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Abstract: Snow preserves fresh water and impacts regional climate and the environment. Enabled by
modern satellite Earth observations, fast and accurate automated snow mapping is now possible. In
this study, we developed the Automated Snow Mapper Powered by Machine Learning (AutoSMILE),
which is the first machine learning-based open-source system for snow mapping. It is built in a Python
environment based on object-based analysis. AutoSMILE was first applied in a mountainous area of
1002 km2 in Bome County, eastern Tibetan Plateau. A multispectral image from Sentinel-2B, a digital
elevation model, and machine learning algorithms such as random forest and convolutional neural
network, were utilized. Taking only 5% of the study area as the training zone, AutoSMILE yielded
an extraordinarily satisfactory result over the rest of the study area: the producer’s accuracy, user’s
accuracy, intersection over union and overall accuracy reached 99.42%, 98.78%, 98.21% and 98.76%,
respectively, at object level, corresponding to 98.84%, 98.35%, 97.23% and 98.07%, respectively,
at pixel level. The model trained in Bome County was subsequently used to map snow at the
Qimantag Mountain region in the northern Tibetan Plateau, and a high overall accuracy of 97.22%
was achieved. AutoSMILE outperformed threshold-based methods at both sites and exhibited
superior performance especially in handling complex land covers. The outstanding performance and
robustness of AutoSMILE in the case studies suggest that AutoSMILE is a fast and reliable tool for
large-scale high-accuracy snow mapping and monitoring.

Keywords: automated snow mapping; snow cover; machine learning; multispectral image;
object-based analysis; remote sensing; Sentinel-2

1. Introduction

Snow is one of the most common land covers [1]. As a major source of Earth surface fresh
water, snow melts into water and runs to rivers and lakes, consequently impacting drinking
water supply, regional ecosystem [2], agriculture [3], and the climate at large. Therefore, fast
and accurate mapping of snow cover is essential for monitoring natural resources, regional
climate change and environment evolution [4]. Owing to the fast growth of Earth observation
(EO) data, frequent monitoring of large-scale snow covers becomes possible.

Visual interpretation features high accuracy but requires a tremendous amount of time
and effort, especially when dealing with large areas [5]. Apart from visual interpretation,
many existing studies apply rule-based methods for fast extraction of snow areas [6–9].
The National Aeronautics and Space Administration (NASA) uses multiple thresholds
for different bands and the normalized difference snow index (NDSI) to produce the fifth
collection of Moderate Resolution Imaging Spectroradiometer (MODIS) snow products [10],
with the highest resolution of 500 m. Gascoin et al. launched the Theia snow collection
to provide high-resolution (20/30 m) snow products for the mountain regions in western
Europe (e.g., Alps, Pyrenees) and the High Atlas in Morocco using multiple thresholds
on DEM and indices calculated from Sentinel-2 and Landsat-8 images [9]. Although
rule-based methods exhibit good capabilities in mapping snow of some regions [11], the
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best thresholds or configurations vary significantly with space and time [7], and a set of
universally applicable snow mapping parameters can hardly be defined.

Unlike the threshold methods at pixel level, object-based methods analyze the land
cover through objects, which are essentially groups of pixels segmented by algorithms.
Object-based methods have been proven effective in many land cover classification stud-
ies [12,13], and perform even better than pixel-based methods [14,15]. For instance, Rast-
ner et al. [15] found that an object-based analysis has overall a ~3% higher quality than a
pixel-based analysis when conducting glacier mapping. However, very limited attempts
have been made in advancing object-based snow mapping [16]. Wang et al. [16] conducted
snow mapping using both pixel- and object-based information. Also, commercial software
like eCognition is heavily relied upon in object-based studies [12,13,16].

Machine learning (ML) has been proven to be a powerful tool in many recent Earth
science applications [17–20]. Accordingly, researchers started to develop ML-based meth-
ods for snow mapping [21–26]. Liu et al. [22] compares three machine learning algo-
rithms in improving the accuracy of the MODIS daily fractional snow cover in the Tibetan
Plateau. Liu et al. [26] used a principal component analysis–support vector machine
(PCA–SVM) method to estimate snow cover from the MODIS and Sentinel-1 SAR data.
Cannistra et al. [25] used convolution neural network (CNN) to map high-resolution snow
covered areas using the PlanetScope optical satellite image dataset. These studies, however,
barely explored the use of machine learning in object-based snow mapping. Therefore, three
crucial challenges remain unaddressed: (a) object-based snow mapping using machine
learning has not been attempted; (b) open-source solutions for object-based automated
snow mapping need to be developed; and (c) the benefits of using auxiliary data in snow
mapping are yet to be confirmed.

Accordingly, the main objectives of this study are to develop a Python-based open-
source automated snow mapper for fast and accurate snow mapping using EO products,
as well as to investigate ML-based solutions for object-based snow mapping with auxiliary
data. The key novelty and contribution of this study lie in the fact that it is the first work
that combines machine learning with object-based analysis in snow mapping. Equally
important, it presents the first machine learning based open-source system for large-scale
automated snow mapping.

2. Materials and Methods
2.1. Study Area

The study area is located at the northeast of Bome County, Tibet, China (Figure 1),
covering a total area of 1002 km2. With a high average altitude of 4720 m, the study area is
partially covered by perennial snow. The maximum elevation difference within the study
area reaches 2228 m, indicating a typical alpine-gorge landform of the Sichuan-Tibet region.
According to the weather records of China Meteorological Administration (CMA) from
1981 to 2010, the annual average temperate of Bome is 9 °C, with a lowest monthly average
of 0.7 °C in January and a highest average of 16.9 °C in August. The winter of Bome is
long (October to March) while summer is usually absent. Bome has a humid monsoon
climate with annual relative humidity of 71.2% and annual rainfall of 890.9 mm. Several
key infrastructural projects are located in the study area, such as the Sichuan–Tibet railway
and Provincial Road S303.
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Figure 1. Locations of (a) Bome County and (b) the study area on a digital elevation map. (Source of
the digital elevation model: National Aeronautics and Space Administration Shuttle Radar Topogra-
phy Mission Global 1 arc second product).

2.2. Data

A multi-spectral Level-1C product of Sentinel-2B, which was captured on 30 April
2021, was acquired and used in this study for snow mapping (Figure 2a). The Sen2Cor
processor developed by the European Space Agency (ESA) was first used to generate
the Level-2A product by performing atmospheric corrections on the original product. A
multi-spectral product of Sentinel-2B has thirteen bands: four bands with 10 m spatial
resolution (Blue, Green, Red and Near Infra-Red bands), six with 20 m spatial resolution
(Red Edge 1, Red Edge 2, Red Edge 3, Narrow Near Infra-Red, Short Wave Infrared 1
and Short Wave Infrared 2 bands) and another three with 60 m spatial resolution (Coastal
Aerosol, Water Vapor and Cirrus bands). In order to have a uniform spatial resolution for
feature extraction, Sen2Res, a processor recommended by the ESA, is used to enhance the
spatial resolution of low-resolution bands to 10 m. Sen2Res uses a super-resolution method
proposed by Brodu [27], which utilizes shared information between bands and band-
specific information, to produce super resolution products. After resolution enhancement,
the spatial resolutions of all bands increase to 10 m except Coastal Aerosol, Water Vapor
and Cirrus bands. The three bands are not used in this study due to their insufficient
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original resolution (60 m) and intended purposes (the Coastal Aerosol band for aerosol
retrieval, the Water Vapor band for water vapor correction and the Cirrus band for cirrus
detection). Detailed band statistics and information of the 13 bands within the study area
are summarized in Table 1. In the case of cloud presence, the cloud mask which comes
with each Sentinel-2 product can be used to remove cloud areas.

Figure 2. (a) True-color red, green and blue (RGB) image of the study area in Bome County and the
location of training zone and (b) pixel-level snow cover of the study area based on visual interpretation.

Based on the true color image shown in Figure 2a, which is composed of red, green
and blue channels, a pixel-level snow cover inside the study area was manually interpreted
and presented in Figure 2b. A small part of the study area is chosen as the training zone
(red box in Figure 2a) and the rest of the area is used for model testing. With the intention of
developing a universally applicable tool which can be trained with limited data but predict
accurately for a large area, the training zone is purposely set to only occupy approximately
5% (50.4 km2) of the entire study area (1002 km2).
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Table 1. Band information and statistics of the multispectral image of the study area in Bome County.

Band ID Name Original
Resolution

Super
Resolution

Statistics of Super-Resolution Products

Minimum Maximum Mean Standard
Deviation

1 Coastal Aerosol 60 - - - - -
2 Blue 10 10 0 1.87 0.75 0.53
3 Green 10 10 0 1.77 0.72 0.48
4 Red 10 10 0 1.69 0.67 0.43
5 Red Edge 1 20 10 0 1.52 0.67 0.41
6 Red Edge 2 20 10 0 1.3 0.64 0.37
7 Red Edge 3 20 10 0 1.2 0.61 0.33
8 Near Infra-Red (NIR) 10 10 0 1.5 0.63 0.33

8a Narrow NIR 20 10 0 1.11 0.57 0.29
9 Water Vapor 60 - - - - -

10 Cirrus 60 - - - - -

11 Short Wave Infrared 1
(SWIR1) 20 10 0 1.44 0.11 0.09

12 Short Wave Infrared 2
(SWIR2) 20 10 0 1.73 0.1 0.07

Other than the multi-spectral data, we also examined the contribution of auxiliary data
in snow mapping. Thus, two kinds of auxiliary data are collected in this study and shown
in Figure 3; namely, a digital elevation model (DEM) and its derivatives, and spectral
band-derived data. The DEM data of 12.5 m resolution of the study area is collected
from the Radiometric Terrain Correction (RTC) product created by the Alaska Satellite
Facility (ASF), which originated from the NASA Shuttle Radar Topography Mission (SRTM)
Global 1 arc second product. It is then resampled to 10 m using the nearest neighbor
method (Figure 3a). Four widely used derivatives are then produced to describe the
topographic characteristics of the study area; namely, planform curvature (Figure 3b),
aspect (Figure 3c), topographic wetness index (TWI, Figure 3d) [28] and slope (Figure 3e).
The normalized difference vegetation index (NDVI, Figure 3f), normalized difference
moisture index (NDMI, Figure 3g) [29] and the modified normalized difference water index
(MNDWI, Figure 3h) [30] are chosen as the band-derived indices to provide additional
information about the land cover. The three indices are given by:

NDVI =
NIR− RED
NIR + RED

(1)

NDMI =
NIR− SWIR1
NIR + SWIR1

(2)

MNDWI = NDSI =
GREEN− SWIR1
GREEN + SWIR1

(3)

where NDVI is a common indicator of surface plant health; NDMI is sensitive to moisture
levels in vegetation; and MNDWI, also known as the normalized difference snow index
(NDSI), is generally used to enhance the open water features or identify snow cover.
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Figure 3. Data layers of the study area: (a) digital elevation model; (b) planform curvature; (c) aspect; (d) topographic
wetness index; (e) slope; (f) normalized difference vegetation index (NDVI); (g) normalized difference moisture index
(NDMI) and (h) modified normalized difference water index (MNDWI). (The digital elevation model is acquired from
the Alaska Satellite Facility Distributed Active Archive Center and originated from the National Aeronautics and Space
Administration Shuttle Radar Topography Mission Global 1 arc second product. The Sentinel-2B multi-spectral image,
which is used to produce the NDVI, NDMI and MNDWI layers, is acquired from the Copernicus Open Access Hub of the
European Space Agency).
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2.3. AutoSMILE: Automated Snow Mapper Powered by Machine Learning

In this study, we developed the system AutoSMILE (Automated Snow Mapper Pow-
ered by Machine Learning) with open-source packages in the Python 3.8 environment,
to automate the process of snow mapping. As shown in Figure 4, AutoSMILE consists
of three main modules; namely, a data processing module that includes image segmenta-
tion and feature extraction, a model training module that applies machine learning and
deep learning and a snow mapping module that conducts snow mapping with trained
models and visual inspection. Technical details of these modules will be introduced in the
following sections.

Figure 4. Framework of AutoSMILE (automated Snow Mapper Powered by Machine Learning).

2.3.1. Image Segmentation

Image segmentation is the first step after data preparation. In AutoSMILE, the quick-
shift mode-seeking algorithm proposed by Vedaldi and Soatto [31] is employed, which is
available in the scikit-image package (https://scikit-image.org/, accessed on 30 September
2021). Given a set of data points, the goal of a mode-seeking algorithms is to locate the
maxima (i.e., modes) of the density function estimated from the set of data. Quickshift,
which computes a hierarchical segmentation on multiple scales concurrently, is essentially
a modified version of traditional mean-shift algorithm. Given N data points x1, . . . , xN,
quickshift starts by computing the Parzen density estimate P(x):

P(x) =
1
N

N

∑
i=1

k(D(xi, xj))× 100%, xi, xj ∈ Rd (4)

https://scikit-image.org/
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where k(x) is a kernel function, which is often in the form of a Gaussian window. D(xi, xj) is
the distance function between xi and xj. Then, quickshift moves each point xi to the nearest
neighbor for which there is an increment of density P(x) and subsequently connects all the
points to a single hierarchical tree. By breaking the branches of the tree that are longer than
a certain threshold, modes can be recovered and used for image segmentation.

In the quickshift function of scikit-image, two key parameters, which control the segmen-
tation process, can be identified; namely, the kernel size (KZ) and maximum distance (MD).
KZ controls the width of Gaussian kernels used in local density approximation and MD is the
threshold that decides the level in the hierarchical segmentation. The impact of different values
of KZ and MD on AutoSMILE’s performance is also investigated and discussed in Section 3.1.
Other parameters in this function (e.g., ratio and sigma) remain at their default values. The
image segmentation is conducted on the true-color image of the study area (Figure 2a). After
the quickshift segmentation, similar pixels share the same mode, gather together and form
objects. Note that an object is inherently a group of similar pixels.

2.3.2. Object Labelling and Feature Extraction

The label of each object is assigned based on the manually interpreted pixel-level
snow cover (Figure 2b). First, the label of each pixel is determined by whether its location
falls in the snow area. Then, a simple strategy is applied in AutoSMILE: objects with
more than 50% of snow member pixels are assigned with snow object labels; otherwise,
non-snow labels are given. Note that it is inevitable some objects contain both snow and
non-snow pixels. Thus, the snow covers mapped by snow objects and snow pixels, so called
object-based and pixel-based snow covers, will be slightly different and the difference is
defined as the segmentation loss. Assume that an image has W × L pixels. After certain
segmentation, M objects are created. Each object i has ni member pixels and the fraction of
snow member pixels is Pi. Then the segmentation loss of the object-based snow cover can
be defined as:

segmentation loss =
∑M

i=1 f (ni, Pi)

W × L
, f (ni, Pi) =

{
ni × Pi

ni × (1− Pi)
Pi < 0.5
Pi ≥ 0.5

(5)

As the data layers are already prepared at a uniform resolution (10 m in this study), the
values of member pixels of a certain object can be easily extracted from different data layers
to calculate object features. To fully characterize objects, AutoSMILE creates both high-level
band and texture features for each object. The band features, which are calculated band-wise,
include the minimum, maximum, mean, variance, skewness and kurtosis of the member pixels’
values of an object. Regarding the texture features, AutoSMILE uses the Haralick method [32]
to calculate the grey-level co-occurrence matrix (GLCM) of an object. Based on the GLCM,
four-directional (i.e., 0◦, 45◦, 90◦ and 135◦) contrast, dissimilarity, homogeneity, angular second
moment (ASM) and correlation are calculated using the scikit-image package. In this study,
texture features are calculated based on red, green and blue bands. Thus, each object will
obtain six band features from each layer and 20 more texture features (five features in each
direction) if the red, green or blue band is encountered.

2.3.3. Machine Learning and Deep Learning

Under the proposed framework of AutoSMILE, the snow mapping problem is treated
as a binary classification task and no particular machine learning or deep learning algorithm
is required. In this study, we select one popular machine learning algorithm (i.e., random
forest, RF) and one well-known deep learning algorithm (i.e., convolutional neural network,
CNN) due to their outstanding performance and robustness in various applications [33,34].

RF, as an ensemble algorithm, is developed on the basis of decision trees and bag-
ging [35]. In classification tasks, the output of RF is the class voted by the majority of the
trees. The major improvement of RF is that it decorrelates the trees in it by only selecting a
random subset of the features at each candidate split when constructing each decision tree.
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A typical practice is to randomly choose
√

p (rounded down) features at each split for a
classification task with p features.

CNN is a popular deep learning algorithm in computer vision [36]. It is good at
feature extraction and usually consists of four types of layers: convolutional layers that use
a set of convolutional filters to activate certain features from the input; activation layers
like the rectified linear unit (ReLU) to accelerate the training process; pooling layers which
simplify the output by non-linear downsampling and other basic layers such as the fully
connected layers and flatten layers. In this study, the input is taken as a ‘long’ picture with
unit width to apply CNN for feature learning and snow mapping.

2.3.4. Performance Evaluation and Post-Processing

Trained machine learning models are then used for mapping snow for the entire study
area. Four popular machine learning performance indices in remote sensing are selected
to evaluate the performance of trained models; namely, producer’s accuracy (PA), user’s
accuracy (UA), intersection over union (IoU) and overall accuracy (OA). Definitions of the
four indices are given as follows:

PA =
TP

TP + FN
× 100% (6)

UA =
TP

TP + FP
× 100% (7)

IoU =
TP

TP + FP + FN
× 100% (8)

OA =
TP + TN

TP + TN + FP + FN
× 100% (9)

where TP (true positive) and FP (false positive) are the numbers of correct and incorrect
positive/snow predictions. Similarly, TN (true negative) and FN (false negative) stand for the
numbers of correct and incorrect negative/non-snow predictions, respectively. PA, also known
as recall, is the percentage of TP predictions among all positive samples. UA quantifies the
fraction of TP predictions among all samples predicted to be positive, which is also known
as precision. IoU measures the ratio of the intersection between ground truth snow area and
predicted snow area over their union. Due to the presence of two sets of ground truths: object-
and pixel-based snow covers, the snow cover mapped by the trained ML model is compared
with the two snow covers. The object- and pixel-based performance indices are then calculated,
which reflect the model performance at different levels.

The final step of AutoSMILE is visual inspection to ensure the snow mapping is satisfac-
tory and to make necessary corrections before exporting the final snow cover product.

3. Results
3.1. Snow Mapping Results from Different Segmentations

To investigate the influence of segmentation parameters on AutoSMILE’s performance,
different combinations of KZ and MD are tested. Table 2 summarizes the numbers of objects
given by different combinations. It can be found that a low MD will lead to a large number
of objects and that the object number drops rapidly with an increase in MD. For example,
when MD increases from 2 to 8, the maximum decrease of the object number reaches 99.5%.
In contrast, KZ has a much less effect on the object number. In most cases, a higher KZ
tends to have fewer objects. Figure 5 compares different segmentations that are mapped
in a subarea of the training zone. The boundaries of objects produced with a higher MD
overlap those of the objects produced with a lower MD. This is because MD controls
the segmentation hierarchical level: objects segmented with higher MDs are inherently
produced by merging objects segmented with lower MDs. In the cases of MD = 2 and 4,
excessive oversegmentation can be observed as a large number of unnecessary small objects
are created inside the same land cover. In view of computational efficiency, when the object
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number exceeds 100,000, AutoSMILE will slow down as object feature computation will
require more resources. Thus, according to Table 2, quickshift with too small MDs (<8) is
usually not recommended in AutoSMILE. When increasing KZ, some particularly large
objects are created. In this case, the snow boundary cannot be properly handled, which
will put the non-snow zone and the marginal snow zone into the same object. Thus, a
small value of KZ (<8) is recommended in AutoSMILE to handle the segmentations in the
margins between the snow area and the non-snow area. However, if an extremely large
area is encountered, higher KZ and MD values will accelerate the analysis at the expense
of some loss of accuracy.

Table 2. Number of objects based on different segmentation parameters.

Kernel Size
Maximum Distance

2 4 8 16 32

2 3,484,716 703,033 77,848 35,329 30,263
4 3,567,314 674,536 31,822 9333 7391
8 3,601,859 711,186 17,106 3737 1989

16 3,618,718 749,797 17,466 1210 845
32 3,629,014 782,430 23,571 798 306

To further investigate the segmentation influence on the model performance, the
samples built from different segmentations are used to train the RF models. Note that only
features derived from the 10 multispectral bands are used and the models are only trained
with the object samples that are within the training zone (i.e., the red box in Figure 2a). In
this study, 100 decision trees are used in each RF model and the performance of the trained
RF models is evaluated and listed in Table 3. Conditions of MD = 2 and 4 are not included
in Table 3 due to excessive oversegmentation (Figure 5a,b,f,g,k,l,p,q,u,v). Referring to
Tables 2 and 3, it can be found that the segmentation loss has a negative correlation with
the object number. Due to the segmentation loss, all the pixel-based indices are lower than
the corresponding object-based indices under different conditions, and the pixel-based
indices decrease as the segmentation loss increases. The best pixel-level mapping result is
achieved by the segmentation using KZ = 2 and MD = 8, which has the object and pixel
IoUs of 98.21% and 97.23%, respectively, and the object and pixel OA values of 98.76%
and 98.07%, respectively. Although the pixel-based mapping performance decreases with
increasing segmentation loss, the lowest pixel IoU and OA still reach 92.12% and 94.42%,
respectively, proving the robustness of AutoSMILE.
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Figure 5. Influence of different segmentation parameters in a subarea of the training zone. (Segmented objects are delineated
in red polygons).
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Table 3. Performance evaluation of snow mapping with different segmentation parameters using random forest (RF) over
the study area in Bome County (excluding the training zone).

Kernel
Size

Maximum
Distance

Segmentation
Loss (%)

Object
PA (%)

Object
UA (%)

Object
IoU (%)

Object
OA (%)

Pixel
PA (%)

Pixel
UA (%)

Pixel
IoU (%)

Pixel
OA (%)

2
8 1.17 99.42 98.78 98.21 98.76 98.84 98.35 97.23 98.07

16 2.04 99.50 99.25 98.76 99.15 98.08 98.45 96.58 97.62
32 2.64 99.30 99.61 98.91 99.26 97.39 98.43 95.90 97.15

4
8 1.74 99.23 99.41 98.65 99.07 98.04 98.66 96.76 97.75

16 2.61 99.52 99.65 99.18 99.44 97.29 98.60 95.96 97.19
32 3.09 99.39 99.87 99.26 99.50 96.71 98.61 95.41 96.81

8
8 2.81 99.54 99.68 99.23 99.48 97.06 98.57 95.71 97.02

16 3.12 99.70 99.84 99.54 99.69 96.76 98.58 95.43 96.82
32 3.34 99.64 100.00 99.63 99.75 96.41 98.68 95.18 96.65

16
8 3.38 99.54 99.82 99.36 99.57 96.29 98.56 94.95 96.49

16 3.63 99.71 98.53 98.25 98.81 96.43 97.48 94.09 95.85
32 3.69 100.00 98.81 98.81 99.20 96.47 97.66 94.29 96.00

32
8 4.16 99.73 99.53 99.27 99.50 96.15 97.61 93.94 95.75

16 5.30 99.94 99.72 99.67 99.78 95.13 97.14 92.54 94.74
32 5.43 99.79 99.29 99.08 99.38 95.08 96.73 92.12 94.42

3.2. Snow Mapping Results of Different Datasets

As suggested in Table 3, KZ = 2 and MD = 8 are adopted to conduct snow mapping.
The segmentation of the study area is visualized in Figure 6. It can be seen that small objects
concentrate in the transition zones between snow and non-snow land covers, and the objects
inside the same land cover are larger and much sparser. There are 77,848 objects inside the
study area. Among all the segmented objects, 3934 objects that are within the training zone are
used for model training, and the rest of the objects are used for model testing.

Figure 6. Segmentation results using quickshift. (Kernel size = 2, maximum distance = 8, and
segmented objects are delineated in blue polygons).

Based on the segmentation in Figure 6, snow maps with different dataset combinations
were examined to assess the contributions from extra auxiliary data. Three datasets were
created using features derived from different data layers; namely, multispectral image
dataset (MSID), multispectral image derived dataset (MSIDD) and digital elevation model
dataset (DEMD). MSID only uses the 10 spectral layers, which derive 60 band features and
60 texture features. MSIDD includes 18 features which are calculated based on derived
NDVI, NDMI and MNDWI layers. DEMD consists of 30 features which are extracted from
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the DEM and its derivatives. Table 4 compares results of snow mapping using different
dataset combinations, where both CNN and RF are applied. The structure of the CNN
is presented in Figure 7. In this study, the Adam optimizer was used to train the CNN
model. The learning rate, maximum number of epochs and the mini-batch size were set to
0.0003, 100 and 256, respectively. The machine learning models trained by different dataset
combinations all performed extraordinarily well with only minor differences. Interestingly,
in most cases, the RF models performed slightly better than the CNN models with an
OA improvement of around 0.2% to 0.4%. Due to the low complexity of the datasets, it is
reasonable that deep learning models do not necessarily outperform conventional models.
Adding the MSIDD slightly increased the pixel PA of the CNN models (~0.14%) but the
RF performed similarly in both cases. By contrast, adding the DEMD did not improve the
snow mapping and even caused minor pixel OA losses of the RF (~0.15%) model. If both
the MSIDD and DEMD were included, the performance difference was also negligible:
the pixel OA of RF decreased 0.22%. Overall, the pixel IoU and OA of CNN was always
stable regardless of any supplement of new features. With pixel IoUs ranging from 96.66%
to 97.23% and pixel OAs ranging from 97.67% to 98.07%, it can be concluded that the
performance of AutoSMILE is not sensitive to extra auxiliary data. The snow cover can be
mapped with very high accuracy using only the multispectral image.

Table 4. Performance evaluation of snow mapping with different datasets and machine learning algorithms over the study
area (excluding the training zone).

Dataset + Algorithm Feature
Number

Object
PA (%)

Object
UA (%)

Object
IoU (%)

Object
OA (%)

Pixel
PA (%)

Pixel
UA (%)

Pixel
IoU (%)

Pixel
OA (%)

MSID 1 + CNN 2 120 98.69 98.86 97.58 98.32 98.15 98.47 96.67 97.68
MSID + RF 3 120 99.42 98.78 98.21 98.76 98.84 98.35 97.23 98.07

MSID + MSIDD 4 + CNN 138 98.83 98.72 97.59 98.33 98.29 98.33 96.68 97.69
MSID + MSIDD + RF 138 99.41 98.77 98.20 98.75 98.84 98.34 97.21 98.06

MSID + DEMD 5 + CNN 150 98.85 98.68 97.56 98.31 98.31 98.29 96.66 97.67
MSID + DEMD + RF 150 99.10 98.85 97.98 98.60 98.53 98.43 97.01 97.92

MSID + MSIDD +
DEMD + CNN 168 99.24 98.33 97.60 98.33 98.70 97.94 96.69 97.69

MSID + MSIDD +
DEMD + RF 168 98.94 98.90 97.87 98.52 98.38 98.49 96.92 97.85

1 MSID: multispectral image dataset derived from 10 multispectral band layers. 2 CNN: convolution neural network. 3 RF: random forest. 4

MSIDD: multispectral image derived dataset derived from the NDVI, NDMI and MNDWI layers. 5 DEMD: digital elevation model dataset
derived from the DEM, planform curvature, aspect, topographic wetness index (TWI) and slope layers.

Figure 7. Network architecture of the applied convolutional neural network model.
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To understand how AutoSMILE performs across the entire study area, Figure 8 clas-
sifies each pixel into four groups (TP, TN, FP and FN) by taking different snow covers
as ground truths and predictions. In Figure 8a, the spatial distribution of segmentation
loss can be directly observed by taking the object-based snow cover as a prediction and
the pixel-based snow cover as ground truth. It can be spotted that most FN pixels are
distributed near the outer boundary of the snow area and most FP pixels spread over the
gullies inside the snow area. Segmentation loss can hardly be eliminated in the object-
based analysis as it is almost inevitable for some objects to have both snow and non-snow
pixels after segmentation. The segmentation loss in this case is 1.17%, which is considered
acceptable. Figure 8b shows the snow cover predicted by RF and MSID compared with the
object-based snow cover. Although some objects are misclassified with RF, the overall snow
area is complete, and the complex snow boundaries are successfully captured. Figure 8c
compares the snow cover predicted by RF and MSID with the pixel-based snow cover.
With less than 2% of misclassification pixels, the overall performance of AutoSMILE at
pixel level is excellent. According to Figure 8, it is recommended that visual inspection of
the final snow mapping product should focus more on the transition zones between snow
and non-snow areas.

3.3. Layer Importance Analysis Based on the Best Model

To evaluate the contribution of different data layers in training the best model, a
permutation-based feature importance analysis is conducted. By permuting the sample
value of a specific feature, influential features could be identified if ML model performance
drops. The importance of a layer is calculated as the average importance of the features
derived from that layer. According to Table 4, the best ML model, which is trained with
RF, MSID, KZ = 2 and MD = 8, is used to estimate the layer importance. Figure 9 shows
the data layer importance relative to the red band layer, which is shown to be the most
important to the model. However, the differences among the first three important layers
(red, blue and green) are not significant. As these three bands can be integrated into the
true-color image, it is not surprising that they rank at top. Texture layers rank the lowest,
indicating that land cover in this study area is not sensitive to texture change.
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Figure 8. Results of pixel classification using different snow covers as predictions and ground truths:
(a) object-based snow cover as prediction and pixel-based snow cover as ground truth, (b) snow cover
predicted by the random forest model as prediction and object-based snow cover as ground truth
and (c) snow cover predicted by the random forest model as prediction and pixel-based snow cover
as ground truth. (TP: true positive; TN: true negative; FP: false positive; and FN: false negative).
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Figure 9. Data layer importance relative to the red band layer.

4. Discussion
4.1. The Generalizability of the Trained AutoSMILE Model

To assess the generalizability of the trained model in mapping snow covers for new
images, a new multispectral image covering Qimantag Mountain in the western segment
of eastern Kunlun Mountains, northern Tibetan Plateau, was acquired for extra testing. The
image was captured by Sentinel 2B on 2 June 2019. In terms of administrative division, the
new testing zone was at the southeast corner of the Xinjiang Uyghur Autonomous Region
(Figure 10a). The true-color RGB image of the new testing zone is shown in Figure 10b,
which covers an area of 579 km2. The manually interpreted snow cover is shown in
Figure 10c. The ML models trained in Bome County were then directly applied to predict
snow covers for the testing zone in the Qimantag Mountain region. Results are summarized
in Table 5. Although the place, time and general environment changed, the RF model still
achieves a pixel OA of 97.22% for the new testing zone, indicting a good generalizability of
the ML model produced by AutoSMILE.
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Figure 10. (a) Location of the new testing zone; (b) true-color RGB image of the new testing zone and (c) pixel-level snow
cover of the new testing zone based on visual interpretation.

Table 5. Performance evaluation of snow mapping in the testing zone (Qimantag Mountain region).

ML Model
Object

PA
(%)

Object
UA
(%)

Object
IoU
(%)

Object
OA
(%)

Pixel
PA
(%)

Pixel
UA
(%)

Pixel
IoU
(%)

Pixel
OA
(%)

CNN trained with
MSID, KZ = 2 and MD

= 8 in Bome County
96.06 91.48 88.17 97.02 93.86 90.65 85.58 96.29

RF trained with MSID,
KZ = 2 and MD = 8 in

Bome County
99.12 92.54 91.78 97.95 96.89 91.73 89.11 97.22

4.2. Comparison of AutoSMILE and Threshold-Based Methods

To further evaluate the performance of AutoSMILE, a comparative study between
AutoSMILE and two existing threshold-based methods was conducted. The first threshold-
based method was developed by NASA to produce the fifth version of MODIS Snow collec-
tion products, in which the following rules are applied: NDSI > 0.4, near-infrared reflectance
(bandwidth: 841–876 nm) >0.11, and the band 4 reflectance (bandwidth: 545–565 nm)
>0.1 [10]. The second method was proposed by Zhang et al. (2019), who found that a
NDSI threshold of 0.1 is more reasonable than that of 0.4 for applications in China [6],
so the second method simply applied the recommended threshold value (0.1) as the sole
criterion. In Figure 11a, AutoSMILE (RF, KZ = 2, MD = 8, trained with MSID) ranks the
first among the three methods in terms of the two most important indices: pixel IoU and
OA. Compared with the MODIS method, AutoSMILE achieves a performance gain of
1.7% in terms of IoU and 1.2% in terms of OA, corresponding to a 11.4 km2 increase of
correctly predicted area. When compared with the method of Zhang et al. (2019), the
performance gains narrowed down to 1.0% of IoU and 0.7% of OA, corresponding to a
6.7 km2 increase of correctly predicted area. In order to find the optimal threshold value for
both study areas, we further adopted the third method: testing all the NDSI values ranging
from 0.01 to 0.80. The result of the study area in Bome County is shown in Figure 11b. It
was found that the optimal threshold was 0.17 that gave an IoU of 96.35% and an OA of
97.43%. When examining the testing zone in the Qimantag Mountain region, the optimal
threshold turned out to be 0.19, which gave an IoU of 86.81% and an OA of 96.63%. The
changing optimal thresholds indicated that the threshold-based method could hardly find
a universally applicable threshold. It usually required a site-specific calibration in order to
obtain the best performance. In addition, in the Qimantag Mountain region, the RF model
trained in Bome County outperformed the threshold-based method by 2.3% and 0.6% in
terms of pixel IoU and OA, respectively.
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Figure 11. Results of the comparative study: (a) performance of different methods over the study area in Bome County
(excluding the training zone); (b) performance of MNDWI/NDSI-based method as functions of threshold value over the
study area in Bome County (excluding the training zone); (c) performance of MNDWI/NDSI-based method as functions
of threshold value over the new testing zone in the Qimantag Mountain region. (PA: producer’s accuracy; UA: user’s
accuracy; IoU: intersection over union; OA: overall accuracy; MNDWI: modified normalized difference water index; and
NDSI: normalized difference snow index).

A more detailed comparison is presented in Figure 12 to illustrate how different
methods perform at sub-regions of the study area in Bome County. The whole study area
was first discretized into tiles of 1 × 1 km2. As our study area occupied 20.12 × 49.79 km2,
in total 980 tiles were created and some marginal southern and eastern areas were omitted.
Then, inside each tile, pixel-based IoU and OA were calculated based on the AutoSMILE
method and the best threshold method at the study area in Bome County (NDSI > 0.17),
respectively. IoU and OA results are shown in Figure 12a,b. It can be seen that vast
majority of the data points concentrate either above or near the 1:1 line, indicating that the
threshold-based method barely outperforms AutoSMILE in the sub-regions. A maximum
increase of 92% of IoU can be observed in Figure 12a. Figure 12c further shows the spatial
distribution of tiles where AutoSMILE-based OA (OAAutoSMILE) exceeds the threshold-
based OA (OAthreshold) by at least 1%. Most identified tiles are located in the transition
zones, and the highest OA difference reaches about 13%, indicating that AutoSMILE is
particularly good at handling complex land cover conditions. Figure 12d presents the tiles
where OAthreshold − OAAutoSMILE >1%. It can be noticed that very limited tiles fulfill this
condition, and the highest OA difference is only around 2.5%. Combining Figure 12c,d,
it can be concluded that both methods perform quite well inside the same land cover;
however, when encountering complex land covers like the transition zones, AutoSMILE
outperforms the threshold-based method substantially.
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Figure 12. Comparison results between AutoSMILE and the best threshold-based method (NDSI
> 0.17) in the study area of Bome County: (a) scatter plot of IoUs of 1 × 1 km2 tiles using the two
methods; (b) scatter plot of OAs of 1 × 1 km2 tiles using the two methods; (c) OA difference heatmap
of 1× 1 km2 tiles where OAAutoSMILE −OAthreshold > 1% and (d) OA difference heatmap of 1× 1 km2

tiles where OAthreshold − OAAutoSMILE > 1%. (NDSI means the normalized difference snow index,
IoU means the intersection over union, and OA means the overall accuracy).

5. Conclusions

An automated snow mapper powered by machine learning, AutoSMILE, which is the
first machine learning-based open-source system for snow mapping, was developed and
tested in two regions on the Tibetan Plateau. The first region was taken as the main study
area (Bome County, 1102 km2) and the second region was only used for model testing
(Qimantag Mountain region, 579 km2). The machine learning techniques and object-based
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analysis were successfully integrated for snow mapping in the two regions. The following
conclusions can be drawn:

1. Using only 5% of the main study area for training (50.4 km2), AutoSMILE achieves
extraordinarily satisfactory results of snow mapping in the rest of the main study
area: object and pixel PAs, UAs, IoUs and OA values reaching 99.42% and 98.78%,
98.21% and 98.76%, 98.84% and 98.35%, and 97.23% and 98.07%, respectively. When
applying the trained models to the testing zone in Qimantag Mountain region, the
highest OA reaches 97.22%, indicating the excellent performance, generalizability and
robustness of AutoSMILE.

2. According to the parametric study of segmentation parameters, KZ and MD should
be carefully determined. In AutoSMILE, a low MD is not recommended to avoid
excessive oversegmentation and low computational efficiency, but a small value of KZ is
recommended to better handle the transition zone between snow and non-snow areas.

3. Results of alternating dataset combinations indicate that auxiliary data like multispec-
tral image derived indices and DEM derivatives play a limited role in enhancing the
performance of AutoSMILE. High-quality snow mapping can be accomplished with
only the multispectral image using AutoSMILE. Based on permutation importance
analysis of the best ML model, the top five important layers are red, blue, green, red
edge 1 and short wave infrared 1 band layers.

4. AutoSMILE outperforms the existing threshold-based methods in both regions. The
optimal NDSI thresholds of the two regions vary, suggesting that the threshold
method typically requires site knowledge to achieve the best performance and it is
hard to find a universally applicable threshold. When investigating the performance
at the sub-regions, it was found that both AutoSMILE and threshold-based methods
perform well when the land cover is simple. However, when encountering complex
conditions like snow mapping in transition zones, AutoSMILE outperforms the
threshold-based method substantially (up to 92% of IoU increase and up to 13% of
OA increase).

5. Due to the inevitable segmentation loss induced by object-based analysis, transition
zones between snow and non-snow areas require more attention when inspecting the
final snow cover products.
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