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Abstract: Satellite image time series (SITS) is a sequence of satellite images that record a given area
at several consecutive times. The aim of such sequences is to use not only spatial information but
also the temporal dimension of the data, which is used for multiple real-world applications, such as
classification, segmentation, anomaly detection, and prediction. Several traditional machine learning
algorithms have been developed and successfully applied to time series for predictions. However,
these methods have limitations in some situations, thus deep learning (DL) techniques have been
introduced to achieve the best performance. Reviews of machine learning and DL methods for time
series prediction problems have been conducted in previous studies. However, to the best of our
knowledge, none of these surveys have addressed the specific case of works using DL techniques and
satellite images as datasets for predictions. Therefore, this paper concentrates on the DL applications
for SITS prediction, giving an overview of the main elements used to design and evaluate the
predictive models, namely the architectures, data, optimization functions, and evaluation metrics.
The reviewed DL-based models are divided into three categories, namely recurrent neural network-
based models, hybrid models, and feed-forward-based models (convolutional neural networks
and multi-layer perceptron). The main characteristics of satellite images and the major existing
applications in the field of SITS prediction are also presented in this article. These applications
include weather forecasting, precipitation nowcasting, spatio-temporal analysis, and missing data
reconstruction. Finally, current limitations and proposed workable solutions related to the use of DL
for SITS prediction are also highlighted.

Keywords: deep learning; artificial intelligence; satellite image time series; remote sensing; prediction;
forecasting; nowcasting; neural networks

1. Introduction

Numerous satellites orbit the Earth and provide users with a large quantity of data
such as optical and radar images. According to the Union of Concerned Scientists Satellite
Database, more than 4000 satellites were operational on 30 April 2021 and approximately
24% of them were dedicated to the observation of the Earth. This category of satellites
produces images that are used for several purposes, such as climate and precipitation
studies, land use and land cover monitoring, military reconnaissance, and agricultural
and forestry applications [1]. With the short revisiting time of satellites above an area,
it will be soon possible to obtain free satellite images with excellent spatial resolution
every day for any area in the world [2]. In 2001, the European Union and the European
Space Agency launched a program called Global Monitoring for Environment and Security
(GMES) to equip Europe with the autonomous capacity for observing and monitoring the
Earth. In 2012, the GMES became the Copernicus program, which has been providing data
from a constellation of six families of satellites called the “Sentinel” mission (Sentinel 1
to Sentinel 6) since 2014. Each of these missions has its own objective and ambition to
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provide free data accessible on the Internet. Another great project dedicated to Earth
observation is the Landsat program, developed by the National Aeronautics and Space
Administration (NASA) after the request of the United State Geological Survey (USGS). It
is the first such program intended for civil purposes. The Landsat series consists of eight
operational missions (Landsat 1 to Landsat 8). The Landsat 1 satellite was launched in
1972 and Landsat 8 was put into orbit in February 2013. Landsat 9 is the latest satellite in
the Landsat series. It was successfully launched on 27 September 2021 and will continue
working towards the Landsat program purposes, as mentioned on the NASA website:
https://landsat.gsfc.nasa.gov/landsat-9 (accessed on 3 November 2021).

With the acquired images, it is possible to constitute series of images representing a
given area over time. Such sequences are called satellite image time series (SITS) and are
used for multiple real-world applications, such as classification, segmentation, anomaly de-
tection, and prediction [1,3]. Among these applications, prediction is the one most studied
and considered to be the most difficult. Unlike simple classification tasks, prediction in time
series must consider the complexity of order and dependence between observations [4]. In
fact, the main goal of predictive models in time series is to estimate, with the best possible
accuracy, the future values of the occurrences in the sequence from the observation of
past values. In other words, in this context, the prediction task refers to the forecasting of
data [4]. Thus, depending on the range of the predictions, the terms forecasting or nowcasting
are used in the literature. However, predictions are not only related to future estimated
data but can also be used for the reconstruction of missing values and for data fusion.
Several techniques have been developed and applied to time series for predictions. For
example, classical methods such as the Markov and cellular automata [5], the random
forest [6], or the autoregressive integrated moving average (ARIMA) [7] have shown quite
satisfactory results for many problems. However, these methods have some limitations
in certain situations. For example, when there is missing or corrupt data in the sequence,
input variables are multiple and the relationship between observations are complex and
non-linear; these classical techniques do not produce satisfactory results. To overcome
these issues, machine learning (ML) algorithms, which are part of artificial intelligence (AI),
have been proposed. However, ML also has shortcomings in solving complex tasks. It has
been noted that it is necessary to first extract important features and to linearize data or use
auxiliary data for optimal performance in some situations. ML methods sometimes require
the intervention of an expert in the domain and can be expensive. Thus, more efficient
state-of-the-art tools are introduced to achieve better results, namely deep learning (DL)
algorithms [4,8,9].

DL is a part of ML that allows computers to learn autonomously from examples and
make predictions. It mostly consists of artificial neural networks inspired by human brain
neurons. In recent years, this technique has been widely used to solve many types of prob-
lems [8,10]. In the field of SITS analysis, applications may include weather forecasting [11],
land use and land cover change detection, precision agriculture, deforestation monitoring,
and others [12].

Reviews of ML and DL methods for time series prediction problems have been con-
ducted in previous studies. However, these reviews do not focus on the special case of the
application of DL approaches for SITS prediction. In fact, some surveys concern the use of
DL in general, without emphasizing the type of data used in the models. In other papers,
although the reviews concern works using SITS as a dataset, the studied techniques are
diverse, including classical ML methods. For instance, in [1,12–14], the authors surveyed
the use of ML and DL techniques for time series analysis and forecasting. Research results
for remote sensing applications using ML methods are reviewed in [10,15–18]. The authors
of [19,20] reviewed studies that involve the use of SITS for data fusion or missing data
reconstruction. More recently, in [8], authors reviewed the DL concepts, especially the
convolutional neural networks. An overview of previous reviews related to the topic are
presented in Table 1.

https://landsat.gsfc.nasa.gov/landsat-9
https://landsat.gsfc.nasa.gov/landsat-9
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Table 1. List of previous reviews related to the topic. Pub. = publication and Pred. = prediction.

Ref. Title of the Review Pub. Year
Was the Review Dedicated to

DL SITS Pred.
[20] Missing information reconstruction of remote sensing data 2015 No Yes Yes
[1] Deep Learning for Time-Series Analysis 2017 Yes No Yes

[15] Deep learning in remote sensing: A comprehensive review and
list of resources 2017 Yes Yes No

[12] Time series forecasting using artificial neural networks
methodologies: A systematic review 2018 No No Yes

[13] Machine Learning for Spatiotemporal Sequence Forecasting: A
Survey 2018 No Yes Yes

[18] Computer vision and artificial intelligence in precision
agriculture for grain crops: A systematic review 2018 Yes No Yes

[14] Deep learning for time series classification: a review 2019 Yes No No

[10] Deep learning in remote sensing applications: A meta-analysis
and review 2019 Yes Yes No

[16] Deep learning in environmental remote sensing: Achievements
and challenges 2020 Yes Yes No

[17] Crop yield prediction using machine learning: A systematic
literature review 2020 No No Yes

[19] Machine learning information fusion in Earth observation: A
comprehensive review of methods, applications and data sources 2020 No Yes No

[9] A survey of the recent architectures of deep convolutional neural
networks 2020 Yes No No

[8] Review of deep learning: Concepts, CNN architectures,
challenges, applications, future directions 2021 Yes No No

[21] Deep Learning for Time Series Forecasting: A Survey 2021 Yes No Yes

The use of DL on satellite images has some specifications that are important to note in
a particular study and thus save time for all scientists interested in the field. However, to
the best of our knowledge, there is not yet a published study on a review of the specific use
of DL for SITS prediction. Thus, the goal of this paper is to examine recent publications
related to the application of DL techniques for SITS prediction. Specifically, the aim is to
highlight the main applications of SITS prediction using DL techniques and to describe
data, methods, the optimizer, and the performance metrics used in the literature.

In sum, the contributions of this review are as follows:

• This paper presents, in a single document, the main elements necessary to design
and evaluate DL models for SITS prediction (data, methods, and parameters), and
provides an excellent starting point for researchers interested in the field.

• It describes the major applications of SITS prediction using DL methods, including
weather forecasting, precipitation nowcasting, spatio-temporal analysis, and missing
data reconstruction.

• This review presents most DL-based approaches for SITS prediction, which are
grouped into three main types of architecture (recurrent neural networks, feed-forward
neural networks, and hybrid architectures).

• The document gives an overview of the optimizer and evaluation metrics used by
authors for SITS prediction.

• The paper identifies the major limitations of using DL for SITS prediction and presents
proposed solutions to address these issues.

The rest of this paper is structured as follows. Section 2 describes the survey method-
ology. Section 3 gives an overview of some DL architectures. Section 4 describes satellite
images and the SITS prediction problem. The main SITS prediction applications using
DL methods are presented in Section 5. In Section 6, DL-based approaches used for SITS
prediction are reviewed. Optimizer and evaluation metrics are described in Section 7. In
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Section 8, the limitations of using DL methods with SITS are presented. Finally Section 9
concludes the paper.

2. Survey Methodology

To conduct this review, we first selected research papers published by Elsivier and
then those published by other publishers such as MDPI, IEEE, Springer, and others. Most
of the selected documents were journal articles (more than 90%) and some conference
papers as well as books were also included in the bibliographic database. As the studied
field was quite specific, no restrictions were made on publication dates, the objective being
to have a maximum of documents to analyze. The language used for the research and all
the selected documents was English.

First, we selected all documents retrieved from the keywords deep learning, artificial
intelligence, satellite image time series, remote sensing, prediction, forecasting, nowcasting,
and neural networks. Initially, approximately 400 documents were selected based on the
keywords search. Then, the entire papers were reviewed one by one and those that did not
fit the purpose of the survey were excluded, such as:

• Papers that did not use DL to make predictions;
• Works that used DL for predictions but not from SITS; and
• Publications that focused on the use of DL and SITS but whose applications were not

prediction, such as classification, segmentation, and others (in the cope of this study,
prediction is related to forecasting or missing data reconstruction).

Moreover, for the comprehension of additionally concepts related to the topic, other
documentations were also reviewed as part of this survey. At the end of the literature
search step, only 77 documents were retained and analyzed. The publication years of the
collected documents cover the period from 2012 to 2021, distributed as shown in Figure 1.

Figure 1. The distribution of the reviewed papers by year.

3. Background on Deep Learning
3.1. Generalities

DL is a part of AI and ML that allows a computer to learn from examples and formulate
predictions (learning from examples). Among the various common techniques used in ML,
the DL algorithms have proven to be extremely powerful due to the availability of a large
amount of data and the power of the graphical processor units (GPUs). Today, DL is used
for several applications, including automated driving, fraud detection, facial recognition
systems, medical research, and others [8,9]. DL models are often called deep neural
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networks because they are based on neural network architectures, which are structures
that consist of nodes (or neurons) designed to reproduce some of the characteristics of
biological neurons in computers. Since the neurons are artificial, the network is usually
called an artificial neural network (ANN). In its classical form, an ANN consists of an
interconnection of neurons divided into three layers (one for input, one for output, and
one hidden layer). In deep network architectures, there are more hidden layers and the
connections between neurons and layers are also more complex than in classical neural
networks [22,23].

Several frameworks are available for the implementation of DL algorithms, each
adapted to a particular context. One of the most famous is the TensorFlow library developed
by the Google Brain team. In addition, Pytorch and Keras are also frequently used DL
frameworks [8].

ML and DL are two concepts that are similar in a number of ways and are often
confused. However, they refer to two different methods. For a better understanding,
Table 2 presents the main differences between ML and DL algorithms.

Table 2. Main differences between ML and DL methods. The tensor processing unit (TPU) is only used for TensorFlow projects.

Machine Learning Deep Learning
Input data organization Structured data Unstructured data

Output data type Numerical Anything: sound, image, text,
numerical, etc.

Optimal data volume Thousands of data points Millions of data points: Big Data
Features extraction step Yes No
Transfer learning No Yes
Complexity Low to medium Very high to extremely high
Recommended processing unit CPU GPU or TPU

Applications Simple problems: classification,
regression, etc.

Complex problems: robotics,
computer vision, etc.

Python libraries Scikit-learn, Scipy, Pandas, etc. TensorFlow, PyTorch, Keras, etc.

3.2. Main DL Architectures

There are several types of DL architectures and some of the most popular are the
multi-layer perceptron (MLP), the convolutional neural network (CNN), the recurrent
neural network (RNN), the self-organizing map (SOM), the generative adversarial network
(GAN), and the auto-encoders (AE) [24]. Each of these architectures has advantages for
specific uses. For example, CNN is suitable for images or videos, and RNN for tasks
that involve sequential inputs (time series). However, for more complex problems, some
DL architectures are combined or merged to achieve good results. In addition, some
authors have developed “hybrid methods” that consist of the combination of different
types of architectures (ML and DL, supervised and unsupervised learning algorithm, for
example) [25]. This paragraph briefly presents the main DL architectures.

3.2.1. The Multi-Layer Perceptron (MLP)

Called also the multi-layer feed-forward neural network, the MLP is the first and
simplest DL architecture. It consists of one input layer to receive the signal, one output
layer that makes predictions about the input, and several hidden layers that are the true
computational engine of the network. The number of neurons in each layer is variable
and neurons are all fully connected. These networks are generally used for regression
and classification problems, with a very large amount of training data [26]. The MLP
architectures belong to the class of supervised learning algorithms and use the back-
propagation for training. It is considered insufficient for advanced computer vision tasks.
In fact, since each perceptron is connected with every other perceptron of the network, the
total number of parameters can become very high. Another limitation of MLP is that it
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does not consider spatial information for prediction. It takes flattened vectors as inputs,
thus predictions are made pixel by pixel. Figure 2 provides a representation of an MLP
with two hidden layers.

Figure 2. MLP with two hidden layers.

3.2.2. The Convolutional Neural Networks (CNN)

To overcome the shortcomings of MLP networks in computer vision tasks, the CNN
has been designed. It is a particular type of network used especially for data in 2D or
for structures in more dimensions, such as images, videos, or sequences [22]. Its general
operating principle is to apply successive convolution operations to the input data in
order to automatically extract features (important characteristics) and reduce data sizes. In
addition to input and output layers, the CNN network consists of four basic layers that
include a convolution layer, pooling layer, flattening layer, and a fully connected layer [23].
The convolutional layers (considered as the core building blocks of the CNN) allow for
extracting features from an input by mathematical operations such as the matrix and filter
or kernel. The pooling layers (sometimes called subsampling or downsampling) reduce
the dimension of each map but retain important information. The matrix are flattened into
1D vectors by the flattening layer and then information are fed into a fully connected layer.
Unlike MLP architectures, layers are not fully connected in CNN.

3.2.3. The Recurrent Neural Network (RNN)

These are generally used when input data are sequential, such as in time series,
sound, or natural language processing. RNN architectures are suitable for designing
predictive models [12,27–29]. Indeed, this network includes a feedback loop, which allows
for consideration of the information of the previous layers for predictions. However, there
are two main issues that may occur during the application of RNN architectures: the
problem of vanishing and exploding gradients[8,24]. To overcome these limitations, two
variants of RNN have been developed: the long short-term memory (LSTM) [30,31] and,
more recently, the gated recurrent unit (GRU) [32,33]. They are recurrent networks with
memory units called “cell”. The LSTM architecture has three gates (input, output, and
forget gate), while the GRU has the reset and update gates.

3.2.4. The Generative Adversarial Network (GAN)

This is a very famous architecture that has had impressive success since its creation [34].
The GAN model consists of two opposing networks (generator and discriminator) which
oppose each other in order to generate an artificial instance of data strongly resembling that
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of the real one [34]. The generator aims to create new data received by the discriminator
which determines whether they are true or generated due to a database made up of real
data. Thus, the first network learns to create more and more realistic elements while the
second learns to recognize real data in the best way.

3.2.5. The Auto-Encoders (AE)

The AE are unsupervised algorithms able to deal with unlabeled data. The main
objective of these architectures is to reduce the dimension of input variables in order to
facilitate their processing and then learn how to reconstruct the same structure of input
data for the output layer [35]. In the encoding stage, features are extracted and details are
kept as much as possible. There are many variations of AE networks, such as the deep
auto-encoder, denoising auto-encoder, contractive auto-encoder, variational auto-encoder,
and sparse auto-encoder. They are generally used in association with other architectures.
Recommendation systems, anomaly detection, dimension reduction, or image processing
are some application cases of AE systems. Figure 3 presents a simple structure of an
AE network.

Figure 3. Simple structure of an AE network.

4. Background on SITS
4.1. Description of Satellite Images

Remote sensing can be defined as all the techniques that allow for the acquiring of
information about objects without direct contact with them. One of the most common
types of remote sensing is remote sensing using satellites as a platform and producing
information in the form of images. Today, more than 4000 satellites are orbiting around
the Earth. Each satellite has its own sensor which gives specific data. They take pictures
of the Earth at a given place and time. Thus, a satellite image (SI) or remote sensing
image is an image representing a part of the Earth (or another planet) obtained from data
recorded by a sensor installed on a satellite [2]. A list of operational satellites, with their
characteristics and main objectives, is available on the satellite database of the Union of
Concerned Scientists: https://www.ucsusa.org/resources/satellite-database (accessed on
25 August 2021).

Orbiting satellites carry calibrated sensors to detect various wavelengths along the
electromagnetic spectrum, often including visible light. Systems are either active, where
the source of energy is part of the sensor (Radar imaging), or passive, where the source of
energy is the sun or Earth/atmosphere (optical imaging) [2,36]. Optical remote sensing

https://www.ucsusa.org/resources/satellite-database
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generally covers the visible (VIS), near infrared (NIR), middle infrared (MIR), and thermal
infrared (TIR) range of the electromagnetic spectrum. In near and middle infrared spectra,
radiations are reflected like visible light, while thermal radiation is the heat energy emitted
by the surface.

As opposed to optical systems, radar systems emit microwaves and measure the
back scattered energy. The main advantage of radar systems is that they can take images
regardless of the weather conditions or the time. Thus, radar images do not problems
regarding cloudy images, like in optical systems, since microwaves pass through the cloud
cover [36]. In practice, optical images are widely used and their interpretation as well as
the data processing step are considered easier than for radar data. Indeed, the use of radar
data for Earth observation is less intuitive and expertise is required to interpret images that
look much less like a photo than optical images.

SI are specific data and differ from classical pictures in several respects:

• First, SI usually have many more pixels than a classical image considering that a
photograph can already contain thousands of pixels;

• Second, SI and natural images do not have the same number of channels. Natural
pictures have three channels: one for the red color, one for the green color, and one for
the blue color (RGB). In addition to the three previous channels, SI can contain dozens
of other channels; and

• Finally, SI are all geo-referenced.

All information about an SI, such as the resolution, number of channels, sun angle,
atmospheric conditions, satellite position, etc., are recorded in the metadata file.

For example, Figure 4 represents the locality of Maroua in the Cameroon view from
the satellite Sentinel 2. The image is in a true color (RGB) representation. One can observe
the presence of a light cloud cover.

Figure 4. The locality of Maroua in the Cameroon view from the satellite Sentinel 2.

The resolution of images is an important characteristic to consider before choosing the
suitable data for a specific project. In fact, there are three main types of resolutions:

• Spatial resolution: the size of the smallest element that can be observed by the sensor.
Satellite image resolutions range from low to high and very high spatial resolution.

• Spectral resolution: refers to the bandwidth of each channel.
• Radiometric resolution: describes the ability to differentiate fine nuances in magni-

tudes of the electromagnetic energy (coding).
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• Temporal resolution: the time between the acquisition of two images representing the
same scene (satellite revisiting time).

Images with a high spatial resolution usually have low temporal resolution and vice
versa. Figures 5 and 6 illustrate the notions of the spatial and radiometric resolution of SI.
One can observe in Figure 5 that the objects in the image with the smallest spatial resolution
are more precise. Concerning the radiometric resolution (Figure 6), each pixel of the left
image is coded on 8 bits, thus the image has more color than the right image.

Figure 5. Campus of the University of Burgundy in Dijon with two spatial resolutions; (left): 0.1 m and (right): 1 m.

Figure 6. Campus of the University of Burgundy in Dijon with two radiometric resolutions; (left): 8 bits (256 levels) and
(right): 4 bits (16 levels).



Remote Sens. 2021, 13, 4822 10 of 30

4.2. Description of the SITS Prediction Problem

Let Xt be a satellite image representing a given area acquired at time t. A satellite
image time series (SITS) is a sequence of images at different consecutive times [37]. Images
may come from different sources but always represent the same scene. Thus, a SITS can be
formulated by the series described in Equation (1):

SITS = X1, X2, . . . , Xt−1, Xt, . . . , Xt+1, . . . , Xt+n (1)

where Xt represents the image X at time t.
When talking about Earth observation SITS, the term Earth observation data cube is

widely used by scientists [38].
Prediction in SITS not only consists of the forecast future or unseen event. In some

cases, it is related to data fusion or missing data reconstruction in sequences. When the
predicted data concern future events, the term “forecasting” is generally used while the
term “nowcasting” is used for very short-range forecasting. Overall, prediction problems
in times series can be divided into three main types:

• “one-to-sequence”: from one input, the model generates many outputs. For instance,
from one image provided as input, a sequence of words are generated as output
(image captioning);

• “sequence-to-one”: here, inputs are a sequence and only one occurrence is produced
as an output. That is, for example, the case of the next frame forecasting problem in
time series, as illustrated in Figure 7; and

• “sequence-to-sequence”: in this case, both of the inputs and outputs are sequences, as
in text translation tasks, for instance.

Figure 7. Sequence-to-one prediction in satellite image time series.

5. Major Applications of SITS Prediction Using DL

DL techniques are used for several types of SITS prediction problems. This paragraph
presents the main applications mentioned in the literature.

5.1. Weather Forecasting

Weather forecasting tasks consist of predicting future conditions of the atmosphere
(namely the temperature, humidity, and wind) for a given location and time. It is an
important issue for disaster management. With the development of meteorological satel-
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lite technology, satellite cloud images allow for the characterization of the distribution
of clouds on the image and are used to track the evolution of large-scale weather sys-
tems [39]. In addition to the classical numerical weather prediction (NWP) approach, DL
techniques are used today by data scientists for weather forecasting and achieve more
accurate results due to the availability of massive weather observation data and the advent
of both information and computer technology [39]. Figure 8 illustrates the two concepts for
weather forecasting: the theory-driven and the data-driven approaches. The theory-driven
approach is focused on the understanding of physical mechanisms and uses NWP-based
models for predictions, while the data-driven approach uses the spatial and temporal
relationships between meteorological data and DL techniques. One can observe in the
figure that the theory-driven method consists of three steps (data assimilation, execution of
the NWP model, and visualization), while the data-driven approach directly uses data and
DL algorithms to make predictions.

Figure 8. Two paradigms for weather forecasting described in [39].

5.2. Precipitation Nowcasting

Precipitation nowcasting is an important and essential part of the weather forecasting
problem. Its goal is to predict the future intensity of rain/snow in a local region over a
relatively short period of time (e.g., 0–6 h) [40]. To achieve this goal, sequences of observed
radar echo maps are used to forecast a fixed length of the future radar maps within a given
area. Note that the radar echo maps are images which can be converted to rainfall intensity
maps using the Marshall–Palmer relationship or Z–R relationship [41].

From the machine learning point of view, this problem is considered as a spatio-
temporal sequence forecasting problem. Recently, studies have shown that DL techniques
outperformed classical existing methods for precipitation nowcasting, namely NWP-based
methods and radar-echo extrapolation-based methods. In fact, the availability of a huge
amount of radar echo data and suitable models for end-to-end learning allow for achieving
a better performance.

5.3. Spatio-Temporal Analysis

Spatio-temporal or spatial temporal analysis refers to the study of data collected across
both space and time dimensions. It describes an event that occurred in a specific place
over time. With the development of powerful computational processors, DL techniques
are widely used nowadays by data scientists for spatio-temporal data analysis. Specific
applications in SITS include the spatio-temporal prediction of snow cover [27], leaf area
index [42], sea ice motion [43], vegetation [44], sea surface temperature [45], and others. In
general, indices are first extracted from images before their use. In fact, map indices are
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images calculated from multi-channel images. They highlight a specific phenomenon that
is present while mitigating other factors that alter the effects on the image. For example, a
healthy vegetation is represented by a light color in the normalized difference vegetation
index (NDVI) image, while unhealthy vegetation has lower values.

5.4. Missing Data Reconstruction

Earth observation imagery from remote sensing is one of the most important ways
to obtain information of the surface of the Earth. Sometimes, because of some issues
such as the internal malfunction of satellite sensors, the low temporal frequency, the poor
atmospheric conditions, or other image-specific problems, the acquired satellite images
suffer from missing information. For example, data can face the problem of dead pixels on
images, thick cloud cover [46], or missing images in a temporal sequence, as in Figure 9.
One can observe that in this illustration, according to the description of a SITS as given
by Equation (1), the information of the image Xt+3 recorded at time (t + 3) are missing.
Thus, the data usability is greatly reduced; it is thus necessary to reconstruct missing data
in order to have complete sequence.

Figure 9. Missing image in the sequence.

To date, several techniques for missing information reconstruction have been pro-
posed. The approaches belong to four main categories, namely spatial based-methods,
spectral-based methods, temporal-based methods, and spatio-temporal-spectral-based
methods [46].

6. Deep Learning-Based Methods for SITS Prediction

The current part of this review presents the most DL-based approaches used for SITS
prediction as well as some examples of their use in real-world problems. Models based on
RNN, feed-forward networks, and hybrid architectures are reviewed, as well. Table 3 at
the end of this section gives a summary of these methods.

6.1. RNN-Based Models
6.1.1. Long/Short-Term Memory

The LSTM network was designed to solve the problem of the vanishing gradient in
RNN. Unlike that in standard recurrent networks, which have only one single activation
layer, in LSTM architectures, there are four layers that interact in a special way: the
information gate, forget gate, input gate, and output gate (note that in real configurations it
may have more gates). Figure 10 shows the configuration of a simple LSTM memory block
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and Equations (2)–(7) describes each component in the memory block. One can observe
that the LSTM block takes three data types as inputs.

ct = ft � ct−1 + it � gt (2)

ht = ot � σc(ct) (3)

it = σg(Wixt + Riht−1 + bi) (4)

ft = σg(W f xt + R f ht−1 + b f ) (5)

gt = σc(Wgxt + Rght−1 + bg) (6)

σt = σg(Woxt + Roht−1 + bo) (7)

where:

ct and ht represent the cell state and hidden state at time t, respectively;
it, ft, and ot are the input, the forget, and the output gate at time t, respectively;
gt is the cell candidate at time t;
xt is the input vector to the LSTM unit;
Wi, f ,g,o are the input weights for each component;
Ri, f ,g,o represent the recurrent weight for each component;
bi, f ,g,o are the bias parameters for each component;
σc is the gate activation function (by default sigmoid);
σg defines the state activation function (by default tanh); and
� is the Hadamart product.

Figure 10. A simple LSTM block memory.

Although the LSTM architectures are suitable for 1D data, some researchers have used
this approach for SITS prediction. For example, the authors in [47] used a simple LSTM
model for the reconstruction of daily missing pixels in optical images covered by cloud. In
such a model, image predictions are done pixel by pixel. Since the obtained results were
quite satisfactory, it has been concluded that LSTM networks are also usable for this kind
of problem.

In a similar manner, multi-layer LSTM networks were used in [48] for sequence-to-
sequence weather forecasting. Before the training step, some data were preprocessed. For
example, missing values in a sequence were replaced by the last reordered value.

More recently, a new model based on thw LSTM architecture was presented in [49]
for the Soybean yield prediction from satellite images and weather data. The authors
compared the performance of their model with respect to the performance obtained by
multivariate ordinary least squares (OLS) and random forest algorithms. After the analysis



Remote Sens. 2021, 13, 4822 14 of 30

of the results obtained by each model, the authors concluded that satellite images combined
with weather data can improve the accuracy of Soybean forecast models.

6.1.2. Convolutional LSTM

When solving prediction problems involving time series, RNN and particularly LSTMs
are generally used for their ability to store the state from previous layers. However, this
type of architecture was basically designed to work with one-dimensional data. For 2D
data as images, the best approach is to use CNN-based models. Thus, in order to obtain
good predictions using SITS, the capabilities of CNN and LSTM networks are merged to
create the convolutional LSTM (ConvLSTM). In this architecture, matrix multiplication at
each gate of classical LSTM is replaced with convolution operation and the input dimension
of data is kept in the output layer instead of being just a one-dimensional vector. Figure 11
shows a representation of a simple memory block of the ConvLSTM architecture. On the
basis of the LSTM block as represented by Figure 10, convolution operation is introduced
in each input to capture spatial features. In the ConvLSTM architecture, all the attributes
Xt, Ct, ht, and the gates are 3D tensors [40].

Figure 11. A simple ConvLSTM block memory [50].

The ConvLSTM architecture was introduced in 2015 by Xingjian shi et al. in [40].
The authors applied the proposed structure for solving a weather forecasting problem,
namely the prediction of future precipitation intensities. For the same purposes, authors
in [51] designed a new model called DeepRain based on the ConvLSTM architecture for
precipitation forecasting using SITS. Models based on the ConvLSTM architecture are also
used for other applications such as for the prediction of future satellite cloudage images or
for the prediction of short and mid-term sea surface temperatures (described, respectively,
in [45,52]).

In general, the results of research studies have shown that the ConvLSTM model
outperformed main traditional models, namely the fully-connected LSTM (FC-LSTM), the
real-time optical flow by variational methods for echoes of radar (ROVER) information ,
the linear regression method, and the MLP.

6.1.3. Trajectory-Gated Recurrent Unit (TrajGRU)

To overcome some limitations of ConvLSTM and Convolutional GRU (ConvGRU)
models, the authors in [41] designed a new model and benchmark (dataset, training loss,
and evaluation protocol) for precipitation nowcasting tasks. They designed a new TrajGRU
model based on ConvGRU. It is able to actively learn the location-variant structure for
recurrent connections. Unlike in classical convolutional RNN, recurrent connections are
dynamically determined over time in the TrajGRU architecture [41], which is defined by
Equations (8)–(12).



Remote Sens. 2021, 13, 4822 15 of 30

Ut, Vt = γ(Xt, Ht−1) (8)

Zt = σ(Wxz ∗ Xt +
L

∑
l=1

W l
hz ∗ warp(Ht−1, Ut,l , Vt,l)) (9)

Rt = σ(Wxr ∗ Xt +
L

∑
l=1

W l
hr ∗ warp(Ht−1, Ut,l , Vt,l)) (10)

H
′
t = f (Wxh ∗ Xt + Rt ◦ (

L

∑
l=1

W l
hh ∗ warp(Ht−1, Ut,l , Vt,l))) (11)

Ht = (1− Zt) ◦ H
′
t + Zt ◦ Ht−1 (12)

where:

L represents the number of allowed links;
Ut, Vt ∈ RL×H×W denote the flow fields;
W l

hz, W l
hr, W l

hh are the weights;
warp(Ht−1, Ut,l , Vt,l) is the function that selects the positions pointed out by Ut,l , Vt,l
from Ht−1;
Ht, Rt, Zt, H

′
t represent the memory gate, reset gate, update gate, and new information,

respectively;
Xt is the input;
f is the activation function; and
◦ denotes the Hadamart product.

Experimental results have shown that this new model was more efficient than the
classical ConvGRU for precipitation nowcasting. However, to improve prediction accuracy
in a realistic data context, some authors proposed a new sequence-to-sequence model
based on TrajGRU, ConvGRU, and ConvLSTM [53].

6.2. Hybrid Models

For more complex problems, instead of using only one kind of architecture, scientists
often combine two or more methods and expect better results. Sometimes, DL architectures
are used in association with classical ML algorithms. Such models are called “hybrid
models”. They refer to a category of methods which integrate the advantages of different
individual models [54].

6.2.1. LSTM–AdaBoost

The LSTM–AdaBoost model was designed by Xiao et al. in [55] for the prediction of sea
surface temperatures (SST). This model consists of the combination of two different types
of architecture, namely the LSTM network and the adaptive boosting model (Adaboost).

AdaBoost is a boosting ML algorithm used as a classifier. It is generally used in
combination with many other types of learning algorithms to improve performance. The
term “adaptive boosting” is used because weights are re-assigned to each instance. It
allocates more weight to hard-to-classify instances and less to those that are already well
processed. This algorithm can be used for both regression and classification problems. The
basic regressor boosted by AdaBoost as part of the LSTM–AdaBoost model is the decision
tree regressor, which has been demonstrated to be powerful for predictions [55]. Figure 12
gives a simple representation of the AdaBoost part of the architecture. The top panel shows
the generation of the boosted decision tree regressors. The weights for combining the
predicted SSTAs are calculated during the boosting stage based on the produced prediction
errors [55].
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Figure 12. The simple representation of the decision tree regression architecture boosted by AdaBoost proposed in [55].

Before feeding data to this LSTM–AdaBoost network, data sequences need to be
deseasonalized and normalized. Experimentation on short and mid-term future SST
predictions have shown that the obtained results with the hybrid model outperformed
those obtained with LSTM, Adaboost, or SVR (Support Vector Regression) separately.
Note that concerning the issue of seasonal series, authors in [56] examined the question of
whether the data should be deseasonalized first.

An overview of the whole LSTM–AdaBoost model is illustrated in Figure 13. The input
SSTA sequence is first provided to both LSTM and AdaBoost networks for independent
predictions. Then, each of their predictions are combined through averaging to produce
the final prediction, which is used as the latest element of the input sequence [55].

Figure 13. The simplified LSTM–AdaBoost configuration designed in [55].
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6.2.2. Generative Adversarial Network–LSTM (GAN–LSTM)

The GAN–LSTM architecture consists of a combination of a supervised learning
architecture with an unsupervised architecture, namely the LSTM and GAN networks,
respectively. This method, as proposed in [57], combined the generator skills provided by
the GAN and the forecast ability of the LSTM network for satellite image prediction. The
GAN part of the model, which is represented by Figure 14, generated images from a set of
random data. The generator was trained to fake the discriminator while the discriminator
was trained to make the right judgment. Then, the LSTM part of the network provided
some information for the hidden variable of the generator [57].

Figure 14. The basic structure of GAN proposed in [57].

The main challenge to train a GAN model concerns the quality of generated images,
which are supposed to be not only low in noise but also diverse. The training process of
GAN and GAN–LSTM are detailed in Algorithms 1 and 2, respectively [57].

Algorithm 1 GAN Training Algorithm.

Require: α, the learning rate; m, the batch size; and nD, the number of iterations of the
discriminator per generator iteration.

Require: θd0, the initial discriminators parameters, and θg0, the initial generators parameters.

for number of training iterations do
for t = 0,. . . , nD do

sample {x(i)}m
i=1 ∼ pdata: a batch from the real data.

sample {z(i)}m
i=1 ∼ pz: a batch from the noise prior.

gθd ← ∆θd[
1
m ∑m

i=1 LD(x(i), z(i); θd, θg)]
θd ← θd − α.Optimizer(θd, gθg)

end for
sample {z(i)}m

1 ∼ pz: a batch from the noise prior.
gθg ← ∆θg[

1
m ∑m

i=1 LG(z(i); θd, θg)]
θg ← θg − α.Optimizer(θd, gθg)

end for

Algorithm 2 GAN–LSTM Training Algorithm.

Require: α, the learning rate, and m, the batch size.
Require: θ f 0, the initial LSTM’s parameters.

Train GAN with Algorithm 1
Cut the generator (G) of the trained GAN and attach it to the LSTM ( flstm).
for number of training iterations do

sample {v(i)}m
i=1 ∼ pdata: a batch from the real data.

where v(i) =
∼
v i−j+1,

∼
v i−j+2, . . . ,

∼
v i.

gθ f ← ∆θ f [
1
m ∑m

i=1 MSE(G( flstm(v(i)),
∼
v i+1]

θ f ← θ f − α.Optimizer(θ f , gθ f )
end for

In a similar manner, in order to ameliorate the performance of the classical ConvGRU
for precipitation nowcasting tasks, a hybrid architecture similar to the GAN–LSTM model
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was designed in [58]: the Generative Adversarial–ConvGRU (Ga–ConvGRU). The pro-
posed model has two adversarial learning systems: a ConvGRU-based generator and a
convolution neural network-based discriminator. The two systems of the model allow for
more realistic and more accurate yield extrapolation [58].

6.2.3. Convolutional LSTM Auto-Encoder

This architecture consists of two RNNs using an encoder–decoder framework. First,
the encoder part of the model receives historical data and reduces information through
time. Then, the encoded data and network states are used by the decoder to forecast values
one by one. This approach was suggested, for example, in [59], to predict the next sequence
of satellite images. To achieve better results, convolutional LSTM cells were introduced
into both the encoder and the decoder. Since the quality of the predicted images in terms
of resolution was not very good, the authors planned to improve the model by introducing
a GAN into the model as a perspective to their study.

Similarly, a deep learning model composed of an encoder–decoder network with
convolutional LSTM units was also proposed by authors in [43] for the prediction of future
sea ice motion. The proposed model had an encoder–decoder structure with convolutional
LSTM units. As shown in Figure 15, the last states and output cell of the encoder are copied
to the decoder network. The encoder and decoder can consist of multiple layers of LSTM
units stacked together, with the output of one layer being the input of the next one [43].

Figure 15. Overview of the encoder–decoder structure of the convolutional LSTM auto-encoder prediction network
proposed in [43]. Xi represents the ith optical flow array of the input sequence X and Ŷj represents the jth predicted
flow array.

6.3. Feed-Forward-Based Models
6.3.1. DeepstepFE

The MLP or feed-forward multi-layer neural network is the first and simplest DL
architecture. Numbers of neurons in each layer are variable and neurons are all fully
connected. These networks are generally used for regression and classification problems,
with a very large amount of training data.

Due to the presence of clouds on the optical images or the malfunctions that may
occur on satellite engines, for example, data sequences are often incomplete. To solve
the problem of missing data in a sequence of images, Monidipa Das and Soumaya Ghoh
proposed in [60] a DL framework based on MLP architecture (DeepstepFE). The authors
applied the model based on deep-step [44] for the reconstruction of missing NDVI images
considering all available data (the previous and following images) in the sequence. The
deep-step model was designed by the same authors in [44] and derived from the DSN
model (deep stacking network).

According to the results obtained by the DeepstepFE model and by the other classical
DL approaches for missing data prediction, the proposed DeepstepFE showed the best
performance and had both a competitive and reasonable execution time.
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6.3.2. CNN-Based Approaches

To overcome the shortcomings of MLP networks in computer vision tasks, the CNN
architecture has been designed by scientists. They are specially used for data in two or
more dimensions. When working on image processing problems, the CNN consists of four
basics layers: the convolution, pooling, flattening, and fully connected layer. Unlike MLP,
layers are not fully connected in CNN. In SITS prediction problems, one can notice that the
CNN is generally used for data fusion or missing data reconstruction.

Figure 16. The proposed CNN architecture for data fusion used in [61].

For example, in [61], the authors explored the fusion of optical and radar images time
series(Sentinel 2 and Sentinel 1) for the reconstruction of missing NDVI from synthetic
aperture radar (SAR) data. To this end, they proposed a CNN-based model. The results
of their study showed that there is a strong relationship between the radar data and the
NDVI, which can be captured by a CNN model. The configuration of this architecture is
presented in Figure 16. One can observe that the Sentinel 1 image time series, acquired
every 12 days, passes through the CNN architecture, which outputs the corresponding
Sentinel 2 NDVI image.

The overall CNN function is defined by Equation (13).

y = f (x, Φ) = fL( fL−1(. . . f1(x, Φ1), . . . , ΦL−1), ΦL) (13)

where x = x(1) is the input stack, y = y(L) is the estimated NDVI, and Φ ∆
= (Φ1, . . . , ΦL) is

the whole set of parameters to learn [61].
Another use case of the CNN is presented in [46] wherein a spatial–temporal–spectral

framework based on CNN architecture is proposed for the reconstruction of missing data
encountered in satellite images.Three main reconstruction tasks were considered in [46],
namely the problem of dead lines in the Aqua MODIS band, the Landsat ETM + Scan Line
Corrector (SCL)-off problem, and thick cloud removal. The Experimentatal results showed
that the deep model performed well for the reconstruction of dead-lines in Aqua MODIS
band 6. However, for the two other tasks, the authors encountered some limitations to
solve in future works.
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Table 3. Summary of the reviewed DL-based methods for SITS prediction. FF = feed-forward; TS-X = TERRA SAR-X; SP4-5 = SPOT4-5; F-2 = FORMOSAT-2; S1, S2 = Sentinel 1, 2; Corr. = correlation;
and OA = overall accuracy.

Method Class Ref. Architecture Dataset Weakness Advantage Result

FF

[46] CNN MODIS and Landsat 7 Presence of spectral distortion and
blurring Use of multi-source data CC = 0.97

[61] CNN S1 and S2 Presence of residual blur Use of multi-source data SSIM = 0.59
[62] CNN MODIS Necessity to choose data for input Accurate predictions RMSE = 0.81
[60] MLP Landsat 7 Not working with raw satellite imagery Use of the earlier and subsequent data PSNR = 31.70
[44] MLP Landsat 7 Needs to create the NDVI map first Good execution time 2118 seconds

[63] FFNN TS-X, SP4-5, F-2, and
RSAT2

Does not perform well on optical
images Use of multi-source data RMSE = 7.00

[64] FFNN Meteosat 7 Not optimal for operational uses High prediction accuracy RMSE = 6.66

RNN

[47] LSTM MODIS Depends on the time of day Accurate predictions R2 = 0.90
[49] LSTM MODIS Depends on weather conditions Can be applied to other regions RMSE = 0.68

[51] ConvLSTM Radar echo Can not perform many-to-many
prediction Applied on four-channel data RMSE = 11.31

[40] ConvLSTM Radar echo Not suitable for long series Accurate predictions of future rainfull Corr. = 0.908

[45] ConvLSTM OISST2 Adapted to restricted cases Can capture both the spatial and
temporal correlations R = 0.99

[52] ConvLSTM FY-2Y Blur effect on the predicted images Good accuracy SSIM = 0.98
[53] Radar echo ConvGRU and TrajGRU Needs to be trained several times Cheap and effective solution SSIM = 0.52

Hybrid

[55] LSTM–Adaboost AVHRR Series need to be deseasonalized first Less overfitting MAE: +3.73%
[65] ConvGRU–CNN S1 and S2 Requires many radar images Transferable to other study areas OA = 91.03

[57] GAN–LSTM FY-2F Only one channel of the images is
considered Robust solution CR = 0.78

[25] ESS–MLP Radar echo Many steps before predictions Good accuracy R2 = 0.9

[43] CNN–LSTM AMSR E2 Only one channel of the images is
considered

Can perform predictions several days
in the future xRMSE = 4.2

[42] RNN–NARX HJ-1A/1BCCD Needs to create the index map first Robust solution R2 = 0.88
[66] RNN–LSTM Radar echo Tested on small images Performs well on videos MSE = 44.2

[59] ConvLSTM–AE COMS1 Resolution of predicted images is not
good Predicts unseen weather situations MSE = 197.2
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7. Optimizer and Evaluation Metrics Used for SITS Prediction

Depending on the problem, different elements are used for prediction in SITS. This
section presents the optimizers and the performance metrics used in the reviewed studies.

Table 4 gives an overview of these elements according to the studied field.

7.1. Optimizer

During the learning step in neural networks, special methods or algorithms called
optimizers are used to minimize the difference between the predicted output and the real
one. This optimization is made by the readjustment or update of weights in order to obtain
the most accurate predictions. In the literature, several types of optimizers exist and the
choice of the most suitable algorithm for a DL model is crucial.

Gradient descent is one of the most popular algorithms to perform optimization and the
most common way to optimize neural networks. There are three basic kinds of variants of gra-
dient descent depending on the amount of data used for the gradient descent: batch gradient
descent, stochastic gradient descent (SGD), and mini-batch gradient descent. Although SGD
proved itself as an efficient and effective optimization method for DL algorithms, there are
some variants that have been introduced, namely the adaptive moment (Adam) and the root
mean square propagation (RMSProp) [67,68]. In the reviewed studies, the aforementioned
SGD, Adam, and RMSProp algorithms have been used to train models.

7.1.1. The Stochastic Gradient Descent (SGD)

In the SGD, all the parameters are updated for each occurrence individually instead
of computing the gradient of the cost function for the entire training dataset. The core of
this approach is to minimize a function that can be written as the sum of differentiable
functions. It is suitable for unconstrained optimization problems and has proven to be very
effective in a variety of deep neural networks [44,46,49].

Equation (14) describes the SGD update rule.

Wk+1 = Wk − η∆J(Wk) (14)

where Wk+1 is the updated value after the k-th iteration, Wk is the initial value before the
k-th iteration, η is the step size, and ∆J is the gradient of J.

7.1.2. The Root Mean Square Propagation (RMSProp)

The RMSProp function developed by Geoffrey Hinton is usually a suitable choice for
RNN [43,58].

In the RMSProp algorithm, the learning rate for each parameter is automatically
adjusted by an exponentially decaying average of squared gradients. The author of the
RMSProp suggests to set the default value for the learning rate to η = 0.001.

Equations (15) and (16) define the RMSProp optimizer.

E[g2](t) = βE[g2](t− 1) + (1− β)(
δc
δw

)2 (15)

wij(t) = wij(t− 1)− η√
E[g2]

δc
δwij

(16)

where E[g]is the moving average of squared gradients, δc
δw is the gradient of the cost

function with respect to the weight, η is the learning rate, and β is the moving average
parameter.

7.1.3. The Adaptive Moment (Adam)

The Adam optimizer is by far one of the most preferred optimizers for DL algorithms.
This algorithm of estimation combines capabilities of both the RMSProp and Momentum
optimizers [69]. In the literature, most studies use the Adam optimizer for SITS prediction.
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In fact, the Adam optimizer is simple to implement, computationally efficient, require little
memory and tuning, and is appropriate for problems with very noisy or sparse gradients.

The Adam function is defined by Equations (17)–(20).

vt = β1 ∗ vt−1 − (1− β1) ∗ gt (17)

st = β2 ∗ st−1 − (1− β2) ∗ g2
t (18)

∆wt = −η
vt√

st + ε
∗ gt (19)

wt+1 = wt + ∆wt (20)

where:

η denotes the initial learning rate;
gt is the gradient at time t;
vt represents the exponential average of the gradient;
st represents the exponential average of the square of the gradient;
β1 and β2 are hyperparameters; and
and each parameter wj is replaced by w for more clarity.

7.2. Evaluation Metrics

The choice of the appropriate evaluation metrics for models is a crucial step for any
DL project. In fact, depending on the used metric, the evaluated model may or may not
provide satisfying results. It is therefore very important to test multiple measures. In the
literature, different metrics are tested to evaluate models. One can classify these measures in
six main groups:

7.2.1. Regression Metrics

In most of the reviewed publications, one can observe that at least one of the following
regression metrics is used for the evaluation of the designed models: the mean squared error
(MSE), the mean absolute error (MAE), and the coefficient of determination (equivalent to
the square of the Pearson correlation coefficient R2). In fact, these metrics are considered to
be the best for the evaluation of regression models. In addition, some derived versions, such
as root mean square error (RMSE), mean absolute percentage error (MAPE), normalized-
RMSE, and normalized mean bias error (nMBE), are also used to evaluate the performance
of the models. More details on regressions metrics are in [70].

7.2.2. Computer Vision Metrics

The following metrics, generally used in computer vision problems, have been chosen
by some authors: the peak signal-to-noise ratio (PSNR), the structural similarity index
(SSIM), the spectral angle mapper (SAM), and the difference image (DI) [46,47,60,61].

The PSNR calculates the peak signal-to-noise ratio in decibels between two images.
Its goal is to evaluate the quality between the original and the compressed image by the
ratio value. The higher the PSNR, the better the quality of the reconstructed image.

With regard to the SSIM index, this allows for measuring the structural similarity
between the predicted images and original ones. Values close to 1 indicate good similarities.

Regarding the SAM, this is based on a physical concept that measures the angular
similarity between the spectrum of each pixel of the image and the reference spectra.
Finally, the DI results from the subtraction operations between the values of each pixel of
the input image and the values of the pixels corresponding to the predicted image. A dark
DI with values close to 0 indicates that the prediction is good.
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Table 4. Optimizer and categories of evaluation metrics used in the reviewed studies. Ref.: reference; NA: not available; CV: computer vision; Class.: classification; Proc.: processing; Prop.:
proposed; Regres.: regression; and Stat.: statistical.

Prediction Domain Ref. Dataset Architecture
Optimizer Categories of Evaluation Metrics

Adam RMSProp SGD Class. CV Proc. Prop. Regres. Stat.

Missing data

[65] Sentinel 1 and Sentinel
2 ConvGRU + CNN NA NA NA X

[46] MODIS and Landsat 7 CNN X X X

[61] Sentinel 1 and Sentinel
2 CNN NA NA NA X X

[60] Landsat 7 Deep MLP NA NA NA X X X
[47] MODIS LSTM X X X

Precipitation

[53] Radar echo ConvLSTM, Conv, and
Traj–GRU NA NA NA X

[51] Radar echo ConvLSTM X X
[40] Radar echo ConvLSTM NA NA NA X X
[58] Radar echo GAN + ConvGRU NA NA NA X
[48] Radar echo LSTM X X X
[64] Meteosat 7 Deep FFNN NA NA NA X X
[25] Radar echo SOM and ESS + MLP NA NA NA X

Spatio-temp

[45] OISST2 ConvLSTM X X X
[44] Landsat 7 Deep MLP X X X
[43] AMSR E-2 CNN + LSTM X X X
[42] HJ-1A/1B CCD RNN + NARX NA NA NA X X
[27] MODIS RNN + NARX NA NA NA X X
[66] Radar echo RNN + LSTM X X X

Weather

[59] COMS-1 ConvLSTM + AE X X
[57] FY-2F GAN + LSTM NA NA NA
[52] FY-2F ConvLSTM X X X X
[55] AVHRR AdaBoost + LSTM NA NA NA X

Crop yield

[62] MODIS CNN NA NA NA X
[49] MODIS LSTM X X

[63] T.SAR-X and
FORMOSAT2 Deep FFNN NA NA NA X
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7.2.3. Statistical Metrics

These metrics are generally used in statistic or probability problems. The false alarm
rate (FAR), the probability of detection (POD), the critical success index (CSI), the heidke
skill score (HSS), the correlation coefficient (CC), and the Pearson correlation are statistical
metrics computed to evaluate the performance of proposed DL-based models for SITS
prediction. The POD, FAR, and CSI metrics, which are the most commonly used by authors
in the literature, are defined by the following equations:

POD =
TP

TP + FP
(21)

FAR =
FN

TP + FN
(22)

CSI =
TP

TP + FP + FN
(23)

where TP, FP, and FN represent the number of true-positive predictions, the number of
false-positive predictions, and the number of false-negative predictions, respectively.

7.2.4. Processing Metrics

In addition to classical measures used in DL problems, some authors recorded other
values such as the model’s training time, the execution time, or the computer memory
consumption during the training step. These values, in this paper, are called “processing
metrics”. They have been used in [43,44,66].

7.2.5. Classification Metrics

To evaluate the performance of the data fusion model, authors in [65] used the com-
monly employed measures appropriate for classification problems (accuracy, Kappa, and
f-measure).

7.2.6. Proposed Metrics

In [48,52], authors proposed new evaluation metrics and obtained a better performance
compared to those obtained with classical ones.

8. Limitations in the Use of DL for SITS Prediction

Deep learning techniques are used today in most real-life applications and the remote
sensing domain is not an exception. However, studies regarding the use of DL algorithms
for SITS are still recent and present some particular challenges. This section summarizes
the major factors that limit the use of DL for SITS prediction.

8.1. Limits Related to Training Dataset Availability

It is necessary to use a large training dataset to obtain satisfactory results with DL
algorithms. However, contrary to models that use conventional images, there is a significant
lack of labeled remote sensing data. Even if some training datasets are available for the
remote sensing community, the problem regarding the quantity of elements in these
databases persists. This issue of limited training samples is more important for working
with Earth observation SITS. It is important to constitute a long time series of images to
achieve accurate predictions [71].

There are several satellite missions that provide a large quantity of data. However, the
collection and preprocessing of remote sensing images to build a usable dataset for SITS
prediction is not a simple task [38]. In addition, Earth observation images are complex and
varied (particularly because of the geographical metadata). The images are large, unlike
traditional imagery datasets that are constituted of relatively small amounts of data. Thus,
the download and storage costs are two aspects that make data availability difficult [71].
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Considering there is a lack of preprocessed training datasets for SITS prediction, other types
of images are often used for model validation in the literature. These include, for example,
the MNIST, the Moving MNIST, and the KTH Action databases. Low resolution images
such as meteorological series and radar echo datasets are, therefore, most often used in
the domain of SITS prediction. To solve this problem, scientists are encouraged to publish
methods and algorithms for downloading automatic Earth observation images. Databases
of preprocessed SITS should also be made public to facilitate and promote experimentation.
Table 5 lists some free software that can be used to process SI.

Table 5. List of the main free tools used for SITS processing. GIS = geographic information system.

Tool Description Hyperlink

MAJA (MACCS
ATCOR Joint
Algorithm)

A cloud detection and atmospheric
correction chain. It is adapted to the
processing of high resolution image
time series.

https://logiciels.cnes.fr/fr/
node/57?type=desc (accessed on
3 November 2021)

OTB (Orfeo toolbox) An open-source project for state-of-the-art
remote sensing.

https://www.orfeo-toolbox.org/
(accessed on 3 November 2021)

Monteverdi A satellite image viewer.
https://www.orfeo-toolbox.org/
CookBook/Monteverdi.html
(accessed on 3 November 2021)

SNAP (Sentinel
Application Platform) A software for Sentinel image processing.

http:
//step.esa.int/main/download/
(accessed on 3 November 2021)

NEST (Next ESA SAT
Toolbox)

A software for the processing and analysis of
radar and optical spatial data.

http://step.esa.int/main/
(accessed on 3 November 2021)

Emmah tools A tool for image validations.
https:
//www6.paca.inrae.fr/emmah/
(accessed on 3 November 2021)

ILWIS (Integrated
Land and Water
Information System)

A remote sensing and GIS software that
integrates image, vector, and thematic data
in one unique and powerful package.

http://52north.org/
communities/ilwis (accessed on 3
November 2021)

ImageJ A tool for SI processing and analysis in Java. http://rsbweb.nih.gov/ij/
(accessed on 3 November 2021)

GRASS GIS
(Geographic Resources
Analysis Support
System)

A GIS technology built for vector and raster
geospatial data management, geoprocessing,
spatial modeling, and visualization.

https://grass.osgeo.org/
(accessed on 3 November 2021)

Quantum GIS A GIS that allows to view, edit, and
print maps.

http://qgis.org/ (accessed on 3
November 2021)

GuidosToolbox (GTB) Contains a wide variety of generic raster
image processing routines.

https://forest.jrc.ec.europa.eu/
en/activities/lpa/gtb/ (accessed
on 3 November 2021)

SPRING

This represents the latest in GIS, remote
sensing, and image processing systems with
an object-oriented data model that allows for
the integration of vector and raster data
representations in a simple environment.

http://www.dpi.inpe.br/spring/
francais/index.html (accessed on
3 November 2021)

8.2. Preprocessing of Datasets

Due to the satellites that orbit the Earth, it is possible to obtain images with excellent
temporal resolutions. In their initial state, these SITS contain a great deal of information.
However, thsse images are not all free and, in practice, it is not possible to use them
in their raw state with DL algorithms. In fact, each image of the final sequence must
be downloaded and preprocessed to extract useful information the end user can work
with [72]. For example, various indexes and classifications are performed before the images
are used as input datasets. Figure 17 presents the entire remote sensing data process-
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ing flow [72]. First, images are acquired and recorded from Earth observation satellites.
Then, data are processed through three main operations, including the preprocessing step
(radiometric, atmospheric, or geometric corrections, etc.), value-added processing step
(fusion, mosaic, fine correction, etc.), and the information abstraction stage (classification,
segmentation, feature extraction, etc.). Finally, processed data are used for large thematic
remote sensing applications (Global change, forest fire detection, land use classification,
drought monitoring, etc.) [72].

Figure 17. Analysis of the entire remote sensing data processing flow .

Since satellite images are complex and varied, the processing step requires a significant
amount of time and an intervention of an expert in the remote sensing field. In fact, for
example, the expert knows what information to extract depending on the problem that
needs solving. These operations are costly and must be automatized to avoid wasting time.

When optical images are used to build the time series, the presence of clouds on
the images is a significant issue. Although there are some techniques to overcome these
limitations, the quality of the resulting data is often altered. This also leads to decreased
prediction accuracy. Therefore, an alternative to cloudy images is the use of radar images.
However, this solution is also a challenge for the community because the prepossessing
steps for radar images seem to be more complex than those for optical images and SAR
images are also noisy and grainy [73]. Thus, precise workflows and scripts should be made
public to facilitate the preprocessing step of satellite images.

8.3. Architecture of DL-Networks

In some cases, deeper architectures with a large amounts of training data allow models
to achieve satisfactory results on complex problems and to generalize well. However, SITS
are made up of extremely large images. A significant resizing of these images will decrease
the quality of the predicted data. However, the quality of output images in terms of
resolution is important, for example, in land change predictions. In fact, for a better
understanding of the studied phenomenon, output images must maintain the maximum
amount of information and have the best resolution possible. Therefore, the use of some DL
architectures with SITS could be an issue regarding the computing resource consumption.
For example, it has been shown in [74] that the use of the ConvLSTM architecture is
not advisable when the size of images and length of sequences increase. It is, therefore,
necessary to design adequate models suitable for SITS and able to produce good prediction
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accuracy. Preprocessing and postprocessing strategies must also be in place to restore the
quality of output images. It would be also interesting to design several DL algorithms to
be integrated into open-source image processing libraries such as the Orfeo Toolbox to
facilitate SITS predictions.

8.4. Complexity of SI

The conditions of acquisition of SI (such as atmospheric conditions, the effect of sunlight,
the angle of view of the sensor, the type of sensor (radar, optical, etc.), and the complexity
of the images in terms of the numbers of pixels and channels) make the exploitation of
SITS very difficult [73]. In addition, from one geographical area to another, objects do not
have the same appearance on the images, and over seasons, images of the same area can
appear different because of the effect of seasonality. This makes it difficult to build linear
datasets and to design DL models capable of learning how changes occur over time. As a
solution, it is therefore necessary to design powerful frameworks capable of taking into
account these diversities to produce good predictions. One way to deal with large image
sizes is often to divide the images into smaller areas that are used as input datasets for the
model training.

8.5. Generalization of DL Models

Concerning natural images, DL models are generally reusable without too much
difficulty regardless of the type of image. However, this is not the case with SI. For
example, a model trained on optical images having 30 m of resolution will not be able to
produce the same results with radar images of different resolutions. Moreover, models
trained on the same type of data but corresponding to different geographical areas will not
produce the same results. To this end, it is necessary first to design frameworks dedicated
to the preprocessing of SITS for prediction. Then, meta-learning concepts have to be
applied [75,76], which will allow for the consideration of different geographical areas as
different spots and to design models that can be reused for new areas.

9. Conclusions

In this article, we reviewed recent publications that involve the use of DL algorithms
for satellite image time series prediction. The main applications, including weather fore-
casting, precipitation nowcasting, spatio-temporal analysis, prediction, and missing data
reconstruction, were discussed first. After an analysis of the reviewed studies, the DL
methods used for SITS prediction can be categorized into three main groups, namely
RNN-based models, hybrid models, and feed-forward-based models (CNN and MLP). The
designed models are optimized by the SGD, Adam, and RMSProp optimizers during the
learning step. Different evaluation metric measures used by the authors fall under one of
the following categories: computer vision metrics, statistical metrics, classification metrics,
and processing metrics.

Despite the promising results obtained with the proposed models, the SITS prediction
community is still confronted by many challenges. Some examples of the issues encoun-
tered are the lack of available training datasets, the complexity of satellite images, the
need to first preprocess images, the difficulty to generalize and reuse the models, and the
configuration of DL networks.

DL algorithms have been shown to be effective for predictions in several areas. For
applications such as future land cover change prediction (deforestation forecasting, for
instance), it will be necessary to design implicit models that generalize well, are capable of
using large quantities of Earth observation data, and can address large-scale, real-world
problems. Regarding future research directions, one can consider the need to deepen
studies and propose new solutions on the following topics:

• Dimensionality reduction;
• Few-shot learning for SITS prediction;
• Meta-learning and transfer-learning;
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• Future land cover change prediction using DL;
• Application of DL method to raw SITS; and
• Data augmentation techniques for SITS.
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