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Abstract: Unmanned aerial vehicle (UAV) plays a more and more important role in Internet of Things
(IoT) for remote sensing and device interconnecting. Due to the limitation of computing capacity
and energy, the UAV cannot handle complex tasks. Recently, computation offloading provides a
promising way for the UAV to handle complex tasks by deep reinforcement learning (DRL)-based
methods. However, existing DRL-based computation offloading methods merely protect usage
pattern privacy and location privacy. In this paper, we consider a new privacy issue in UAV-assisted
IoT, namely computation offloading preference leakage, which lacks through study. To cope with
this issue, we propose a novel privacy-preserving online computation offloading method for UAV-
assisted IoT. Our method integrates the differential privacy mechanism into deep reinforcement
learning (DRL), which can protect UAV’s offloading preference. We provide the formal analysis on
security and utility loss of our method. Extensive real-world experiments are conducted. Results
demonstrate that, compared with baseline methods, our method can learn cost-efficient computation
offloading policy without preference leakage and a priori knowledge of the wireless channel model.

Keywords: Internet of Things (IoT); computation offloading; differential privacy; unmanned aerial
vehicle; deep reinforcement learning

1. Introduction

With the rapid development of unmanned aerial vehicles (UAVs), they are applied
in the various applications, such as data collection and remote sensing among Internet of
Things (IoT) sensors [1]. Although the benefits of high mobility, swift deployment, and low
economic cost, large-scale application of UAV is limited by the computation capacity and
energy. Recently, computation offloading is regarded as a promising solution for enabling
UAV-assisted IoT to process huge data produced by IoT sensors [2,3].

Existing computation offloading methods for IoT focus on two main categories,
i.e., one-shot optimization methods [4,5] and DRL-based methods [6,7]. Compared with
one-shot optimization methods, the DRL-based methods can assist devices to learn com-
putation offloading policy with higher energy efficiency and low time delay. Besides this
benefit, DRL-based methods allow the devices to learn computation offloading policy
without a priori knowledge of wireless channel model, which can be applied to solve the
wireless channel dynamic between the UAV and IoT sensors [8].

Although the benefits of applying DRL into computation offloading, the vulnerabilities
in DRL can be exploited by adversaries to interfere the UAV with learning policy [9], which
hinders it from being applied to the real world. Figure 1 provides a case of computation
offloading preference leakage over UAV-assisted IoT. The adversary misleads the UAV to
offload tasks to malicious BSs by inversing the RL algorithm based on the observations of
the offloading decision and the transmission radio link status.
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Figure 1. The offloading performance leakage problem in UAV-assisted online computation offloading.

1.1. Related Works and Challenges

(1) DRL-based Computation Offloading in UAV-Assisted MEC Networks:
Zhou et al. [10] formulated the computing task scheduling problem as a constrained
Markov decision process (CMDP) and solved it by proposing a novel risk-sensitive DRL
method, where the UAV’s energy consumption violation is defined as the risk metric.
Liu et al. [11] modified the vanilla Q-Learning algorithm to maximize the profit of the UAV
under the constant cruising path. Recently, multi-UAV scenario also has been taken into
consideration. Wei et al. [12] proposed a distributed DRL-based method that is enhanced
by prioritized experience replay (PER), denoted as DDRL-PER. In their work, the pro-
posed DDRL-PER method is adopted to solve the computation offloading problem over
multi-UAV MEC network. Zhu et al. [13] decomposed the complex task and proposed a
DRL-based method for the task offloading over UAV group, which optimizes the policy
under the constraints of energy, dynamic network state. Seid et al. [14] designed a col-
laborative learning framework for computation offloading and resource allocation over
multi-UAV-assisted IoT, where the UAV group was divided into multiple clusters. Then,
the distributed deep deterministic policy gradient (DDPG) algorithms was adopted to
solve the multi-cluster computation offloading problem. Sacco et al. [15] also proposed a
multi-agent DRL-based method to solve the multi-tasks offloading problem over multi-
UAV networks. Moreover, Gao et al. [16] combined game theory with DRL to solve the
joint optimization of task offloading and multi-UAV trajectories.

Challenge 1: Existing DRL-based methods for computation offloading over UAV-assisted IoT
take protecting computation offloading preference into consideration.

(2) Privacy Preserving in MEC: Considering the privacy preserving has not been
widely researched over UAV-assisted MEC networks, we extend our review to the architec-
tures of MEC networks that are not limited to UAV-assisted MEC networks. The privacy
issues related to DRL-based offloading method were firstly investigated by He et al. [17].
The privacy constraints were generated in the value function, and the computation of-
floading policy was learned within several training episodes. Then, the authors adopted
Q-learning method to solve the private problem. Furthermore, an active suppression
method was proposed in Reference [18], which can prevent adversaries from eavesdrop-
ping. However, this method needs to modify the hardware, such as the antenna of mobile
devices, in order to effectively suppress adversaries with different signal types. In addition,
this active suppression method leads to excessive hardware modification costs when it
is applied on a large scale UAV-assisted IoT. To improve the privacy-preserving learning
efficiency of computation offloading policy, Min et al. [19] utilized the transfer learning and
Dyna architecture to accelerate the learning speed, while He et al. [20] proposed the RL-
and DRL-based methods based on generic framework of Lyapunov optimization, which
is resistant to user presence inference attack. Existing works holds the assumption that
there is no malicious BSs; thus, they mainly generate private constraints in value function
to preserve the privacy. However, malicious BSs cannot be completely avoided in the real
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world. Once the value function is obtained by adversaries, the adversaries can compromise
the mobile devices to offload computation tasks to malicious BSs.

Challenge 2: Existing privacy-preserving works that are designed for the DRL-based computa-
tion cannot prevent the malicious BSs from inferring the value function of the DRL algorithm.

1.2. Contributions

To solve the aforementioned privacy issues in existing works, we propose a differential
privacy (DP)-based deep Q-learning (DP-DQL) method to solve the computation offloading
preference leakage issue over UAV-assisted IoT. Our contributions can be summarized
as follows.

1. We investigate a new privacy leakage issue within the online computation offloading
over UAV-assisted IoT, namely computation offloading preference leakage.

2. We propose a differential privacy-based deep Q-learning (DP-DQL) method to protect
computation offloading preference over UAV-assisted IoT. In the proposed DP-DQL
method, the DQL is adopted as the basic framework for efficiently learning computa-
tion offloading policy without the a priori knowledge of the wireless channel model.
Then, a generated Gaussian noise is generated in the policy updating process of DQL,
which can protect the computation offloading preference. Finally, the learning speed
of DP-DQL is accelerated by the PER technique [21] by replying the experience with
high temporal-difference error.

3. We provide theoretical analysis for the differential privacy guarantee and utility
loss. Then, the convergence, privacy protection, and cost efficiency of our method
is demonstrated by extensive real-world experiments. The results show that our
method can help UAV learn the cost-efficient computation offloading policy with the
differential privacy guarantee.

The rest of this paper is organized as follows. Section 2 gives the necessary background,
system model and problem formulation, details of the proposed method and theoretical
analysis. Then, we design and conduct the experiments in Section 3. We discuss the impact
of key parameters on the convergence and the limitations of the proposed method in
Section 4. Finally, we conclude this paper in Section 5.

2. Materials and Methods

In this section, we first provide the background techniques. Then, we describe the
system model and formulate the research problem of this paper. Finally, we show the
proposed DP-DQL method and give the theoretical analysis in terms of privacy guarantee
and utility loss.

2.1. Background Techniques
2.1.1. Differential Privacy

Differential privacy [22,23] establishes a strong standard for privacy guarantees in
knowledge transfer, which aims to disable data analysis algorithms from distinguishing
between two neighboring inputs. The key definitions are provided in the following.

Definition 1. For any two neighboring inputs z, z′ ∈ B and subset of outputs D⊆ E, the (α, y)-
differential privacy can be guaranteed once the mechanism C : B→ D satisfies the inequality

1
eα
P(C(z) ∈ D) 6 P(C(z′) ∈ D) + y. (1)

The definition of output’s global sensitivity is shown as follows.

Definition 2. Given ∀z, z′ ∈ B as neighboring inputs, the output’s global sensitivity can be
computed as

ΓC = supz,z′∈B‖C(z)− C(z′)‖, (2)
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where ‖·‖ represents the norm function in E.

2.1.2. Deep Q-Learning

Deep Q-learning [24] leverages the deep neural network to approximate the value
function, which aims to find a policy Π∗(·) that can minimize the Bellman error as follows.

1
2
(QΠ(st, at)−E[ut + τmaxa′Q

Π(s′, a′)])2. (3)

2.2. System Model and Problem Formulation
2.2.1. System Model

Figure 1 shows a UAV-assisted MEC system for IoT, which contains N fixed base
stations (BSs), denoted as a set N= {1, 2, ..., N} and a UAV. (xn, yn, 0) is the coordinate of
BS n, and (x, y, h) is the coordinate of the UAV, where h indicates the flight height of UAV.
Referring to Reference [25], UAV adopts Wi-Fi or LTE technology to communicate with BS
and smart factories. At each time slot t, a computation task Tt (e.g., pattern recognition)
is collected by the UAV from a smart factory, where Tt ∈ T. The task Tt is described
as Tt = (Dt, Ct), where Dt is the maximum execution time, and Ct is the bits of task Tt.
Morevoer, every ξ CPU cycles can process a bit in the task.

Due to the binary computation offloading is the special case of partial computation
offloading [26,27], we investigate partial offloading in this paper for generality. To process
a task, the UAV needs to decide how much of a task should be offload to BSs. Formally, st
represents the offloaded proportion of a task Tt. To improve the performance of computa-
tion offloading decision, the UAV can adjust the offloaded proportion of a task. We define
the CPU frequency of the BS and UAV as f n and f , respectively. We assume that the each
BS has the same CPU frequency, which can avoid some of fallacies of computing during BS
parallel processes tasks [28]. Hence, the cost model is shown in the following. The time
spent for locally processing a task PL

t is

PL
t =

(1− st)Ctξ

f
. (4)

The local energy consumption EL
t is

EL
t = (1− st)Ct( f )2ξβ, (5)

where the β is a coefficient related to the CPU architecture [29].
The cost on offloading task to BS n consists of two parts, i.e., the time cost and the

energy cost. The time PO
t for offloading and processing task is

PO
t =

stCt

rn
t

+
stCtξ

f n , (6)

where the Ctst/rn
t is the time for transmitting the task to BSs, and ξCtst/ f n represents the

processing time in the BS.
Based on Reference [30,31], the energy consumption on transmitting a task to BS n

depends on the transmit power EP, which can be shown as

EO
t = EP

stCt

rn
t

. (7)

In this paper, we assume that the BSs have sufficient energy. This is reasonable that
fixed BSs are usually deployed in the area that has wired power supplied by grid. Hence,
the energy consumption on the BS is not considered in this paper. For convenience, the
major notations used in this paper are summarized in Table 1.
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Table 1. List of major notations.

Notations Descriptions

n The index of BSs
N The number of BSs
N The set of BSs

xn, yn The x-coordinate and y-coordinate of BS n
x, y, h The x-coordinate, y-coordinate, and height of UAV

t Time index
f n, f The CPU frequency of n-th BS

f The CPU frequency of the UAV
Tt, T The computation task in time slot t and the set of computation task

H The reset factor of the DP-DQL
PO

t , EO
t The time and energy consumption at time slot t in BSs

Ct, Dt The bits and maximum execution time of task Tt
PL

t , EL
t The consumed time and energy to locally process task at time slot t

EP The transmit power of transmitting a bit from BS n to the UAV
at, st, ut The action, state, and reward of the DP-DQL in t-th time slot
TP, V The number of training episode and the maximum learning steps within a training episode
τ, γ The discount factor and learning rate of the proposed DP-DQL
A, Z The mini-batch size and the replay buffer

ξ The bits which be processed during a CPU cycle
rn

t The radio link transmission rate between the UAV and BS n
Ψ The balance factor of the DP-DQL

2.2.2. Threat Model and Privacy Issue

In this paper, we consider a new privacy leakage issue over UAV-assisted IoT, namely
computation offloading preference leakage, which is shown in Figure 1. In this paper, we assume
that the adversary knows the inputs and formats of UAV’s computation offloading policy
in advance. It is reasonable to make the assumption because:

1. The BSs can provide customized services for UAV based on the formats of UAV’s
computation offloading policy and the inputs of the policy.

2. Once the adversary induce the BS, it can monitor the inputs and formats of UAV’s
computation offloading policy.

In accordance with above assumptions, the adversaries monitor UAV’s computation
offloading decision and the input of computation offloading policy, e.g., radio link trans-
mission rate between UAV and BSs. The adversaries utilize an algorithm, such as inverse
reinforcement learning algorithm, to infer the UAV’s computation offloading preference
based on monitoring results. Furthermore, the adversaries construct specific inputs for
UAV’s computation offloading policy, e.g., improving radio link transmission rate with
the help of malicious BSs, which can mislead UAV to offload computation tasks onto the
malicious BSs.

2.2.3. Design Goals

To solve above privacy issues, our proposed method should reach the goals as follows.

1. Differential privacy guarantee: DP-DQL method should provide (α, y)-differential
privacy for UAV during learning process so that the value function of the UAV’s
computation offloading policy will not be inferred by the adversaries based on the
system state and offloading decision.

2. Minor utility loss: DP-DQL method should guarantee that, compared with the tradi-
tional DQL method, the performance of the DP-DQL method will not be significantly
degraded by adding the differential privacy mechanism.
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2.2.4. Problem Formulation

As claimed in Section 2.1.2, we formulate the problem of privacy-preserving compu-
tation offloading in UAV-assisted MEC network for IoT as the Markov decision process
(MDP), which is defined as a tuple M= (S, A, P,R).

(1) System state: The system state is the offloaded proportion. Formally, st ∈ S ranges
from 0 to 1.

(2) Action space: The UAV adjusts the offloaded proportion of a task by increasing or
decreasing from 0 to 0.25. Formally, at ∈ [0, 0.25].

(3) Reward function: The weighted average of energy and time costs is adopted as
the reward function, which is given as follows:

ut = −η(EO
t + EL

t + PL
t + PO

t ), (8)

where η is the normalization function. To meet the differential private requirements, the
value domain of the reward function is constrained from 0 to 1. The proof will be given in
Section 2.4.1.

2.3. DP-Based Deep Q-Learning for Computation Offloading

In this section, we firstly give an overview of the DP-DQL. Then, the details for the
DP-DQL are provided.

2.3.1. Overview

The steps of online learning are shown in Figure 2, which consists of four stages.

1. Initialization: Initializing the parameters used in DP-DQL approach.
2. Exploring: The UAV executes offloading action and obtains reward from the environ-

ment.
3. Generating differential disturbance: The UAV generates the specific Gaussian noise

to prevent the computation offloading preference leakage.
4. PER-based policy updating: The UAV updates computation offloading policy with

the help of PER technique.

①
Replay buffer

Transition

Mini-batch

Computation offloading over UAV-assisted IoT

Online 

network

Target 

network

Soft updating

UAV system
Gaussian

noise

Transition

②

③

④ ④

④④

① Initialization

② Exploring

③ Adding differential disturbance

④ PER-based policy updating

Figure 2. The overview of the proposed DP-DQL approach.

Algorithm 1 shows the details of the DP-DQL method, and its description is given
as follows.
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Algorithm 1 Differential Privacy-based Deep Q-Learning for computation
offloading method

1: Initialize the parameters of DP-DQL method;
2: for j ∈ [1, TP] do
3: Reset the environment;
4: Reset differential dict l(·);
5: for t ∈ [0, V − 1] do
6: Conduct the action at = arg maxa l(st) + Πζ(st, a);
7: Reach to the state st+1 and get a reward ut;
8: Compute the maximum priority zt via Equation (9) and store it with transition;
9: if t ≡ 0 mod A then

10: for i ∈ [1, A] do
11: Generating differential disturbance δt;
12: Sample transition via Equation (13);
13: Compute importance-sampling weight via Equation (14);
14: Compute TD-error via Equation (9);
15: Update the priority of the transition;
16: Compute accumulated policy gradient ψ by Equation (15);
17: end for
18: Softly updating;
19: end if
20: end for
21: end for

2.3.2. Initialization (Lines 1–4)

The online policy Π(·) and target policy Π′(·) are initialized with random weights
ζ and ζ ′ (Lines 1), where the target policy Π′(·) is used to slow the updating rate of
online policy Π(·) and, hence, improve the stability of the algorithm. The environment is
constructed for learning computation offloading policy. Then, the differential dict l(·) is
initialized and reset to NULL every TP/H training episodes. (Line 4). The differential dict
l(·) is defined as a Dictionary structure, where the key size and value size are set to |A| and
2, respectively.

2.3.3. Exploring (Lines 5–8)

If a task Tt is collected by UAV at time slot t, the UAV makes offloading decision by
online computation offloading policy Π(st) under differential disturbance l(st) (Line 6).
After receiving the reward ut (Line 6), the UAV obtains a new state st+1 (Line 7). Based on
old state st, action at, new state st+1, and reward ut, the UAV constructs a transition. Then,
the UAV compute the priority zt and store it in replay buffer Zwith the transition (Line 8).
Based on Reference [21], the priority zt can be computed as follows:

zt = |Πζ(st, at)−Θ|. (9)

The Θ in Equation (9) is given as follows:

Θ =

{
ut i f t == V

Π′(st+1, a′t+1)τ + ut t < V
, (10)

where a′t+1 = Π′(st+1).

2.3.4. Generating Differential Disturbance (Lines 9–11)

Once replay buffer is filled with the transitions (Line 9), a mini-batch of the transitions
will be sampled from replay buffer to update online and target policies (Line 10). Gaussian
process δt ∼ Y(υt, φt) generates a differential disturbance yt for each action a ∈ A (Line 11).
The differential disturbance δt is appended to differential dict l(st)← δt, then l(·) is sorted.
The υt and φt are given below based on [32]:
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υt =
(eΦε − e−Φε)l(st−1) + (eΦΩ − e−ΦΩ)l(st+1)

eΦΛ − e−ΦΛ , (11)

φt = 1− [
(eΦε − e−Φε)eΦε) + (eΦΩ − e−ΦΩ)eΦΩ)

eΦΛ − e−ΦΛ ], (12)

where Φ = (4(1 + Ψ)/A)−1γ, Ψ represents the balance factor, ε = ‖st − st−1‖2,
Λ = ‖st+1 − st−1‖2, and Ω = ‖st+1 − st‖2.

2.3.5. PER-Based Policy Updating (Lines 12–21)

In this stage, the accumulated policy gradient ψ is calculated based on PER technique.
Specifically, the sampling probability of a transition is computed by (Line 12)

P(i) =
z

θ1
i

∑g z
θ1
g

, (13)

where the g is the index of a transition. Then, the function of importance sampling weight
(Line 13) is to decrease bias referred to Reference [21], which is given as follows:

Υi =
(|Z|pP(i))−θ2

maxAΥi
, (14)

where P(·) is the sampled probability, |Z| represents the replay buffer size, θ2 is used to
determine how much priority affects the sampling probability, and Υi is an importance
factor of transition. Hence, the TD-error is calculated via Equation (9) (Lines 14), and the
absolute TD-error value is adopted to update the ith transition priority (Lines 15). Finally,
the accumulated policy gradient ψ is computed based on a chain rule in Reference [33] as
shown below (Line 16):

ψ← ψ + l(si) + Υi∇ζΠ(si, ai)zt, (15)

where ∇ζ Π(si, ai) is the gradient of the online policy for vector (sn, an). Then, the online
policy Π(·) is softly update as follows:

ζΠ = ζ + ψω, (16)

where ω is a soft update coefficient (Line 18). Then, set ψ ← 0. Finally, the target policy
Π′(·) is updated (Line 18).

2.4. Theoretical Analysis
2.4.1. Differential Privacy Guarantee

To analyze the differential privacy guarantee of the DP-DQL method under the adver-
sary model in Section 2.2.2, we firstly provide a necessary theorem.

Theorem 1. Given the sample path k from Gaussian process F(0, ρ2K), max∈[0,1]k() exists with
high probability. For each w > 0 in Sobolev space G1, we have

P(w + 8.68
√

Φρ 6 max�∈[0,1]k(�)) 6
1

ew2/2
, (17)

where the Φ = 1
4γ(1+Ψ)/A .

Proof. Firstly, we define some necessary notations. For a sample path k, we define k0p =
{k(e0), k(e2), . . . , k(e2p)} and k1p = {k(e1), k(e3), . . . , k(e2p−1)}, where p > 1, ei = i/2p,
(i = 0, . . . , 2p).
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Then, we consider the base case that the sample path k contains two elements, i.e.,
k2 = k(0), k(1). Therefore, the expectation E is

E(max k2) =
1
2
E(|k(0)− k(1)|)

=

√
(1− e−Φ)

π
ρ

6

√
Φ
π

ρ, (18)

which is based on k(0)− k(1) ∼ F(0, 2(1− e−Φ)ρ2).
Finally, we consider the case of |k(�)| > 2. Specifically, we aim to bound the expecta-

tion E(max kp) for all p > 1. Referring to Chernoff bound, we have

etE(maxiji) 6 E(etmaxiji) 6 pet
2ρ2/2, (19)

where ji is the p independent Gaussian random variables based on F(0, ρ2
j). Let t =√

2 ln p/ρj, we have maxiji 6
√

2 ln p/ρj.
Let mp = E(max k2p0). Due to k2p0 ⊂ k2p+10, the series mp is non-decreasing.

Then, we derive the upper bound of mp+1 −mp. Referring to Reference [32], we have
∃j,E(max(0, max k2p1 − k2p0)) 6 E(max(0,j)). The bound of E(max(0,j)) is given
as follows.

e

E(j, 0)√
Φ/2pρ 6E(e

E(j, 0)√
Φ/2pρ )

6E(max(e

j√
Φ/2pρ , 1))

6E(e
1+

j√
Φ/2pρ )

6e
√

p+1 + 1. (20)

Hence,

E(max(j, 0)) 6 (
√

p + 1 +
1

e
√

p+1 )

√
Φ
2p ρ. (21)

Finally, we have

mp+1 −mp 6 (
√

p + 1 +
1

e
√

p+1 )

√
Φ
2p ρ. (22)

Based on induction, we can get ∀p,

mp 6

√
Φ
π

ρ +
∞

∑
i

(
√
i+ 1 +

1

e
√
i+1

)

√
Φ
2i

ρ < 8.68
√

Φρ. (23)

Referring to Reference [34], E(max k) shares the same upper bound of mp almost surely
when k is continuous with probability one. Hence, Theorem 1 follows.

Theorem 2. The proposed DP-DQL method ensures the (α, y+ He−(2Ψ−8.68
√

Φρ)2/2)-differential
privacy once neighboring rewards ‖u′ − u‖∞ 6 1, if

ρ <
Ψ

8.68
√

Φ
, (24)
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and

ρ > 1.41σ

√
ln

1.25
y

ln(
α

y
+ e)

V
A

, (25)

where Φ = (4(A)−1γ(1 + Ψ))−1, σ =
X
A
√
(8γ(1 + Ψ))(A + 16γ(1 + Ψ)), X represents the

Lipschitz constant, A is the mini-batch size, and V is the training episodes.

Proof. To prove this theorem, we firstly prove that the neighboring value functions cannot
be distinguished with differential privacy guarantee in one policy updating step. Then, we
extend conclusion to multiple policy updating steps. Referring to Reference [35], we have

‖Π∗(·)−Π(·)‖∞ 6
γX(l(st+1 − l(st)) + 2)

A
, (26)

where Π(·) is the value function from u and Π∗(·) is the value function from u∗. Note that
‖u∗ − u‖∞ 6 1. The inequality |Π(·)− c| 6 2γX(1 + Ψ)/A holds with at least probability
of 1− e−(2Ψ−8.68

√
Φρ)2/2, where Π#(·) is the neighboring value function of Π(·), according

to Theorem 1. Then, for each ‖u∗ − u‖∞ 6 1, ‖Π∗(·)−Π(·)‖∞ 6 4γX(1 + Ψ)/A holds
based on triangle inequality with the same Π#(·). Let k = Π∗(·)−Π(·), we can obtain
Equation (27) in the Sobolev space.

‖k‖2
G 6 (1 +

Φ
2
)(

4γX(1 + Ψ)

A
)2 +

X2

2Φ
. (27)

Let Φ = B/(4γX(1 + Ψ)), and the Equation (27) can be rewritten as

‖k‖2
G 6

16X2γ2(1 + Ψ)2 + 4γAX2(1 + Ψ)

A2 . (28)

Referring to Reference [36], we can get

P[max
u,u′
‖u′ − u‖ 6 α] > 1− (y+ He

−
(2Ψ− 8.68

√
Φρ)2

2 ), (29)

by adding Gaussian disturbance l ∼ F(0, ρ2K) to Π(·) within a policy updating step on
the basis of Equation (25). This conclusion can be generalized to multiple policy updating
steps by the theorem in Reference [37]. Hence, Theorem 2 is proved.

2.4.2. Minor Utility Loss

Before giving the final proof of utility loss, we show a necessary theorem and its proof.

Theorem 3. Assume that U#
a is the optimal result of the inequality constraint problem

maximize
U0,U1,s,Un

∑
a

UT
a u′a

s.t. ∑
a

eT Ua 6
|S|

1− τ
,

Ua > 0

∑
a
(I− τχT

a )Ua = e, (30)

and we can obtain

E[∑
a

U#T
a ua] >∑

a
U∗Ta ua −

2
√

2|S|ρ√
π(1− τ)

. (31)
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Proof. Given u#
a = ua + δa, we can get Equation (32) based on the strong duality and

non-negativity in (♠) and (�), respectively.

E[∑
a

U#T
a ua] = E[∑

a
U#T

a (u#
a − δa)]

> E[∑
a

U∗Ta (u#
a −∑

a
U#T

a δa)]

= E[∑
a

U∗Ta (ua + δa)−∑
a

U#T
a δa]

♠
= ∑

a
U∗Ta ua +E[∑

a
(U∗a − U#

a )
Tδa

�
>∑

a
U∗Ta ua −

2
|S|(1− τ)

E[∑
a
‖δa‖1]

= ∑
a

U∗Ta ua −
2
√

2ρ|S|√
(1− τ)π

. (32)

Finally, we prove the convergence of the proposed method through Theorem 4.

Theorem 4. Compared with vanilla DQL, the utility loss of the our DP-DQL method tends to be 0
even under the worst case, where H = 1.

Proof. We have Equation (33) by solving Equation (30)

E[∑
a

ua U
#T
a ] >∑

a
ua U

∗T
a −

2
√

2ρ|S|√
π(1− τ)

, (33)

according to Theorem 3. Further, according to Reference [32], the equation
E[u#eT ] = E[∑a ua U

#T
a ] holds. Based on the strong duality, we have ∑a ua U

∗T
a = u∗eT . As

E[‖u∗ − u#‖]1 = UTu∗ −E[eTu#]. Considering state space is infinity, the upper bound of
E[‖u∗ − u#‖]1 tends to be zero. Moreover, Reference [24] guarantees the convergence of
vanilla DQL. Therefore, our DP-DQL method achieves minor utility loss compared with
vanilla DQL and converges within finite training episodes.

3. Results

In this section, we design four experiments to evaluate the convergence, privacy
protection and cost efficiency of the DP-DQL method.

3.1. Experiment Settings

Scenario: In this paper, the UAV flies around the area at a constant height to collect
data and make computation offloading decision based on its offloading policy. The device
for locally processing task is a Raspberry Pi 3B+, which is adopted as the airborne computer.
Figure 3a shows the architecture of UAV used for experiments, and the flying area is shown
in Figure 3b. In this paper, we firstly randomly deploy three laptops in Figure 3b to
represent the BSs. Then, we deploy three actual rodeside units (RSU) to evaluate the
variation of results. Because the computing power of actual RSU is similar to that of
Raspberry Pi [38,39], the actual RSU is represented by the Raspberry Pi 4.
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(a) Architecture of the testing UAV (b) Testing area

Figure 3. The illustration of real-world experiment.

Parameter settings: The radio link transmission rate from n-th BS to the UAV is
rn

t ∈ {2 Mb/s, 6 Mb/s, 10 Mb/s}. At each time slot t, the values of data size Ct for the
task Tt is Ct ∈ {20 Mb, 40 Mb, 60 Mb}, and each task should be processed within Dt = 3 s.
During task processing, each bit needs ξ = 1000 CPU cycles to process [40]. As defined
in Reference [41], the transmit power form BSs to the UAV EP is 0.2 W. The proposed
DP-DQL method is implemented by Pytorch 1.1 and Python 3.6. We adopt a four-layer
fully-connected feedforward neural network to implement the online and target policies.
The learning rate γ is set to 0.001, while the discounted factor τ is set to 0.999. The replay
buffer size |Z| is 1024. The size of mini-batch A is 128. During online learning, there are
TP = 100 training episodes and V = 50 learning steps in every training episode. For
convenience, the all values of parameters are summarized in Table 2.

Table 2. Parameter values.

Parameter Value Parameter Value

h 5 m Ct {20, 40, 60} Mb
f 1× 109 cycles/s f n 3× 109 cycles/s

Dt 3 s ξ 1000
rn

t {2, 6, 10} Mb/s β 1× 10−11

EP 0.2 W TP 100
V 50 N 3
γ 0.001 τ 0.999
θ1 0.5 θ2 0.5
|Z| 1024 A 128
θ1 0.5 θ2 0.5

3.2. Baseline Methods

We evaluate the efficiency of our DP-DQL method by comparing it with two base-
line methods:

1. Greedy: This method has been widely adopted as a baseline method, where all tasks
are fully offloaded to the BSs.

2. Deep Q-learning with non-differentially-private mechanism (DQL-non-DP) [19]:
We adopt a model-free method designed for healthcare IoT network [19] and adjust
it according to the system state space of this paper. This method can learn the cost-
efficient computation offloading policy and serve as the baseline of cost efficiency for
the DP-DQL method. The DQL-non-DP method shares the same hyperparameters
with the DP-DQL method in the following experiments.

3.3. The Convergence of the DP-DQL Method

In this paper, the proposed DP-DQL method is modified at the action selection step in
exploring and the accumulated policy gradient computing step in PER-based policy up-
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dating with the aim of protecting computation offloading preference. However, these two
modifications may affect the learning performance of the proposed method. To evaluate
the potential effect, we vary the σ to test the impact of the modifications on the learning
performance of the proposed method. According to Theorem 2, once the other hyperparam-
eters and experiment parameters are determined, σ will be an important parameter in the
DP-DQL method to determine privacy level. In this paper, we set σ ∈ {0, 0.2, 0.4, 0.6, 0.8}.
Note that σ = 0 is a special case that privacy-preserving mechanism is not applied. Figure 4
shows the results. The results indicate that, with σ increasing, DP-DQL method needs
more training episodes to approximate the learning performance than the non-privacy
case. It raises a problem that what value of σ should we choose to achieve the best learning
performance while preserving computation offloading preference. From Figure 4, it can be
seen that the DP-DQL method allows UAV to learn the a stability computation offloading
policy within 20 TPs, 20 TPs, and 34 TPs under the case of σ = 0, σ = 0.2, and σ = 0.4,
respectively. When σ > 0.4, the DP-DQL method will continue to oscillate with no sign of
convergence. Hence, we can see that DP-DQL method performs well when σ 6 0.4.

0 20 40 60 80 100
Training episodes

25.0

22.5

20.0

17.5

15.0

12.5

10.0

Re
wa

rd
s

 values
=0
=0.2
=0.4
=0.6
=0.8

Figure 4. Convergence performance versus different σ.

3.4. The Privacy Protection of the DP-DQL Method

According to the threat model in Section 2.2.2, the adversary tries to increase the
similarity of the distributions of the vanilla value function and recovered value function
in the state space S. In this paper, we adopt the t-test to quantitatively evaluate the above
similarity. To conduct the t-test, we firstly make a set of hypotheses, including K0 and KW.
Note that the subscript 0 is the null hypothesis, and W is the alternative hypothesis.

1. K0: The distributions of the vanilla value function is the same as that of recovered
value function in the state space S.

2. KW: The distributions of the vanilla value function is not the same as that of recovered
value function in the state space S.

Referring to Section 3.3, we set the value function with σ = 0 as the vanilla value
function, while the value function with σ = 0, σ = 0.2, σ = 0.4, σ = 0.6, and σ = 0.8 is set
as recovered value function. We randomly generate the twenty pairs (rn

t , Ct), and input
them to the vanilla value function and recovered value function, respectively. Then, we
obtain two sets of values. Finally, we calculate the p-value of two sets. Table 3 shows the
results. It can be seen that the p-value is less than 0.001 in most cases, except the case of
σ− 0. Hence, the null hypothesis KW is accepted with strong evidence. It indicates that
the value function of proposed DP-DRL method cannot be recovered by inverse RL.



Remote Sens. 2021, 13, 4853 14 of 18

Table 3. The results of t-test.

σ values 0 0.2 0.4 0.6 0.8

p-values 0.197 1.23 × 10−15 5.73 × 10−75 7.54 × 10−64 4.25 × 10−32

3.5. The Cost Efficiency of the DP-DQL Method

In this experiment, our aim is to evaluate how much the privacy preserving mechanism
in the proposed method affects its cost efficiency, compared to the baseline methods. We
adopt the weighted average of the cost PL

t , EL
t , PO

t , and EO
t as the comparing metric, which

is calculated based on Equation (8). Note that, due to the different ranges of the cost
PL

t , EL
t , PO

t , and EO
t , they are normalized as Equation (8). According to Section 3.3, we set

σ = 0.2 and σ = 0.4 in the experiments. To avoid statistical deviation, we perform each
experiment with 10 random seeds.

Figure 5 shows the influence of the radio transmission rate rn
t on the cost efficiency

of DP-DQL and baseline methods. The radio transmission rate rn
t is set to be 2 Mb/s,

6 Mb/s, and 10 Mb/s, respectively, while the bits of a task is Ct = 40 Mb. Compred with
the baseline method, i.e., DQL-non-DP method, we can see that DP-DQL method has little
cost efficiency reduction. For instance, we select the DP-DQL method with σ = 0.2 to
compare with DQL-non-DP method. When two methods converge, the average cost of
DP-DQL method is 15%, 18%, and 20% less than that of DQL-non-DP method in the case
of rn

t = 2 Mb/s, rn
t = 6 Mb/s, and rn

t = 10 Mb/s. Moreover, we observe that the proposed
DP-DQL method requires more training episodes, which varies from 20 TPs to 35 TPs, to
achieve the similar cost than DQL-non-DP method. The extra training episodes used by the
proposed DP-DQL method indicate the tradeoff between privacy and cost. Furthermore,
we can find that, with the increase of radio transmission rate rn

t , the Greedy method can
achieve better the cost efficiency of DP-DQL method in the cases of rn

t = 6 Mb/s and
10 Mb/s. The reason is that promising wireless channel status reduces the transmitting
cost. However, compared with DP-DQL method,the Greedy method cannot preserve
computation offloading preference.
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Figure 5. Cost efficiency of the proposed method versus different transmission rate rn
t .

Moreover, the cost efficiency of DP-DQL is evaluated under different task bits Ct,
compared with baseline methods. The bits of a task Ct is set to be 20 Mb, 40 Mb, and 60 Mb,
while the radio transmission rate rn

t is 10 Mb/s. The results in Figure 6 show that DP-DQL
method and DQL-non-DP method outperform the Greedy method in most cases, except
the early learning stage of the case of Ct = 20Mb. The largest improvement of rewards
is in the case of Ct = 60 Mb, which is 260%. We can see that the difference in rewards
between the DP-DQL method and DQL-non-DP method varies relatively little with Ct.
The maximum difference is only 12%, indicating that the proposed method is not overly
affected by privacy-preserving mechanisms in terms of cost efficiency and can learn a
cost-efficient computation offloading policy. The reason is that offloading all of a task to the
BS will not cause too much cost in transmission time when the size of a task is small. With
the size of a task increases, transmission time becomes the bottleneck of the cost efficiency
of the Greedy method.
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Figure 6. Cost efficiency of the proposed method versus different bits of a task Ct.

3.6. The Performance of the DP-DQL Method Deployed in a Realistic Scenario

Through changing the laptops to the actual RSUs in the scenario, we re-examine the
performance of the proposed method and DQL-non-DRL method in terms of cost efficiency.
The parameters are set the same as Section 3.5. Figures 7 and 8 show the cost efficiency
of the proposed method and baseline methods under different transmission rate rn

t and
bits of a task Ct, respectively. It can be seen that the proposed method can still converge
with finite TPs. However, by pairwise comparing Figure 5 with Figure 7, and Figure 6
with Figure 8, we can see that the experiments with actual RSUs increase the cost. The
reason is that the weaker CPU computing power of the actual RSU increases the time cost
and eventually leads to an increase in the total cost. Specifically, based on the assumption
that the BS energy consumption is not considered in Section 2.2.1, the energy cost does
not change when the actual RSUs are used to replace the laptops, which is still the local
energy cost EL

t plus the transmission energy cost EO
t . However, the time PO

t for offloading
and processing will increase due to the weaker CPU computing power of the actual RSUs.
To further verify our point, setting σ = 0.4, Figure 9 shows the proportion of time cost in
the total cost. It can be seen that the proportion of time cost to the total cost increases after
replacing with actual RSUs. Hence, changing laptops to the actual RSUs will increase the
time cost and eventually lead to an increase in the total cost.
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Figure 7. Cost efficiency of the proposed method versus different transmission rate rn
t .
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Figure 8. Cost efficiency of the proposed method versus different bits of a task Ct.
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Figure 9. The proportion of time cost in the total cost versus (a) different transmission rate rn
t and

(b) different bits of a task Ct.

4. Discussion

In this section, we firstly discuss the impact of the parameter value on the learn-
ing performance of the proposed method. Then, we discuss the limitations of the pro-
posed method.

4.1. Impact of the Key Parameters on the Convergence of DP-DQL Method

As shown in Line 4, Algorithm 1, the reset factor H is the updating frequency of the
differential dict l(·), which can affect the convergence of the proposed method. In this
experiment, we evaluate the influence of value selection of reset factor H on DP-DQL
performance by setting the σ = 0.2. Figure 10 shows the results. In the figure, it can be seen
that the average reward is not influenced by the value of reset factor H.
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Figure 10. Convergence performance versus different H.

4.2. Limitations and Future Works

The proposed method supports only one UAV to offload the task to single BS at one
time slot. This can cover most of the existing daily application scenarios, such as grid
inspection, remote sensing, etc. However, the limited endurance of a single UAV limits
its ability to perform more complex tasks. Multi-UAV collaboration provides a viable
idea, but the proposed method is not able to support privacy-preserving computation
offloading in multi-UAV-assisted IoT scenarios. In the future, techniques, such as dis-
tributed reinforcement learning and local differential privacy, offer potential solutions to
the above needs.
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5. Conclusions

In this paper, we propose a differential privacy-based deep Q-learning method for
computation offloading over UAV-assisted IoT, which can protect UAV’s computation
offloading preference. The formal analysis shows that the proposed DP-DQL method meets
the design goals, i.e., differential privacy guarantee and minor utility loss. Furthermore, we
evaluate the convergence and privacy of DP-DQL method by the real-world experiment.
The results indicate that our DP-DQL method can achieve long-term energy performance
under the privacy guarantee, compared with baseline methods. In the future, we will
further investigate various privacy issues on DRL-based computation offloading methods.
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