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Abstract: As satellite observation technology rapidly develops, the number of remote sensing (RS)
images dramatically increases, and this leads RS image retrieval tasks to be more challenging in terms
of speed and accuracy. Recently, an increasing number of researchers have turned their attention
to this issue, as well as hashing algorithms, which map real-valued data onto a low-dimensional
Hamming space and have been widely utilized to respond quickly to large-scale RS image search
tasks. However, most existing hashing algorithms only emphasize preserving point-wise or pair-
wise similarity, which may lead to an inferior approximate nearest neighbor (ANN) search result.
To fix this problem, we propose a novel triplet ordinal cross entropy hashing (TOCEH). In TOCEH,
to enhance the ability of preserving the ranking orders in different spaces, we establish a tensor
graph representing the Euclidean triplet ordinal relationship among RS images and minimize the
cross entropy between the probability distribution of the established Euclidean similarity graph
and that of the Hamming triplet ordinal relation with the given binary code. During the training
process, to avoid the non-deterministic polynomial (NP) hard problem, we utilize a continuous
function instead of the discrete encoding process. Furthermore, we design a quantization objective
function based on the principle of preserving triplet ordinal relation to minimize the loss caused by
the continuous relaxation procedure. The comparative RS image retrieval experiments are conducted
on three publicly available datasets, including UC Merced Land Use Dataset (UCMD), SAT-4 and
SAT-6. The experimental results show that the proposed TOCEH algorithm outperforms many
existing hashing algorithms in RS image retrieval tasks.

Keywords: remote sensing image retrieval; hashing algorithm; binary code; triplet ordinal relation
preserving; cross entropy

1. Introduction

With the rapid development of satellite observation technology, both the amount and
the quality of remote sensing (RS) images have improved dramatically. An era of remote
sensing image big data has arrived. An increasing number of researchers are focusing
on the task of large-scale RS image retrieval, due to its broad applications, such as disas-
ter prevention, soil erosion monitoring, disaster rescue scenario and short-term weather
forecasting [1–5]. The content-based image retrieval (CBIR) [6,7] method extracts feature
information representing RS image content and finds similar RS images by comparing
the distance values among their feature information. However, the feature information
in CBIR is always represented as high dimensional float point data and it is difficult to
directly compute the similarity relationship based on the original high dimensional feature
information. Fortunately, hashing methods [1–5,8,9] can map high dimensional float point
data into compact binary codes and return the approximate nearest neighbors according
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to Hamming distance; this measure effectively improves the retrieval speed. In summary,
the content-based image retrieval method assisted by hashing algorithms enables the
efficient and effective retrieval of target remote sensing images from a large-scale dataset.

In recent years, many hashing algorithms [10–14] have been proposed to achieve
the approximate nearest neighbor (ANN) search task, due to its advantage of compu-
tation and storage. According to the learning framework, the existing hashing algo-
rithms can be roughly divided into two types: the shallow model [12–14] and the deep
model [10,11,15,16]. Conventional shallow hashing algorithms, such as locality sensitive
hashing (LSH) [14], spectral hashing (SH) [17], iterative quantization hashing (ITQ) [13]
and k-means hashing (KMH) [12], have been applied to various approximate nearest
neighbor search tasks, including image retrieval. Locality sensitive hashing [14] is a kind
of data-independent method, which learns hashing functions without a training process.
LSH [14] randomly generates linear hashing functions and encodes data into binary codes
according to their projection signs. Spectral hashing (SH) [17] utilizes a spectral graph
to represent the similarity relationship among data points. The binary codes in SH are
generated by partitioning a spectral graph. Iterative quantization hashing [13] considers
the vertexes of a hyper cubic as encoding centers. ITQ [13] rotates the principal component
analysis (PCA) projected data and maps the rotated data to the nearest encoding center.
The encoding centers in ITQ are fixed and they are not adaptive to the data distribution [12].
To fix this problem, k-means hashing [12] learns the encoding centers by simultaneously
minimizing the quantization error and the similarity loss. KMH [12] encodes the data as the
same binary code as the nearest center. For the image search task, the shallow model first
learns the high dimensional features, such as scale-invariant feature transform (SIFT) [18]
or a holistic representation of the spatial envelope (GIST) [19], then retrieves similar im-
ages by mapping these features into the compact Hamming space. In contrast, the deep
learning model enables end-to-end representation learning and hash coding [10,11,20–22].
In particular, the deep learning to hash, such as deep Cauchy hashing (DCH) [11] and twin-
bottleneck hashing (TBH) [10], proves crucial to jointly learn, thereby similarly preserving
the representations and control quantization error of converting continuous representa-
tions to binary codes. Deep Cauchy hashing [11] defines a pair-wise similarity preserving
restriction based on Cauchy distribution and it heavily penalizes the similar image pairs
with large Hamming distance. Twin-bottleneck hashing [10] proposes a code-driven graph
to represent the similarity relationship among data points and aims to minimize the loss
between the original data and decoded data. These deep learning to hash methods have
shown state-of-the-art results for many datasets.

Recently, many hashing algorithms have been applied to the large-scale RS im-
age search task [1–5]. Partial randomness hashing [23] maps RS images into a low di-
mensional Hamming space by both the random and well-trained projection functions.
Demir et al. [24] proposed two kernel-based methods to learn hashing functions in the
kernel space. Liu et al. [25] fully utilized the supervised deep learning framework and
hashing learning to generate the binary codes of RS images. Li et al. [25] carried out a
comprehensive study of DHNN systems and aimed to introduce the deep neural network
into the large-scale RS image search task. Fan et al. [26] proposed a distribution consistency
loss (DCL) to capture the intra-class distribution and inter-class ranking. Both deep Cauchy
hashing [11] and the distribution consistency loss functions [26] employ pairwise simi-
larity [15] to describe the relationship among data. However, the similarity relationship
among RS images is more complex. In this paper, we propose the triplet ordinal cross
entropy hashing (TOCEH) to deal with the large-scale RS image search task. The flowchart
of the proposed TOCEH is shown in Figure 1.
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Figure 1. Flowchart of the proposed TOCEH algorithm. Firstly, to represent the image content, we use the Alexnet,
including five convolutional (CONV) networks and two fully connected (FC) networks, to learn the continuous latent
variable. Secondly, the triplet ordinal relation is computed by the tensor product of the similarity and dissimilarity
graphs. Thirdly, two fully connected layers with the activation function of ReLU are utilized to generate the binary code.
To guarantee the performance, we define the triplet ordinal cross entropy loss to minimize the inconsistency between the
triplet ordinal relations in different spaces. Furthermore, we design the triplet ordinal quantization loss to reduce the loss
caused by the relaxation mechanism.

As shown in Figure 1, the TOCEH algorithm consists of two parts: the triplet ordinal
tensor graph generation part and the hash code learning part. In part 1, we first utilize
the AlexNet [27] pre-trained on the ImageNet dataset [28] to extract the 4096-dimension
image feature information of the target domain RS images. Then, we separately compute
the similarity and dissimilarity graph among the high dimensional features. Finally,
we establish the triplet ordinal tensor graph representing the ordinal relation among any
triplet RS images. Part 2 utilizes two fully connected layers to generate binary codes.
During the training process, we define two excellent objection functions, including the
triplet ordinal cross entropy loss and the triplet ordinal quantization loss to guarantee the
performance of the obtained binary codes and utilize the back-propagation mechanism to
optimize the variables of the deep neural network. The main contributions of the proposed
TOCEH are summarized as follows:

1. The learning procedure of TOCEH takes into account the triplet ordinal relations,
rather than the pairwise or point-wise similarity relations, which can enhance the per-
formance of preserving the ranking orders of approximate nearest neighbor retrieval
results from the high dimensional feature space to the Hamming space.

2. TOCEH establishes a triplet ordinal graph to explicitly indicate the ordinal relation-
ship among any triplet RS images and preserves the ranking orders by minimizing
the inconsistency between the probability distribution of the given triplet ordinal
relation and that of the ones derived from binary codes.

3. We conduct comparative experiments on three RS image datasets: UCMD, SAT-4 and
SAT-6. Extensive experimental results demonstrate that TOCEH generates highly
concentrated and compact hash codes, and it outperforms some existing state-of-the-
art hashing methods in large-scale RS image retrieval tasks.

The rest of this paper is organized as follows. Section 2 introduces the proposed
TOCEH algorithm. Section 2.1 shows the important notation. The hash learning problem
is stated in Section 2.2. The tensor graph representing the triplet ordinal relation among
RS images is introduced in Section 2.3. We provide the formulation of triplet ordinal
cross entropy loss and triplet ordinal quantization loss in Sections 2.4 and 2.5, respectively.
The extensive experimental evaluations are presented in Section 3. Finally, we set out a
conclusion in Section 4.
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2. Triplet Ordinal Cross Entropy Hashing
2.1. Notation

In this paper, we use the letters B and X to separately represent the data matrix in the
Hamming and Euclidean spaces. The columns in the data matrix are denoted as the letters
with subscript. The important notations are summarized in Table 1.

Table 1. The important notations used in this paper.

Notation Description

B Compact binary code matrix
Bi, Bj, Bk The i-th, j-th, k-th column in B

H(·) Hashing function
X Data matrix in the Euclidean space

xi, xj, xk The i-th, j-th, k-th column in X
G Triplet ordinal graph in the Euclidean space
Ĝ Triplet ordinal relation in the Hamming space

gijk The entry (i, j, k) in G
S Similarity graph

DS Dissimilarity graph
N The number of training samples
L The number of k-means centers

P(·) Probability distribution function
dh(·,·) Hamming distance function

M Binary code length
1 The binary matrix with all values of 1

2.2. Hashing Learning Problem

The purpose of the hashing algorithm [3,10,11] is to learn the hashing function H(·),
mapping the high dimensional float point data x into the compact Hamming space as
defined in Equation (1). B(x) represents the compact binary code of x.

B(x) = (sign(H(x)− 0.5) + 1)/2 (1)

With the assistance of the obtained hashing function H(·), we can encode RS image
content as compact binary code and efficiently achieve RS image search task according
to their Hamming distances [1–5,23–25]. Furthermore, to guarantee the quality of the
RS image search result, we expect the triplet ordinal relation among RS images in the
Hamming space to be consistent with that in the original space [29,30]. To illustrate this
requirement, a simple example is provided below. Here, xi, xj and xk separately represent
RS image content information. In the original space, the image pair (xi, xj) is more similar
than the image pair (xj, xk). After mapping them into the Hamming space, the Hamming
distance of the data pair (xi, xj) should be smaller than that of the data pair (xj, xk). This
constraint is defined as in Equation (2).∣∣∣∣H(xi)− H(xj)

∣∣∣∣1 ≤∣∣∣∣H(xk)− H(xj)
∣∣∣∣

1
s.t.

∣∣∣∣xi − xj
∣∣|22 ≤∣∣∣∣xk − xj

∣∣|22 (2)

The constraint in Equation (2) guarantees that the ranking order of the retrieval result
in the Hamming space is consistent with that in the Euclidean space. Thus, the hashing
algorithm, satisfying the triplet ordinal relation preserving constraint, can achieve RS image
ANN search tasks [31–35].

2.3. Triplet Ordinal Tensor Graph

To learn the triplet ordinal relation preserving hashing functions, the first problem is
how to efficiently compute the probability distribution of the triplet ordinal relation among
the training set in the original space.
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Generally, we select the triplet data (xi, xj, xk) from the training set to compute their
ordinal relation, where the data pair (xi, xj) has a small Euclidean distance value and (xj, xk)
is considered as the dissimilar data pair. However, this mechanism needs to randomly
select triplet samples and compare the distance values among all data points. It has a high
time complexity and costly memory. Furthermore, it is difficult to define the similar and
dissimilar data pairs for the problem without supervised information.

In this paper, to solve the above problem, we employ a tensor ordinal graph G to repre-
sent the ordinal relation among the triplet images (xi, xj, xk). We establish the tensor ordinal
graph G by tensor production and each entry in G is calculated as G(ij, jk) = S(i, j)·DS(j, k).
S(i, j) is the similarity graph as defined in Equation (3). A larger value of S(i, j) means the
data pair (xi, xj) is more similar. DS(i, j) is the dissimilarity graph and its value is calculated
as DS(i, j) = 1/S(i, j).

S(i, j) =

{
0, i = j

e−||xi−xj ||22/2σ2
, otherwise

(3)

We further process G to obey the binary distribution as in Equation (4). gijk is the entry
of G(i, j, k). {

gijk = 1, G(i, j, k) > 1
gijk = 0, G(i, j, k) ≤ 1

(4)

Given N training samples, the size of the similarity graph and dissimilarity graph is
N × N. The tensor product of the two graphs is shown in Figure 2, and its size is N 2 × N 2.
However, the proposed TOCEH only concerns the relative similarity relationship among
the data pairs (xi, xj) and (xj, xk). The corresponding elements are marked blue. There are
N rectangles and each rectangle contains N × N elements. We pick up these elements and
restore them into a matrix with the size of N × N × N.
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Finally, the ordinal relation among any triplet items can be represented by the triplet
ordinal graph G, as defined in Equation (5).{

S(i, j) > S(k, j), gijk = 1
S(i, j) ≤ S(k, j), gijk = 0

(5)

To illustrate the cases defined in Equation (5), a simple explanation is provided below. For the
triplet item (xi, xj, xk), the value of the (ij, kj)-th entry is G(ij, kj) = S(i, j)·DS(k, j) = S(i, j)/S(k, j).
If the triplet ordinal relation is S(i, j) > S(k, j), we have G(ij, kj) > 1 and gijk = 1; otherwise,
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we have G(ij, kj) ≤ 1 and gijk = 0. Thus, the value in G can correctly indicate the true ordinal
relation among any triplet items.

As described above, we can establish a tensor ordinal graph G with size N3 to represent
the triplet ordinal relation among N images. In practice, during the training procedure,
we use L (L� N) k-means centers to establish the tensor ordinal graph, which can reduce
the training time complexity.

2.4. Triplet Ordinal Cross Entropy Loss

In this section, we define Ĝ as RS images’ triplet ordinal relation in the Hamming space.
As discussed in Section 2.2, an ideal hashing algorithm should minimize the inconsistency
between Ĝ and G. In this paper, the above requirement is achieved by minimizing the cross
entropy value, as defined in Equation (6).

minCEH(G,
_
G) = min− P(G) log P(

_
G) (6)

P(G) defined in Equation (7) computes the probability distribution of RS images’ triplet
ordinal relation in the Euclidean space.{

wijk =
T1
T gijk = 1

wijk =
T0
T gijk = 0

(7)

The definitions of T1, T0 and T are shown in Equation (8). T1 is the number of samples
with a value of 1 in the matrix G and T0 is the number of samples with a value of 0 in the
matrix G. T is the total number of the elements in the matrix G.

T1 =
N
∑

i,j,k=1
gi,j,k

T0 =
N
∑

i,j,k=1
(1− gi,j,k)

T =
N
∑

i,j,k=1

∣∣∣2 · gi,j,k − 1
∣∣∣

(8)

P(Ĝ) is a conditional probability of the triplet ordinal relation with given binary codes.
As the samples are independent from each other, we calculate P(Ĝ) by Equation (9).

P(
_
G) = ΠN

i,j,k=1P(gijk

∣∣∣∣Bi, Bj, Bk) (9)

P(gijk|Bi, Bj, Bk) is the probability of the triplet images satisfying the ordinal relation
gijk, and the samples’ are assigned the binary codes (Bi, Bj, Bk). The definition is shown in
Equation (10).

P(gijk|Bi, Bj, Bk) =

{
φ(dh(Bk, Bj)− dh(Bi, Bj)), gijk = 1

1− φ(dh(Bk, Bj)− dh(Bi, Bj)), gijk = 0
(10)

We further rewrite the definition of P(gijk|Bi, Bj, Bk) as in Equation (11).

P(gijk|Bi, Bj, Bk) = φ(dh(Bk, Bj)− dh(Bi, Bj))
gijk (1− φ(dh(Bk, Bj)− dh(Bi, Bj)))

1−gijk (11)

dh(·,·) returns the Hamming distance and φ(·) computes the probability value. If gijk = 1,
the probability value should be close to 1 as dh(Bk, Bj)-dh(Bi, Bj) gets larger and the proba-
bility value should be close to 0 as dh(Bk, Bj)-dh(Bi, Bj) gets smaller. The characteristic of the
function (·) is shown in Figure 3.
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ordinal relation preserving objective function, as shown in Equation (13).
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e−α(dh (Bk ,Bj )−dh (Bi ,Bj ))
))

=
N
∑

i,j,k=1
wijk(gijk log(e−α(dh(Bk ,Bj)−dh(Bi ,Bj))) + log(1 + 1

e−α(dh (Bk ,Bj )−dh (Bi ,Bj ))
))

(13)

2.5. Triplet Ordinal Quantization Loss

Generally, the sign function is adopted to map the real-valued data output by the
last layer of deep neural network into binary codes. However, it generates discrete
values and makes the objective function non-deterministic polynomial (NP) hard for
optimization [20,36]. To fix this problem, the continuous tanh(·) function is utilized instead
of the sign(·) function in this paper. Furthermore, to minimize the quantization loss caused
by the continuous relaxation procedure, we expect the output of the tanh(·) function to be
close to ±1. Here, we utilize the triplet ordinal cross entropy to formulate the quantization
loss. We define the binary code obtained by the tanh(·) function as Bi

tah. Bref is the reference
binary code. The ideal encoding result is 1. Thus, we formulate the quantization loss Q as
in Equation (14).

Q =
N
∑

i=1
− log P(1|(||Bi

tah||, 1, ||Bre f ||))

=
N
∑

i=1
− log φ(−dh(||Bi

tah||, 1) + δ)

=
N
∑

i=1
log(1 + e−α(−dh(||Bi

tah ||,1)+δ))

(14)

In Equation (14), the triplet ordinal relation among (||Bi
tah ||, 1 and ||Bref||)

is defined as 1 and it indicates that the data pair (||Bi
tah ||, 1) is more similar than
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the data pair (1, ||Bref||). Therefore, to minimize the quantization loss, the Hamming
distance of the data pair (||Btah||, 1) should be smaller than the Hamming distance
δ = dh(||Bref||, 1). During the training procedure, we tune the value of δ to balance the
optimization complexity and the approximation performance. A small δ value let the
encoding results be close to the output of sign function and the training process will
become hard. In contrast, a large δ value creates low optimization complexity, but it leads
to poor approximation results.

After applying the continuous relaxation mechanism, we compute the Hamming
distance of one data pair by Equation (15). ⊗ computes the sum of bitwise production
value. f 8(·) represents the output of the deep neural network’s last layer.

dh(Bi, Bj) =
1
2
(M− tanh( f8(xi))⊗ tanh( f8(xj))) (15)

Finally, we utilize the back propagation mechanism to optimize the variables of
the deep neural network by simultaneously minimizing the triplet ordinal relation cross
entropy loss in Equation (13) and the quantization loss in Equation (14).

3. Experimental Setting and Results

In this section, we introduce the comparative experimental setting and evaluate the
approximate nearest neighbor search performance of the proposed TOCEH and some
state-of-the-art hashing methods.

3.1. Datasets

The comparative experiments are conducted on three large-scale RS image datasets, in-
cluding UC Merced land use dataset (UCMD) [37], SAT-4 dataset [38] and SAT-6 dataset [38].
The details of these three RS image datasets are introduced below.

1. UCMD [37] stores aerial image scenes with a human label. There are 21 land cover
categories, and each category includes 100 images with the normalized size of
256 × 256 pixels. The spatial resolution of each pixel is 0.3 m. We randomly choose
420 images as query samples and the remaining 1680 images are utilized as training
samples.

2. The total number of images in SAT-4 [38] is 500k and it includes four broad land cover
classes: barren land, grass land, trees and other. The size of images is normalized
to 28 × 28 pixels and the spatial resolution of each pixel is 1 m. We randomly select
400k images to train the network and the other 100k images to test the ANN search
performance.

3. The SAT-6 [38] dataset contains 405k images covering barren land, buildings, grass-
land, roads, trees and water bodies. These images are normalized to 28 × 28 pixels
size and the spatial resolution of each pixel is 1 m. We randomly select 81k images as
query set and the other 324k images as training set.

Some sample images of the above three datasets are shown in Figures 4–6, and the
statistics are summarized in Table 2.

3.2. Experimental Settings and Evaluation Matrix

To verify the ANN search performance of the proposed TOCEH method, many state-of-
the-art hashing methods, including locality sensitive hashing (LSH) [14], spectral hashing
(SH) [17], iterative quantization hashing method (ITQ) [13], k-means hashing (KMH) [12],
partial randomness hashing (PRH) [23], deep variational binaries (DVB) [39], deep hashing
(DH) [40], DeepBit [41], deep Cauchy hashing (DCH) [11] and twin-bottle neck hashing
(TBH) [10] are utilized as the baseline methods. LSH [14], SH [17], ITQ [13] and KMH [12]
belong to the shallow methods. During the ANN search experiments, we extract the content
information from RS images by AlexNet and the features are represented as 4096-dimension
float point data. Then, these shallow hashing methods map the 4096-dimension features
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into the compact Hamming space and achieve the ANN search task according to the
Hamming distance. DCH [11], TBH [10], DVB [39], DH [40], DeepBit [41] and the proposed
TOCEH are deep learning hashing methods. They directly generate the RS image’s binary
feature using an end-to-end mechanism.
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Table 2. Statistics and several parameter settings of three datasets.

UCMD SAT4 SAT6

Class Number 21 4 6
Image Size 256 × 256 28 × 28 28 × 28

Dataset Size 2100 500,000 405,000
Training Set 1470 400,000 360,000
Query Set 630 100,000 45,000

Ground Truth 100 1000 1000

The training process and comparative experiments are conducted on a high-performance
computer with GPU Tesla T4 16 GB, CPU Intel Xeon 6242R 3.10 GHz and 64 GB RAM.

To evaluate the ANN search performance, two widely used standards, mean average
precision (mAP) and recall curves, are employed in this paper.

The recall curve represents the fraction of the positive samples that are successfully
retrieved. The definition of recall is shown in Equation (16). #(·) returns the number
of samples.

recall =
#(retrieved positive samples)

#(all positive samples)
(16)

Mean average precision value expresses the return rate of positive samples as defined
in Equation (17). |total| is the total number of retrieved samples. Ki returns the number of
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positive samples of the i-th query sample. rank(j) is the ranking number of the j-th positive
sample in the retrieved results.

mAP =
1

|total|

|total|

∑
i=1

1
Ki

Ki

∑
j=1

j
rank(j)

(17)

3.3. Experimental Results
3.3.1. Qualitative Analysis

In this section, we show the qualitative image search results on the UCMD dataset [37].
The proposed TOCEH and the other seven state-of-the-art methods separately map the
image content information into 64-, 128- and 256-bit binary code. The images with minimal
Hamming distance to the query sample are returned as retrieval results and the false
images are marked with red rectangles, as shown in Figures 7–9.
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From the RS image retrieval results, we intuitively know that TOCEH owns the best
retrieval results. When encoding RS image content as a 64-bit binary code in Figure 6,
TOCEH and TBH [10] return two false positive images. Correspondingly, the number of
false images retrieved by the other six methods is larger than two. Furthermore, the false
RS images’ ranking position in TOCEH is higher than that in TBH [10], which gives TOCEH
a larger mAP value. In Figure 7, the length of the binary code is 128. One RS image is
incorrectly returned by TOCEH, TBH [10], DCH [11] and PRH [23], and the false image
has a relatively higher ranking position in TOCEH. As the number of binary bits increases
to 256, only TOCEH and TBH [10] retrieve no false image, as shown in Figure 8.

3.3.2. Quantitative Analysis

In this section, we adopt recall curves and mAP to quantitatively analyze the ANN search
performance of the proposed TOCEH and the other seven state-of-the-art hashing methods.
These hashing methods separately generate 64-, 128-, and 256-bit binary code to represent the
image content. The mAP values are in Tables 3–5. The recall curves are shown in Figures 10–12.

Table 3. Comparison of mAP with different binary code lengths on UCMD.

TOCEH TBH DVB DCH DeepBit PRH DH KMH ITQ SH LSH

64-bit 0.3914 0.3415 0.3261 0.2917 0.2657 0.2462 0.2296 0.2135 0.1986 0.1724 0.1637
128-bit 0.5479 0.4638 0.4259 0.3963 0.3781 0.3527 0.3467 0.2816 0.2462 0.2015 0.1842
256-bit 0.5837 0.4975 0.4757 0.4319 0.4197 0.3746 0.3528 0.3168 0.2673 0.2351 0.2148

Table 4. Comparison of mAP with different binary code lengths on SAT-4.

TOCEH TBH DVB DCH DeepBit PRH PRH KMH ITQ SH LSH

64-bit 0.7011 0.5768 0.5271 0.4862 0.4522 0.4361 0.4139 0.3946 0.3657 0.3482 0.3407
128-bit 0.7236 0.6124 0.5537 0.4986 0.4794 0.4528 0.4385 0.4173 0.3856 0.3724 0.3615
256-bit 0.7528 0.6345 0.6149 0.5128 0.5068 0.4857 0.4653 0.4361 0.4285 0.4152 0.3986

Table 5. Comparison of mAP with different binary code lengths on SAT-6.

TOCEH TBH DVB DCH DeepBit PRH DH KMH ITQ SH LSH

64-bit 0.7124 0.5826 0.5446 0.4936 0.4725 0.4586 0.4352 0.4125 0.3764 0.3695 0.3628
128-bit 0.7351 0.6268 0.5841 0.5174 0.4921 0.4795 0.4596 0.4281 0.3927 0.3864 0.3752
256-bit 0.7842 0.6527 0.6261 0.5394 0.5175 0.4972 0.4628 0.4516 0.4359 0.4238 0.4175
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From the quantitative results, we know TOCEH achieves the best ANN search perfor-
mance. LSH [14], the data-independent hashing algorithm, randomly generates hashing
projection functions without a training process. As a result, the ANN search performance
of LSH cannot drastically improve as the number of binary bits increases [9]. In contrast,
the proposed TOCEH and the other nine comparative hashing methods utilize a machine
learning mechanism to obtain the hashing functions, which are adaptive to the training
data distribution. Thus, these machine-learning-based hashing algorithms achieve a better
ANN search performance than LSH. SH [17] establishes a spectral graph to measure the
similarity relation among samples, and divides the samples into different cluster groups by
spectral graph partition. Then, SH [17] assigns the same code to the samples in the same
group. For a large-scale RS image dataset, the time complexity of establishing a spectral
graph would be high. Both ITQ [13] and KMH [12] first learn encoding centers, then assign
the samples as the same binary code as their nearest center. ITQ [13] considers the fixed
vertexes of a hyper cubic as centers, but they are not well adapted to the training data
distribution. KMH [12] learns the encoding centers with minimal quantization loss and
similarity loss by a k-means iterative mechanism. This measure effectively helps KMH
improve the ANN search performance. To balance the training complexity and ANN search
performance, PRH [23] employs the partial randomness and partial learning strategy to
generate hashing functions. LSH [14], SH [17], ITQ [13], KMH [12] and PRH [23] belong to
the shallow hashing algorithms, and their performances relate to the quality of the inter-
mediate high dimensional features. To eliminate this effect, TOCEH, TBH [10], DVB [39],
DH [40], DeepBit [41] and DCH [11] adopt a deep learning framework to learn the end-to-
end binary feature, which can further boost the ANN search performance. The classical
DH [40] proposes three constraints at the top layer of the deep network: the quantization
loss, balance bits and independent bits. However, the pair-wise similarity preserving
or the triplet ordinal relation preserving is not considered in DH. This may lead a poor
performance of DH. The same problem also exists in DeepBit [41]. However, DeepBit
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augments the training data with different rotations and further updates the parameters of
the network. This measure helps DeepBit to obtain a better ANN search performance than
DH. For most deep hashing, it is hard to unveil the intrinsic structure of the whole sample
space by simply regularizing the output codes within each single training batch. In contrast,
the conditional auto-encoding variational Bayesian networks are introduced in DVB to
exploit the feature space structure of the training data using the latent variables. DCH [11]
pre-trains a similarity graph and expects that the probability distribution in the Hamming
space should be consistent with that in the Euclidean space. TBH [10] abandons the process
of the pre-computing similarity graph and embeds it in the deep neural network. TBH aims
to preserve the similarity between the original data and the data decoded from the binary
feature. Both TBH [10] and DCH [11] aim to preserve the pair-wise similarity, and it is
difficult to capture the hyper structure among RS images. TOCEH establishes a tensor
graph representing the triplet ordinal relation among RS images in both Hamming space
and Euclidean space. During the training process, TOCEH expects that the triplet ordinal
relation graphs have the same distribution in different spaces. Thus, it can enhance the
ability of preserving the Euclidean ranking orders in the Hamming space. As discussed
above, TOCEH can achieve the best RS image retrieval results.

3.3.3. Ablation Experiments

To guarantee the ANN search performance of the obtained binary codes, the TOCEH
algorithm proposes two key components: the triplet ordinal cross entropy loss and the
triplet ordinal quantization loss. Here, we conduct the comparative experiments to analyze
these two components. TOCEL only utilizes the triplet ordinal cross entropy loss as the
objective function for deep learning binary code. The deep hashing TOQL only employs
the triplet ordinal quantization loss as the objective function. TOCEH, TOCEL and TOQL
separately map the data into 64- and 128-bit binary code. The ANN search results are
shown in Figures 13–15.
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From the comparative results, we know that both the triplet ordinal cross entropy loss
and the triplet ordinal quantization loss play important roles in improving the performance
of TOCEH. The triplet ordinal cross entropy loss minimizes the inconsistency between the
probability distributions of the triplet ordinal relations in different spaces. For example,
the data pair (xi, xj) is more similar than data pair (xj, xk) in the Euclidean space. Then,
to minimize the triplet ordinal cross entropy loss, it should be a larger probability to
assign xi and xj as similar binary codes. Without the triplet ordinal cross entropy loss,
TOQL randomly generates the samples’ binary codes. LSH algorithm also randomly
generates the hashing functions. Thus, the ANN search performance of TOQL is almost
the same as that of LSH. To fix the NP hard problem of the objective function, we apply
the continuous relaxation mechanism to the binary encoding procedure. Furthermore,
we define the triplet ordinal quantization loss to minimize the loss between the binary
codes and the corresponding continuous variable. Without the triplet ordinal quantization
loss, the difference between the optimized variables and the binary encoding results would
become larger in TOCEL. Thus, TOCEL has a relatively inferior ANN search performance.
As discussed above, both the triplet ordinal cross entropy loss and the triplet ordinal
quantization loss are necessary for the TOCEH algorithm.

4. Conclusions

In this paper, to boost the RS image search performance in the Hamming space,
we propose a novel deep hashing method called triplet ordinal cross entropy hashing
(TOCEH) to learn an end-to-end binary feature of an RS image. Generally, most of the
existing hashing methods place emphasis on preserving point-wise or pair-wise similarity.
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In contrast, TOCEH establishes a tensor graph to capture the triplet ordinal relation among
RS images and defines the triplet ordinal relation preserving problem as the formulation of
minimizing the cross entropy value. Then, TOCEH achieves the aim of preserving triplet
ordinal relation by minimizing the inconsistency between the probability distributions of
the triplet ordinal relations in different spaces. During the training process, to avoid the NP
hard problem, we apply continuous relaxation to the binary encoding process. Furthermore,
we define a quantization function based on the triplet ordinal relation preserving restriction,
which can reduce the loss caused by the continuous procedure. Finally, the extensive
comparative experiments conducted on three large-scale RS image datasets, including
UCMD, SAT-4 and SAT-6, show that the proposed TOCEH outperforms many state-of-the-
art hashing methods in RS image search tasks.
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