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Abstract: Arctic tundra landscapes are highly complex and are rapidly changing due to the warming
climate. Datasets that document the spatial and temporal variability of the landscape are needed
to monitor the rapid changes. Synthetic Aperture Radar (SAR) imagery is specifically suitable for
monitoring the Arctic, as SAR, unlike optical remote sensing, can provide time series regardless
of weather and illumination conditions. This study examines the potential of seasonal backscatter
mechanisms in Arctic tundra environments for improving land cover classification purposes by
using a time series of HH/HV TerraSAR-X (TSX) imagery. A Random Forest (RF) classification was
applied on multi-temporal Sigma Nought intensity and multi-temporal Kennaugh matrix element
data. The backscatter analysis revealed clear differences in the polarimetric response of water, soil,
and vegetation, while backscatter signal variations within different vegetation classes were more
nuanced. The RF models showed that land cover classes could be distinguished with 92.4% accuracy
for the Kennaugh element data, compared to 57.7% accuracy for the Sigma Nought intensity data.
Texture predictors, while improving the classification accuracy on the one hand, degraded the spatial
resolution of the land cover product. The Kennaugh elements derived from TSX winter acquisitions
were most important for the RF model, followed by the Kennaugh elements derived from summer
and autumn acquisitions. The results of this study demonstrate that multi-temporal Kennaugh
elements derived from dual-polarized X-band imagery are a powerful tool for Arctic tundra land
cover mapping.

Keywords: Synthetic Aperture Radar (SAR); polarimetry; Kennaugh Element Framework (KEF);
TerraSAR-X (TSX); Arctic; tundra; Random Forest (RF)

1. Introduction
1.1. The Impact of Climate Change on Arctic Tundra Landscapes

The climate in the Arctic is warming at a rate more than double the magnitude of
the global mean [1], which is expected to have major impacts on both local and global
scale [2]. Due to the warming climate, permafrost soils thaw, and some of the stored soil
organic carbon is expected to be mobilized [3]. The mineralization rates of the soil organic
matter pool and associated carbon fluxes are dynamic and complex processes depending
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on local climate, vegetation, and soil parameters of the heterogeneous tundra landscape
[3,4]. In addition, permafrost thaw enhanced by milder winters with thicker and longer
snow cover causes the degradation of distinctive permafrost landforms such as tundra
polygons [5–7]. Climate change also causes shifts in Arctic vegetation, changing both the
distribution ranges of species and the composition of vegetation communities [8,9]. This
affects both the relative distribution of land cover types and the dynamics of the physical
processes occurring in the Arctic tundra landscape. Altogether, the Arctic tundra is a highly
complex landscape with changing physical processes being interconnected by various
feedback mechanisms. Up-to-date datasets, comprising the temporal and spatial variability
of key parameters, such as satellite derived land cover [4,10,11] and landforms [12], that
drive these physical processes, are scarce but crucial to monitor rapid changes in the Arctic
tundra [10,13,14]. In this context, the value of Synthetic Aperture Radar (SAR) data has
gained recent attention [11,14–19].

1.2. State of the Art for Arctic Tundra Landscape Monitoring with Synthetic Aperture Radar Data

In situ observations of land cover types for the Arctic tundra landscape are sparse due
to logistical challenges and high costs [20]. Such in situ observations have been used to
train and validate land cover products based on optical remote sensing at both regional
and local scale [4,8,10,21]. However, optical images in Arctic regions are limited due to
extensive cloud cover and polar nights [10]. SAR functions independently of weather
and illumination conditions and can overcome these limitations of optical remote sensing
systems [22,23]. In addition, SAR backscatter depends on vegetation structure, water
content and underlying soil surface properties and thereby adds unique information
complementary to optical remote sensing methods, e.g., [23].

The suitability of SAR to monitor surface features in the (sub)-Arctic tundra is demon-
strated by a range of studies. The study by Ullmann et al. [14] showed that shorter X- and
C-band wavelengths are more sensitive to tundra land cover and surface properties than
the longer L-band wavelength. The sensitivity of X- and C-band data to vegetation param-
eters such as %-cover [6], height [6,24], and phytomass [25] have been investigated and
positively assessed. In addition, ground properties such as Active Layer Depth (ALD) [26]
and soil moisture [27–29] have been studied using X-band and C-band data, respectively.
Moreover, the study by Stettner et al. [5] proposes a method for snow melt monitoring
in tundra using X-band data. The TerraSAR-X (TSX) and TanDEM-X (TDX) satellites,
acquiring at X-band, and the RADARSAT-1 (R1) and -2 (R2) satellites, acquiring at C-band,
are most often used to generate SAR-based high spatial resolution land cover maps for
local study sites in the (sub)-Arctic. Dense time series of single-polarized (single-pol) TSX
HH backscatter intensity and coherence data have been successfully used to evaluate
seasonal changes in tundra landscapes in the Lena River delta, Russia, [16] and to map the
permafrost landscape in northern Quebec, Canada [19].

The backscatter mechanisms for land cover types are best characterized by using
polarimetric SAR (PolSAR) data. PolSAR exploits the wave polarization behavior of the
incident and backscattered wave to explain the scattering of a target [30]. The scatter-
ing of natural earth targets can be categorized into three different types: (i) surface, (ii)
double-bounce, and (iii) volume scattering. To differentiate between land cover types and
to describe the polarimetric response of Arctic tundra landscapes, multiple polarimetric
decomposition methods have been applied to PolSAR data: the Freeman–Durden decom-
position [31] applied by [15,17], the Cloude–Pottier decomposition [32] by [11,14,17,33]
and the Yamaguchi decomposition [34] by [11,14,17]. For these decomposition methods
quad-polarized (quad-pol) data are necessary, while most SAR sensors acquire images in
single- or dual-polarization (dual-pol) mode across the Arctic [35].

Dual-pol PolSAR data are a promising alternative to quad-pol data for monitoring pur-
poses. The HH/VV channel combination is preferred over HH/HV or VV/VH to characterize
wetland environments, because water–vegetation interactions create a strong double-bounce
signal [15,18,35]. By contrast, the study by Ullmann et al. [23] found that in the Mackenzie
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Delta the volume scatter component from vegetation aided the land cover classification. This
is in accordance with the findings from Duguay et al. [6], who reported that HV data became
more important in winter when snow-ground and snow-vegetation interactions were more ap-
parent. Hence, HH/HV data seem better suited for monitoring mixed and shrub-dominated
tundra environments than HH/VV data. Only a small number of methods exist that can
decompose dual-pol PolSAR data. Ullmann et al. [14] found that for both X- and C-band SAR,
the two-component decomposition [23] features of dual-pol HH/VV data were correlated
to the three-component Yamaguchi decomposition [23,34] features of quad-pol data. This
correlation decreased when volume scattering contributed more to the scene [23]. In addition,
the Kennaugh Element Framework (KEF) is able to decompose dual-pol PolSAR data [36]. For
the tundra environment in the Mackenzie Delta, dual-pol HH/VV Kennaugh elements can
be substituted for the quad-pol Kennaugh elements [23]. Nevertheless, further investigations
covering additional sites across the Arctic are necessary to clarify the utility of the dual-pol
Kennaugh elements for land cover mapping.

1.3. The Kennaugh Element Framework as a Potential Tool to Monitor the Artic Tundra Landscape
Scatter Mechanisms

The KEF introduced by Schmitt et al. [36] is a mathematical framework for analyzing
PolSAR data. The framework is unique as it can be applied on single-, dual- and quad-pol
data for sensors with any frequency and spatial resolution. In addition, it is a framework
that works well for multi-temporal analysis. This method is especially useful for the dual-
pol HH/HV TSX time series employed in this study, as most other dual-pol decomposition
methods are designed for specific PolSAR sensors [23,36]. Moreover, the framework uses
the multi-scale multi-looking method, which provides improved radiometric stability while
preserving the geometric resolution [36].

Previous studies used KEF as a tool for land cover classification [37,38].
Moser et al. [37] applied KEF on an X-band SAR HH/VV-polarized time series of the
Lac Bam wetland in Africa and showed the possibilities of this method for land cover
change detection. These authors found that a multi-temporal approach improved the
classification accuracy and that K0 and K3 elements were most important for separating
flooded from non-flooded vegetation. Open water was accurately classified by using solely
intensity data (K0). Schmitt and Brisco [38] studied the temporal changes of the Gagetown
wetland in New Brunswick, Canada, for each Kennaugh element separately [38]. In this
way, they could link the temporal variation in flood extent to either changes in backscatter
intensity or polarimetric behavior. Even though KEF is a solid method to decompose
PolSAR data, relatively little attention has been given to the response of the Kennaugh
elements in context to Arctic tundra landscapes.

The full Kennaugh matrix derived from C-band SAR is studied most in the Arctic [14,15,17],
followed by the Kennaugh matrix derived from X-band SAR HH/VV [14,15,18,39] and only
the study by Ullmann et al. [14] employed the Kennaugh matrix derived from X-band SAR
HH/HV data. The Kennaugh elements were preferred over other polarimetric features for class
separability [14] and classification [17]. Permafrost landscape features across three study sites in
the Arctic were mapped using a simple threshold classification method based on the probability
density functions of the K0, K3, and K4 elements derived from X-band HH/VV data [18].
Furthermore, the study by [39] illustrated the potential of the K0 element from C-band SAR
VV/VH in combination with the K0 element from X-band SAR HH/VV for separating between
tundra and different wetland types. To our knowledge, the temporal behavior of the Kennaugh
elements has not yet been investigated for Arctic tundra land cover types. Moreover, the KEF
was not employed on X-band HH/HV data to map polygonal tundra grounds specifically,
which could be of an advantage due to the sensitivity of X-band HV data to tundra land
cover classes [23].

1.4. Aim and Objectives

This study investigates the seasonal backscatter mechanisms that characterize the
Arctic tundra of the Canadian Beaufort Coast area, with the aim of improving medium-
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to-high resolution Arctic tundra land cover mapping. We combined field observations
with a high-resolution optical image and a time series of dual-pol HH/HV X-band SAR
data. The objectives of our study are two-fold: (i) analyzing a time series of Sigma Nought
and Kennaugh element values for differences and similarities between land cover types,
and (ii) testing the feasibility of PolSAR derived predictor variables for tundra land cover
classification using a Random Forest (RF) classifier. For the Komakuk Beach study site,
two medium spatial resolution land cover products are available. A product based upon
Landsat-8 data with a resolution of 30 m [40] and a product based upon Sentinel-1 (S1) and
-2 (S2) data with a resolution of 20 m [41]. However, higher-resolution land cover products
are necessary for up scaling soil properties and for monitoring local processes, such as
the degradation of polygon mires [42]. This study presents a high-resolution (≈5 m) land
cover classification method based on a time series of dual-pol TSX data.

2. Materials
2.1. Area Description

The Komakuk Beach study area is located on the coastal plain of the Beaufort Sea
in the Yukon Territory, Canada (Figure 1 and Table 1). The area covers 27 km2 and lies
within the Ivvavik National Park, which is part of the Inuvialuit Settlement Region [43].
In the period 1995–2015, the mean annual air temperature at the Komakuk Beach climate
station ranged between −8 and −12 °C [44]. The climate is classified as Polar Tundra or
Cold by the Köppen–Geiger Classification [45]. The topography of Komakuk Beach is
mostly flat with some higher elevation toward the foothills of the British Mountains. The
Quaternary deposits consist of colluvium deposits on the hill slopes and alluvium and
lacustrine deposits on the coastal plain [46]. The study site is situated within the continuous
permafrost domain [47], and the periglacial geomorphology is characterized by ice-wedge
polygons delineated by troughs overlying massive below ground ice-wedges. This results
in a typical microrelief pattern consisting of rims and low- and high-center polygons. The
circumarctic vegetation map (CAVM) classifies Komakuk Beach to the bioclimate subzone
E, which includes the densest vegetation cover of the Arctic and consists predominantly of
tundra species [8,48]. The ice-wedge polygons are dominated by dwarf shrubs, graminoids,
forbs, lichen, and moss. Taller shrubs are found around rivers and creeks [8].

Figure 1. (A) Overview of Northwestern Canada. (B) Beaufort Coast Area, with TerraSAR-X (TSX) extent and climate
stations. (C) Komakuk Beach study area with the reference objects, boundaries of deposits (white line), and terrain. DEM(s)
courtesy of the Polar Geospatial Center [49].
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Table 1. Data sources and specifications. ArcticDEM = Arctic Digital Elevation Model [49], WV-3 = WorldView-3 [50],
TSX = TerraSAR-X [51], GCP = Ground Control Point, µ = mean, x̃ = median, δx = ground range resolution, δy = azimuth
resolution.

Field Campaign Date Location Datasets Plot Count

Komakuk Beach 3–24 August 2019 Top: 69°36′19.22′′ N Soil 47
Bottom: 69°32′11.59′′ N Vegetation 47
Left: 140°15′54.26′′ W Landcover 105
Right: 140°5′33.68′′ W

Product Tile Spatial Resolution Registration Count of GCP’s µ vertical
residual

x̃ vertical
residual

ArcticDEM 42_18 2 m ICEsat 998 −0.001 m −0.062 m
43_18 1018 0 m −0.018 m

TanDEM-X DEM 10 m

Sensor Acquisition Date Spatial Resolution Image Bands

WV-3 12 July 2019 1.31 m Coastal: 400–450 nm Red: 630–690 nm
Blue: 450–510 nm Red Edge: 705–745 nm

Green: 510–580 nm NIR-1: 770–895 nm
Yellow: 585–625 nm NIR-2: 860–1040 nm

0.33 m Panchromatic: 450–800 nm

Sensor Acquisition Date Spatial Resolution
δx × δy Mode Incidence

Angle (θ)
Polarization NESZ

TSX 27 July 2019 2.1 m × 2.3 m Stripmap 41.6◦ HH/HV −19 dB
TSX 18 August 2019 2.1 m × 2.3 m Stripmap 41.5◦ HH/HV −19 dB
TSX 9 September 2019 2.1 m × 2.3 m Stripmap 41.6◦ HH/HV −19 dB
TSX 20 October 2019 2.1 m × 2.3 m Stripmap 41.6◦ HH/HV −19 dB
TSX 20 October 2019 2.1 m × 2.3 m Stripmap 41.6◦ HH/HV −19 dB
TSX 14 November 2019 2.1 m × 2.3 m Stripmap 41.6◦ HH/HV −19 dB
TSX 6 December 2019 2.1 m × 2.3 m Stripmap 41.6◦ HH/HV −19 dB

2.2. Remote Sensing Data

A SAR dataset was acquired spanning a period from July to December 2019, hence
covering the peak-level of vegetation growth, the senescence stage, and the snow-covered
period (Table 1). We specifically selected this period, as the studies by Duguay et al. [11]
and Wang et al. [19] point out, that the environmental conditions from a non-frozen to a
frozen state result in unique temporal backscatter trends for tundra land cover classes. The
time series consists of seven X-band dual-pol (HH/HV) StripMap (SM) scenes ordered
from the TSX and TDX platforms operated by the German Aerospace Center (DLR). The
sensor settings were chosen to provide optimal polarimetric data for Arctic tundra land
cover types. The X-band wavelength (3.1 cm) potentially interacts with low tundra and
wetland vegetation [14] and is sensitive to soil moisture and surface roughness of barren
and low vegetated areas [35]. The SM mode provides a relatively high resolution while
enabling dual polarization [52]. HH/HV polarization was chosen as quad-pol data were
not available for the year of the field campaign (2019) and the incidence angle was set
to a high angle (θ = 41.6◦) to increase the relative importance of volume scattering [6,53].
The settings were the same for each acquisition date to enable stacking and comparison
of the images. A Digital Surface Model (DSM) of the area was created by merging two
ArcticDEM product tiles, version 3.0 Pan-Arctic Release 7 [49]. The absolute vertical and
horizontal accuracy is approximately 4 m without using uniform Ground Control Points
(GCP). Co-registration of the ArcticDEM to laser altimetry data from the ICESat satellite
improved the accuracy (Table 1). The ArcticDEM DSM should be sufficient to perform
terrain corrections on the SAR imagery because the topography of study area is largely
flat, the vegetation consists mostly of low vegetation and the DSM does not contain data
gaps. A cloud-free high-resolution (1.24 m) multi-spectral image was acquired by the
Worldview-3 (WV-3) satellite on 12 July 2019, approximately three weeks before the field
campaign (Table 1) [50]. Optical images with no cloud cover are sparse in the Arctic;
therefore, it is hard to exactly match field campaigns and image acquisitions [21]. However,
both the WV-3 image acquisition and the field campaign took place during the peak-level
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of vegetation growth which is crucial for upscaling the field plots to reference objects. The
predicted horizontal accuracy without using GCP’s is smaller than 3.5 m [54]. In addition,
three cloud-free Sentinel-2 multi-spectral images from the European Union’s Copernicus
program were visually interpreted for snow cover conditions on 2 October, 20 October, and
24 October 2019.

2.3. Climate Data

The Komakuk Beach climate station (69°35′41.3′′ N, 140°10′39.5′′ W) was not op-
erating during the field campaign and satellite acquisition in 2019; therefore, climate
data from the Herschel Island climate station (69°34′12.0′′ N, −138°51′36.0′′ W) were
acquired. This climate station is located approximately 50 km to the East of Komakuk
Beach (Figure 1). Figure 2 shows the mean daily temperature for 2019, the total daily
precipitation for 2019, the average daily mean temperature (1995–2017) for both climate
stations and covers the periods of satellite acquisition and field work. August was sig-
nificantly more moist than the other months, while July and the beginning of Septem-
ber were relatively dry. The temperature dropped below freezing in October, and the
first snow cover was observed on the 20 October Sentinel-2 acquisition (Figure S1, see
supplementary data). The wind was strong during the 17 July, 18 August, and 6 De-
cember TSX acquisitions, with speeds up to 46 km/h. By contrast, the wind was very
calm during the 9 September acquisition (8 km/h) (Table S1, Figure S2) [44]. The climate
data are used to group the TSX images into the following periods: peak-level vegeta-
tion (27 July and 18 August); senescence (9 September and 1 October); and snow cover
(23 October, 14 November, and 6 December).

Figure 2. The mean daily air temperature (red line) and total daily precipitation (black bars) for 2019. The average daily air
temperature for the period 1995 till 2017 (Herschel Island station, black line; Komakuk Beach station, gray line).

2.4. In Situ and Reference Data

During the field campaign, 105 circular plots (5 m radius) were sampled (Table 1). In
situ measurements of soil and vegetation parameters were collected for 47 circular plots (5 m
radius) using a stratified random sampling approach. The geological units alluvial fan, lacus-
trine, and colluvium were used as strata with 34, 8, and 5 sampling points, respectively [46].
Lower sampling numbers were obtained for the units lacustrine and colluvium due to the
inaccessibility of the landscape and lower spatial coverage of those classes. In each plot, the
land cover type was described, and the center GPS coordinate was documented. Soil samples
were taken at the plot center down to one meter with depth increments of 10 cm. For each
soil sampling site, the ALD was measured and soil horizons were classified from a soil pit
following the USDA Soil Taxonomy system [55]. The volumetric moisture content (VMC) [42]
was calculated, and statistical analyses were performed using the AQP library in R statistical
software version 3.6.3 [56,57]. The field protocol by Räsänen et al. [21] was used to collect
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vegetation data. We measured the mean vegetation height and estimated %-cover for the
Plant Functional Types (PFT): Salix sp., Betula nana, evergreen shrubs, deciduous shrubs, forbs,
graminoids, and mosses. The remaining 58 field plots were randomly collected and contained
solely a land cover description and a GPS coordinate. In addition to the field plots, 38 ground
truth points for water, exposed soil, and anthropogenic structures were identified from the
WV-3 image. The minimum distance between all sampling points was 150 m to ensure a
spatially balanced dataset.

3. Methods

The workflow in Figure 3 was followed to achieve the objectives of this study. First,
the SAR imagery was processed to Sigma Nought intensity and Kennaugh element values
(Section 3.1). Second, the field plots were scaled to objects by segmentation of the WV-3
image and the ArcticDEM (Section 3.2). Third, the SAR pixel values within these objects
were extracted as reference data, and a backscatter analysis was performed. Fourth, four
classifications schemes were tested to classify land cover using a RF classifier (Section 3.3).

Figure 3. Workflow of Methods. The grey objects represent input and output data. The white squares
represent the processing steps. MSML = Multi-looking multi-scale.

3.1. Pre-Processing of Polarimetric SAR Data

The time series of TSX scenes were obtained as Single Look Slant Range Complex
(SSC) data products. The SSC data encompassed both amplitude and phase information
which were stored as complex numbers and were corrected for gain variations of the
instrument, the elevation antenna pattern, and range spread loss. Furthermore, additional
noise by the antenna was estimated in Noise Equivalent Beta Nought (NEBN) values and
documented in the metadata [58]. Two PolSAR processing chains were applied to the SSC
data: (i) the traditional SAR workflow for retrieval of Sigma Nought intensity values and
(ii) the Kennaugh Element Framework (KEF) [36] for retrieval of the Kennaugh elements.
The resulting Sigma Nought and the Kennaugh Element data stacks were converted to
logarithmic scaling and projected in the WGS 1984 UTM Zone 7N coordinate system with
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a pixel spacing of 5 m. Hereafter, we refer to the two datasets as Sigma Nought (SN) and
Kennaugh Element (KE) data.

3.1.1. Processing Steps of the Traditional SAR Workflow

The traditional SAR workflow was completed in SNAP 8.0.0 [59] and included the
following processing steps: First, the SSC data were radiometrically calibrated to Sigma
Nought (σ0) values by calculating the Digital Numbers (DN) and by correcting the data
for the calibration constant, the processing scaling factor (ks), the local incidence angle
(θloc), and the NEBN [58]. Then, the calibrated data were co-registered with a SSC pixel
accuracy of 0.05 RMS. This process included collocating the images based on their orbital
data, cross-correlating the master and slave images, and warping the slave images using
a first-order polynomial warp with a cubic convolution resampling method. Next, multi-
looking (2 looks in both range and azimuth) was applied to obtain a square ground range
resolution of approximately 5 m. Last, the data were terrain corrected and geocoded to the
WGS 1984 datum using Range Doppler equations together with the ArcticDEM [49]. The
pixel spacing after terrain correction was 5 m with a pixel location error of approximately
2.3 m [51]. Note that in order to preserve the spatial resolution, no speckle filter step was
included in the traditional SAR workflow and that the radiometric performance of TSX
StripMap HH/HV is limited by the noise floor with a NESZ value of −19 dB for both
channels [51].

3.1.2. Processing Steps of the Kennaugh Element Framework

The KEF included the following processing steps: First, the NEBN was estimated, and
the SSC data were converted to radar brightness (β0) and subsequently calibrated to Sigma
Nought (σ0) values [58]. Then, K0 and K1 were calculated from the Kennaugh Matrix
(Equation (1)). Multi-looking (2.4 and 2.17 looks in range and azimuth) was applied to the
data resulting in a square ground resolution of approximately 5 m. Next, the data were
terrain-corrected using Range Doppler equations and the TanDEM-X DEM with a WGS
1984 datum. The pixel spacing after terrain correction was 5 m with a pixel location error of
approximately 2.3 m [51]. After that, the Multi-Scale Multi-Looking (MSML) method was
applied. In the MSML method, the local number of looks is adapted to the image content
with higher look numbers for homogeneous areas (e.g., water) and lower look numbers
for heterogeneous areas (e.g., rock). The optimal look number for each individual pixel is
determined by the image pyramid which is created by the help of a novel perturbation-
based noise model that combines both additive and multiplicative noise contributions and
automatically adapts to the sensor and imaging mode characteristics via the delivered
metadata [36]. This method is uniquely compared to other speckle filters as it removes
speckle and thereby increases the signal-to-noise ratio (SNR) without reducing the spatial
resolution, which is an advantage for landscapes which exhibit high spatial heterogeneity.
Finally, the scenes were co-registered with a pixel accuracy of 0.05 RMS. A first-order
polynomial warp and a cubic convolution resampling method were used for this process.
It is important to note that the noise floor of the HH and HV channels also influences
the Kennaugh elements. Especially, K1 is influenced by noise from the HV channel for
acquisitions where HV < NESZ.

3.1.3. Theoretical Background of the Kennaugh Element Framework

The Kennaugh Matrix, K, can be used to define both coherent and incoherent scattering
by relating the Stokes vector of the incident g

E I
and backscattered g

ER
wave to each

other [60]. For a monostatic system in a Backscatter Alignment (BSA) framework, the
Kennaugh Matrix is symmetrical and consists of ten real independent Kennaugh elements.
The normalized Kennaugh matrix, k, is derived by dividing the Kennaugh Matrix by K0
and the elements range between −1 and +1 (Equation (1)). The Kennaugh elements can be
defined in either linear, logarithmic, or normalized scaling, which allows for a comparison
with other decomposition methods [36].
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[K] =


K0 K4 K5 K6
K4 K1 K9 K8
K5 K9 K2 K7
K6 K8 K7 K3

 = K0


1 k4 k5 k6
k4 k1 k9 k8
k5 k9 k2 k7
k6 k8 K7 k3

 = K0 · [k] (1)

The KEF decomposes the Kennaugh Matrix into Kennaugh elements to be able to
differentiate between scattering mechanisms of targets. With a quad-pol SAR system, all ten
Kennaugh elements can be derived. For dual or single-pol SAR systems, the total intensity,
K0, can always be derived, but the number of other polarimetric elements depends upon
the available polarimetric channels. For the HH/HV SAR system used in this study, the
definition of the Kennaugh Matrix is [36]:

KHH/HV =


K0 0 K5 0
0 K1 0 K8

K5 0 0 0
0 K8 0 0

 (2)

with K0 describing the total intensity (Equation (3)) and K1 describing the difference
between co- and cross-pol intensity (Equation (4)). K5 and K8 solely hold information for
deterministic, non-natural targets. Additionally, the polarimetric phase is generally not
calibrated for cross-polarized images. The K5 and K8 use this phase information which
causes both elements to be influenced by noise. For this reason, we decided against using
these Kennaugh elements in our study [36].

K0 = |SHH |2 + |SHV |2 (3)

K1 = |SHH |2 − |SHV |2 (4)

3.2. Preparation of the Reference Dataset
3.2.1. Pre-Processing of the Optical Data

The pre-processing of the WV-3 image was performed in ENVI version 5.5.2 [61]. The
image was radiometrically calibrated and atmospherically corrected to surface reflectance
values using the Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) soft-
ware. The effect of adjacency was corrected by using a point-spread function for spatial
averaging [62], and the geometric resolution of the WV-3 image was increased to 0.31 m by
using the Gram–Schmidt (GS) pan-sharpening algorithm (PATENT No 6, 011, 875.) The GS
algorithm was chosen as the study by Belfiore et al. [63] shows that the GS algorithm is
most efficient without reducing the radiometric resolution. Band 8, NIR-2, was excluded
from the pan-sharpening process as the spectral response of this band is not covered by
the panchromatic band [63]. After pan-sharpening, the data were georeferenced using the
GPS ground control points with a submeter horizontal accuracy. Finally, the Normalized
Difference Vegetation Index (NDVI) [64] was calculated by using the pan-sharpened Red
and NIR-1 bands.

3.2.2. Image Segmentation

Image segmentation was performed in the software eCognition Developer 9.4.0 using
the multi-resolution segmentation algorithm [65]. The multi-resolution segmentation
algorithm is a bottom-up approach which merges a pixel with the best-fitting neighboring
pixel based on common spatial and spectral characteristics. This process continues to merge
objects into larger neighboring objects until the conditions set by the user are met [65].
The segmentation scheme for Komakuk Beach was based upon the NIR-1, the Green, the
NDVI, and the DEM layer. The DEM layer was weighted half compared to the other
layers. The shape and compactness parameters were both kept constant at a value of 0.1
to base the segmentation process solely on spectral characteristics and to obtain natural
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object forms [66,67]. In addition, the scheme used two rounds of the multi-resolution
segmentation algorithm. In the two rounds, all parameters were kept constant, except for
the scale parameter. The first round had a scale parameter of 20 and the second a scale
parameter of 30. The scale parameter sets the maximum heterogeneity criterion and thus
determines the size of the image objects [19,66]. A larger-scale parameter allows more
heterogeneity and results in larger image objects. The optimal size of an object should be
as large as possible but should delineate the different types of land cover. The resulting
image object size ranged from 314 to 4766 m2. The image objects that intersected with the
field plots were selected as reference objects (Table 2). The SN and KE pixel values within
these objects were extracted, and subsequently, a backscatter analysis was performed by
plotting the statistical distribution of these values in violin plots.

3.3. Classification
3.3.1. Land Cover Classification System

The Land Cover Classification (LCC) system developed for the Komakuk Beach study
area consists of nine classes, which represent typical environments for tundra landscapes
along the Arctic coastal plain of the Beaufort Coast (Table 2). This LCC system is based
upon the wetland classification system of the Ramsar Convention [68] and the Canadian
Wetland Classification System (CWCS) (Table S2) [69]. The classes were selected to account
for the temporal and spatial differences of the vegetation structure, the dielectric properties
of the ground, and the TSX sensor properties. A different SAR signature is expected for
fens and low- and high-center polygons due to differences in dielectric properties and
surface roughness. High-center polygons have a convex shape with better drained moisture
conditions than concave low-center polygons and sloping fens [7]. In addition, low-center
polygons and fens are similar in vegetation type and structure, but the typical polygonal
microrelief structure, which might influence the SAR backscatter, is absent for fens [7].
The shrubs class is composed of more dense and taller vegetation than the other classes.
Hence, a stronger volume scattering component is expected for shrubs compared to the
other classes [35]. In addition, X-band SAR is sensitive to snow grains [6,19,53]. Therefore,
different snow distribution patterns for vegetation classes in winter might improve class
separation. Furthermore, the temporal SAR signature for the classes sea and fresh water
should be different due to variations in environmental factors (e.g., sea currents, wind
conditions, and ice formation) [53].

Table 2. Land cover class description including reference object size and training and validation pixel count.

Class Class Description Reference Objects Pixel Count
Count Area (m2) Training Validation Total

High-center polygon HCP

Wetland polygon bog (often >40 cm
surface peat) dominated by lichen
and shrubs. Average shrub
height < 20 cm

61 108,552 3024 1295 4319

Low-center polygon LCP
Wetland polygon fen (often >40 cm
surface peat) dominated by
graminoids

39 59,152 1661 711 2372

Fen F
Wetland stream fen or sloping fen
(often >40 cm surface peat)
dominated by graminoids

11 19,296 537 230 767

Meadow M Riverine floodplain dominated by
graminoids with mineral soils 5 8790 245 104 349

Shrubs Sh
Riverine floodplain dominated by
woody shrubs with mineral soils.
Average shrub height >40 cm

12 14,113 398 170 568

Bare soil BS Exposed soil along the coast, lakes,
and streams 14 15,625 445 190 635

Fresh water FW Freshwater lakes, ponds, and
streams 19 39,995 1116 477 1593

Sea S Sea water 8 14,586 411 176 587
Other O Anthropogenic structures 10 15,003 423 181 604
Total 179 295,114 8260 3534 11,794
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3.3.2. Preparation of the Predictor Variables

The predictor variables were derived from the TSX time series and consisted of: HH and
HV Sigma Nought intensities; the Cross-polarized Ratio (cR); the Kennaugh Matrix elements
K0 and K1; and the Gray Level Co-occurrence Matrix (GLCM) texture measures (Table 3). The
cross-polarized ratio can be used to determine the relative increase or decrease in the HV-
channel and is an indicator for volume scattering. Texture metrics characterize image texture
or transitions between graytone levels and thereby help to identify targets of interest [70].
However, note that the texture metrics degrade the spatial resolution. The metrics were
calculated using the GLCM with a 7 × 7 moving window. The cross-polarized ratio and the
texture values were extracted from the reference objects and added to the reference dataset.
The multi-temporal classification schemes SN C1 and KE C1 were executed to evaluate the
feasibility of the SN and KE data for land cover classification. In addition, the added value of
texture predictors was tested by scheme SN C2 and KE C2 (Table 4).

Table 3. Polarimetric and texture predictor variables.

Name Description Symbol Source

HH Sigma Nought intensity of the HH channel HH n/a
HV Sigma Nought intensity of the HV channel HV n/a
cR Cross-polarised ratio of the HH and HV channels. cR [53]
K0 Kennaugh Matrix element, total intensity K0 [36]
K1 Kennaugh Matrix element, difference between co- and cross-pol intensity K1 [36]

Mean Local mean of the co-occurrence matrix M [70]
Variance Local variance of the co-occurrence matrix V [70]

Homogeneity Local homogeneity of the co-occurrence matrix H [70]
Contrast Local contrast of the co-occurrence matrix Con [70]

Dissimilarity Local dissimilarity of the co-occurrence matrix D [70]
Entropy Local entropy of the co-occurrence matrix E [70]

Second Moment Local angular second moment of the co-occurrence matrix ScM [70]
Correlation Local correlation of the co-occurrence matrix Cor [70]

Table 4. The Random Forest classification schemes with the layer naming convention for the predictor variables and the total
number of predictors. The term %date% stands for the TerraSAR-X acquisitions: jul27, aug18, sep09, oct01, oct23, nov14, dec06.

Classification Schemes and Layer Naming Convention

Name Description Layer Naming Convention Predictors

SN C1 Sigma Nought (SN)
classification scheme

HH_%date% 21
HV_%date%
cR_%date%

SN C2

Sigma Nought (SN)
classification scheme

using texture predictors

HH_%date%_M HV_%date%_M cR_%date%_M 168
HH_%date%_V HV_%date%_V cR_%date%_V
HH_%date%_H HV_%date%_H cR_%date%_H
HH_%date%_Con HV_%date%_Con cR_%date%_Con
HH_%date%_D HV_%date%_D cR_%date%_D
HH_%date%_E HV_%date%_E cR_%date%_E
HH_%date%_ScM HV_%date%_ScM cR_%date%_ScM
HH_%date%_Cor HV_%date%_Cor cR_%date%_Cor

KE C1 Kennaugh Element (KE)
classification scheme

k0_%date% 14
k1_%date%

KE C2

Kennaugh Element (KE)
classification scheme

using texture predictors

k0_%date%_M k1_%date%_M 112
k0_%date%_V k1_%date%_V
k0_%date%_H k1_%date%_H
k0_%date%_Con k1_%date%_Con
k0_%date%_D k1_%date%_D
k0_%date%_E k1_%date%_E
k0_%date%_ScM k1_%date%_ScM
k0_%date%_Cor k1_%date%_Cor

3.3.3. Random Forest Classifier

A Random Forest (RF) classifier, optimized for each specific classification scheme,
was used to classify land cover (Table 4). A RF [71] builds numerous decision trees, with
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each tree consisting of a randomly selected sub-sample, the out-of-bag (OOB) sample. A
random subset of input predictor variables is selected, and the best predictor variable is
chosen to split the data into homogenous sub-classes. The process continues until the tree
is fully grown [71]. The number of trees in the forest is set by the parameter, ntree, and the
number of input predictors to select the best split variable is mtry. The OOB error rate is
the prediction error of the OOB- sample of the data. The importance of predictor variables
is given in Mean Decrease Accuracy (MDA) and Mean Decrease Gini (MDG). In this study,
we use the MDA to rank the predictor variables. The MDA is a measure of prediction
strength for each variable. The rate of accuracy decrease, as the predictor variable values
are randomly removed from the tree, is averaged over the total trees in the forest. RF is
a good classification method for spatially variable data, such as polarimetric SAR, since
it is a non-parametric method which is robust for noise and outliers [71]. Furthermore,
overfitting is reduced due to the random selection of OOB samples [71].

The land cover classification was performed using the RandomForest [72], caret [73],
and varSelRF [74] libraries in R statistical software version 3.6.3 [57]. For each classification
scheme, the optimal model was selected by detecting the best tuning parameters and
selecting the most favourable set of predictors. First, the reference dataset was split into
training (70%) and validation (30%) data using a stratified random sampling approach
based on the land cover class. Then, a baseline RF model was developed from the training
data, using the default values for the parameters mtry and ntree. The mtry default value
is the square root of the number of predictors, and the ntree default value is 500 trees [71].
The next step involved tuning these model parameters using a 10-fold cross-validation for
evaluation. A 10-fold cross-validation randomly splits the training dataset into 10 groups,
where each group is set aside as validation data and the remaining groups are used to
train the model. The highest accuracy value was used to select the optimal value for mtry.
The optimal number of trees was selected when the OOB RMSE stabilized. After tuning,
two predictor variable sets were tested: set one used all predictors as input data (RF1) and
set two used the optimal set of predictors selected by the varSelRF package (RF2). The
optimal RF model for each classification scheme was selected by evaluating the overall
accuracy (OA), the model complexity, and the computational efficiency. Finally, the selected
optimal model was used to classify the Komakuk Beach study area. The classification
schemes were compared by analyzing the confusion matrices, the variable importance
plots and the land cover maps. Olofsson et al. [75] recommended to report User’s Accuracy
(UA), Producer’s Accuracy (PA), and Overall Accuracy (OA). The UA and PA can help to
describe similarities and differences in polarimetric response for the land cover types, and
the variable importance plots can indicate which predictors are most important for land
cover mapping.

4. Results
4.1. Characterization of Land Cover Classes by In Situ Observations

The field-based investigation showed that land cover types are characterized by differ-
ences in soil type, soil moisture, vegetation structure, and PFT assemblages. In addition, the
in situ data, collected in August, exemplified the influence of the microtopography on soil
moisture conditions, vegetation structure, and species distribution. Elevated areas, such as
high-center polygon centers and low-center polygon rims, had a relative low mean VMC
(Figure 4). These elevated areas were covered with dwarf shrubs and other low vegetation
forms (Table 5) consisting of Betula nana, Salix sp., evergreen shrubs, lichens, and mosses.
While depressions, such as low-center polygon centers and fens, had a relatively high
mean VMC (Figure 4) with vegetation characterized by graminoids, Salix sp., and mosses.
Riverbanks meadows exhibit well-drained mineral soils (Figure S3), which explains the
low VMC (Figure 4). Medium-to-tall Salix sp. shrubs occurred predominantly along creeks,
streams, and no soil samples were available for these locations. The active layer depth of
the study area ranged from 20 to 52 cm, with a mean value of 36± 7 cm (Figure S3). The
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soil temperature varied at the soil surface from 4.0 to 7.6 °C and decreased to almost 0 °C
at the permafrost table.

Figure 4. The mean Volumetric Moisture Content (VMC) for each land cover class normalized by the
Active Layer Depth (ALD). The y-axis presents the normalized depth relative to the ALD (Figure S3).

Table 5. Vegetation height in centimeters grouped by land cover class. Vegetation height classes are:
dwarf (0–10 cm), low (10–40 cm), medium (40–200 cm), and tall (>200 cm).

Land Cover Class Min (cm) Max (cm) Mean (cm) SD (cm) Height Class

Fen 17 36 27 7 low
High-center polygon 6 20 9 4 dwarf/low
Low-center polygon 8 29 17 5 low
Meadow 12 23 17 6 low
Shrubs 40 230 n/a n/a medium/tall

4.2. Temporal Analysis of Backscatter Statistics

In order to characterize the land cover classes and to analyze the seasonal development
of X-band SAR backscatter, the statistical distribution of the Sigma Nought intensity and
the Kennaugh element values for the TSX time series were visualized in violin plots
(Figure 5). The Sigma Nought intensity values displayed a larger interquartile range than
the Kennaugh element values. Water, soil, and vegetation classes were characterized by
clear temporal differences in intensity and polarimetric information, while differences
within the vegetation classes were more nuanced. All vegetation classes showed a drop (of
approximately 3 dB) in HV backscatter on 23 October. The classes low-center polygon, fen
and shrubs showed an increase in HV (mean up until −17 dB) from peak-level vegetation
to senescence stage, while the HV values (mean around from −18 to −19 dB) remained
stable for meadow and high-center polygon. Additionally, higher precipitation values were
reported for 18 August which could explain the lower K0 values observed on this date for
the classes low-center polygon, fen, and meadow (Figure 2). Furthermore, the class shrubs
showed a remarkably higher HH backscatter signal in winter than in summer. This is in
contrast with the results from Bartsch et al. [24] where a drop in HH backscatter is described
over land. The violin plots displayed less seasonal variability and lower backscatter values
for the class bare soil than the vegetation classes. Fresh water and sea returned a low K0
(mean < −15 dB) signal in summer, which steadily increased in winter (mean > −14 dB).
However, the increase in the K0 signal occurred at an earlier acquisition date for fresh water
compared to sea. Moreover, the low backscatter values in summer for both fresh water and
sea varied between the different acquisition times.
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Figure 5. Violin plots for each TerraSAR-X acquisition date of the HH and HV Sigma Nought intensity values and the K0 and
K1 Kennaugh element values grouped by land cover class. The box plots display minimum, lower quartile, median, upper
quartile, and maximum. The red line connects the mean value for each acquisition date. The recorded periods are: peak-level
vegetation (27 July and 18 August); senescence (9 September and 1 October); and snow cover (23 October, 14 November, and 6
December).
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4.3. Multi-Temporal Land Cover Classification

The optimal RF model for each multi-temporal classification scheme was selected
based on the model performance of the two predictor variable sets, RF1 and RF2 (Table 6).
The OOB RMSE tended to stabilize for 200 trees. Model overfitting was not considered
a problem for the optimal selected models (OAtrain-OAval < 1%), and generally, RF2
models reduced model complexity and thus computation time. Table 7 reports the accuracy
values of the selected RF models for the SN and KE classification schemes based on the
external validation set. The classification results achieved with the SN C1 scheme were
poor, especially with the UA and PA values for the vegetation classes being low (Table 7).
Significantly better classification results were achieved with the KE C1 scheme (OA in-
creases by 34.7%). The use of texture predictors increased the accuracy for both the SN
and KE schemes. The spatial resolution, however, decreased significantly. The best balance
between high accuracy and high spatial resolution was obtained with classification scheme
KE C1. This model separated the water classes well from the other classes (UA > 98.9%,
PA > 97.1%). More confusion, however, occurred between the vegetation classes (Table 8).
High-center polygon, characterized by sparse and low vegetation, is the best performing
vegetation class (UA 91.2%, PA 95.9%). The classes meadow and shrubs exhibited the
lowest accuracy values mainly due to confusion between the two classes and with the class
high-center polygon. The main reason for this is that these land cover classes represented
narrow bands along rivers and stream, and they make up a very small percentage of the
study area (Table 2). Both high- and low-center polygon showed more commission errors
than omission errors. These two classes were included wrongly in the other vegetation
classes and the bare soil class, which means that high- and low-center polygons are slightly
over-represented in the classification map (Figure 6).

Table 6. Random Forest (RF) model performance for the multi-temporal classification schemes (Table 4).
OOB error = Out-of-the-Bag error, OA = Overall Accuracy, train = training data, val = validation data.

Sigma Nought Kennaugh Element
Scheme SN C1 SN C2 KE C1 KE C2

Model performance

Optimal model RF2_SNC1 RF2_SNC2 RF1_KEC1 RF2_C6
ntrain 8235 8235 8260 8260

Predictors 17 107 14 58
mtry 3 9 2 13
ntree 200 200 200 200

OOB error (%) 41.6 2.7 7.6 0.7
OAtrain (%) 58.6 97.3 92.2 99.2
Time (min) 1.1 5.1 0.8 2.8

External validation

nval 3523 3523 3534 3534
OAval 57.7 97.6 92.4 99.3

OAtrain − OAval 0.9 −0.3 −0.2 −0.2

The KE C1 land cover map illustrates the general patterns of vegetation, bare ground,
and water observed from the WV-3 image well. Shrubs and meadow appeared mostly
along the rivers, high-center polygons dominated on the hill slopes and the coastal plain
displayed an alternating pattern of fens and low- and high-center polygons. However, the
land cover map shows low-center polygons on the hill slope, which disagrees with the
visual interpretation of the WV-3 image and the knowledge from the field. This error can
be explained by the low number of field plots in the colluvial geological unit due to the
difficulties in accessing this area in the field.
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Table 7. The User Accuracy (UA) and the Producer Accuracy (PA) for each land cover class and
classification scheme (Table 4).

Sigma Nought Kennaugh Element
SN C1 SN C2 KE C1 KE C2

UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%)

Bare soil 79.8 37.4 99.5 96.8 95.7 82.6 99.0 100.0
Fen 78.3 7.8 100 95.7 94.2 84.8 100.0 99.6
High center polygon 51.2 87.3 95.6 99.5 91.2 95.9 99.6 99.3
Low center polygon 43.8 31.2 97.6 96.1 86.7 91.8 98.9 99.7
Meadow 0 0 100 88.6 100 77.9 100 99.0
Other 75.9 12.4 100 98.9 94.9 92.3 100.0 100.0
Sea 84.8 83.3 100 98.9 98.9 99.4 100.0 99.4
Shrubs 56.4 13.1 98.1 91.7 89.8 77.6 97.1 97.1
Fresh water 87.7 85.3 99.2 99.4 99.1 97.1 99.8 99.6

OA (%) 57.7 97.6 92.4 99.3

Table 8. Confusion matrix for the multitemporal classification scheme KE C1 (Table 4). OA = Overall Accuracy, PA =
Producer’s Accuracy, and UA = Users’s Accuracy.

XXXXXXXXX
Pred. Ref. BS F HCP LCP M O Se Sh FW Total UA (%)

Bare soil 157 0 1 0 0 1 0 0 5 164 95.7
Fen 1 195 5 3 0 2 0 1 0 207 94.2
High-center polygon 19 13 1242 55 12 5 0 13 3 1362 91.2
Low-center polygon 3 18 45 653 5 3 0 22 4 753 86.7
Meadow 0 0 0 0 81 0 0 0 0 81 100.0
Other 8 1 0 0 0 167 0 0 0 176 94.9
Sea 0 0 0 0 0 0 175 0 2 177 98.9
Shrubs 1 3 2 0 6 3 0 132 0 147 89.8
Fresh water 1 0 0 0 0 0 1 2 463 467 99.1

total 190 230 1295 711 104 181 176 170 477 3534 OA (%)
PA (%) 82.6 84.8 95.9 91.8 77.9 92.3 99.4 77.6 97.1 92.4

Figure 6. (A) Land cover map of the Komakuk Beach study area based on the multi-temporal classification scheme KE
C1 (Table 4) [76]. DEM(s) courtesy of the Polar Geospatial Center [49]. (B) Subset of the KE C1 land cover map. (C) The
subset with a WorldView-3 optical image. Imagery [2019] Digital Globe ©, Maxar Technologies, Westminster, CO, USA
[50]. (D) The subset with a RGB-image of the best predictors derived from the TerraSAR-X timeseries with R = L5_k0_oct23,
G = L7_k0_dec06, and B = L13_k1_nov14.
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5. Discussion
5.1. Comparison between the Sigma Nought and the Kennaugh Element Classification

The suitability of the traditional SAR workflow and the Kennaugh Element Framework
for multi-temporal land cover mapping is examined by comparing the SN C1 and KE C1
classification schemes (Figure 7). Disagreements (black pixels: 36% of total pixel count)
between scheme SN C1 and KE C1 mostly occurred at transition zones and areas with a
higher spatial heterogeneity, while good agreement is seen for homogeneous areas. This
can be linked to the reduced accuracy of SN C1 relative to KE C1 (Table 7). Classes that
are spatially homogeneous, such as fresh water, sea, and high-center polygons, show
high PA and UA values (>80%) for both classification schemes, except for the low UA
value of high-center polygon of SN C1 (51%). The classes meadow and shrubs, which
are typically located at transition zones from, e.g., wetland polygon to riverine floodplain
environments, have higher PA in the KE C1 scheme. This is also true for the classes fen
and low-center polygon, which are characterised by more fragmented distributions in the
landscape. Thus, the applicability of scheme SN C1 for land cover mapping is limited to
homogeneous classes, while the KE C1 can map homogeneous areas, heterogeneous areas,
and transition zones. Previous studies reported similar results with improved tundra land
cover class separability and mapping performance when using Kennaugh element features
compared to other polarimetric features [14,38]. The KEF may be a more suitable SAR
processing chain than the traditional SAR workflow because the KEF uses the MSML filter
which increases the radiometric stability of the Kennaugh elements without sacrificing
the spatial resolution. Accordingly, the Kennaugh elements are spatially more stable
than the Sigma Nought intensity parameters (Figure 5). The texture measures likewise
improved the spatial stability of the Sigma Nought intensity parameters and as a result
improved the classification accuracy (Table 7). For this reason, texture predictors could be
an alternative input for the RF classifier, although the spatial resolution is reduced and
small-scale heterogeneous classes are precluded from image classification.

Figure 7. The difference map of the Sigma Nought, SN C1, and the Kennaugh element, KE C1, and classification schemes
(Table 4). Black pixels indicate disagreement (36%) and class color-coded pixels indicate agreement (64%). DEM(s) courtesy
of the Polar Geospatial Center [49].
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5.2. Variable Importance of the Random Forest Classifier

The RF classifier uses the MDA to rank the predictor variables based on the prediction
strength. Figure 8 reports the MDA of the best classification result: KE C1 and Table S3
reports the predictor ranking for each individual class. The Kennaugh matrix element K0
derived from the 23 October acquisition was most important for image classification. This
image is the first acquisition with snow cover and a daily mean temperature below 0 °C
(Figure 2). Snow cover (23 October, 14 November, and 6 December) acquisitions ranked
higher than peak-level vegetation (27 July and 18 August) and senescence (9 September
and 1 October) acquisitions. Furthermore, the five most important predictors included
acquisitions from all three periods. This agrees with the findings that multi-temporal
classification is preferable for Arctic tundra land cover types [11,19]. Furthermore, the total
intensity information (K0) is most important for the RF classifier, which was also found
in the study by Mahdianpari et al. [17]. The K0 parameter can be mostly associated with
surface scattering as the sensitivity of X-band SAR and C-band SAR to volume scattering
in permafrost environments is low [17]. The K0 parameter, which is more influenced by
the HV signal, also ranks high especially for the classes sea, water, bare soil and meadow
(Table S3). The K1 parameter likely aids the RF classifier by separating land from water due
to specular reflection. Furthermore, the drop in parameter K1 on 23 October is larger for
vegetation classes that are more sensitive to volume scattering on 1 October (e.g., low-center
polygon, fen, shrubs), and is smaller for classes that are less sensitive to volume scattering
on 1 October (e.g., meadow and high-center polygon). The difference in structure for the
vegetation classes and the different temporal response of K1 for those classes might explain
the relative high ranking of K1 on 21 October.

Figure 8. Variable importance plot of the Random Forest classifier with the predictor variables from
the Kennaugh element, KE C1, and classification scheme ranked by Mean Decrease Accuracy (MDA).
See Table 4 for the layer naming convention of the predictor variables and Table S3 for the predictor
ranking for the individual land cover classes.

5.3. Seasonal Backscatter Mechanisms at X-Band for Arctic Tundra Landscapes with Respect to
Previous Findings

The classification accuracy (Table 7) and the variable importance (Figures 8 and 9) are
linked to spatial and temporal trends in backscatter statistics (Figure 5) in order to explain
the seasonal backscatter mechanisms that characterize the Arctic tundra environment at
X-band SAR and to identify which backscatter signal variations in the Kennaugh matrix
are important for class separation in the RF classifier.

The temporal development of the polarimetric parameters illustrates that the HH and
HV channels are positively correlated to K0 (total intensity) and inversely correlated to K1
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(polarization difference) (Figure 5) [36]. The classes fresh water and sea displayed clear
seasonal trends driven by surface scatter mechanisms. Low intensity values from July to
October indicate specular scattering from the water surface. From 23 October and 14 Novem-
ber onward, a steady intensity increase was observed for fresh water and sea, respectively.
The air temperature dropped below zero degrees in the middle of October and the 20 Oc-
tober Sentinel-2 acquisition displayed frozen lake surfaces and a snow-covered landscape
(Figure 2 and Figure S2). Hence, the increasing intensity values can be connected to lake-ice
and sea-ice formation, which creates a high dielectric contrast between the ice-water boundary
and subsequently increases the total intensity [11,19]. The different timing of ice-formation
likely enabled the separation of fresh water from sea (Figure 9). This relates well to the
high PA and UA values for those classes (Table 7) and explains the importance of the 23
October acquisition (Figure 8). Intensity variations in the summer can be linked to the effect
of wind on the water surface roughness [14,53]. Strong wind speeds on 17 July and 18 August
increased the surface roughness and thus the total intensity, while calm weather conditions
on 9 September and 1 October resulted in specular reflection (Table S1, Figure S2). In general,
the vegetation classes displayed a similar seasonal trend for intensity values: high values
during peak-level vegetation and senescence; a steep decrease on 23 October; and low values
in winter. The HV intensity values were close to the noise floor (−19 dB) in summer and
dropped below the noise floor in winter. The scattering was likely dominated by direct surface
scattering from the ground or snow layer, while volume scattering from vegetation and snow
played a minor role. The bare soil class displayed lower mean backscatter values and less
temporal variability than the vegetation classes. The higher intensity values for vegetation
can be explained by a higher surface roughness increasing the surface scatter component and
vegetation interactions in summer increasing the volume scatter component [53]. A similar
drop in intensity was observed for bare soil on 23 October. The vegetation and soil were
likely frozen and covered by snow at the end of October. The frozen conditions decrease the
dielectric constant [6,53] and explain the reduced total backscatter. These distinct differences
in the temporal development of the intensity parameters for the soil, water, and vegetation
classes aid the separability of the RF classifier.

Figure 9. Scatter plot displaying the mean value of the reference objects for the land cover classes:
bare soil (BS), fen (F), high-center polygon (HCP), low-center polygon (LCP), meadow (M), sea (Se),
shrubs (Sh), and fresh water (FW). The x-y-z axes represent the highest-ranked predictors for the
Kennaugh element classification scheme KE C1 (Figure 8). For interpretation of the 3D plot, the
reader is referred to the web version of this article.

The vegetation classes displayed overlapping value ranges, yet subtle temporal variations
between the classes were detected which likely enabled the class separation (Figure 5 and 9).
High-center polygon was the best performing vegetation class and was easily classified
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(Table 7). Figure 5 shows lower intensity values for high-center polygon in relation to the other
vegetation classes, which can be mostly explained by the lower vegetation height (Table 5)
[19,24,26] and the relative dry soil moisture conditions (Figure 4) [26,53]. Additionally, the
class high-center polygon covers a relative large area and is spatially more homogeneous.
This likely creates a more distinct SAR signal, which helps the RF classifier to distinguish
high-center polygon from other vegetation classes. The classes low-center polygon and fen
were unique compared to the other vegetation classes as they showed an intensity increase
throughout 9 September and 1 October (Figure 5), which coincides with a relatively dry
period (Figure 2). Both low-center polygon and fens are characterized by a water table near
or above the soil surface and some occurrences of small open-water surfaces. For low-center
polygons, open water surfaces are especially prevalent in the earlier half of the growing
season after snow melt. The intensity increase in both the HH and HV channel could be
explained by a drop of the water table in the later part of the season. As a result, the volume
scatter component increases from a denser vegetation structure above the water surface and
the surface scatter component increases from direct interaction with the soil surface. The
9 September acquisition was important for low-center polygon and fens and likely helped the
separation between those classes and other vegetation classes. Furthermore, the interquartile
range for the class fens was large especially during the winter months. This could be a reason
for the misclassifications with the classes low- and high-center polygon. Shrubs are best
characterized by the relatively high HV backscatter in summer, which can be associated with
volume scattering from the shrub branches, and the relatively high HH backscatter in winter
(Figure 5). The dielectric contrast on the snow–vegetation boundary is lower than on the
air–vegetation boundary [6,53], which suggests that the snow layer reduces the sensitivity
of X-band SAR to volume scattering from the vegetation layer in winter, increasing the
contrast between HH and HV. Furthermore, wind transports snow from elevated areas to
depressions [19] and areas with taller shrubs [6]. Snow has an insulating effect on the soil
underneath, and the dielectric contrast for snow–soil surfaces is higher for thicker snow layers,
increasing the HH backscatter [6]. This implies that the increased HH values for shrubs, and
in a lesser degree for the class fens, indicate a thicker snow pack in those areas. However, care
must be taken when interpreting the backscatter values as no in situ data are available for soil,
vegetation, and snow parameters during the periods of vegetation senescence and snow cover.
The classes meadow and shrubs display an overlapping value range (Figure 5) and report the
lowest UA values (Table 7). The low accuracy can be explained by the following: meadow
and shrubs are mostly located side by side in narrow stream valleys and errors might be
introduced in the processing step of upscaling the field plots to reference objects. Further, the
classes distributed in narrow bands in the landscape can likely not be accurately delineated
with a 5 m spatial resolution TSX image product and are more prone to geolocation errors
than large-scale classes. The classification accuracy could be improved by higher-resolution
image products or a synergistic use of SAR with optical or elevation data or both [77].

The processes described above strongly indicate that surface scattering is the main
driver of the observed backscatter at Komakuk Beach. Double-bounce scattering could also
be a substantial part of the observed backscatter especially for wetland areas such as the
classes low-center polygon and fen [14,19]. Quad-pol or dual-pol HH/VV imagery would
be necessary to increase our understanding of the double-bounce component [14]. Volume
scattering likely played a minor role as a consequence of the low SNR of the HV channel.

5.4. Comparison between the Kennaugh Element Classification and Other Arctic Tundra Land
Cover Studies

The classification accuracy of the KE C1 classification (OA = 92.4%) is comparable with
other local studies in the Canadian (sub-)Arctic, which use polarimetric SAR for land cover
mapping. The study by Wang et al. [19] used a combination of multi-temporal coherence
and HH Sigma Nought predictor variables to perform an object-based classification for a
permafrost landscape on the eastern shore of the Hudson Bay. They achieved an OA of
79.3% for classifying six different land cover types. Highest PA and UA were achieved for
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thermokarst ponds (PA = 94.4%; UA = 94.4%), while most confusion occurred within the
vegetation classes (PA = 68.7–82.2%; UA = 60.6–85.2%).

In the same study area, the eastern shore of the Hudson Bay, Duguay et al. [11] mapped
land cover using the coherency matrix of quad-pol C-band Radarsat-2 data. A Support
Vector Machine classification of an October and an April image provided the best results
(OA = 90.1%), and six different vegetation classes could be separated. In the Kitikmeot
Region, Canada, a fusion of summer quad-pol C-band Radarsat-2 and DEM data was used
for mapping shoreline land cover classes [77]. A wide range of SAR predictor variables were
used, including backscatter intensity, co- and cross-pol ratios, and different decomposition
variables, as input for a RF classifier. They reported an OA of 80% with best results for
the class water (PA = 85%, UA = 94%) and lower accuracy for wetland (PA = 80%, UA =
83%) and tundra (PA = 80%, UA = 77%). The Kennaugh matrix was applied to dual-pol
HH/VV TSX data for land cover mapping of three permafrost landscape study sites across
the pan-Arctic [18]. Open water could be correctly classified under still wind conditions
(OA = 84%). However, the classification accuracy for bare surfaces varied between the study
sites, most likely due to the lack of high-resolution and up-to-date validation data. Tundra
vegetation was accurately classified (OA = 76%), but the land cover map did not distinguish
between different vegetation types. All in all, there are two main tundra land cover class
separation issues pointed out in the literature: (i) higher accuracy for homogeneous classes
(e.g. water) and (ii) more confusion within the vegetation classes.

This agrees with the results of our study. Notably, the KE C1 classification in this study
illustrated improved separability of tundra vegetation classes compared to other (sub)-Arctic
tundra classification studies, including the ability to distinguish between high- and low-center
polygons. This particular improvement can be linked to the use of the KEF which highlights
spatial differences between distinct land cover classes prevalent in the heterogeneous tundra
landscape due to: (i) the separation between intensity information (K0) and the polarimetric
information (K1) and (ii) the MLMS method which does not reduce the geometric resolution
in heterogeneous areas. Additionally, the multi-temporal approach of KE C1 exploits the
temporal changes in the Kennaugh elements of the vegetation, soil, and water classes and
thereby increases class separability. Figure 10A displays the land cover product of this study
based on a multi-temporal X-band HH/HV SAR data (KE C1), together with Figure 10B, a
land cover product based on a fusion of optical and C-band VV SAR data [41] and, Figure 10C
a geomorphology map based on solely optical data [40]. Each of the three maps displays the
lake, polygonal patterns, and a comparatively wet area located in the northeast of the study
site, which is characterized by a rather specific plant community. However, please note that it
is difficult to compare exact land cover classes to other pieces of work within this areas as,
the land cover map by Bartsch et al. [41] distinguishes more vegetation classes than the KE
C1 map within this area, and the map by Lara [40] includes geomorphology classes which
cannot be directly related to the land cover classes found in the KE C1 map (e.g., drained
slope). It is worth mentioning that the provided KE C1 land cover product reports a higher
classification accuracy than other maps in the study area. This achievement can be explained
by the increased spatial resolution of the TSX satellite and the multi-temporal classification
approach which provides additional and very valuable seasonal information for the respective
classes. Thus, the SAR-based method in our study is able to demonstrate the advantage of
implementing timeseries data which are not available for optical imagery in the Arctic.
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Figure 10. Comparison of land cover products available for the Komakuk Beach study area. (A) Land cover map of this
study based on the multi-temporal Kennaugh element classification scheme, KE C1. (B) Land cover map [41]. (C) Tundra
geomorphology map [40]. DEM(s) courtesy of the Polar Geospatial Center [49].

6. Conclusions

This study investigates the seasonal backscatter mechanisms for Arctic tundra land-
scapes using a dual-polarimetric HH/HV TSX time series. In particular, we addressed
the potential of the Kennaugh Element Framework to classify and monitor tundra land
cover types. The results from the backscatter analysis and the Random Forest classifiers
illustrate that the Kennaugh matrix elements K0 and K1 differentiated well between tundra
land cover types and classified land cover with an overall accuracy of 92.4%, whereas
HH and HV Sigma Nought intensities could not distinguish between vegetation classes
and the classification results were poor (OA = 57.7%). This difference in classification
performance can be explained by the improved radiometric stability of the Kennaugh
elements in comparison to the Sigma Nought intensities. The Kennaugh classification
results are not only comparable in terms of accuracy to other local PolSAR studies in the
Canadian Arctic [11,18,19,77] but are also improved in terms of spatial resolution com-
pared to two existing land cover products in the area, which use Sentinel-1 and -2 data [41]
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and Landsat-8 data [40]. The typical polygonal tundra land forms could be accurately
classified, while most classification problems occurred in the narrow stream valleys for
the classes meadow and shrubs. These classes are more prone to errors in upscaling of in
situ observations and inaccurate geolocation. It would likely be possible to improve the
classification accuracy and mapping results by using higher resolution image products
or a synergistic use of remote sensing data, but this lies outside the scope of this study.
The five most important predictors for the Random Forest classifier included acquisitions
from the summer as well as from the autumn and the winter seasons. In consistence with
the findings from, Wang et al. [19] and Duguay et al. [11], a multi-temporal classification
approach is preferable for Arctic tundra land cover types. Furthermore, the K0 predictors
ranked higher than the K1 predictors, suggesting that surface scattering is the main driver
for backscatter mechanisms on the Beaufort Coast. Volume scattering likely played a minor
role because the Signal-to-Noise ratio for HV was low. Additional quad-pol or dual-pol
HH/VV imagery would be necessary to understand the double-bounce mechanisms that
prevail in wetland classes [14,22]. Moreover, the class separation in the Random Forest
classifier results from spatio-temporal differences in the backscatter signal of the land
cover classes. These differences were likely caused by the following processes: (i) the
different timing of ice-formation for fresh water lakes compared to the Beaufort Sea, (ii)
the temporal variability of the water table for wetland classes, (iii) frozen vegetation and
soil conditions, and (iv) wind and snow deposition dynamics. To fully comprehend the
seasonal backscatter mechanisms at X-band for tundra land cover types future work should
include simultaneous in situ measurements of soil, vegetation, and snow parameters for
the full satellite acquisition time-span as well as additional HH/VV X-band data. Overall,
the findings in our study add to the current understanding of X-band polarimetric SAR
for Arctic tundra landscapes by showing the possibilities of regular monitoring of tundra
landscapes using dual-pol HH/HV SAR data and by demonstrating the potential of the
Kennaugh Element Framework for tundra land cover classification.
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