
remote sensing  

Article

Attention-Guided Multispectral and Panchromatic
Image Classification

Cheng Shi 1, Yenan Dang 1, Li Fang 2,* , Zhiyong Lv 1 and Huifang Shen 2

����������
�������

Citation: Shi, C.; Dang, Y.; Fang, L.;

Lv, Z.; Shen, H. Attention-Guided

Multispectral and Panchromatic

Image Classification. Remote Sens.

2021, 13, 4823. https://doi.org/

10.3390/rs13234823

Academic Editor: Xinghua Li

Received: 13 October 2021

Accepted: 8 November 2021

Published: 27 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China;
C_Shi@xaut.edu.cn (C.S.); 2201221089@stu.xaut.edu.cn (Y.D.); zhiyongLyu@xaut.edu.cn (Z.L.)

2 The Quanzhou Institute of Equipment Manufacturing, Haixi Institute, Chinese Academy of Sciences,
Quanzhou 362000, China; shenhf@fjirsm.ac.cn

* Correspondence: fangli@fjirsm.ac.cn

Abstract: Multi-sensor image can provide supplementary information, usually leading to better
performance in classification tasks. However, the general deep neural network-based multi-sensor
classification method learns each sensor image separately, followed by a stacked concentrate for
feature fusion. This way requires a large time cost for network training, and insufficient feature
fusion may cause. Considering efficient multi-sensor feature extraction and fusion with a lightweight
network, this paper proposes an attention-guided classification method (AGCNet), especially for
multispectral (MS) and panchromatic (PAN) image classification. In the proposed method, a share-
split network (SSNet) including a shared branch and multiple split branches performs feature
extraction for each sensor image, where the shared branch learns basis features of MS and PAN
images with fewer learn-able parameters, and the split branch extracts the privileged features of each
sensor image via multiple task-specific attention units. Furthermore, a selective classification network
(SCNet) with a selective kernel unit is used for adaptive feature fusion. The proposed AGCNet can be
trained by an end-to-end fashion without manual intervention. The experimental results are reported
on four MS and PAN datasets, and compared with state-of-the-art methods. The classification maps
and accuracies show the superiority of the proposed AGCNet model.

Keywords: multi-sensor classification; attention mechanism; deep neural network; multispectral and
panchromatic image

1. Introduction

The rapid development of aerospace technology has generated a large number of
remote sensing images from a variety of sensors [1–4], and the research interests in multi-
sensor image classification is also increasing, especially for multispectral (MS) and panchro-
matic (PAN) images. The MS and PAN images are usually captured using the optical
satellites, and have different characteristics. Generally, the MS image consists of four
spectral bands, and the PAN image has only one band. However, the PAN image has
higher spatial resolution than that of MS image. For taking full use of the complementary
spectral and spatial information, the processing methods of MS and PAN images are usu-
ally classified into two models: fusion-based classification model and classification-based
fusion model. The fusion-based classification model is to pan-sharpen the MS image for
improving its spatial resolution, followed by a classification process on the pan-sharpened
MS image. The classification-based fusion model is to capture the features of MS and PAN
images respectively and then combine these features for classification. The fusion-based
classification model pays more attention to obtain effective fusion images [5], while the
classification-based fusion model focuses more on the effective classification [6]. To avoid
the influence of the fusion effect on the classification results, the classification-based fusion
model is adopted in this study for MS and PAN image classification.
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Depth perception has proved to be effective in remote sensing image classification [7,8].
The common deep learning practice of classification-based fusion model is shown in
Figure 1. In the classification-based fusion model, a feature extraction model for MS image
and another one for PAN image are trained separately by minimizing a loss function,
and the prediction result could be obtained by classifying the simply fused higher-level
features [6,9]. The classification-based fusion model may be preferable to train joint features.
However, two limitations could be analyzed: (1) two feature extraction models with two
independent networks are usually trained with a higher time cost; (2) the simple feature
fusion method does not consider the importance level of each model for classification. For
solving these two limitations, a low-complexity multi-sensor feature extraction method
and an adaptive feature fusion method are studied in this paper.
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Figure 1. General framework of MS and PAN image classification based on a classification-based
fusion model. (Quickbird satellite with 2.44-m MS image and 0.61-m PAN image).

An attention-guided classification network (AGCNet) is proposed for MS and PAN
image classification to tackle these two limitations of the former classification-based fusion
model. The AGCNet mainly consists of two networks: a share-split network (SSNet) and a
selective classification network (SCNet). The network architecture is shown in Figure 2a.
The whole network is an end-to-end form that can be simply trained.

Training the multi-sensor image usually requires more learn-able parameters. Un-
surprisingly, the simplest way of reducing the training cost is to reduce the number of
learn-able parameters [10–12]. A reasonable way of reducing the learn-able parameters in
multi-sensor classification network is to construct a shared branch, where the parameters
are shared for MS and PAN images. Meanwhile, inspired by the squeeze-and-excitation
network (SENet) [13], multiple split branches with task-specific attention units are designed
to capture the specific features of MS and PAN images respectively. The task-specific at-
tention units can adaptively re-weight the share-channel feature for selecting emphasis
information and suppressing the less useful ones. Although the learn-able parameters of
task-specific attention units are privileged for MS and PAN images, the training cost is
slightly increased.

The classification performance also depends on the effective fusion of privileged
features of MS and PAN images. The contributions of MS and PAN images to classification
result are imbalanced, so a weighted fusion method is more effective than the general
stacked fusion method (shown in Figure 1). Building upon the idea of selective kernel
network (SKNet) [14], this study uses an attention-based selective kernel unit to generate
an adaptive selection weight. The privileged features of MS and PAN images are adaptively
weighted for classification. This selection operator is also computationally lightweight.
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Figure 2. (a) The architecture of the proposed attention-guided classification network. In SSNet, the shared branch is
designed for extracting basis features of the MS and PAN image, and multiple split branches with MS task-specific attention
units and PAN task-specific attention units are designed to capture the specific features of MS and PAN images, respectively.
In SCNet, the specific features of MS and PAN images are fused with a selective kernel unit. (b) Task-specific attention unit.
(c) Selective kernel unit.

The contributions of this study are listed as follows.
(1) A novel multi-sensor feature extraction approach is proposed to learn a SSNet,

which consists of a shared branch and multiple split branches with task-specific attention
units. The shared branch is designed for learning basis features and reducing the learn-
able parameters, and the task-specific attention units are constructed to learn the specific
features of MS and PAN images.

(2) The privileged features of MS and PAN images are combined by an attention-based
selective kernel unit. The selective kernel unit can generate adaptive global weights with
fewer additional learn-able parameters.

(3) In the experiments, four groups of experimental images are used for multi-sensor
classification. Compared with the general multi-sensor classification models, the perfor-
mance of the proposed attention-guided network is improved with fewer training and
testing costs.

The rest of the paper is organized as follows. The literature reviews are surveyed in
Section 2. The details of the proposed method are described in Section 3. Section 4 presents
the experimental results and analyses. The conclusions and future work of this study are
discussed in Section 5.

2. Literature Reviews

For designing the multi-sensor feature extraction approach, Section 2.1 summarizes
the overview of the multi-sensor remote sensing image classification with deep learning
techniques, and advantages and limitations of these techniques are discussed. Furthermore,
Section 2.2 presents a brief introduction to the attention mechanisms, and the key ideas
of each attention mechanism are illustrated for designing the attention-based selective
operator in this study.
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2.1. Multi-Sensor Remote Sensing Image Classification with Deep Learning

In recent studies, deep learning-based remote sensing classification techniques have
achieved promising results [15,16]. Several typical deep learning networks like stacked
auto-encoders (SAE) [17], convolutional auto-encoders (CAE) [18], deep belief networks
(DBN) [19], convolutional neural network (CNN) [20,21], and recurrent neural network
(RNN) [22] have been adopted for remote sensing image classification. To further improve
the classification accuracy, multi-scale feature learning techniques [23–25] and generative
adversarial network (GAN) [26–29] have received widespread attention. These methods
are dedicated to single-sensor image classification tasks. Actually, remote sensing im-
age classification combined with multi-sensor image is possible to further improve the
classification accuracy.

For instance, ref. [30] proposed an advanced multi-sensor remote sensing classification
method for urban land use. A fusion-FCN (Fusion-fully convolutional network) was
proposed to well maintain the boundary information and reduce the spatial loss in the
classification map. The fusion-FCN received three-sensor images as inputs and was trained
separately; a stacked concatenate layer was adopted for feature fusion and a softmax
classifier was used for classification.

In another studies, a hyperspectral and multispectral-based fusion classification
method was proposed to include a compressive measurement model for extracting the fea-
tures of each sensor image [31]; the feature fusion problem was defined to estimate the new
features that could better capture the useful information from multi-sensor compressive
measurements. Furthermore, ref. [32] extracted the features of each sensor-image via a
compressive measure technology, and the acquired features are stacked classified with a
support vector machine (SVM).

Another related studies are [6,33]. In [6], a superpixel-based multiple local CNN
model was proposed to recognize MS and PAN images; MS images were adopted to obtain
an initial classification, and PAN images were used to modify the detailed errors. However,
the acquisition of an initial classification map requires training six local regions separately,
which is time-consuming. In [33], a multi-instance network was proposed to improve MS
and PAN image classification; one instance was used for extracting the spectral feature
of MS image, and the other instance was used for extracting the spatial features of PAN
image. The extracted features from these two instances were stacked concatenated for
fusion and classification.

The difference of the proposed AGCNet from [6] is that this study tries to learn
an effective feature representation from the MS and PAN images directly, without post-
processing. In addition, compared with above mentioned methods, the proposed attention-
guided classification architecture consists of a computationally lightweight multi-sensor
feature extraction network and an adaptive feature fusion network. This mechanism can
easily be extended to the general multi-feature classification framework [34,35].

2.2. Attention Mechanisms

Recently, the visual attention mechanisms have been proposed to improve the network
performance [36]. On the one hand, the attention mechanism is introduced to the spatial
dimension, such as integrating multi-scale spatial information or spatial dependencies
into network [37–40]. On the other hand, some studies focus to capture the relationship
between channels, and propose channel-wise attention mechanisms, such as squeeze-and-
excitation (SE) block [13,41] and SKNet [14]. In particular, the SE block can learn the global
information to selectively important features and can be freely inserted into any network,
and therefore, some studies extended SE block to remote sensing applications. In [42], the
authors incorporated the spatial attention and channel attention to residual network for
scene classification. In [43], the channel-based DenseNet was proposed for remote sensing
image scene classification. In [44], channel-wise attention block was embedded into a dual-
level semantic concept network for multi-label remote sensing image annotation. In [45], a
multi-scale visual attention network was proposed for object detection in remote sensing
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image; this is the first time that attention has been introduced into the encoder-decoder
model for object detection. In [46], an enhanced attention module was presented for remote
sensing scene classification; a global average pooling and a global max pooling were used
to aggregate the global spatial feature, and a multilayer.

Perception was designed to learn the channel attention map. In [47], an task-specific
attention domain adaptation method was proposed for Satellite-to-Aerial scene. In [48],
a spectral-spatial squeeze-and-excitation residual bag-of-feature network was proposed
for hyperspectral image (HSI) classification, of which two residual SE blocks were used to
extract the spectral and spatial features, respectively. Another recent related work is [49],
a spatial attention module and a spectral attention module were designed to strengthen
the spatial features of PAN image and the spectral features of MS image, respectively;
furthermore, a dual-branch attention fusion network was proposed for multiresolution
remote sensing image classification. In above-mentioned studies, the introduction of the
attention model is to further improve the performance of network. In contract to these
studies, this paper focuses on reducing the number of learn-able parameters and better
balancing the time cost and the classification effect.

3. Learning to Attention-Guided Classification Network

In this section, the details of the proposed AGCNet are presented in two subsections.
In Section 3.1, a lightweight SSNet is proposed to extract the deep-level features of MS and
PAN images, respectively; compared to the general multi-sensor classification model, the
learn-able parameters in SSNet could be significantly reduced. In Section 3.2, a SCNet is
provided for adaptive feature fusion, in which the weight calculation fully considers the
global information of the features; compared with the simply fusion strategy, the increase
of learn-able parameters in SCNet is lightweight. The architecture of AGCNet is shown in
Figure 2a. The stages are presented in the following subsections.

3.1. Share-Split Network for Multi-Sensor Feature Extraction

In the general multi-sensor image classification framework, the feature extraction
model of each sensor image (i.e., MS and PAN images) is trained separately, resulting in an
increase in learn-able parameters. The goal of this study is to construct a shared branch
to reduce the learn-able parameters and design multiple split branches with task-specific
attention units for extracting the specific features of MS and PAN images.

Initial feature extraction of MS and PAN images. The shared branch requires the
input feature size of the two sensors to be the same. Due to the differences in the spatial and
spectral resolution of PAN and MS images, an initial feature extraction process is necessary.

PAN and MS images are denoted as f (1)PAN and f (1)MS. Since the size of PAN image
is four times larger than the MS image, three feature extraction layers with convolution
filtering and max-pooling are used to reduce the feature size of PAN image, and two feature
extraction layers are applied on the MS image for feature extraction.

The features of PAN and MS images in the l-th layer are written as f (l)
PAN and f (l)

MS
(shown in Equations (1) and (2)).

f (l)
PAN = gpooling(gRelu( f (l−1)

PAN *W(l−1)
PAN )), if 2 6 l 6 4, (1)

f (l)
MS =

gRelu( f (2)
MS*W(2)

MS), if l = 3,

gpooling(gRelu( f (3)
MS*W(3)

MS)), if l = 4.
(2)

Here * represents convolution, W(l−1)
PAN and W(l−1)

MS are the 2D spatial filters, and gpooling

is the ReLU activation function. The features of f (4)PAN and f (4)MS have the same spatial and
channel sizes.

Shared branch for shared feature learning. This study designs a shared branch
to reduce the number of learn-able parameters. The shared branch consists of several
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convolution filtering and max-pooling operators. If the layer l is larger than 5, shared filters
W in Equations (3) and (4) will be adopted for shared feature extraction.

f (l)
PAN = gpooling(gRelu( f (l−1)

PAN *W(l−1))
PAN , if 5 6 l 6 ln, (3)

f (l)
MS = gpooling(gRelu( f (l−1)

MS *W(l−1)
MS )), if 5 6 l 6 ln, (4)

where ln is the total layer number. In the shared branch, all of the MS and PAN features are
used to train the same network. Therefore, the number of training samples is increased
by half, but the number of learn-able parameters is reduced by half. The shared branch
can learn basis features more effectively. However, the MS and PAN images also have
some different characteristics that cannot be represented well by basis features. Therefore,
task-specific attention units are designed to capture the privileged information of MS and
PAN images.

Task-specific attention unit for privileged feature learning. To achieve the specific
feature extraction, each convolution layer of the shared branch is followed by a MS task-
specific attention unit and a PAN task-specific attention unit. The parameters of MS and
PAN task-specific attention units are privileged and trained in accordance with the MS and
PAN images, respectively. By performing a task-specific re-weighting operator on shared
convolution features, the MS and PAN task-specific attention units can better learn the
different complementary features.

The structure of the task-specific attention unit is shown in Figure 2b. For capturing
the relationship between channels, a global average pooling operator is applied on each
channel of the convolution feature to obtain a global statistic. The convolution feature is
denoted as f ∈ <H×W×c and adopted into Equation (5) for extracting the global feature of
channel.

Zc =
1

H ×W

H

∑
i=1

W

∑
j=1

fc(i, j). (5)

The notations in Equation (5) are listed as follows. H and W are the spatial size of
feature f ; fc is the convolution feature of channel C; z ∈ <1×1×C is the global feature; Zc
is the global feature of channel c; C is the channel number. For capturing the channel
dependencies, two fully connected layers are used for feature combination. Equation (6) is
designed to learn the task-specific weight vector.

w = fSigmoid(W
(2)
Full( fRelu(W

(1)
Fullz))), (6)

where WFull is the fully connected parameter vector, and w ∈ <1×1×C is the task-specific
weight vector. The task-specific weight vector w and the feature f are adopted to obtain a re-
weighted feature f̃ ∈ <H×W×C by Equation (7) based on the element-wise multiplication.

f̃ = w⊗ f , (7)

where ⊗ represents the channel-wise multiplication. The weight vector w can select the
emphasis information and suppress the fewer useful ones. The re-weighted feature f̃ and
the input feature have the same spatial and channel sizes.

3.2. Selective Classification Network for Adaptive Feature Fusion

In Section 3.1, specific features of MS and PAN images are obtained by a SSNet. In
this subsection, an adaptive SCNet is applied on these two specific features for feature
fusion and classification. The importance levels of different sensor features are usually not
considered by the simply fusion strategies (e.g., stacked concatenated operation [50–53]
and averaged operation [9]). For further considering the channel-dependencies and sensor-
importance, an attention-based selective kernel unit is designed for multi-sensor feature
fusion, which is shown in Figure 2c.
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Selective kernel unit for multi-sensor features fusion. The specific features of MS
and PAN images obtained by Section 3.1 are recorded as fMS ∈ <H×W×C and
fPAN ∈ <H×W×C, where C is the channel number of the feature fMS and fPAN. These
two features are first integrated via an element-wise summation by Equation (8).

fadd = fMS + fPAN. (8)

Equation (5) on the feature fadd is applied to obtain a global statistic feature Z ∈ <1×1×C.
For capturing the channel-dependencies, a compact fully-connected layer is used to obtain
a dimensional-reduced feature s ∈ <1×1×d(d < C) by Equation (9).

s = fRelu(Wcz), (9)

where Wc ∈ <d×C is the fully connected parameter vector. Guided by the compact feature
s, the fully connected operator is used to extract channel-wise attention information of each
sensor and adopted into Equations (10) and (11).

s̃(1) = W(1)
Fulls, (10)

s̃(2) = W(2)
Fulls, (11)

where W(1)
Full ∈ <

C×d and W(2)
Full ∈ <

C×d are the fully connected parameters; s̃(1) ∈ <1×1×C

and s̃(2) ∈ <1×1×C denote the channel-wise attention feature of each sensor. A softmax
operator on the channel-wise is applied to obtain the final adaptive fusion weight by
Equations (12) and (13).

w(1) =
es̃(1)

es̃(1) + es̃(2)
, (12)

w(2) =
es̃(2)

es̃(1) + es̃(2)
. (13)

The softmax result makes that the sum of w(1) and w(2) equals to l. The specific
features fMS and fPAN are re-weighted by the fusion weights w(1) and w(2) to obtain the
fused feature by Equation (14).

F = w(1) · fMS + w(2) · fPAN. (14)

Classification. Finally, a softmax classifier [44] is used for classification. For training
the network, the loss function is designed as Equation (15).

ζ = − 1
m

m

∑
i=1

[ỹilog(yi) + (1− ỹi)log(1− yi)] + α
N

∑
j=1

W2
j , (15)

where ỹi and yi are the i-th predicted-label and true-label; m is the mini-batch-size; N is
the number of learn-able parameters; α is a free parameter. In the experiments of this
study, α is selected as 10−5. In Equation (15), the first term is the cross-entropy loss, and
the second term is the L2 regularization to prevent overfitting. The proposed AGCNet is
trained end-to-end by using mini-batch stochastic gradient descent.

4. Experiments and Discussions
4.1. Datasets

The performance of the proposed method is evaluated on four datasets, which were
obtained by two different satellites. In the following paragraphs, the details of these four
datasets are illustrated.
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Level 1B datasets and Level 1C dataset were obtained by DEIMOS-2 satellites in
Vancouver, Canada, on 31 March 2015 and 30 May 2015, which were provided by 2016
IEEE GRSS Data Fusion Contest [54]. Each dataset contains an MS image with 4-m spatial
resolution and a PAN image with 1-m spatial resolution. For Level 1B dataset, the size of MS
image is 3249× 2928 with four spectral bands. The size of PAN image is 12,996 × 11,712
with one band. The Level 1B dataset contains 11 available categories. For Level 1C dataset,
the sizes of MS and PAN images are 1311× 873 and 5244× 3492 respectively. The Level
1C dataset contains 8 available categories. Figure 3a,b show the Level 1B and Level 1C
datasets and their ground-truth maps.
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Figure 3. Datasets: (a) Level 1B dataset (from left to right: False color image of MS image, PAN image, ground-truth map,
and class information) (b) Level 1C dataset. (c) Xi’an Suburban dataset. (d) Xi’an Urban dataset.
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Xi’an Suburban dataset and Xi’an Urban dataset were acquired by QuickBird satellites
on 30 May 2008 [33].The spatial resolutions of PAN and MS image are 0.61-m and 2.44-m
respectively. For the Xi’an Suburban dataset, the size of MS image is 1650× 1550 with four
bands, and the size of PAN image is 6600× 6200 with one band. The 8 available categories
are used for classification. The Xi’an Urban dataset consists of an MS image with size
800× 830 and a PAN image with size 3200× 3320, and 7 available categories are used for
classification. Figure 3c,d show the Xi’an Suburban and Xi’an Urban datasets and their
ground-truth maps.

4.2. Experimental Setup

The detail parameters of the proposed network are shown in Table 1. The size of
PAN image is four times larger than that of MS image, and the scene size is the same as
MS image. Therefore, the MS image is classified pixel-by-pixel, and the PAN image is
classified by interval 4 pixels. For each dataset in the experiments, 100 pixels per class are
randomly selected for training, and the rest pixels are used for testing. For collecting the
spatial information, each pixel is taken as the center to obtain the sample patch. The size
of the MS sample patch is 32× 32× 4 and the size of the PAN sample patch is 128× 128.
In addition, the learning rate is set as 0.005, the iteration number is 10,000, and the batch
size is 64. The experimental results are mean values over 10 experiments by selecting the
training samples randomly.

Table 1. Parameter setting of the proposed AGCNet.

Network Structure/Operator Convolution/Full
Connection Size

[Stride Padding Poolin
Activation]

Convolution/Full
Connection Size

[Stride Padding
Pooling Activation]

Initial Feature Extraction

– – 3× 3× 16 [1 1 Max-pooling(2) ReLU]

3× 3× 32 [1 1–ReLU] 3× 3× 32 [1 1 Max-pooling(2) ReLU]

3× 3× 64 [1 1 Max-pooling(2) ReLU] 3× 3× 64 [1 1 Max-pooling(2) ReLU]

Share
split

network

Shared branch 3× 3× 128 [1 1 Max-pooling(2) ReLU] Shared Parameters

Task specific
attention unit

– [– – Avg-pooling –] – [– – Avg-pooling –]

8× 128 Activation = ReLU 8× 128 Activation = ReLU

128× 8 Activation=Sigmoid 128× 8 Activation=Sigmoid

Selective
classification

network

Selective
kernel unit

– [– – Avg-pooling –] – [– – Avg-pooling –]

8× 128 Activation = ReLU 8× 128 Activation = ReLU

128× 8/128× 8 Softmax 128× 8/128× 8 Softmax

classification Softmax

4.3. Comparison Results

In this subsection, seven state-of-the-art methods are compared to verify the effective-
ness of the proposed AGCNet, including extended multi-attribute profiles (EMAP) [55],
convolutional auto-encoder (CAE) [18], recurrent neural network (RNN) [22], spatial-
channel progressive fusion residual network (SCPF-ResNet) [49], convolutional neural
network based on MS images (CNN-MS) [53], convolutional neural network based on
PAN images (CNN-PAN) [53] and stacked fusion network (SFNet) [32]. In particular,
EMAP, CAE and RNN are verified on MS images. SCPF-ResNet is a very related study,
which combines the spatial and channel attentions for MS and PAN image classification.
The parameters of CAE, RNN and SCPF-ResNet are set as default values in their papers.
CNN-MS and CNN-PAN mean that the CNN is used to classify the MS and PAN images
respectively. For a fair comparison, the parameters settings of CNN are consistent with the
proposed method, including the number of layers and filter size. In SFNet, the features of
MS and PAN are extracted by CNN respectively, and the two features are concatenated
for classification; the feature fusion strategy adopts the method in [32], and the parameter
setting of CNN is still consistent with Table 1 for a fair comparison. The comparison results
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on the four datasets are shown and analyzed below, and overall accuracy (OA), average
accuracy (AA) and kappa coefficient (kappa) are used for quality metrics.

1. Experimental Results with Level 1B and Level 1C Datasets
Level 1B and Level 1C (Tables 2 and 3) are very challenging datasets due to the

complex scene information. As can be seen from the ground-truth maps in Figure 3 that
there exist many building groups. Usually there is a lot of interference information in
the building group, such as roads and trees. In addition, the characteristics of different
land-covers are highly similar, such as Classes 2, 3, 4, and 5 (Building 1, Building 2, Building
3, and Building 4) in Level 1B dataset, and Classes 2, 4, and 7 (Building 1, Building 2, and
Building 3) in Level 1C dataset. These land-covers have similar attributes, but belong to
different classes. The insignificant difference increases the difficulty of classification. The
classification results of Level 1B and Level 1C datasets are shown in Figures 4 and 5.

RNN obtains the worse classification results than the other comparison methods. The
main advantage of RNN is that only the spectral information is considered and the spatial
dependence is ignored. Therefore, the classification results are affected by noise, especially
for the building areas. The classification accuracies of Building 1 are only 17.38% for Level
1B dataset and 28.93% for Level 1C dataset.

Table 2. Classification accuracy on Level 1B dataset.

Class EMAP CAE RNN SCPF-ResNet CNN-MS CNN-PAN SFNet AGCNet

1 (Vegetation) 0.9422 0.9493 0.9178 0.8642 0.9894 0.9444 0.9751 0.9351
2 (Building1) 0.5993 0.8160 0.1738 0.3039 0.8582 0.7538 0.9006 0.9217
3 (Building2) 0.6831 0.9694 0.2841 0.6673 0.9821 0.9697 0.9748 0.9805
4 (Building3) 0.6692 0.8863 0.4932 0.6019 0.9258 0.8947 0.9184 0.9628
5 (Building4) 0.7528 0.9524 0.4987 0.6637 0.9492 0.8825 0.9358 0.9742
6 (Boat) 0.7962 0.9810 0.5602 0.8127 0.9941 0.9800 0.9636 0.9765
7 (Road) 0.3883 0.7225 0.5186 0.5580 0.8252 0.8189 0.8125 0.6940
8 (Port) 0.5034 0.8703 0.4025 0.2836 0.9066 0.8615 0.9356 0.8639
9 (Bridge) 0.6893 0.9303 0.2724 0.8916 0.9605 0.9662 0.9477 0.9589
10 (Tree) 0.9173 0.9288 0.9136 0.4574 0.9278 0.8947 0.9544 0.9709
11 (Water) 0.9895 0.9802 0.9872 0.9823 0.9876 0.9836 0.9806 9864

OA 0.8378 0.9297 0.7377 0.7152 0.9475 0.9190 0.9507 0.9633
Kappa 0.7865 0.9071 0.6560 0.6288 0.9304 0.8928 0.9347 0.9512
AA 0.7210 0.9079 0.5475 0.6442 0.9370 0.9046 0.9363 0.9300

Table 3. Classification accuracy on Level 1C dataset.

Class EMAP CAE RNN SCPF-ResNet CNN-MS CNN-PAN SFNet AGCNet

1 (Vegetation) 0.8698 0.9865 0.9206 0.9280 0.9775 0.9294 0.9931 0.9851
2 (Building1) 0.5241 0.9601 0.2897 0.5980 0.9604 0.9331 0.9515 0.9626
3 (Tree) 0.8315 0.9735 0.8356 0.8679 0.9805 0.9349 0.9339 0.9414
4 (Building2) 0.3973 0.8058 0.3366 0.5555 0.8534 0.8578 0.8926 0.9248
5 (Water) 0.9963 0.9077 0.9924 0.9346 0.9865 0.9810 0.9755 0.9772
6 (Road) 0.7889 0.7009 0.6410 0.7102 0.7013 0.7428 0.8024 0.7533
7 (Building3) 0.4607 0.8256 0.4229 0.6052 0.8296 0.7890 0.8534 0.9072
8 (Boat) 0.5849 0.9911 0.5092 0.9198 0.9668 0.9694 0.9910 0.9936

OA 0.7111 0.8806 0.6515 0.7525 0.9191 0.9051 0.9225 0.9405
Kappa 0.6297 0.8465 0.5557 0.6853 0.8943 0.8763 0.9034 0.9254
AA 0.6817 0.8939 0.6185 0.7649 0.9070 0.8922 0.9242 0.9307
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(a) (b) (c) (d)

(g) (h) 

Figure 4. Classification maps with different methods on Level 1B dataset. (a) EMAP. (b) CAE. (c) RNN. (d) SCPF-ResNet.
(e) CNN-MS. (f) CNN-PAN. (g) SFNet. (h) AGCNet.

(h) 

(a) (b) (c) (d)

(e) (f) (g) 

Figure 5. Classification maps with different methods on Level 1C dataset. (a) EMAP. (b) CAE. (c) RNN. (d) SCPF-ResNet.
(e) CNN-MS. (f) CNN-PAN. (g) SFNet. (h) AGCNet.
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EMAP is a typical spatial contexture classification model. Although EMAP is a shallow
classification model, the classification accuracies are higher than that of RNN. The OA
values of EMAP are about 10% and 6% higher than RNN on the two datasets, which
illustrates the importance level of spatial information on classification performance.

Spectral-spatial model achieves superior classification performance than the single-
spectral and single-spatial models. CAE is an enhanced model of autoencoder (AE), and its
implementation considers both the spatial and spectral information. Different from CNN,
CAE pays more attentions to image reconstruction rather than classification [56], hence
its classification performance is lower than the CNN model. However, compared with
RNN and EMAP models, the classification performance has a significantly improved by
combining the spectral and spatial information.

CNN model is used to classify the MS and PAN image respectively. Although the
quality metrics of CNN-MS are higher than CNN-PAN in all the OA, AA, and Kappa values,
CNN-PAN still contains some advantages on the classification maps. The classification
map obtained by CNN-PAN method has more detail information, while the classification
map obtained by CNN-MS method has better regional consistencies. Therefore, although
CNN-MS method obtains higher accuracies than CNN-PAN method in most categories,
the CNN-PAN method still achieves a higher classification accuracy on some small object
categories, i.e., Class 9 (Bridge) in Level 1B dataset and Class 6 (Road) in Level 1C dataset.

SCPF-ResNet combines the MS and PAN images for classification, but the classifica-
tion effect is not ideal. The possible reasons are twofold: few training samples and complex
network structure. Ref. [48] designed a dual-branch network to improve the classification
accuracy of MS and PAN images. However, the designed network introduced a large
number of learn-able parameters. Therefore, more training samples were required for
effectively training the network. In this experiment, only 100 samples per each class are se-
lected, which may cause ineffective learning with a lower classification accuracy. Therefore,
SCPF-ResNet method may not effective for the classification with limited training sample.

SFNet and AGCNet are also designed for MS and PAN image classification. In these
two datasets, the classification accuracy of SFNet is only slightly higher than that of
CNN-MS and CNN-PAN methods. Therefore, the stacked concentrate is insufficient for
feature fusion, and the proposed AGCNet can exploit more effective information from
the two images. In most categories, the classification accuracies of AGCNet are higher
than that those of CNN-MS, CNN-PAN, and SFNet. As shown in the rectangular areas in
Figures 4h and 5h (Building 1 and Building 4 for Level 1B dataset, and Building 1 for Level
1C dataset), the classification maps have better regional consistency for more complex land
covers. However, this study also found that the proposed method has some advantages,
the classification results of some details are not satisfactory, such as Class 7 (Road) of Level
1B dataset and Cass 6 (Road) of Level 1C dataset. The extraction and fusion of detailed
information still needs to be further studied.

2. Experimental Results with Xi’an Suburban and Xi’an Urban Datasets
Different from Level 1B and Level 1C datasets, Xi’an Suburban and Xi’an Urban

datasets (Tables 4 and 5) contain more independent objects, especially for the Xi’an Urban
dataset, the classification object is single building, rather than building group. The classifi-
cation results of Xi’an Suburban and Xi’an Urban datasets are shown in Figures 6 and 7,
respectively. The proposed AGCNet achieves superior performance on relatively big areas,
such as Class 2 (Building 2), Class 5 (Land), and Class 6 (Building 3) of Xi’an Suburban
dataset, and Class 5 (Soil), Class 6 (Tree), and Class 7 (Water) of Xi’an Urban datasets.
Also shown in Figure 6h, vegetation 1 within the red rectangular area obtains a better
classification effect; and in Figure 7h, the building marked in red color are segmented
more completely. Therefore, the classification accuracies of these areas are significantly
higher than other comparison methods. However, the improvement of accuracy on some
small areas is limited, such as Class 4 (Vegetation 2) and Class 7 (Road) of Xi’an Suburban
dataset and Class 6 (Shadow) of Xi’an Urban dataset. Therefore, the proposed AGCNet
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still achieves a superior classification performance, but there is still room for improvement
on small object classification.

Table 4. Classification accuracy on Xi’an Suburban dataset.

Class EMAP CAE RNN SCPF-ResNet CNN-MS CNN-PAN SFNet AGCNet

1 (Building1) 0.9986 0.9991 0.9976 0.8636 1.0000 0.9741 0.9990 1.0000
2 (Building2) 0.7956 0.8663 0.5506 0.7498 0.9796 0.9911 0.9951 0.9960
3 (Vegetation1) 0.9127 0.8615 0.8480 0.7185 0.8244 0.8055 0.8780 0.9100
4 (Vegetation2) 0.8808 0.9147 0.8168 0.6860 0.9488 0.8726 0.9340 0.9421
5 (Land) 0.9135 0.9742 0.8516 0.5820 0.9944 0.9210 0.9917 0.9991
6 (Building3) 0.6717 0.8832 0.7468 0.8954 0.9935 0.9895 0.9981 0.9975
7 (Road) 0.5850 0.7072 0.4990 0.4291 0.9135 0.8657 0.9014 0.9114
8 (Building4) 0.9820 0.9835 0.9643 0.9545 0.9990 0.9900 0.9990 0.9985

OA 0.7495 0.8268 0.6840 0.6448 0.9258 0.8951 0.9334 0.9448
Kappa 0.6945 0.7863 0.6169 0.5753 0.9062 0.8675 0.9160 0.9301
AA 0.8425 0.8987 0.7843 0.7361 0.9566 0.9262 0.9620 0.9693

Table 5. Classification accuracy on Xi’an Urban dataset.

Class EMAP CAE RNN SCPF-ResNet CNN-MS CNN-PAN SFNet AGCNet

1 (Building) 0.6603 0.8142 0.4668 0.7607 0.7927 0.7508 0.8261 0.8086
2 (Flat land) 0.5485 0.8504 0.6192 0.5739 0.9231 0.8892 0.9220 0.9274
3 (Road) 0.7349 0.8786 0.7012 0.6096 0.8969 0.8993 0.9112 0.8825
4 (Shadow) 0.8789 0.9248 0.7954 0.9190 0.9233 0.8583 0.9079 0.8894
5 (Soil) 0.9318 0.9502 0.8794 0.5169 0.9644 0.8696 0.9564 0.9750
6 (Tree) 0.8677 0.8954 0.8169 0.8158 0.8729 0.7952 0.8599 0.9089
7 (Water) 0.9300 0.9717 0.8739 0.9106 0.9857 0.9754 0.9654 0.9944

OA 0.8076 0.8880 0.7280 0.7261 0.8836 0.8222 0.8843 0.8994
Kappa 0.7583 0.8577 0.6620 0.6533 0.8524 0.7759 0.8535 0.8716
AA 0.7932 0.8979 0.7361 0.7151 0.9084 0.8626 0.9070 0.9123

(e) (f)

(a)

(g) (h)

(b) (c) (d)

Figure 6. Classification maps with different methods on Xi’an Suburban dataset.(a) EMAP. (b) CAE. (c) RNN. (d) SCPF-
ResNet. (e) CNN-MS. (f) CNN-PAN. (g) SFNet. (h) AGCNet.
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(e)

(a) (b) (c) (d)

(f) (g) (h) 

Figure 7. Classification maps with different methods on Xi’an Urban dataset. (a) EMAP. (b) CAE. (c) RNN. (d) SCPF-ResNet.
(e) CNN-MS. (f) CNN-PAN. (g) SFNet. (h) AGCNet.

4.4. Discussion

Performance of SSNet and SCNet. In this section, an ablation study is added to
verify the effectiveness of these two parts. The experiments are carried out in the following
four steps.

(a) The features of MS and PAN images are extracted by CNN structure respectively,
and then fused with an stacked concentrated form (SFNet).

(b) The features of MS and PAN images are extracted with SSNet, and then fused with
an attacked concentrated form (SSNet).

(c) The features of MS and PAN images are extracted by CNN structure respectively,
and then fused with SCNet (SCNet).

(d) The features of MS and PAN images are extracted with SSNet, and then fused with
SCNet (Proposed, AGCNet).

Figure 8 shows the classification accuracy of the four datasets. We can notice that
except the Level 1C dataset, the SFNet and SSNet obtain similar classification accuracy on
other datasets. Therefore, the SSNet can reduce the trainable parameters of the network
without reducing the classification accuracy. In addition, the classification accuracy of
SCNet is close to that of AGCNet, therefore, in terms of accuracy improvement, it mainly
depends on the adaptive fusion strategy in SCNet. Hence, AGCNet can obtain higher
classification accuracy with less time cost.

Learn-able parameter statistics. The purpose of the proposed AGCNet is to better
balance the classification performance and time cost. The classification performance is
verified in Section 4.3 by comparing with the state-of-the-art methods. In this subsection,
the time cost is analyzed by counting the number of learn-able parameters. Table 6 shows
the parameter statistics for the five related methods, including CNN-MS, CNN-PAN, SF-
Net, SCPF-Net, SGCNet and AGCNet. In addition to the SCPF-ResNet, the other models
are as consistent as possible in network parameter setting, e.g., the number of layers and
the size of the filter.
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Figure 8. The classification accuracies with different number of training samples.

Since CNN-MS and CNN-PAN are constructed for single-sensor image classification,
the number of learn-able parameter is relatively fewer than the other networks. The SFNet,
SCPF-ResNet and AGCNet are all designed for combining the MS and PAN images for
classification. The SFNet extracts the deep-level features for each sensor image respectively,
and then performs a stacked concatenated for feature fusion. Therefore, the number of
learn-able parameters in SFNet is about twice that of CNN-MS and CNN-PAN. On the
contrary, the parameters of the proposed AGCNet are only slightly increased than the
single-sensor image classification networks. Therefore, on the one hand, the statistic results
indicate that the SSNet can effectively reduce the network parameters; on the other hand,
the SCNet does not introduce a large number of parameters in the calculation of fusion
weights. The SCPF-ResNet designs a very complex network structure, leading to an
increase in learn-able parameters. The number of learn-able parameters in SCPF-ResNet is
about 10 times that of the proposed AGCNet. Therefore, the proposed AGCNet improves
the classification accuracy with fewer learn-able parameters.

Table 6. Learn-able parameter statistic.

Methods CNN-MS CNN-PAN SFNet SCPF-ResNet AGCNet

The number of learn-able
parameters 3.90567× 105 3.94215× 105 7.84775× 105 48.10929× 105 4.32340× 105

Performance with different training number. In this subsection, the performance
of the proposed AGCNet is investigated by the OA value with the different numbers
of training samples, which is shown in Figure 9. The classification accuracy is always
highly related with the number of training samples; hence this study performs an analysis
on the four datasets by selecting 50, 100, 300, 500, 700, and 900 training samples per
class in experiments. Figure 9 compares the OA values obtained by the compared and
the proposed methods. The analyses of the experimental results are summarized as
follows: (1) The classification methods that only use spectral or spatial information obtain
lower classification accuracies, such as RNN and EMAP methods. (2) The classification
performance of the SCPF-ResNet is greatly improved with the increased number of training
samples; hence the SCPR-ResNet model can achieve higher classification performance
with a large number of training samples, but not suitable for the limited training samples.
(3) The proposed AGCNet obtains superior classification performance, especially when the
number of training samples is fewer.
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Figure 9. The classification accuracies with different number of training samples.

5. Conclusions and Future Work

In this paper, a lightweight multi-sensor classification network is proposed by com-
bining the channel attention information. The proposed AGCNet mainly consists of a
share-split network and selective classification network, which is to better balance the
classification performance and time cost. In addition, the network has an end-to-end form
and can be trained easily. The experiments are designed to compare the classification
performance in two ways which include classification accuracy and time cost. For evaluat-
ing the classification accuracy of the proposed AGCNet, seven state-of-the-art methods
are used for comparisons on four datasets, including the traditional texture extraction
method (i.e., EMAP), spectral or spatial-spectral-based classification methods (i.e., RNN,
CAE, CNN-MS and CNN-PAN), and joint multi-sensor classification methods (i.e., SFNet
and SCPF-ResNet); the experimental results show that the proposed AGCNet obtains the
best performance among all the four datasets. For analyzing the time cost, the learn-able
parameters of four related methods are counted for comparisons. The experimental results
show that the time cost of the proposed AGCNet is two times less than the SFNet and
about ten times less than the SCPF-ResNet. Therefore, the proposed AGCNet is lightweight
and effective. The proposed network can be easily extended to other multi-sensor and
multi-scale classification, and its effectiveness will be further verified.
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