 5 0 0 0 253 0.88
3 8 0 112 4 0 0 0 0 0 124 0.90
4 1 31 5 478 0 0 30 0 2 547 0.87
5 13 0 0 0 115 0 0 0 0 128 0.89
6 4 7 0 0 0 84 0 0 0 95 0.88
7 0 4 0 54 0 0 119 0 5 182 0.65
8 0 0 0 0 0 0 0 60 0 60 1
9 0 0 0 3 0 0 5 0 115 123 0.93

Total 348 270 120 561 126 92 154 60 122 1853
UA 0.90 0.82 0.93 0.85 0.91 0.91 0.77 1 0.94
OA 0.87

Kappa 0.85

Note: 1. forest; 2. cropland; 3. closed shrubland; 4. open shrubland; 5. woody savanna; 6. savanna; 7. grassland; 8. water; 9. barren.

4. Discussion
4.1. Effect of Timing on Classification

Different vegetation types have different index characteristics in different time peri-
ods [43]. Therefore, the determination of the best time period is particularly important for
image classification. This is because it can obtain better vegetation classification results
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according to the temporal characteristics of images [44]. The study area is divided into dry
season and rainy season. It can be seen from Figure 5 that the index characteristics of arbor
savanna and savanna, as well as open grass and grassland, are close in the rainy season,
but there is a gap in the index characteristics in the dry season. Therefore, selecting the
dry season image as the final classification image is conducive to improving the classifica-
tion accuracy and obtaining better classification results. Tables 5 and 6 are the confusion
matrices obtained from the rainy season image and the whole season image, respectively.
As can be seen from the table, the overall accuracy and Kappa coefficient of the grassland
system classification in the study area by using images of rainy season are 0.83 and 0.79,
respectively. Compared with the image classification results in the dry season, the overall
accuracy decreased by 4% and kappa decreased by 6%. The overall accuracy of grassland
system classification using whole-season images decreased by 1% and Kappa decreased
by 2% compared with that using dry season images. Therefore, in image classification,
it is necessary to select a reasonable time period for land type recognition based on the
actual situation of the study area, which is conducive to improving the accuracy of land
type recognition.

Table 5. Confusion matrix.

Confusion
Matrix

Forecast Category

1 2 3 4 5 6 7 8 9 Total PA

Category

1 301 2 10 7 10 0 0 0 0 330 0.91
2 7 247 0 38 1 10 0 0 0 303 0.81
3 8 0 118 9 0 0 0 0 0 135 0.87
4 4 25 8 478 0 3 33 0 0 551 0.86
5 17 0 0 0 81 0 0 0 0 98 0.82
6 5 9 0 2 0 74 0 0 0 90 0.82
7 2 4 0 87 0 0 99 0 4 196 0.50
8 0 0 0 0 0 0 0 60 0 60 1
9 0 0 0 4 0 0 5 0 128 137 0.93

Total 344 287 136 625 92 87 137 60 132 1900
UA 0.87 0.86 0.86 0.76 0.88 0.85 0.72 1 0.96
OA 0.83

Kappa 0.79

Note: 1. forest; 2. cropland; 3. closed shrubland; 4. open shrubland; 5. woody savanna; 6. savanna; 7. grassland; 8. water; 9. barren.

Table 6. Confusion matrix.

Confusion
Matrix

Forecast Category

1 2 3 4 5 6 7 8 9 Total PA

Category

1 325 5 4 0 9 0 0 0 0 343 0.94
2 7 237 0 21 0 6 4 0 0 275 0.86
3 13 0 103 3 0 0 0 0 0 119 0.86
4 5 16 13 519 0 0 30 0 0 583 0.89
5 15 0 0 0 98 0 0 0 0 113 0.86
6 12 17 0 0 0 79 0 0 0 108 0.73
7 0 3 58 0 0 0 113 0 3 177 0.63
8 0 0 0 0 0 0 0 57 0 57 1
9 0 0 0 6 0 0 8 0 138 152 0.90

Total 377 278 178 549 107 85 155 57 141 1927
UA 0.86 0.85 0.57 0.94 0.91 0.92 0.72 1 0.97
OA 0.86

Kappa 0.83

Note: 1. forest; 2. cropland; 3. closed shrubland; 4. open shrubland; 5. woody savanna; 6. savanna; 7. grassland; 8. water; 9. barren.
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4.2. Effect of Auxiliary Data on Classification

Auxiliary data play a very important role in the process of improving the quality of
mapping [45]. Cheng et al. [6] used a study on the remote sensing estimation method of a
rice-planted area through the composite of the digital elevation model and multi-temporal
MODIS data to find that the accuracy of the rice planted area estimated using single-view
imagery was 53.3%, while the accuracy of rice planted area extracted using slope and
MODIS-EVI index was 61.7%, an improvement of 8.4% over the former. He et al. [8]
constructed topographic features and found that the introduced topographic features could
improve the separability between land classes through the feature optimization algorithm,
SEaTH algorithm, which in turn could improve the final classification accuracy. With the
inclusion of elevation features in this study, the overall accuracy of the classification and
the Kappa coefficient were both improved. Table 7 shows the confusion matrix obtained
without the inclusion of elevation bands. As can be seen from the table, the overall accuracy
is 0.84 and the Kappa coefficient is 0.81. This is a 3% decrease in overall accuracy and a
4% decrease in Kappa compared to the results obtained with the inclusion of elevation
features in the image classification. Therefore, when classifying images, it is necessary to
add auxiliary data reasonably in conjunction with the study area, which is conducive to
improving the accuracy of the identification of land classes.

Table 7. Confusion matrix.

Confusion
Matrix

Forecast Category

1 2 3 4 5 6 7 8 9 Total PA

Category

1 307 24 3 11 5 4 0 0 0 354 0.86
2 19 222 1 24 0 9 0 0 0 275 0.80
3 1 0 129 5 0 0 0 0 0 135 0.95
4 6 25 10 439 0 0 34 0 5 519 0.84
5 11 0 0 0 106 0 0 0 0 117 0.90
6 0 11 0 0 0 83 0 0 0 94 0.88
7 2 4 1 64 0 0 104 0 9 184 0.56
8 0 0 0 0 0 0 0 58 0 58 1
9 0 0 0 2 0 0 4 0 122 128 0.95

Total 346 286 144 545 111 96 142 58 136 1864
UA 0.88 0.77 0.89 0.80 0.95 0.86 0.73 1 0.89
OA 0.84

Kappa 0.81

Note: 1. forest; 2. cropland; 3. closed shrubland; 4. open shrubland; 5. woody savanna; 6. savanna; 7. grassland; 8. water; 9. barren.

5. Conclusions

In combination with Google Earth Engine cloud platform, this paper obtained 2018
PROBA-V data covering Kenya in Africa over a short period of time and completed data
pre-processing, including cloud removal, image Mosaic cutting, etc. In addition, spectral
features and topographic features were constructed, and the features were optimized based
on machine learning algorithm. Finally, five land types were classified in Kenya, Africa
in 2018: closed shrubland, open shrubland, woody savanna, savanna, and grassland. The
main conclusions are as follows.

(1) The GEE platform is a cloud-based planetary-scale geospatial analysis platform
with advanced cloud computing and storage capabilities for dealing with various social
hotspots, as well as easy and fast access to remote sensing data and other data resources,
and the ability to process these data with the platform’s high-performance cloud computing
capabilities. Based on this platform, this paper quickly implements pre-processing work
such as ground time screening, cloud screening, de-clouding, compositing and cropping
of dry season images in the study area, which has obvious advantages in terms of time
compared to local processing.
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(2) In this paper, machine learning algorithms are used in the feature combination
optimization section, by comparing the scores and standard deviations of several commonly
used algorithms with RFE combinations. In comparison, RFE has the highest score of 0.902
and the smallest standard deviation of 0.012 when combined with the random forest
algorithm, thus providing the highest stability in modelling and the best optimization
of features.

(3) After feature optimization by the RFE-RF algorithm, the number of features was
reduced from the original 12 features to 8, which compressed the original feature space and
reduced the redundancy of features. The optimal combination of features was elevation,
RVI, EVI, SWIR, LSWI, NDVI, RED, and BLUE, and the overall accuracy and kappa
coefficient were 0.87 and 0.85, respectively.

(4) As the main feature of the classification, the spectral features play a decisive role
in the classification accuracy, and the appropriate use of auxiliary data can improve the
classification accuracy. For the study area, the topographic features vary greatly among
the local species, and the inclusion of topographic features is more conducive to the
identification and classification of the local species.

In this study, PROBA-V data with spatial resolution of 100 m were used to explore
the applicability of recursive feature elimination random forest algorithm, providing a
new method for grassland monitoring with high spatial and temporal resolution. When
using these data and RFE for classification, the following problems need to be highlighted.
When using PROBA-V data for relevant research, it is necessary to convert pixel brightness
value (DN) of remote sensing image into standard true value. When the RFE algorithm is
used for feature optimization, the stability of the algorithm largely depends on the model
selected during iteration. Selecting different models for iteration will have an impact on
feature optimization. Therefore, iterate according to the actual model chosen. There is a
“salt and pepper phenomenon” in the classification results based on pixels. In the later
research focus, the RFE-RF algorithm and segmentation algorithm will be combined to
achieve object-oriented classification of other regions.
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