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Abstract: Debris flows are a major geological hazard in mountainous regions. For improving
mitigation, it is important to study the spatial distribution and factors controlling debris flows. In
the Bailong River Basin, central China, landslides and debris flows are very well developed due
to the large differences in terrain, the complex geological environment, and concentrated rainfall.
For analysis, 52 influencing factors, statistical, machine learning, remote sensing and GIS methods
were used to analyze the spatial distribution and controlling factors of 652 debris flow catchments
with different frequencies. The spatial distribution of these catchments was divided into three
zones according to their differences in debris flow frequencies. A comprehensive analysis of the
relationship between various factors and debris flows was made. Through parameter optimization
and feature selection, the Extra Trees classifier performed the best, with an accuracy of 95.6%. The
results show that lithology was the most important factor controlling debris flows in the study
area (with a contribution of 26%), followed by landslide density and factors affecting slope stability
(road density, fault density and peak ground acceleration, with a total contribution of 30%). The
average annual frequency of daily rainfall > 20 mm was the most important triggering factor (with a
contribution of 7%). Forest area and vegetation cover were also important controlling factors (with a
total contribution of 9%), and they should be regarded as an important component of debris flow
mitigation measures. The results are helpful to improve the understanding of factors influencing
debris flows and provide a reference for the formulation of mitigation measures.

Keywords: debris flow; spatial distribution; controlling factor; machine learning

1. Introduction

Debris flows are a major geological hazard in steep mountainous regions. They are one
of the most dangerous material movements because of their high speed, long movement
distance, large impact, and abruptness of onset, and for these reasons they are a major threat
to life and property [1]. Therefore, it is important to determine the spatial distribution and
controlling factors of debris flows in order to prevent them and mitigate their impacts [2,3].

The frequency of debris flows is mainly controlled by the coupled effects of geomor-
phology, material and rainfall. Many studies assumed that the material conditions were
constant at the present time, and in this case the frequency of debris flows was determined
entirely by the frequency of rainfall events exceeding the rainfall threshold [4–6]. However,
if the rate of material supply is low, the frequency of debris flows is determined by the
coupled effects of material and rainfall [3,7].
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Hazard analysis of debris flows is typically conducted by establishing a relationship
between their cause and occurrence [8]. Different studies have placed different emphases
on the various factors influencing debris flows: e.g., geomorphic factors [9–15]; geological
characteristics such as lithology and structural faults [1,2,8,16]; land cover and vegetation
cover, which influence the hydrological response and the generation of debris flows [17–22];
land use [23]; climate change, such as the number of heavy rainfall events [24–26] and
rainfall intensity [27,28]; landslides [29,30]; and wildfire [31]. Several studies analyzed the
spatial distribution of debris flows [32–36]. In addition, landslides and rock falls induced
by strong earthquakes greatly increase the number and scale of debris flows, as in the case
of the 1999 Taiwan Jiji earthquake [37,38], the 2008 Wenchuan earthquake [39–42], and the
8 August 2017 Jiuzhaigou earthquake [43]. However, Dai et al. [44] confirmed that even in
the presence of large quantities of debris on the slopes, the trends of landslides and debris
flows seem to follow a faster recovery.

Although many studies have sought to identify the main factors controlling debris
flows, it is difficult to quantitatively determine the contribution of each factor. The Bailong
River Basin in central China has a complex geological environment and debris flows are
extensively developed, making the area well suited to a comprehensive analysis of the
various factors influencing debris flows. We used a machine learning method to model the
distribution of debris flows and to quantitatively analyze their controlling factors.

2. Study Area

The Bailong River Basin is in the transition zone between the Qinghai-Tibet Plateau
and the Loess Plateau, with elevations ranging from 406 to 4457 m [45]. Structurally, it is
located on the eastern boundary of the Indian–Asian plate collision zone [46]. The lithology
of the strata in the area is quite complicated (Figure 1). The region is strongly influenced
by the Asian monsoon, with annual precipitation ranging from 300 to 900 mm; 75% of
the precipitation occurs between June and September [47]. The average minimum and
maximum temperatures are −14 to 3 ◦C in January, and 11 to 27 ◦C in July. As a result
of large terrain differences, complex geological environments and concentrated rainfall,
landslides and debris flows are very well developed [48].
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3. Data and Methods
3.1. Debris Flow Inventory

Debris flow data were provided by the Gansu Provincial Geological Environment
Monitoring Institute, which include details of the location, event time, frequency and
casualties of each debris flow catchment (the starting year of the data is 2003) [1]. Com-
bined with field surveys and a literature survey, a total of 652 debris flow catchments
were obtained.

3.2. Factors Influencing Debris Flows

The formation of a debris flow is influenced by geomorphic conditions, material condi-
tions and triggering conditions [49,50]. The parameters related to them are described below.

3.2.1. Factors Related to Geomorphic Conditions

The geomorphic characteristics of a catchment determine its gravitational potential
energy conditions, water flow process [50], and hydrological characteristics [51]. (See [52]
for parameter calculation methods.)

Basin area [9], main channel length [1] and curvature of the main stream [53] reflect
basic information of a catchment.

The area proportions of slopes > 30◦, >35◦, >40◦and slopes between 30◦ and 40◦ reflect
the slope stability and runoff speed [54–56]. The average aspect affects the directions of
water flows and soil humidity [57].

Basin relief [58], relief ratio [59] and relative relief ratio [60] reflect the gravitational
potential energy condition of a catchment. Drainage density reflects the degree of drainage
development [61]. Circularity ratio [62,63], form factor [61] and elongation ratio [58] reflect
the basin shape.

The hypsometric integral [64] reflects the evolution of the basin geomorphology [65]
and the slope distribution [13]. The Melton ratio reflects the susceptibility of debris
flows [60].

Profile curvature refers to the curvature along the maximum slope direction, which
affects the acceleration and deceleration of the flow, which in turn affects erosion and
deposition. Plane curvature is the curvature perpendicular to the maximum slope direction,
which affects the convergence and dispersion of flow.

The ruggedness number [64] is influenced positively by the structural terrain com-
plexity [66]. The Terrain Ruggedness Index and Topographic Position Index reflect the
difference between a central pixel and its surrounding cells [67].

The Topographic Wetness Index is a physically-based index or indicator of the effect
of local topography on runoff flow direction and accumulation [68]. The Stream Power
Index is a measure of the erosive power of flowing water [69]. The fitness ratio is the ratio
of the main channel length to the basin perimeter [60].

3.2.2. Factors Related to Material Conditions

The quantity of materials and the ease with which they can be converted to a debris
flow will affect its formation process, rainfall threshold and frequency.

The lithology data were divided into very hard, hard, medium, soft, and very soft
according to the hardness of the rock (Table 1; Figure 2, lithology). In this study, the
geological strength index (GSI) estimation was used as the estimation value of rock mass
quality [70,71]. The area proportion of different hardness lithology in each catchment was
calculated to analyze the influence of different lithologies on debris flows. (Lithology and
fault data were obtained from a published geological map with a scale of 1: 200,000).

The linear density of faults was calculated using the line density tool in GIS software
(Fd, Figure 2), and the average value in each catchment was determined to analyze the
impact of faults on debris flows.
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Table 1. Lithologies in the study area and their hardness classification.

Stratigraphic Age Major Lithology GSI Relative Strength

Quaternary loose material Pebbles, gravel, silty clay
0–10 very softNeogene stratified clastic rocks Conglomerate, shale, sandstone

Paleogene stratified clastic rocks Conglomerate

Cretaceous stratified clastic rocks Conglomerate, sandstone, mudstone 10–20 soft

Jurassic stratified clastic rocks Sandstone, mudstone, conglomerate, shale

30–40 medium
Silurian metamorphic rocks Sandstone, limestone, phyllite, slate
Devonian carbonate rocks Slate, phyllite, limestone

Permian layered metamorphic rocks Sandstone, sandy slate, tuff, phyllite

Carboniferous carbonate rocks Limestone
60–70 hardDevonian carbonate rocks Limestone, shale, slate, sandstone

Triassic and Permian layered carbonate Limestone, sandstone, shale

Triassic and Permian intrusive rocks Granite, diorite, granite gneiss, basalt, diabase 80–90 very hard
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The point density of landslides was calculated using the point density tool in GIS
software (Ld, Figure 2), and the average value in each catchment was calculated to analyze
the impact of landslides on debris flows. (The data were provided by Gansu Provincial
Geological Environment Monitoring Institute).

Earthquakes affect slope stability. The average value of peak ground acceleration
(PGA, Figure 2) in each catchment was calculated to analyze the influence of earthquakes
on debris flows. (The data are from the public version of China’s seismic peak ground
acceleration zonation map of 2016, published by the China Seismological Bureau).

Different land use types affect surface runoff and sediment transport and may control
the slope stability [2]. The area proportions of unused land, forested land, grassland,
cultivated land, residential land and industrial land in each catchment were calculated to
analyze the impact of different land use types on debris flows (Figure 2, Land use). (The
land use data were obtained from the interpretation of remote sensing images).

The average NDVI (Figure 2, NDVI) of each catchment was calculated to analyze the
impact of vegetation coverage on debris flows (NDVI was derived from Gaofen-1 images
in August 2020).

Soil type influences rainfall runoff processes [72]. The average values of soil depth, soil
clay fraction and soil bulk density in each catchment were calculated to analyze the influence of
soil types on debris flows (Sde, Scf and Sbd, Figure 2). (Soil data were from the FAO, International
Institute for Applied Systems Analysis. The soil map for China is based on Harmonized World
Soil Database (HWSD, v1.1, 2009), National Tibetan Plateau Data Center, 2019).

The sum of the population and GDP of each catchment was calculated to reflect the
impact of human activities on debris flows (Pop and GDP, Figure 2) (data source: [73]).

Roads may cut the original slopes, change the original surface confluence, and affect
the slope stability. The linear density of roads was calculated (Rd, Figure 2), and the average
value in each catchment was calculated to reflect the impact of roads on debris flows.

3.2.3. Factors Related to Triggering Conditions

Rainfall is the main triggering factor of debris flows in the study area. The average
annual frequencies of daily rainfall > 15, >20, >30, >40 and >50 mm (F15, F20, F30, F40
and F50) at each meteorological station were calculated, and Figure 3 was produced by an
interpolation method. The average value of each catchment was calculated to reflect the
impact of rainfall on debris flows. (The rainfall data are from 41 meteorological stations in
the study area).
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Finally, a total of 52 factors influencing debris flows were selected and calculated, as
shown in Table 2.
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Table 2. Factors influencing debris flows. (Hmax and Hmin are the maximum and minimum elevations
in a catchment. Lt is the total length of stream channels. p is the basin perimeter).

No. Parameter Abbr. Formula Unit

1 Basin area A GIS analysis km2

2 Main channel length Lmc GIS analysis km
3 Curvature of the main stream Cms Cms = Lmc/Ls /
4 Average slope Sa Average value ◦

5 Area proportion of slopes > 30◦ S30 Area of slopes > 30◦/A %
6 Area proportion of slopes > 35◦ S35 Area of slopes > 35◦/A %
7 Area proportion of slopes > 40◦ S40 Area of slopes > 40◦/A %

8 Area proportion of slopes
between 30◦ and 40◦ S30–40 Area of slopes 30–40◦/A %

9 Average aspect Aa Average value ◦

10 Basin relief H H = Hmax − Hmin km
11 Relief ratio Rr Rr = H/L /
12 Relative relief ratio Rrr Rrr = H*100/p /
13 Drainage density Dd Dd = Lt/A /
14 Circularity ration Cr Cr = 4πA/P2 /
15 Form factor Ff Ff = A/L2 km
16 Elongation ratio Er Er = 2

√
A/πL2 /

17 Hypsometric Integral HI HI = (Hmean − Hmin)/(Hmax −
Hmin) /

18 Melton ratio Mr Mr = H/
√

A /
19 Plane curvature Cpl GIS analysis /
20 Profile curvature Cpr GIS analysis /
21 Ruggedness number Rn Rn = H*Dd /
22 Terrain Ruggedness Index TRI GDAL analysis /
23 Topographic Position Index TPI GDAL analysis /
24 Topographic Wetness Index TWI TWI = ln(As/tan(S)) /
25 Stream Power Index SPI SPI = ln(As*tan(S)) /
26 Fitness ratio Rf Rf = Lmc/p /

27 Area proportion of very hard
lithology Lvh Area of very hard lithology/A /

28 Area proportion of hard
lithology Lh Area of hard lithology/A /

29 Area proportion of moderate
lithology Lm Area of moderate lithology/A /

30 Area proportion of soft
lithology Ls Area of soft lithology/A /

31 Area proportion of very soft
lithology Lvs Area of very soft lithology/A /

32 Fault density Fd Linear density /
33 Area proportion of unused land Lun Area of unused land/A /
34 Area proportion of forest land Lfo Area of forest land/A /
35 Area proportion of grass land Lgr Area of grass land/A /

36 Area proportion of
cultivated land Lcu Area of cultivated land/A /

37 Area proportion of
residential land Lre Area of residential land/A /

38 Area proportion of
industrial land Lin Area of industrial land/A /

39 Normalized Difference
Vegetation Index NDVI Average value /

40 Soil depth Sde Average value cm
41 Soil clay fraction Scf Average value %
42 Soil bulk density Sbd Average value kg/dm3

43 Landslide density Ld Point density /
44 Peak ground acceleration PGA Average value /
45 Population Pop Average value /
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Table 2. Cont.

No. Parameter Abbr. Formula Unit

46 Gross domestic product GDP Average value /
47 Road density Rd Linear density /

48 Average annual frequency of
rainfall > 15 mm/d F15 GIS analysis times/yr

49 Average annual frequency of
rainfall > 20 mm/d F20 GIS analysis times/yr

50 Average annual frequency of
rainfall > 30 mm/d F30 GIS analysis times/yr

51 Average annual frequency of
rainfall > 40 mm/d F40 GIS analysis times/yr

52 Average annual frequency of
rainfall > 50 mm/d F50 GIS analysis times/yr

3.3. Machine Learning Analysis
3.3.1. Machine Learning Algorithms

Four machine learning algorithms (MLA) were selected, including Ensemble methods
(Extra Trees (ETs), Gradient Boosting (GB) and Random Forest (RF)) and XGBoost (XGB).
Ensemble methods combine multiple classifiers and classify new data by taking a vote of
their predictions. XGBoost is a type of lifting tree model with a boosting algorithm. (See
DF_distribution.ipynb for code).

3.3.2. Data Processing

Highly correlated factors may cause the instability of the models [74,75]. A cross-
correlation heat map was produced (Figure 4; see features_Correlation.xlsx for details).
The highly correlated factors were eliminated, including Lmc (0.93), S30 (0.98), S35 (0.96),
S40 (0.90), TRI (0.99), SPI (0.91), Rr (0.97), Rrr (0.93), Rn (0.89), Er (0.99), F30 (0.94) and
F40 (0.89).
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3.3.3. Cross−Validation

The cross−validation method was chosen to randomly select 70% of the samples for
training, and the remaining 30% were used to test the model performance. This process
was repeated 10 times to reduce the sampling uncertainty.

3.3.4. Model Evaluation and Optimization

The average accuracy (Acc) and standard deviation (Std) of the validation set were
used to evaluate model performance. The two parameters can effectively evaluate the
accuracy and stability of the models. The models were optimized by grid search for the
optimal parameters. The Recursive Feature Elimination and Cross-Validation (RFECV) [76]
method was used to determine the optimal number of factors.

3.3.5. Feature Importance

The feature importance method based on the mean decrease in impurity was used to
calculate the importance of each factor [77]. The importance of a feature is computed as the
(normalized) total reduction in the criterion brought by that feature.

4. Results
4.1. Spatial Distribution Division

The spatial distribution of 652 debris flow catchments has an obvious regularity and
can be divided into three frequency zones: high zone (>2 times/year), medium zone
(0.5–2 times/year) and low zone (<0.5 times/year) (Figure 5).
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4.2. Model Evaluation and Optimization

After modeling and parameter optimization, the optimal parameters and the Acc of
the validation set are listed in Table 3. The results show that the ETs performed the best
and hence was selected for further optimization. The optimal number of factors of ETs was
determined using RFECV (Table 4). It can be seen that the number of factors was reduced
from 40 to 18, and the Acc of the models had been slightly improved. The final Acc of
ETs is 95.6%, indicating that the model can correctly judge which frequency zone most
catchments belong to.

Table 3. Optimization results of models.

MLA Optimal Parameter Acc Std

ETS
n_estimators = 200;

max_depth = 22;
criterion = entropy

0.952 0.0166

XGB
n_estimators = 50;

learning_rate = 0.25;
max_depth = 6

0.948 0.0153

GB

n_estimators = 50;
learning_rate = 0.25;

criterion =
friedman_mse;
max_depth = 6

0.947 0.0173

RF

n_estimators = 500;
criterion = gini;

oob_score = True;
max_depth = 14

0.936 0.0169

Table 4. Feature selection results of ETs.

Acc Std Factors Number

Before RFECV 0.952 0.0166

A, Cms, Sa, S30–40, Aa, H, Dd, Cr, Ff, HI, Mr,
Cpl, Cpr, TPI, TWI, Rf, Lvs, Ls, Lm, Lh, Lvh, Fd,
Lun, Lfo, Lgr, Lcu, Lre, Lin, NDVI, Sde, Scf, Sbd,

Ld, PGA, Pop, GDP, Rd, F15, F20, F50

40

After RFECV 0.956 0.0149 Sa, Mr, Cpl, Cpr, Lvs, Lm, Lh, Fd, Lfo, Lgr, Lcu,
NDVI, Sbd, Ld, PGA, Rd, F15, F20 18

4.3. Importance of the Factors

The importance scores of 18 factors were calculated (Figure 6). It can be seen that the
most important factor is lithology, including Lm (with a contribution of 13%), Lh (with
a contribution of 8%) and Lvs (with a contribution of 5%). The second most important
factors are landslide density (Ld, with a contribution of 10%) and road density (Rd, with
a contribution of 10%), flowed by fault density (Fd, with a contribution of 5%) and peak
ground acceleration (PGA, with a contribution of 5%). The average annual frequency of
daily rainfall > 20 mm (F20, with a contribution of 7%) is the most important triggering
condition of debris flows. The area proportion of forest land (Lfo, with a contribution of
5%) and vegetation cover (NDVI, with a contribution of 4%) are also important factors
controlling debris flows in the study area.
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5. Discussion
5.1. Spatial Distribution and Influencing Factors

The spatial distribution of 652 debris flow catchments was divided into three zones
according to their differences in debris flow frequencies. Such typical regional distribution
characteristics are suitable for a comprehensive analysis of the relationship between various
factors and debris flows.

In order to analyze the distribution characteristics of various factors, a box plot of
each factor in the high, moderate and low zones were produced in Figure 7. The high zone
and moderate zone have similar high rainfall conditions (F15, F20, F50), and the moderate
zone has more favorable geomorphic conditions (higher Sa, S30, S30–40, H, Ff, HI and
Mr). However, debris flow frequency in the moderate zone is lower than in the high zone,
which indicates that the difference between them is mainly caused by material conditions.
Compared with the moderate zone, the high zone has more favorable material supply
conditions (higher Fd, Ld and Lvs), and is more affected by human activities (higher Rd, Lcu
and Pop). In addition, the moderate zone has a higher vegetation coverage (higher Lfo and
NDVI). Therefore, the high zone has a higher debris flow frequency.

Compared with the high and moderate zones, the low zone has less favorable rainfall
conditions (lower F15, F20, F30 and F40), material supply conditions (lower Lh), and
geomorphic conditions (lower Sa, H, Dd and Mr). The other factors for the low zone are
generally intermediate between the high and moderate zones. Therefore, the low zone has
the lowest debris flow frequency.

In summary, the conditions of more favorable rainfall and material supply and more
intensive human activities are responsible for the high debris flow frequency in the high
zone. Under similar rainfall conditions with the high zone, a lower material supply, less
intense human activities, and higher forest cover are responsible for the moderate debris
flow frequency in the moderate zone. The less favorable rainfall, material supply and
geomorphic conditions are responsible for the lowest debris flow frequency in the low zone.
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5.2. Feature Importance Analysis

The importance of factors in Figure 6 shows that lithologies (with a total contribution
of 26%) control the main distribution of debris flow catchments in the study area. Many
studies showed that lithology was an important factor controlling the spatial distribution
of debris flows [1,2] and affecting the supply of loose debris [78]. Our study quantitatively
calculates the contribution of different lithologies to the spatial distribution of debris flows,
and we can better understand the relationship between lithology distribution and debris
flows. Figure 8 (Lithology) shows that the high zone is mainly distributed in Lvs and Lm
areas, the moderate zone is mainly distributed in Lm areas, and the low zone is mainly
distributed in Lh areas.
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The second most important factor is landslide density (Ld, with a contribution of 10%).
Many studies showed that the frequency of debris flows would increase significantly within
1–8 years after a large landslide [30]. Landslides and rock falls caused by an earthquake
would reduce rainfall thresholds of debris flows and increase the number and scale of debris
flows [38–40,43]. However, some studies indicated that there was no direct relationship
between landslide distribution and debris flows [79], and coseismic landslide was not the
main material source driving debris flows after an earthquake [20], so landslides need a
certain process to mobilize to form debris flows [80].

Road density (Rd, with a contribution of 10%) mainly reflects the influence of human
activities on slope stability. Fault density (Fd, with a contribution of 5%) and peak ground
acceleration (PGA, with a contribution of 5%) also affect the slope stability. This is an
important reason for the significant decrease in the rainfall threshold of debris flows after
an earthquake.

The average annual frequency of daily rainfall > 20 mm (F20, with a contribution of
7%) is also an important factor. The high and moderate zones are mainly distributed in the
areas with higher F20, and the low zone is mainly distributed in the areas with lower F20.

The area proportion of forest and vegetation cover are also important factors (with a
total contribution of 9%), which gives us a new understanding of the role of vegetation in
reducing debris flows. Forest cover mainly reduces the supply of loose materials and slows
down the confluence speed [81–83]. Comparison of the high and moderate zones indicates
that, even if the moderate zone has more favorable geomorphic conditions (higher Sa, S30,
S30–40, H, Ff, HI and Mr) and precipitation conditions (Figure 8, F20), but the material
conditions are less favorable than the high zone (Figure 8, Ld, Rd and Lithology), and
the vegetation cover (especially forest cover) is higher than the high zone (Figure 8, Land
use and NDVI), the result is lower debris flow frequency in the moderate zone. This is
consistent with the results of Guo et al. [20], who found that a lower material supply and
higher vegetation coverage can effectively reduce the frequency of debris flows and increase
the rainfall threshold. Therefore, vegetation cover, especially forest cover, is an important
factor to be considered when formulating debris flow mitigation measures [84–86].
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It appears that factors related to geomorphology have little influence on debris flows
in the study area. One of the most important factors is the Melton ratio (Mr), which may
be because the terrain difference in the study area is generally large and there is little
differentiation.

Among the important factors, except for the vegetation coverage and the proportion
of forest, another factor that can be readily controlled is the road density. Reducing road
construction can reduce the material supply on unstable slopes to debris flows. However,
it would potentially impact the economic development of the region and would require
careful evaluation by decision makers.

The contribution of this section is to quantitatively evaluate the importance of each
factor for the spatial distribution of debris flows, which helps us better understand their
relationship. Through the above analysis, we have a new understanding of the factors
influencing the spatial distribution of debris flows, which has reference value for better
formulating disaster reduction measures.

5.3. Estimation of Daily Rainfall Threshold

The average annual frequencies of daily rainfall >15, >20, >30, >20, >40 and >50 mm
in each zone were determined in Table 5. Taking the daily rainfall with the average annual
rainfall frequencies equal to the debris flow frequencies as the daily rainfall threshold, the
daily rainfall threshold is ~15–30 mm in the high zone, ~30–40 mm in the moderate zone,
and >40 mm in the low zone. The daily rainfall thresholds can provide a reference for
regional debris flow early warning.

Table 5. Debris flow frequencies and average annual frequencies of daily rainfall >15, >20, >30, >40
and >50 mm in different zones (times/year).

Zone Debris Flow
Frequency >15 mm >20 mm >30 mm >40 mm >50 mm

High >2 5–9.5 1–7 1–2 <0.5 <0.25
Moderate 0.5–2 5–8 2–5 1–3 0.3–1 <0.25

Low <0.5 5–7 1–3 0.5–1.5 <0.5 <0.25

5.4. Uncertainties

The data used in this paper includes detailed investigation data (debris flow inventory)
and the data obtained from public websites (DEM, remote sensing images, geological
data, soil data, population, GDP, road and rainfall), which ensure the quality of the data.
However, compiling data related to debris flows is challenging. Therefore, like other related
studies, our study had some uncertainties due to the influence of the amount and quality
of available data.

6. Conclusions

The main contribution of this study has been to analyze and model the spatial dis-
tribution of debris flows with different frequencies in the Bailong River Basin, central
China, where debris flows are very well developed. To do this, we divided 652 debris
flow catchments into three frequency zones and analyzed a comprehensive range of factors
using statistical and machine learning methods. The factors controlling the distribution
of debris flows were analyzed quantitatively. The results potentially provide a deeper
understanding of factors controlling debris flows and have an important reference value for
formulating debris flow mitigation measures. The major findings are summarized below.

1. The main factor controlling debris flows in the study area is lithology. The medium,
hard and very soft lithologies control the major distribution of debris flow catchments.

2. Landslides and the factors affecting slope stability (including roads, faults and earth-
quakes) are the second most important factors. The factor that can be easily controlled
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is road construction, although controlling this may adversely affect regional economic
development.

3. The most important triggering factor of debris flows is the average annual frequency
of daily rainfall >20 mm. We also estimated the daily rainfall thresholds of debris
flows in different zones.

4. The area proportion of forest and vegetation cover are also important factors control-
ling debris flows, which can be an important part of debris flow mitigation measures.
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