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Abstract: Autonomous exploration and remote sensing using robots have gained increasing attention
in recent years and aims to maximize information collection regarding the external world without
human intervention. However, incomplete frontier detection, an inability to eliminate inefficient
frontiers, and incomplete evaluation limit further improvements in autonomous exploration efficiency.
This article provides a systematic solution for ground mobile robot exploration with high efficiency.
Firstly, an integrated frontier detection and maintenance method is proposed, which incrementally
discovers potential frontiers and achieves incremental maintenance of the safe and informative
frontiers by updating the distance map locally. Secondly, we propose a novel multiple paths planning
method to generate multiple paths from the robot position to the unexplored frontiers. Then, we use
the proposed utility function to select the optimal path and improve its smoothness using an iterative
optimization strategy. Ultimately, the model predictive control (MPC) method is applied to track the
smooth path. Simulation experiments on typical environments demonstrate that compared with the
benchmark methods, the proposed method reduce the path length by 27.07% and the exploration
time by 27.09% on average. The real-world experimental results also reveal that our proposed method
can achieve complete mapping with fewer repetitive paths.

Keywords: autonomous navigation; fast marching method; mobile robot; frontier detection; multiple
paths evaluation; frontier-based exploration

1. Introduction

Autonomous exploration enables robots to be capable of actively perceiving the
environment, which has played an increasingly important role in various applications, such
as monitoring environmental quality [1,2], precision agriculture [3], search and rescue [4–6],
and open-sea exploration [7,8]. There has been some valuable work on navigation using
GNSS [9,10], but in most cases, indoor robots can only rely on their carried sensors for
navigation. However, the limited perception range of the sensor and the absence of any
prior information about the surrounding environment pose a significant challenge for the
robot to make optimal decisions. In addition, the restricted battery capacity of robots makes
efficient environmental exploration essential.

Many researchers have proposed various autonomous exploration methods in recent
years, which can be divided into frontier-based methods [11–14], information-based meth-
ods [15,16], and hybrid methods [17]. Different types of maps are applied to autonomous
exploration, such as methods [11,18–20] based on occupancy grid map, methods [21,22]
based on topological maps, and methods [23] based on feature maps. The frontier-based
method is intuitive and efficient, and an occupancy grid map can be used for efficient path
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planning. We propose a frontier-based exploration method based on an occupancy grid
map. The frontier-based exploration method advocates the constant acquiring of frontiers,
an evaluation of the frontiers, and a move towards the most promising frontier in each
exploration step. The following problems at each stage persist.

Frontier detection is the cornerstone of autonomous exploration. Failure to obtain
the frontier in time will cause the robot to explore an area back and forth. Traditional
methods [13] deal with the entire map to obtain the frontier, but the efficiency decreases as
the map increases. Furthermore, most of the existing methods still consider a single source
to obtain frontiers. How to effectively maintain the frontiers in the exploration process
and eliminate inefficient frontiers in time is also an urgent problem to be solved and has
largely been ignored in the literature. An integrated frontier detection and maintenance
method is proposed in this work. We obtain two types of frontiers by detecting changes
in the active area on the occupancy grid map and lidar data. We propose the use of the
Euclidean distance map to perform incremental maintenance on the frontier.

The evaluation of the frontier determines the next promising target. Some exploration
methods [11,24,25] directly use Euclidean distance instead of the actual path length, which
will affect the decision making in complex scenarios. Some methods require multiple path
generations, resulting in a waste of computing resources. Incomplete evaluation metrics
cannot accurately evaluate unexplored frontiers effectively [13,15]. We propose a novel util-
ity function to carry out a reasonable assessment of frontiers, which considers information
gain, path cost, consistency of robot movement, and valid lidar data acquisition.

For path planning, using local paths to explore the environment often requires other
strategies to solve the local minimum problem. The rapidly exploring random trees (RRT)
path planning method [26] has a tortuous path. Some search planning algorithms [11,25]
focus on the generation of the shortest path and ignore the clearance and smoothness of
the path. We propose a multiple paths generation method based on fast marching [27].
An iterative path optimization strategy is put forward to improve the smoothness of the
selected path.

Our main contributions include the following aspects.

1. We propose an integrated frontier detection and maintenance method. A complete
environmental exploration can be achieved by sufficient frontier detection and incre-
mentally maintaining reachable and informative frontiers.

2. A multiple path generation method is proposed using the wavefront propagation
trend of the fast-marching method and a well-designed velocity field to generate safe
paths with a good view.

3. A multi-object utility function is proposed for frontier evaluation to obtain the optimal
path, improving exploration efficiency. A path smoothing method with dynamic
parameter adjustment improves the smoothness of the optimal path.

We propose a complete framework for autonomous robot exploration in unknown
environments and verify the effectiveness and practicability of the proposed framework
through sufficient experiments.

The remaining article is organized as follows. In Section 2, we introduce related work
in autonomous exploration. In Section 3, we provide the problem statement. Our proposed
method is presented in Section 4. In Section 5, we provide the experiments and results
both in simulated and real-world environments. In Section 6, we provide the discussion
of this work. Lastly, in Section 7, we provide the conclusion of this work and provide
future directions.

2. Related Works
2.1. Frontier Detection Methods

Yamauchi et al. [13] proposed the concept of frontier-based exploration; however,
frontier detection requires the processing of the entire map each time—as the map increases,
the frontier detection efficiency gradually decreases. Some researchers have worked on
the efficient detection of the frontier. Umari et al. [11] innovatively proposed using global



Remote Sens. 2021, 13, 4881 3 of 23

and local rapidly exploring random trees [26] to detect frontiers in 2D and 3D scenes.
Keidar et al. [12] proposed efficient frontier detection methods, such as the wavefront
frontier detector (WFD) and the fast frontier detector (FFD) but did not consider whether the
frontier was reachable. Unreachable frontiers will produce invalid paths, waste computing
resources, and make exploration inefficient. The work in [19] further considered the
extraction of reachable frontiers and only incrementally processed the modified portions of
the occupancy to obtain safe and valid frontiers. The safe and reachable frontier detection
generator (SRFDG) [27] uses laser data to efficiently obtain two types of fronters and
maintains a global topological map. However, due to the uncertainty of the pose during
the mapping process, the frontier cannot always be effectively obtained based on laser
data alone. At the same time, this method ignores the timely detection of the changes on
the map. Different from the above method, which detects frontiers from a single source,
our method uses an occupancy grid map and lidar data to obtain frontiers together. The
proposed method only deals with a fixed size active area, which reduces the computational
burden. Meanwhile, we propose a method of deleting inefficient frontiers.

2.2. Decision-Making Methods

Some methods only consider a single evaluation metric. Yamauchi et al. [13] only con-
sidered the distance between the frontier and the robot as the evaluation metric, ignoring
the different information acquisition between frontiers. Stachniss et al. [20] proposed an
evaluation strategy to evaluate each action that trades off the expected information gain
cost and reduces localization uncertainty. To prevent the robot becoming trapped in the
cubicle areas, Gao et al. [28] added the consideration of the rotation angle to the evaluation
function, allowing the robot to explore as far as possible along the current direction. How-
ever, this method increases the complexity of adjusting the parameters. Unlike the above
methods, we propose a method that considers multiple metrics for evaluating frontiers
with only two adjustable parameters, which uses the distance map to efficiently evaluate
the impact of different paths on the mapping.

2.3. Path-Planning Methods

Fang et al. [29] proposed an improved dynamic window approach [30] with a new
trajectory evaluation function to achieve local exploration. Lauri et al. [31] modeled
the robot’s autonomous exploration as a partially observable Markov decision process
(POMDP) and obtained the most informative local trajectory through forward simulation
algorithms with an open-loop approximation. Ding et al. [32] proposed to obtain multiple
local trajectories and used information entropy to evaluate multiple trajectories. However,
the above methods may have had local minimum problems in some complicated scenarios.
Therefore, some of the methods solve the local minimum problem by integrating the
frontier-based exploration method [31] or re-planning the global path [32]. Bircher et al. [33]
used the RRT method to explore and generate a path. However, the randomness of the
RRT tree has poor smoothness and hinders the robot’s rapid movement. Some advanced
improvement methods such as RRT* [34], qRRT [35], and RRdT* [36] improve the path
quality of RRT. A class of common methods [11,24,25] uses the A* algorithm for path
planning, sometimes resulting in paths close to obstacles. The fast-marching method [37]
is local minimum free and complete and has been widely used in path planning [38–40].
The method in [41] performs the fast-marching method to obtain a path on the gradually
acquired environment map transformed using the logarithm of the extended Voronoi.
However, this work ignored ensuring that the ranging sensor collected valid data when
generating the path. When the robot executes such a path, it may affect the quality of
positioning. We use the Euclidean distance map to generate a reasonable velocity field to
avoid the above problem and generate multiple paths for evaluation. Usenko et al. [42]
proposed a trajectory optimization method using the uniform B-spline. Zhou et al. [43]
further improved the optimization efficiency. Inspired by the above methods, to facilitate
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the tracking of non-holonomic constrained robots, we propose a path optimization method
with dynamic parameter adjustment to improve the smoothness of the path.

According to the characteristics of our proposed work, we give a comparison with
related works in Table 1.

Table 1. Comparison of our proposed work with related works.
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3. Problem Statement

We first list the common symbols and meanings used in Table 2, then give the prob-
lem statement.

Table 2. Common symbols and meanings used in this article.

M Occupancy grid map.

f Single frontier.

Fw
The frontier warehouse is used to store the frontiers obtained in each

exploration cycle.

Fo Stores the frontiers obtained from the active area of occupancy grid mapM.

Fl Stores frontiers acquired using lidar data.

F The clustered frontiers.

Fs Frontiers with valid paths.

θMax The maximum angular deviation that can be followed.

kP, kϕ, kI
The coefficient in utility function, where kϕ is only related to the physical

characteristics of the robot.

Dl Lidar max range.
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Table 2. Cont.

µ The confidence range ratio.

T, τ T represents the path which is composed of waypoint τ.

d(·) Distance function, obtain the distance between any position on the map and
the obstacle.

Define S ⊂ R2 as the environment to be explored. We used the occupancy grid map
M to model the 2D environment S . M consists of many grids si, i ∈ [1, N] and N is the
number of grids. The value of si, i ∈ [1, N] indicates the probability of being occupied.
Before the exploration, all the grids are marked as Sunknown. During continuous exploration,
an increasing number of grids marked Sknown begin to appear, and Sknown is divided into
occupied grids and free grids, Sknown =

{
Soccupied,S f ree

}
. In this article, the discrete grids

located in the frontier area are referred to as frontiers.
Problem: Given occupancy grid mapM find the next most promising frontier f with

the optimal path T∗ which is followed by the robot.
The problem is solved repetitively at every exploration cycle. UseM to detect the

unexplored frontiers and calculate the corresponding paths to those frontiers. Find the next
promising fronter f using the utility function. The robot moves along the optimal path
T∗ attached to f , and updatesM with the up-to-date sensor reading online, such as 2D
lidar, constantly changing Sunknown to Sknown. The newly generatedM is used for the next
exploration cycle until the map of the entire environment is completed.

4. Proposed Method
4.1. Method Overview

The autonomous exploration framework consists of the frontier processing module,
the path planning and evaluation module, and the path tracking module, as shown in
Figure 1. The robot provides lidar and odometry data and responds to control commands.
The SLAM module simultaneously generates the occupancy grid mapM and localizes the
robot. The blue rectangles represent the crucial functions. The green dashed rectangles
represent the information to be transmitted. The black rectangles represent the external
inputs of the system.
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Figure 1. The system architecture of the proposed autonomous exploration framework.

Algorithm 1 shows the process of autonomous exploration. Each module can interact
with external inputs, such as lidar data, localization, and occupancy grid mapM. The
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execution of the exploration cycle is awakened through a timing trigger and a re-planning
trigger (line 1). The timing trigger mechanism can adapt to environmental changes. The re-
planning trigger mechanism continuously detects the safety of the path and the information
acquisition of the target to reduce unnecessary forward distance and ensure that the path
is collision-free. The Bayesian filter and log-odds ratio formulation are used to update the
grid map. The Euclidean distance map can obtain the distance between any position and
the obstacle on the map, which can be used for autonomous robot exploration. The updated
M and a dynamic variant of the brushfire algorithm [44] are used to obtain the Euclidean
distance map, where the unknown and free areas are regarded as free (line 2). The frontier
detection and maintenance method incremental acquires and maintains frontiers for the
subsequent modules (line 3). Then, multiple paths planning and evaluation generates the
OptimalPath by evaluating multiple paths (line 7). The OptimalPath is further processed
to improve its smoothness (line 8). Finally, the path is tracked by the robot, and the data
observed by the robot are also updated (line 9). When there is no effective frontier, the
exploration is complete (lines 4–6).

Algorithm 1. Autonomous Exploration.

Input:M, RobotLocation, LidarData,Fw←∅, ExplorationFlag←True
Output: Complete map of environment

1
while ExplorationFlag=True∧(ReplanTrigger=True∨
TimingTrigger=True) do

2 DistanceMap←UpdatingEuclideanDistanceMap(M);
3 F←Frontier Detection and Maintenance(Fw,M,

DistanceMap, RobotLocation, LidarData);
4 if F = ∅ then
5 ExplorationFlag = False;
6 break;
7 end

8
OptimalPath←Multiple paths planning and
evaluation(F,M, DistanceMap, RobotLocation);

9 SmoothPath←Smooth the path(ϕ1 ,ϕ2, DistanceMap, OptimalPath);
10 Publish Smooth Path to Path Tracking Module;
11 end

4.2. Frontier Detection and Maintenance

As shown in Algorithm 2, this method inputs updatedM, robot localization, lidar
data, and outputs frontiers set F for path planning and evaluation. Fo stores the frontiers
obtained from the active area ofM and Fl stores frontiers acquired using lidar data. The
frontier warehouse Fw incrementally stores the frontiers obtained during the exploration
process and records all the acquired but unexplored areas. Using the lidar detection range,
M, and robot location, we can obtain the frontier Fo by searching the active area (lines 2,3).

However, some frontiers are too close to the robot, as shown by the red dots in
Figure 2b. If these frontiers are selected as targets, the efficiency of robot exploration
will decrease. The method of connecting the robot to all frontiers within the scanning
range of lidar and performing collision detection is computationally intensive and may
remove frontiers that facilitate positioning. The distance map can be updated efficiently
by only updating affected parts without updating the entire map. Based on the above
considerations, we take advantage of the local update feature of the dynamic distance
map to remove inefficient frontiers. The local distance map can be changed by setting
the robot as a virtual obstacle, as shown in Figure 2c. The inefficient frontiers within the
lidar range can be eliminated by querying whether the nearest obstacle of those frontiers
is the robot’s position. In addition, the current Fo and Fw obtained in the previous cycle
are processed to remove inefficient and unreachable frontiers (lines 4–7). To improve the
efficiency, we use the ray-casting method to simulate lidar to sample the environment and
use the Breshmen method [45] to obtain the corresponding grids. When the number of
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unknown grids around a frontier is less than the threshold, it is considered that there is too
little information.

Algorithm 2. Frontier Detection and Maintenance.

Input:M, RobotLocation, LidarData, Fw, DistanceMap
Output: F

1 Fo←∅, Fl←∅;
2 ActiveArea← AquireActiveArea (M, RobotLocation, LidarData);
3 Fo← SearchFronteirsOnOGM (ActiveArea);
4 SetObstacle (RobotLocation, DistanceMap);
5 for each frontier f in {Fo,Fw} do
6 if GetDistance(f)<safe dist ∨ (GetNearestObsCood (f)=

RobotLocation∧|| f - RobotLocation || <Dl) ∨GetInformationCost<
InfoThreshhold then

7 remove f ;
8 end
9 end
10 Fl← AquireFrontiersUsingLidarDate (LidarData, RobotLocation);
11 for each frontier f in Fl do
12 if GetInformationCost<InfoThreshhold then
13 remove f ;
14 end
15 end
16 RemoveObstacle(RobotLocation, DistanceMap);
17 if {Fo,Fl ,Fw}= ∅ then
18 F←∅;
19 return;
20 else
21 F← Cluttering(Fo,Fl ,Fw);
22 Fw←∅, Fw ←F;
23 end
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Figure 2. The schematic diagram shows the removal of inefficient frontiers through updating
the distance map locally. (a) Shows the robot with lidar data and updated M in the simulation
environment. (b) Shows the actual distance map and the acquired frontiers. (c) Shows the change of
the distance map by adding a virtual obstacle on the robot’s position to remove inefficient frontiers.
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The lidar data of undetected obstacles are processed to obtain potentially accessible
frontiers to accelerate the autonomous exploration of the environment, as shown in Figure 3.

The green dotted curve in Figure 3a shows the potential unexplored area
_

AB which presents
the end of the continuous and collision-free laser beam. First, whether the midline of the

acquired area
_

AB can make the robot collision-free is determined. If the above condition is

satisfied, further analysis of the area
_

AB can be performed.

α1 = (n + 1) · α0−2d1/(Dl − d0)
α2 = 2r/(Dl − d0)
m = bα1/α2c

(1)
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Figure 3. (a) Schematic diagram showing the frontiers detection process using lidar data. (b) Green
dots are the newly added potentially accessible frontiers.

We can further extract the safe and feasible area
_

A′B′, as shown in the green line. The
red circle indicates the robot’s footprint, and d0 is slightly larger than the robot radius r,
and d1 = 2d0. The α0 is the angular resolution of the lidar. The n is the continuous and non-
collision laser beam, and the Dl is the maximum detection range of lidar. Using Equation (1)

to process the acquired area
_

AB, we can obtain m uniformly distributed frontiers. Then, we
can calculate the position of these frontiers in the lidar coordinate system and transform
these frontiers into the map coordinate system. Finally, we can keep the information-rich
frontiers in Fl (lines 8–11).

After the above processing, if there are unexplored frontiers, we can use the mean-
shift clustering method [46] to remove redundant frontiers as it has only one parameter
(bandwidth) and the parameter has a clear physical meaning (line 17). However, using the
mean-shift method may cause the frontier to be unreachable or contain less information
after clustering. The frontier with the smallest Euclidean distance from the cluster center in
a cluster of frontiers is selected as the output to solve this problem. This method preserves
the clustering characteristics as much as possible and ensures that the points after the
clustering are informative and collision-free. The frontier set F is used for subsequent path
planning and evaluation, and Fw is updated to achieve complete mapping (line 18).

4.3. Multiple Paths Planning and Evaluation

The process of multiple paths planning and evaluation is divided into three parts.
We use the fast-marching method with a well-designed velocity field to generate multiple
paths from the robot position to the unexplored frontiers. Then, we evaluate those paths
to obtain the optimal path, which corresponds to the most promising frontier using the
proposed utility function. Finally, the smoothness of the path is further improved.
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4.3.1. Multiple Path Generation Using Fast Marching

Fast marching is a numerical method for simulating the spread of a wavefront which
can be represented by the Eikonal differential equation [27]:

|∇T(x)| = 1
f (x)

(2)

The left side of the equation depicts the function of the arrival time and f (x) represents
the velocity of different positions x. The velocity function f (x) determines the propagation
velocity at different positions and is the key to the fast-marching method. When f > 0, the
wavefront always spreads outward, and the wavefront will only pass through each grid on
the map once. We used the two characteristics of the fast-marching method for multiple
paths planning.

Characteristic 1: Design an appropriate velocity field to generate a path with
good clearance.

f (x) =


d(x) (0 < d(x) < Dl)
0 (d(x) ≥ Dl)
0 (d(x) ≤ r)

(3)

The distance map can be transformed into a velocity field using Equation (3). The
d(x) is the distance corresponding to position x, and the Dl is the maximum detection
range of lidar. If the d(x) of a location x on the map is greater than Dl or less than the robot
radius r, the speed is set to 0. The velocity function ensures the wavefront will not extend
to these locations during the path generation process. By simulating a wave expanded
from the start point, we can obtain the arrival time of each point on the map. The closer a
certain position x to an obstacle, the lower the corresponding wavefront spread speed of
the position will be generated, which leads to a later arrival time at the position. We can
trace the path from the target point to the starting point along the descending direction of
the arrival time gradient and obtain the path with the minimal arrival time. The path is
also away from obstacles and ensures that lidar can extract the environmental features to
facilitate positioning.

Characteristic 2: The wavefront propagates from near to far to generate multiple
paths. The robot is used as the starting point when performing fast marching. When the
far frontier is selected as the target, the frontiers near the robot will often be covered as
the wavefront expands. Coincidentally, from the perspective of exploration, the robot
usually explores from near to far to avoid repeatedly visiting a certain area. Nevertheless,
as the map becomes larger, more computing resources will be consumed. Moreover, too
many paths to be evaluated also put pressure on the evaluation module. To reduce the
computational burden, we formulate the following rules.

1. Select t frontiers closest to the robot in the set F as the set Fd, Fd = { f1, f2, · · ·, ft}
and Fd ⊆ F.

2. Set the frontier fi ∈ Fd, i ∈ [1, t] which is the farthest from the robot, as the
target point.

3. If multiple frontiers satisfy rule 2, select the closest one to the obstacle as the target
point. Finally, frontiers with valid paths are stored in set Fs, Fs ⊆ Fd.

Figure 4 shows the process of generating multiple paths. The fast-marching method is
executed using the generated velocity field and the target point selected using the above
rules. The fast-marching method only expands once to obtain multiple paths, with the
time complexity of O(Nlog(N)) and N is the number of free discretization grids on the
map. In Figure 4, multiple paths connecting with unexplored frontiers are represented by
yellow curves.
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Figure 4. The schematic diagram shows the multiple path generation using fast marching. (a) The
cyan-colored squares represent the frontiers generated by the Frontiers Processing module. (b) The
velocity field of the environment. (c) The wavefront propagates from the robot’s location (green dot)
to the target point (blue dot). The red area represents the range of the wave, and the green dashed
line represents the wavefront. (d) The yellow line represents the generated multiple paths from the
robot position to the unexplored frontiers.

Theorem 1. Each frontier f , f ∈ Fs has a valid path.

Proof of Theorem 1. After clustering, all frontiers are located in different grids of map,
and there are no overlapping frontiers. The fast-marching method has been proven to be
complete [47]. Considering all frontiers in Fd, when a frontier is within the extended range
of the wave, the path from the frontier to the starting point can be found. Otherwise, there
is no path with a frontier that is out of range of the wave. The frontier f , f ∈ Fd with a
valid path is stored in set Fs, ensuring each f , f ∈ Fs has a valid path. �

4.3.2. Path Evaluation

After path planning, we can obtain the set Fs, Fs = { f1, f2, · · ·, fn} and each fi,
i ∈ [1, n], has an attached path T. Path T is composed of waypoints τj, j ∈ [1, m], where m
is the number of waypoints. We put forward a utility function to find the most promising
frontier fi, fi ∈ Fs and i ∈ [1, n], and the attached path is regarded as the optimal path
and represented by T∗. The utility function considers information gain, path cost, con-
sistency of robot movement, and valid lidar data acquisition. Therefore, each candidate
frontier fi{Li, Ii, Pi}, i ∈ [1, n] has three attributes: L represents lidar data acquisition cost,
I represents the information gain, and P represents the path cost.

1. Lidar data acquisition cost L
For fi, fi ∈ Fs and i ∈ [1, n], we use Equation (4) combined with the distance function

d(·) to evaluate the lidar data acquisition quality of the attached path T.
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l(τj) =

{
1 (d(τj) < µ · Dl)
−(d(τj)− µ · Dl)

3 + 1 (d(τj) ≥ µ · Dl)
(4)

L( fi) =
m

∑
j=1

l(τj)/m (5)

When the distance between the waypoint τj, j ∈ [1, m] and the obstacle is less than
µ · Dl , assign a constant value; otherwise, the value will decrease rapidly as the distance
increases. µ is set by the user representing the confidence range ratio of the lidar. Take the
average of the values of all waypoints to obtain the lidar data acquisition cost L.

2. Information gain I
The entropy H is an effective tool to describe the uncertainty of the map [20]. The

process of exploration is a process of continuously reducing map uncertainty H.

H(S) = −
N

∑
i=1

p(si) log(p(si)) (6)

Mutual information I is used to represent the reduced uncertainty after the robot
executes a certain path T where p(si) represents the occupancy probability of grid si,
i ∈ [1, N] and N is the number of grids.

I(S ; T) = H(S)− H(S | T) (7)

To improve computational efficiency, the information gain I is only processed at the
target point. Furthermore, the ray-casting and Breshmen methods are used to obtain the
corresponding grid and calculate the corresponding information gain.

3. Path cost P
We can calculate the path length cost P from path T. In addition, in order to maintain

the consistency of the motion and avoid back-and-forth maneuver, we calculate the angle θ
between the initial part of the path and the orientation ϕ of the robot.

θ = cos−1 (τ2 − τ1)·ϕ
‖τ2 − τ1‖·‖ϕ‖ (8)

This item has less influence on the exploration process than other items. We design
the measurement of the consistency of the motion as a coefficient multiplied by the path
cost P. This avoids adding new items to the utility function. When the initial path and the
robot direction vector are greater than θMax, we set the coefficient kϕ to 1; otherwise, it is
set to the user set value (less than 1). This can ensure that even a slightly longer path with
an appropriate angle can be selected to ensure the continuity of movement and improve
the efficiency of exploration. The value of θMax considers the actual tracking condition of
the robot. Equation (8) gives the complete utility function.

U( fi{Ii, Pi, Li}) =
kI Ii

I
−

kϕkPPi

P
+ Li, i ∈ [1, n] (9a)

I =
n

∑
i=1

Ii/n (9b)

P =
n

∑
i=1

Pi/n (9c)
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The coefficient kϕ is only related to the physical characteristics of the robot. We need
only adjust the coefficients kI and kP to realize efficient exploration of different environ-
ments. The information gain I and the path cost P are normalized to remove their unit.

argmax
fi∈Fs

U( fi{Ii, Pi, Li}) (10)

Each time the robot chooses the frontier fi ∈ Fs, i ∈ [1, n], with maximum U as the
target region to be explored. The selected target region is more informative and near
the robot. At the same time, the attached T∗ of fi can promote the consistency of robot
movement and confirm the lidar obtain effective data.

4.3.3. Path Smoothing and Tracking

The path T∗ generated by the fast-marching method is affected by the environment,
and the smoothness of the path needs to be improved. An optimization method of dynami-
cally adjusting parameters is applied to smooth the path to facilitate the further tracking of
the robot.

Considering that the B-spline has some characteristics, such as the fact that its deriva-
tive is still B-spline, and control points are located inside the convex hull, we use B-spline
to represent the path and further optimize its control points. The N+1 control points
{P0, P1, · · · , PN}, Pi ∈ R2, can define a λth B-spline and knot vector [t0, t1, · · · , tM], tm ∈ R,
where M = N + λ + 1. A B-spline is parameterized by t, t ∈ [tλ, tM−λ], and a uniform
B-spline with each knot span has identical value ∆t. We can obtain the position at the
corresponding parameter t using Equation (10) and t is normalized as α(t) = (t− tm)/∆t,
where t ∈ [tm, tm+1] ⊂ [tλ, tM−λ]. Mp+1 is the constant matrix determined by λ [48].

T(α(t)) = α(t)T Mp+1P
α(t) = [αλ(t), αλ−1(t), · · · , α(t), 1]T

P = [Pi−λ, Pi−λ+1, Pi−λ+2 · · · Pi]
T

(11)

Algorithm 3 shows the path optimization process. The function GenerateBspline con-
verts the waypoints into uniform B-spline control points by down-sampling the waypoints
while maintaining the waypoints with larger curvature. Considering the improvement of
the calculation efficiency, we chose the cubic uniform B-spline, λ = 3. Then, to not change
the direction of the initial part of the path, we ensure that the B-spline connects the starting
point and the target point of the path. The initial part of the waypoints τ1, τ2 and the target
point τm are repeated λ times and added to the control points {Pi}, i ∈ [0, N]. Due to
the convex hull nature of the B-spline curve, the obtained B-spline is close to the original
path T∗.

Algorithm 3. Smooth the path.

Input: ϕ1,ϕ2, DistanceMap, OptimalPath
Output: SmoothPath

1 OptTimes←0;
2 BsplinePath←GenerateBspline (OptimalPath);
3 SmoothPath←BsplinePathOptimization (BsplinePath);
4 while PathCheck(SmoothPath)∧OptTimes < MaxOptTimes do
5 OptTimes + +;
6 ϕ2←ϕ2(MaxOptTimes—OptTimes)/MaxOptTimes;
7 SmoothPath←BsplinePathOptimization (BsplinePath);
8 end
9 if OptTimes = MaxOptTimes then
10 ϕ2←0;
11 SmoothPath←BsplinePathOptimization (BsplinePath);
12 end
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We use Vi, i ∈ [0, N − 1] and Ai, i ∈ [0, N − 2] representing the control points of the
first derivative and the control points of the second derivative, respectively.

Vi = (Pi+1 − Pi)/∆t, Vi+1 = (Pi+2 − Pi+1)/∆t
Ai = (Pi+2 − 2Pi+1 + Pi)/∆t2 (12)

For a uniform B-spline, the knot span has an identical value, and we only use its nu-
merator of Ai, i ∈ [0, N − 2] to measure the smoothness of the B-spline. The BsplinePathOp-
timization function realizes the optimization of control points. We denote the optimized
control points as

{
Po

i
}

, i ∈ [0, N]. The Euclidean distance between the
{

Po
i
}

and initial
control points {Pi}, i ∈ [0, N] is used to measure their closeness. Combining the above two
items, we can obtain Equation (13).

f = ϕi

(
N−λ

∑
i=2λ

‖Po
i − Pi‖2

)
+ ϕ2

(
N−λ+1

∑
i=λ−1

‖Po
i+1 − 2Po

i + Po
i−1‖

2

)
(13)

Use the function PathCheck to detect whether the optimized path has a collision risk or
the making robot obtains little environmental information. If the above problems occur,
the parameter ϕ2 is adjusted to make the optimized path close to the original path. After
a limited number of adjustments, we can obtain a safe and smooth path T∗s to observe
environmental information. The optimal path T∗ is represented by the green line, and the
rose-red line is the final smooth path T∗s , as shown in Figure 5.
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To achieve a smoother motion than the reactive local planning method, we use the
nonlinear MPC method [49] to implement the path following of the differential robot.
When the robot is close to the target point, we can design the robot’s reference speed using
a trapezoidal acceleration and deceleration algorithm. Otherwise, the robot’s reference
speed will be set to its maximum speed. When the angle between the robot’s current
orientation and the initial part of the path is larger than θMax, the robot stops and adjusts
the orientation to ensure accurate tracking of the path.
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5. Experimental Research and Results
5.1. Experiment Setup

To verify the feasibility and superiority of our proposed autonomous exploration
method, we conducted experiments with RRT-exploration [11] and nearest frontier [13]
methods in three common building environments, as shown in Figure 6.
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RRT-exploration: An advanced exploration method using RRT to detect frontiers has
attracted more and more attention from researchers. According to the experimental part
of RRT-exploration [11], when the parameter Geta is 4 or 6, the exploration efficiency is
better than other parameters, so we use these two different parameters for experimental
comparison. We use the author’s open-source code [11] for experimental comparison.

Nearest frontier: A traditional and widely used method. To ensure the fairness of the
experiment and verify the effectiveness of the proposed multi-objective utility function,
the method is implemented by ourselves. The nearest frontier method finds the nearest
frontier to the robot every time it makes a decision, and the rest of the modules are the
same as the proposed method.

We use a laptop with the specifications Intel i5-8250U CPU, 8G RAM, and 240G
ROM for all experimental comparisons. All code is implemented using C++ with ROS
Kinetic release on Ubuntu 16.04. We use the stage simulator [50] to build the experimental
environment with a modification that, when the lidar does not detect any obstacle, it
returns infinity instead of 0. The robot we use in the simulator and subsequent experiments
is TurtleBot2. The robot’s maximum speed is set to 0.3 m/s, the maximum rotation speed
is set to 0.9rad/s, and the origin rotation speed is set to 0.6 rad/s. The mapping method
use gmapping [51] with adjusted parameters, and the mapping resolution is set to 0.1 m.
Experiments with different lidars are carried out to verify the algorithm’s effectiveness,
and Table 3 shows the parameters of the different lidars.

Table 3. Experimental data of different methods in three environments.

Method
Exploration Distance(m) Exploration Time(s)

Avg Std Max Min Avg Std Max Min

Laboratory: 15 m× 15 m, Lidar: Filed of view 270◦, Max range 6 m

RRT-exploration (Geta = 4) 86.1 6.9 97.0 75.7 346.3 27.3 410.0 313.5

RRT-exploration (Geta = 6) 80.9 5.1 90.4 75.1 366.6 71.6 515.5 293.0

Nearest Frontier 68.6 7.4 77.3 53.8 382.6 54.0 486.0 323.0

Proposed (2,1) 58.8 5.9 67.6 50.9 304.7 22.6 334.5 262.5

Proposed (1,1) 56.6 3.3 62.2 51.5 280.6 22.9 310.0 245.5

Corridor: 20 m× 15 m, Lidar: Filed of view 360◦, Max range 8 m

RRT-exploration (Geta = 4) 97.6 9.8 115.4 81.6 499.0 87.1 618.5 394.0

RRT-exploration (Geta = 6) 89.5 7.0 97.7 74.6 460.0 59.4 556.5 388.0
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Table 3. Cont.

Method
Exploration Distance(m) Exploration Time(s)

Avg Std Max Min Avg Std Max Min

Nearest Frontier 88.2 5.6 94.7 77.3 430.8 33.4 497.5 369.0

Proposed (2,1) 77.9 2.4 82.6 74.1 346.2 24.2 398.5 316.0

Proposed (1,1) 80.9 3.3 85.6 75.0 336.6 15.9 360.0 301.0

Office: 20 m× 20 m, Lidar: Filed of view 360◦, Max range 6 m

RRT-exploration (Geta = 4) 132.3 17.9 163.8 109.4 517.6 73.7 656.0 462.0

RRT-exploration (Geta = 6) 129.5 18.1 146.4 96.0 535.2 64.5 619.0 442.0

Nearest Frontier 73.5 1.8 78.1 71.9 434.9 34.9 475.5 356.5

Proposed (2,1) 67.6 1.7 71.1 64.9 339.2 22.1 377.5 307.0

Proposed (1,1) 69.6 4.1 76.3 63.4 323.8 19.4 363.5 284.5

The parameters used by the proposed method are as follows. The bandwidth of the
mean-shift is set to 0.3. The number of Fd is set to 20. For the path optimization, we set
ϕ1 = 0.2, ϕ2 = 10 and MaxOptTimes = 10. The µ is set to 0.9. We compare the two sets
of parameters of the proposed method as proposed (kP = 1, kI= 1) and proposed (kP = 2,
kI = 1), and kϕ = 0.8. θMax is set to π/3.

5.2. Performance Comparison in Simulation
5.2.1. The Autonomous Exploration Process

Figure 7 demonstrates the autonomous exploration process of the robot in the lab
environment. The three functional modules in the proposed autonomous exploration
framework drives the robot to continuously explore the unknown environment in each
exploration cycle. The frontiers processing module detects frontiers based onM and lidar
data and uses an improved mean-shift method for clustering. The cyan-colored square
represents the frontiers obtained from the frontier processing module. The improved
clustering method prevents the occurrence of the situation where the target point is an
obstacle. The path planning and evaluation module plans multiple paths connecting the
unexplored frontiers represented by a yellow curve. These paths are safe and have a better
view. The utility function obtains the optimal path T∗ by considering multiple metrics
represented by a green curve. The complete and timely generation of frontiers and the
utility function that considers the consistency of motion can avoid the robot’s repeated
exploration of an area. The rose-red curve represents the path T∗s , and the smoothness
of the optimal path is greatly improved. The path tracking module controls the robot to
accurately follow the path and continuously move toward the unexplored area, gradually
completing the exploration of the environment. As shown in Figure 7, we used a red arrow
to present the robot’s location and orientation. The “star pattern” means that the robot
turns in place. Due to the consideration of the consistency of the robot’s motion and timely
frontier detection, our proposed method rarely cause the robot to turn in place unless the
area in front of the robot has been explored.

5.2.2. Performance Comparison and Result

In this part, we analyze the performance of RRT-exploration (Geta = 4), RRT-exploration
(Geta = 6), nearest frontier, the proposed method (kP = 2, kI = 1) and the proposed method
(kP = 1, kI = 1) in different environments. As each method with different parameters runs
10 times in each environment, we conducted 150 experiments in three environments. We
use Proposed (2,1) to represent our proposed method in which the coefficient kP in the
utility function is assigned the value of 2, and the coefficient kI is assigned the value of 1.

Experimental data of different methods with different lidar in three environments
are shown in Table 3. The optimal data in each item are marked in bold. We show the
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exploration process close to the average level in each set of experiments in Figure 8. Figure 9
shows the exploration efficiency of the corresponding exploration process in Figure 8.
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From the data in Table 3, compared with the benchmark methods, our proposed
method reduces the path length by 27.07% (25.5 m) and the exploration time by 27.09%
(119.6 s) on average. Moreover, the minor standard deviation indicates that the proposed
method is more stable and less affected by the environment. The proposed method with
parameter (kP = 2, kI = 1) is more inclined to choose a shorter path in the exploration
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process. It reduced the path length by 27.57% (25.9 m) and the exploration time by 25.24%
(111.4 s) on average compared with the benchmark methods. The proposed method with
parameter (kP = 1, kI = 1) is more inclined to obtain environmental information to achieve
faster exploration. It reduces the path length by 26.58% (25.0 m) and the exploration time
by 28.95% (127.8 s) on average compared with the benchmark methods.
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As mentioned earlier, the nearest frontier method we implemented differs from the
proposed method only in the evaluation of the next most promising frontier. Compared
with the nearest frontier method in the three environments, our proposed method reduces
the path length by 10.68% (8.2 m) and the exploration time by 22.65% (94.3 s) on aver-
age, which proves the effectiveness of the proposed utility function. The nearest frontier
method ignores information acquisition in the exploration process, which lead to inefficient
exploration. For example, the average exploration time of the nearest frontier method
in the lab environment is longer than other methods. The RRT method uses Euclidean
distance instead of the actual path distance, hindering accurate decision making in complex
environments. In the office environment, the narrow gates are not conducive to the expan-
sion of RRT branches. This leads to inefficient frontier detection of the RRT-exploration
method, resulting in unnecessary repetitive paths and excessive energy consumption. As
shown in Figure 8, the RRT method repeatedly explores the same area in the laboratory
and office environments.

The integrated frontiers detection and maintenance method ensures the storage of
unexplored areas. A multiple path generation method generates multiple high-quality
paths leading to unexplored areas. Then, the proposed utility function evaluates multiple
paths, which balances the information acquisition, path length, and the consistency of
movement. Finally, the proposed autonomous exploration method makes the robot avoid
multiple explorations of one area, as shown in Figure 8. The monitoring of safety and
information acquisition of the execution path further reduces invalid exploration path.

Figure 9 shows that due to the frontier’s sufficient detection and maintenance of
the environment, comprehensive multiple paths evaluation, and path smoothing, the
proposed method with different parameters can achieve faster exploration than other
methods. Furthermore, the proposed method with parameters kP = 1 and kI = 1 makes
it easier for the robot to explore the unknown environment, improving the exploration
efficiency. Experiments in different environments show that our proposed method has
a more stable performance. Compared with other methods, our proposed autonomous
exploration method can reduce the uncertainty of the map using fewer path costs and in a
relatively shorter time.
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Furthermore, to validate the performance of the proposed planning method, we
conducted comparative experiments with the advanced optimal path planning method
RRT* [34] in a 27 m × 24 m environment with walls and random obstacles. To improve the
quality and efficiency of the RRT*, we set the step length to 3 m, and the optimized scope
is set to 8 m, considering 10% of the sampling as the target point. The parameters of our
path planning method are the same as previously mentioned. We set the planning time
limit to 5 s. We conducted four sets of experiments, each with 100 trials, and the results
areaveraged as shown in Table 4. The optimal data in each item are marked in bold. The
first three groups have a fixed starting point and a fixed target point, and the last group
randomly generated 100 effective target points. Figure 10 shows the performance of the
different methods.

Table 4. Experimental data of different path planning methods.

Method Time
(ms)

Length
(m)

Clearance
(m) Success Rate Continuity

1
RRT* 89.5 26.7 1.0 100% C0

Proposed Method 54.9 27.0 1.2 100% C2

2
RRT* 181.8 37.8 1.1 100% C0

Proposed Method 60.3 38.7 1.4 100% C2

3
RRT* 332.7 34.0 0.9 98% C0

Proposed Method 56.8 34.3 1.1 100% C2

4
RRT* 46.3 21.2 1.0 99% C0

Proposed Method 33.0 20.7 1.2 100% C2
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performance of different methods of the two experiments.

As shown in Table 4, the planning time of our proposed method is shorter than RRT*,
and the performance in several sets of experiments is less affected by the environment.
Compared with RRT*, the path planning method we proposed has a 2% longer path
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distance, but the clearance is at least 20% better. In addition, our method satisfied C2

continuity, which means better smoothness than RRT*. The performance of the method in
Figure 10 also proves that our method is smoother and safer. The comparative experiments
with RRT* show that our proposed planning method can quickly generate a safe and
smooth path.

5.3. Real-World Experiments

To further verify the practicability and effectiveness of the proposed method, we
implement multiple experiments under different parameters in a common corridor en-
vironment with many regular and random obstacles placed in the corridor. Figure 11
shows the corridor for the experiment and the equipment for autonomous exploration. The
corridor contains three compartments, and the length and width are 25.6 m and 10.3 m,
respectively.
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Figure 11. The diagram of the equipment and the experimental environment.

We use the turtlebot2 robot, and a 2D lidar is installed on the base with a detection
range of 5 m. Due to the occlusion of the metal brackets, the lidar’s field of view is less
than 360 degrees. We use the same laptop to complete all calculations. The experimental
parameters are consistent with the simulation environment. In each test, the starting point
indicated by the green dot is shown on the left side of Figure 11.

We conducted three experiments on the parameters (kP = 2, kI = 1) and (kP = 1, kI = 1),
respectively. Table 5 shows the experimental data. The completeness of the mapping is
obtained by comparing the area of the map created by a human-operated robot.

The results are shown in Table 5 and the optimal data in each item are marked in
bold. Table 5 shows that the proposed autonomous exploration method with different
parameters can achieve complete mapping, proving the effectiveness of the proposed
frontier detection and maintenance method. The complete and timely frontier detection
and the utility function—considering the consistency of motion—avoid the problem of the
robot repeatedly entering the same area during the exploration process. The proposed path
planning algorithm combined with efficient path detection can plan multiple collision-free
paths in time for evaluation, ensuring the robot’s safety during the movement. Using
Equation (12) to measure the smoothness of the path, we show the ratio of the smoothed
path T∗s to the original path T∗ in the smoothness comparison item of Table 5. The results
show that the path smoothing method further improves the smoothness of the path. The
path tracking method enables the robot to follow the path accurately and smoothly.
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Table 5. Experimental data of the proposed method in real environments.

Method Exploration
Distance(m)

Exploration
Time(s)

Completeness
of the Mapping

Smoothness
Comparison

Proposed(2,1)
1 64.7 438.0 0.998 0.32
2 57.0 435.0 0.982 0.31
3 57.4 402.5 0.996 0.37

Avg 59.7 425.2 0.992 0.33
Proposed(1,1)

1 54.0 394.0 0.996 0.33
2 63.4 454.0 1.013 0.33
3 59.8 408.0 0.996 0.31

Avg 59.1 418.7 0.997 0.32

The exploration process that produces the shortest path in each set of experiments
is shown in Figure 12. In this corridor environment, the exploration experiment with
parameters (kP = 1, kI= 1) tends to plan a longer path and complete the exploration in
a shorter time and smaller path cost. Although there are more uncertainties in the real
environment, the performance of our method is similar to simulation experiments, which
proves the effectiveness of the proposed method. The video submitted with the manuscript
shows our experimental process (see Supplementary Materials).
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6. Discussion

We propose a complete framework for autonomous robot exploration in unknown en-
vironments. Simulation experiments on typical environments demonstrate that compared
with the benchmark methods, our framework reduces the path length by 27.07% and the
exploration time by 27.09% on average.

(1) Detecting frontiers only based on the map often ignores some exploration areas,
especially in environments with long corridors and narrow doors. Our proposed integrated
frontier detection and maintenance method can detect frontiers based on map and lidar data.
A complete environmental exploration can be achieved by sufficient frontier detection and
incrementally maintaining reachable and informative frontiers. In the office environment,
there is 47.62% less path length and 38.86% less exploration time than RRT-exploration.

(2) The proposed utility function evaluates multiple paths, balancing the lidar data
quality, information acquisition, path length, and the consistency of movement. Combining
the frontier detection and maintenance method the proposed utility function can avoid
the robot’s repeated exploration of an area. We implemented the nearest frontier method
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differs from the proposed method only in evaluating the next most promising frontier.
Compared with the strategy of selecting the nearest target point in the nearest frontier
method, the multi-object utility function we proposed can reduce the path length by 10.68%
and the exploration time by 22.65% on average.

(3) Planning a smooth and safe path in a short time is crucial to deal with the un-
certainty in autonomous exploration. A multiple path generation method is proposed
using the wavefront propagation trend of the fast-marching method and a well-designed
velocity field to generate safe paths with a good view. Compared with the advanced
optimal path planning method RRT*, the proposed path planning method can quickly
generate a path, and the path has only 2% longer path distance, but the clearance is at least
20% better. The proposed path smoothing method with dynamic parameter adjustment
improves the smoothness of the optimal path, which satisfies C2 continuity. Experiments in
real environments with random obstacles also show that the proposed method can avoid
obstacles in real-time and create complete maps.

However, although the proposed method has made some improvements in au-
tonomous robotic exploration, some limitations still need to be improved. First of all,
the path planning and frontier detection method in our autonomous exploration frame-
work does not consider the uneven ground environment. The slope of the ground can
change a lidar or visual sensor’s line of sight. To solve this problem, a 3D sensor could be
added to model the ground and consider the sensor’s perspective in the path planning.
Moreover, the current framework we propose does not consider the recognition and detec-
tion of dynamic obstacles. The development of a recognition algorithm for dynamic objects
could solve this problem and reduce its impact on the slam algorithm.

7. Conclusions

A complete robot exploration framework is proposed and has the following charac-
teristics. The proposed integrated frontier detection and maintenance method realizes the
efficient and incremental management of the frontier. The proposed multiple path gen-
eration using the fast-marching method and multi-object utility function can promote an
evaluation of the next best target, reducing the path length by 10.68% and the exploration
time by 22.65% on average compared with the nearest frontier method. The smoothness of
the path is further improved, and the non-linear MPC is used to track the path accurately.
Simulated experimental studies indicate that our method can autonomously build a precise
environment map with 27.09% shorter time and 27.07% short path than compared bench-
mark methods. The proposed method can safely and efficiently establish a complete map
in a real-world environment with regular and random obstacles, proving the practicability
and effectiveness of the method.

Future directions include extending the proposed method to 3D space to deal with
more complex terrain environments and combining dynamic object detection to achieve
autonomous exploration in dynamic environments.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13234881/s1. The video submitted with the manuscript shows our experimental process.
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