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Abstract: Urban trees and forests provide multiple ecosystem services (ES), including temperature
regulation, carbon sequestration, and biodiversity. Interest in ES has increased amongst policymakers,
scientists, and citizens given the extent and growth of urbanized areas globally. However, the
methods and techniques used to properly assess biodiversity and ES provided by vegetation in urban
environments, at large scales, are insufficient. Individual tree identification and characterization are
some of the most critical issues used to evaluate urban biodiversity and ES, given the complex spatial
distribution of vegetation in urban areas and the scarcity or complete lack of systematized urban tree
inventories at large scales, e.g., at the regional or national levels. This often limits our knowledge
on their contributions toward shaping biodiversity and ES in urban areas worldwide. This paper
provides an analysis of the state-of-the-art studies and was carried out based on a systematic review
of 48 scientific papers published during the last five years (2016–2020), related to urban tree and
greenery characterization, remote sensing techniques for tree identification, processing methods,
and data analysis to classify and segment trees. In particular, we focused on urban tree and forest
characterization using remotely sensed data and identified frontiers in scientific knowledge that
may be expanded with new developments in the near future. We found advantages and limitations
associated with both data sources and processing methods, from which we drew recommendations
for further development of tree inventory and characterization in urban forestry science. Finally, a
critical discussion on the current state of the methods, as well as on the challenges and directions for
future research, is presented.

Keywords: tree detection; urban forest inventory; remote sensing; artificial intelligence; biodiversity;
ecosystem services

1. Introduction

Trees are some of the most important elements in urban areas due to the ecosystem
services (ES) they provide, and they often play a critical role in urban environmental
management [1,2]. Currently, urban forests, such as greenery inside urban areas [3–7] (i.e.,
individual street trees, parks, connector areas, and wetlands), are the main sources of ES
for more than 50% of people in the world who live in cities [8–11]. Given the expected
percentage rise—up to 68% of people living in urban areas in the next 30 years—it is critical
that existing urban forest areas expand and are nurtured [12–14]. The ES provided by trees
in urban ecosystems have a direct positive impact on human health and security through
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air quality improvement [2,15,16], noise reduction, microclimate regulation (due to high
island mitigation) [16–20], pedestrian comfort increase, higher motivation for physical
activity, better emotional and mental health [6,15], and runoff mitigation [21–23]. Urban
forest and individual street trees have also contributed actively to the conservation of
biodiversity, through habitat and niche enhancement for many animal species [24,25], some
of them threatened and/or highly important for global biodiversity [24]. Furthermore,
in the current climate change scenario, where more than 70% of the global greenhouse
gas emissions are attributed to city activities [26], urban forests have been in the spotlight.
Their ability to sequester carbon dioxide, mitigating the negative effects of anthropogenic
activity, is crucial for supporting initiatives, addressing climate change [17,25,27–29].

The identification, delineation, characterization, and mapping of urban trees are es-
sential for a proper assessment of biodiversity and ES in urban environments [10], as
these are strongly influenced by tree and forest attributes, such as vegetation structure,
above-ground biomass, and species composition [10,30–32]. However, most of the urban
areas suffer from a lack of systematized and/or updated information on trees and their
contribution to biodiversity and ES. The traditional way to collect tree information through
ground-based forest inventories is expensive and requires a large amount of human re-
sources, limiting their application to small areas [4]. Moreover, the characterization and
identification of trees with field examinations become highly demanding for sparsely
distributed trees over large urban areas [15,16,33]. These limitations combined with the
need for quantifying biodiversity and ES at multiple spatial [15,16,34] and temporal scales
in urban environments [35], have led to the development and implementation of several
remote sensing-oriented approaches.

The scientific community has progressed in its use of multiple remotely sensed infor-
mation sources, including satellite imagery [35–37], light detection and ranging or laser
scanning detection and ranging (LiDAR) [8,21,36,38–41], aerial imagery [7,11,42,43], and
digital ground-level images (GLI) [44–46]. Although satellites, such as Landsat and Sen-
tinel, do not have the spatial resolution necessary for tree characterization (below four
or three meters, according to some authors [10,47,48]), in recent decades, satellite sensors
with advanced capabilities have been developed. For instance, digital aerial orthophotos
from the National Agricultural Imagery Program (NAIP, USA) provide a resolution lower
than five meters in the USA [49], allowing accurate assessments of forest and trees at a
local scale, open and free of charge. Moreover, some private companies, such as Digital-
Globe [50] and Planet Labs [51], are today capable of acquiring images with a resolution of
less than one meter [37]. Regarding laser technology, LiDAR has shown great capabilities
in urban forestry applications, from crown extraction to the analysis of forest composition
and structure [8,10], representing an important complementary data source [36]. Recently,
the development of unmanned aerial vehicles (UAV) has contributed to expanding the
use of LiDAR technology and aerial imagery. UAV-LiDAR provides a better 3D structural
representation of forests than aerial LiDAR [40], at a moderate cost. On the other hand,
digital GLI, such as Google Street View (GSV) [52] and Tencent [53], capture optical infor-
mation that other aerial and satellite sensors do not achieve, as they provide a vertical and
contextual view of urban vegetation to extract and characterize urban vegetation [1,54].

Apart from the data sources, the detection and classification of urban trees also de-
pends on algorithms that allow for the extraction of specific tree attributes, such as species,
height, diameter, and geographic position. Spatiotemporal high-resolution sources bring
with them significant challenges regarding their processing and analysis. However, remote
sensing data processing and modeling require a high level of expertise in the design of
classifiers that can detect and label patterns in images [55]. For many years, traditional
parametric methods were widely used for classification of remote sensing data, nonetheless
the have fallen behind in solving more complex problems such as the classification of indi-
vidual objects. In turn, more sophisticated algorithms, such as clustering and segmentation
methods [48,56], integrated into geographical information systems (GIS), have facilitated
the analysis of large-scale remotely sensed data. Computational developments during the
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last decades brought novel artificial intelligence (AI) techniques, which tap into the ability
of computers to mimic human reasoning [57], solving complex problems such as object
classification and damage assessment [58–62]. These advances are especially recent in the
field of machine learning (ML) [63], where algorithms, such as random forest (RF) and
support vector machine (SVM), and more recently, neural network-based deep learning
(DL), algorithms have been developed [48,59], improving classification problems, such as
individual tree characterization.

The aforementioned complexities of the data sources and algorithms used for the
characterization of urban trees has not been systematized in a document in recent years;
however, such a document will allow for a summary of the computational and scientific
achievements. The closest approximation during the past 5 years (starting 2016) was
published by Lin et al. [5]. This review was focused on the models used for the charac-
terization of trees in general, leaving aside the details of the data sources and urban trees
characterization specifically, topics that are explored in the present work. Due to the rapid
growth of computational advances and remote sensing technologies, we present trends in
recent (i.e., last five years, 2016–2020) scientific research through an analysis of 48 selected
studies on the characterization of urban trees and forests based on remote sensing (RS)
and processing methods. Specifically, we identified and analyzed publications related
to the algorithms, methods, and data sources for urban tree and greenery detection and
characterization, and summarized the main scientific advances presented in the literature.
This comprehensive review is expected to help researchers familiarize themselves with the
state-of-the-art techniques and thereby enable cost-effective evolution of urban forestry
sciences. Finally, we discuss the main outcomes of this scientific review, provide a critical
summary, and point out steps for future research.

2. Materials and Methods

To analyze the data sources and data processing methods used in previous research to
characterize urban trees, we conducted a scientific literature review based on the method-
ology proposed by Pullin and Stewart [64], including data and articles searches, selection,
synthesis, and reporting. The analysis covers the most relevant works on the topic pub-
lished during the last five years from January 2016 to December 2020.

To conduct the information search stage, we mainly used two databases, Scopus and
Web of Science (WOS), and found other papers through several citation networks, such as
Google Scholar. In the bibliographic database searches, we selected different sets of search
terms to identify publications studying urban tree characterization (see Table 1). We found
a total of 103 articles published on open access during this period, which were further
filtered and selected based on their content and relevance.

Once the list of papers was consolidated, we removed 38 duplicate articles. Later, we
eliminated those papers not focused on urban areas and/or urban tree or urban greenery
studies (28 papers) as well. Finally, a set of 37studies for analysis were selected after data
cleaning. However, we noted that some relevant papers referenced in the selected papers
were not detected in the aforementioned keyword-based searches. Thus, we completed
our database through a “citation network search” including 11 additional papers cited in
selected papers. Therefore, we finally analyzed 48 relevant papers in this review.

In the synthesis and reporting stage, we highlighted the most important findings in
terms of urban tree and greenery characterization through remote sensing, focused on data
sources, processing methods, and data analysis. The following sections provide a detailed
presentation of the results obtained from the qualitative analysis of the selected studies.
Three different sections summarize the main findings of this review: (i) overview, scale, and
geographic distribution of previous research; (ii) data sources used for the characterization
of urban trees; and (iii) data processing and analytical methods.
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Table 1. Search terms used to analyze the state-of-the-art on urban tree characterization in the last
five years and the number of articles selected.

Search Terms WOS Scopus

“Remote sensing” AND (“Urban Forest” OR “Urban tree”) AND “Machine
Learning” OR “Artificial intelligence” 3 20

“Ecosystem services” AND (“Urban Forest” OR “Urban tree”) AND
“Remote Sensing” 15 35

“Ecosystem services” AND (“Urban Forest” OR “Urban tree”) AND
“Remote Sensing” AND “Tree characterization” 7 6

“Street tree” AND “Ecosystem service*” AND Ground-level* 0 1
“Remote sensing” AND (“Urban Forest” OR “Urban tree”)

AND “Deep Learning” 6 5

(“Urban Forest” OR “Urban tree”) AND photogrammetry 4 4
(“Urban Forest” OR “Urban tree”) AND “Remote data” AND MaxEnt 0 0

(“Urban Forest” OR “Urban tree”) AND “Remote data” AND SDMtoolbox 0 0
(“Urban Forest” OR “Urban tree”) AND “Remote data”

AND “Spatial modeling” 0 0

“Street tree” AND Ground-level* 1 4
Total 32 71

3. Results
3.1. Overview, Study Scale, and Geographic Distribution of Previous Research

From the 48 papers considered in this review (Figure 1), 54% were published during
2018 and 2019. Regarding the scale, 72% of them were developed at a local scale, such
as specific neighborhoods (<3 km buffer) [65] or streets [66], while the remaining 28%
were focused on a city scale. There happens to be a knowledge gap in studies covering
broader scales such as country, continent, or global scale. This lack of knowledge has also
been detected by other authors, who attribute it to the difficulty of scaling up the models,
especially in cities where landscape heterogeneity makes such extrapolation difficult [67].
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We also observed (Figure 2) that most of the studies were developed in the Northern
Hemisphere, especially in the USA (29%) and China (14%). Only two studies were con-
ducted in the Southern Hemisphere, specifically in Australia. We also noticed that urban
greenery and tree characterization studies within Europe were predominantly undertaken
in France (8%), United Kingdom, and Germany (6% each).
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3.2. Data Sources

A wide variety of remote sensing data sources have been used in the studies analyzed,
for tree characterization (detection, specie identification, structural analysis) and mapping.
Note that, in most of these studies, more than two sources of information were employed.
The most prominent information sources were LiDAR data (40%), aerial images (37%),
ground-level images (37%), satellite images (31%), and video (2%) (Figure 3). We further
found that vector data, such as cadastral and vegetation maps, were frequently included,
as well as information collected in the field. These secondary sources of information were
mostly used for the training and validation of the models.
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Figure 3. Data sources used in the 48 papers analyzed. Some studies combined two or more
data sources for tree characterization. UAVs: unmanned aerial vehicles; GSV: Google Street View;
TLS: terrestrial laser scanning; ALS airborne laser scanning; MLS: mobile laser scanning; PPC:
photogrammetry point cloud.

3.2.1. LiDAR

In urban areas, LiDAR provides data for tree structure characterization with the
potential to improve tree species classification [8,10,68,69] when enough point density is
available [10], i.e., more than 10 points per square meter [11]. LiDAR, derived from different
platforms, such as airborne laser scanner (ALS), space-borne LiDAR, and terrestrial laser
scanning (TLS), is an active sensor, capable of extracting the vertical urban structure,
including tree canopy shape, height, and diameter with high accuracies [10,21,70].
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Nevertheless, similar to satellite imagery, the main current open LiDAR data sources
do not usually have the necessary features for individual tree characterization or are limited
geographically [10]. On the other hand, the limitations to access high-quality LiDAR data
are becoming less frequent since platforms such as Unmanned Aerial Vehicles (UAVs)
have significantly reduced operational costs [71]. The use of UAVs is considered by many
authors as an efficient way to access tree canopy information and individual tree detection
at a smaller scale [10,41].

In regard to the types of LiDAR, we found that ALS was widely used in previous re-
search (36%), although in two studies the characteristics of the data used (spatial resolution,
pulse density, etc.) were not specified [42,72] (Table 2).

Table 2. Summary characteristics of LiDAR data used in the studies analyzed for the characterization of urban trees. ALS:
airborne laser scanning. MLS: mobile laser scanning. TLS: terrestrial laser scanning; DEM: digital elevation model; DSM:
digital surface model; sDSM: normalized digital surface model; NVA: non-vegetated vertical accuracy; CHM: canopy height
model; G-LiHT: Goddard’s LiDAR, hyperspectral, and thermal; NOAA: National Oceanic and Atmospheric Administration.

Type Metrics Specifications Pulse Density

Spatial Accuracy

ReferencesHorizontal Vertical

(m) (m)

ALS

DEM, DSM - 1/m2 0.15 0.3 Timilsina et al., (2019) [39].
Point cloud density. GRSS - - - Wang et al., (2020) [73].
7 structural metrics

(tree height,
width-to-height ratios,

crown porosity)

RIEGL Q560 22/m2 - Alonzo et al., (2016) [21].

DEM, tree cloud
points Wang et al., (2020) [73].

2D and 3D distances
between points - 12/m2 0.01 0.02 Bayat et al., (2019) [41].

32 statistical metrics
(mean, median,

density etc.)
(G-LiHT) 6/m2 - - Marrs and Ni-Meister

(2019) [43].

DEM, DSM - 4/m2 - - Azeez et al., (2019) [8].
DTM, DSM, intensity - 0.74/m2 - - Hartling et al., (2019) [37].

Canopy Cover,
CHM, 27 statistical

metrics

UK
Environment

Agency
- - - Baines et al., (2020) [74].

CHM - 12/m2 0.18 0.36 Matasci et al., (2018) [75].

DEM, DSM, CHM Trimble Harrier
68i 8/m2 - - Sun et al., (2019) [76].

NVA, nDSM, DSM,
intensity

Sanborn
Mapping
Company

2.2/m2 - - Katz et al., (2020) [11].

CHM
Climate Future

Mission/
Willington

Mission
1.5/m2–1/m2 0.25 0.15 Timilsina et al., (2020) [38].

140 ALS indices
(height indices,

intensity indices,
point density indices,

tree size and shape
indices)

AeroData
Surveys

Nederland BV
15/m2 - - Chi et al., (2020) [70].

CHM, nDSM
Italian Ministry

of the
Environment

- 0.3 0.15 Barbierato et al., (2019) [77].

Space-borne nDSM, CHM NOAA Digital
Coast 0.15 0.5 0.15 Li et al., (2017) [40],

DSM Li and Ratti (2018) [66].

MLS(TLS)—
ALS

Point cloud density.
Z + F IMAGER®

5010 /RIEGL
LMS-Q680i

1000/m2–40/m2 - - Wu et al., (2018) [78].
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Most studies used LiDAR technologies for tree positioning, height estimation [8,37,75,76],
and crown area measurement [37,41]. Alonzo et al. [21], used 28 structural metrics (such
as the median height of LiDAR returns in the canopy, average LiDAR return intensity
below median height) derived from LiDAR (Table 2) measurements for mapping urban tree
species, and for measuring leaf area index (LAI) and carbon storage in Santa Barbara, Cali-
fornia. This study revealed that including LiDAR and hyperspectral data within the model
significantly increased Overall Accuracy (OA) to 75% in the individual species recognition,
with an accuracy ranging from 37% (Metrosideros excelsa), to 96% (Eucalyptus globulus and
Ficus microcarpa). Similarly, Katz et al. [11] found that using LiDAR data alone resulted in
an accuracy of 43% when identifying 16 tree species in Detroit; when used in combination
with other data sources, such as aerial imagery, the accuracy was found to almost double,
achieving 74%.

We also found four studies that characterized urban vegetation from LiDAR data only.
For example, Bayat et al. [41] developed a point-based model for tree detection, where the
distances between points as well as their density were taken into account for individual tree
detection. Wang et al. [73] proposed a DL model allowing for semantic classification of each
point based only on 3D coordinates and point cloud return strength to classify urban trees,
achieving an OA of 86%. Azeez et al. [8] also based their study on LiDAR data for urban
tree detection, reaching an accuracy of 92%. Although Jiang et al. [46], Azeez et al. [8],
and Wilkes et al. [2] recommend using 3D reconstruction models (ALS and TLS) for tree
identification, Calders et al. [79] state that the use of TLS is not currently operational
in cities, and still requires different treatment methodologies for the characterization of
isolated trees or trees outside the forest, in addition to being a costly method that can
be overcome by other data sources or methods, such as citizen science. Furthermore,
Wu et al. [78] claim that TLS in cities is ineffective in the identification of individual trees
since the heterogeneity of elements in cities generates noisy data. Wu et al. [78], through an
ultra-dense point cloud approach (point-density higher than 1000 points m−2) based on
mobile terrestrial LiDAR (MLS), proved that this type of datum source is also a powerful
tool for the extraction of tree geometric characteristics. However, they achieved better
results in tree detection with ALS (40 points/m2), 83% of detection rate on single tree
detection, than with ultra-dense MLS-TLS, 77.27%. Regarding tree species classification,
ALS also showed better performance (72.19%) compared with TLS accuracy, i.e., 65.16%.
They found that the best tree classifications came from ALS since this type of sensor might
be able to obtain information from the whole canopy, which is an important feature for
species identification.

Jiang et al. [46] in their article describe a disadvantage associated with ALS-LiDAR
data, which is the related costs. Free and open LiDAR data with good specifications, such as
enough pulse intensity or point density, suitable for tree species characterization at global
scale, are limited. For example, the Global Ecosystem Dynamics Investigation (GEDI)
project of the National Aeronautics and Space Administration (NASA), uses three lasers,
with a frequency of 242 pulses/second with 25 m footprints [80], this laser footprint is too
large to classify tree species individually; however, it cannot be dismissed as an important
source of open data for urban ecosystem assessment, as it can provide valuable insights
into regional land use patterns and landscape structure [10].

These limitations, with some exceptions, such as the United States, England, and
other European countries, where good-quality and open LiDAR data are more easily
available [74], have been addressed by the scientific community and forest managers, who
have found in UAV flights a solution to the acquisition of quality LiDAR data, even with
the limitation of geographic scale, representing an advance in the use of this technology in
urban forestry science [81,82]. The versatility and reasonable cost of LiDAR data acquired
from UAV has allowed for a more abundant use of this data source in forestry research [61].
Although many of the studies analyzed conclude that LiDAR data work well as auxiliary
information, Degerickx et al. [83] and Wang et al. [73] found that LIDAR data could play
a central role in the characterization of urban trees, as it provides the most important
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information for structural, and textural features of trees. In addition, it offers very precise
data on the location of the trees in the city [38].

Despite representing a valuable data source, LiDAR data also have certain limitations
in the segmentation of individual trees in cities. The main one is related to the hetero-
geneity of the objects in the city, which makes this task arduous and computational power
consuming [69]. Moreover, the overlapping of tree canopies prevents the detection of the
smallest trees [84], and finally the complexity in the classification of species due to the great
diversity of trees in cities [75].

3.2.2. Satellite Imagery

Satellite images usually provide spectral data, spatially continuous at different tempo-
ral resolutions depending on equipment. This makes them a valuable resource for forest
monitoring and management [36], especially in large forest stands. Through the informa-
tion collected by satellite projects for more than 40 years, scientists can obtain information
on the change that the forests have undergone over time, allowing its monitoring [72].

We found a variety of satellite data sources used for urban vegetation analysis ranging
from moderate resolution images such as Landsat (30 m), Sentinel (10 m), and RapidEye
(5 m) to very high spatial resolution imagery (0.5 m–0.3 m). Different satellites also
differ in their related wavelength information [81]. Landsat and Sentinel provide open-
access data of higher spectral resolution, which makes them a powerful data source for
vegetation analysis [29], compared with for instance QuickBird, which, despite its high
spatial resolution, only covers the wavelength corresponding to the visible and near-
infrared (VNIR) (Table 3) [85].

Table 3. Summary of the main characteristics (resolution, bands, and spectrum) of the satellites used for urban tree
characterization in the reviewed articles; m: meter; nm: nanometer.

Satellite Spatial Resolution
(m) Bands Spectrum

(nm) References

QuickBird 0.6 4 450–800 Timilsina et al., (2020) [38].

WorldView 2 (WV2) 0.5–2.5 8 450–800
Katz et al., (2020) [11],

Hartling et al., (2019) [37],
Sun et al., (2019) [76].

WorldView 3 (WV3) 0.31–2 9 450–1.040

Hartling et al., (2019) [37],
Vahidi et al., (2018) [86],

He et al., (2020) [87],
Choudhury et al., (2020) [88].

RapidEye 5 5 440–850 Ozkan et al., (2016) [44].

Pleiades 0.5–2 5 470–944 Louarn et al., (2107) [54].

Landsat 30 11 430–1.251 Ozkan et al., (2016) [44],
Gage and Cooper. (2017) [72]

Sentinel 10 13 430–2.280 Brabant et al., (2019) [49],
Baines et al., (2020) [74].

Some moderate-resolution satellites (10–30 m pixel size [89]), such as RapidEye,
Landsat-OLI (Operational Land Imager), and Sentinel (Table 3), were used to evaluate
the urban forest diversity based on the texture and vegetation indices in four (8%) of the
reviewed studies [44,49,72,74]. For instance, Ozkan et al. [44], found that spectral and
textural properties derived from satellite imagery can be related to woody species diversity
and ES assessment in the urban forests even using moderate spatial resolution imagery
(Landsat (30 m) and RapidEye (5 m)). The authors found that these satellites offer tempo-
ral resolution and other characteristics, such as wavelength, were deemed useful for the
analysis of urban forest at the landscape scale. However, He et al. [87], argue that spectral
indices derived from medium resolution imagery are still limited in extensive use in cities
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since many elements have similar spectral signatures, which cause strong heterogeneity
and make object classification difficult.

For the aforementioned reason, mapping individual trees in urban environments
requires high spatial image resolutions that allow the extraction and segmentation of tree
crowns through different methods. Note that urban trees have a fragmented and dispersed
distribution throughout the city, making it even more difficult to classify them based on
their texture. This situation has led to a significant delay in the detection of individual
urban trees from satellite imagery [10,37]. Recently, some projects (e.g., DigitalGlobe [50,90],
SkySat from Planet Lab [51], and others) have enabled, through very high spatial resolutions
(<1 m per pixel), the accurate identification of objects, such as trees, in urban lands.

Among the several types of satellite images presented in the reviewed papers (Table 3),
the DigitalGlobe satellites family [50] (WorldView 2, 3) were the most commonly used
(13%). This satellite has a spectral and spatial scale appropriate for the characterization of
individual urban trees [10,21,37,91].

Data from WorldView 2 (WV2) were used in three studies [10,36,67] as ancillary
information based on eight VNIR bands (Table 3). Hartling et al. [37] found an OA of
75.91% in the detection and characterization of the urban trees in the city of St. Louis,
USA. Sun et al. [76] reported a slight decrease in accuracy in DL models when using WV2
VNIR bands information as complementary data compared with the performance based
on Red, Green, and Blue (RGB) aerial images collected simultaneously with LiDAR data,
(Table 2), due to the distortion caused by the size of the study area (very large) on the
satellite images, which made the detection characteristics of the DL models less effective.
Likewise, Katz et al. [11] reported a low performance in urban tree species characterization
(50%) while utilizing the normalized difference vegetation index (NDVI) derived from
WV2 bands, compared to vegetation indices from aerial images, where an accuracy of 68%
was achieved.

The difference between the accuracies achieved by different studies in the characteri-
zation of urban trees may be related to several factors. First, there are differences in the
input data. While studies such as Katz et al. [11], which used indices such as NDVI alone
to perform the classification, or Sun et al. [76], which used the spectral information of the
bands directly within the model, studies such as Hartling et al. [37] used several vegetation
indices as input variables within the classification model. Second, there are differences
between methods for processing satellite information. Hartling et al. [37] worked with
the Gram–Schmidt pan-sharpening method to improve the detection and delineation of
tree crowns in the resampling bands, while the other two studies used the traditional
up-sampling method. Sun et al. [76] reported that one reason for the poor performance of
WV2 within the model is its optimization since it was not originally developed to receive
multiple sources of information. In the end, these studies showed that the proper process-
ing of high spatial resolution satellite information such as WV2 together with optimized
and robust models, might allow the classification of individual trees from satellite images
with moderate accuracy.

WorldView 3 (WV3), which achieves a higher spatial resolution (2 m) in the spectral
bands compared to WV2, was used as the unique data source in two studies [86,87].
Namely, Vahidi et al. [86] used WV3 for tree identification in urban orchards obtaining 91%
accuracy. This research was able to identify green areas in neighborhoods, and characterize
and segment trees on private properties, based on a spatial analysis of pattern identification
and contextual information, in addition to the use of segmentation algorithms. However,
these characteristics make use of this method limited to the inventory of trees in small and
homogeneous areas within the city. Meanwhile, He et al. [87] used WV3 for automatic
mapping of wooded areas in the Yuhang District in China. This research was based on
the use of vegetation indices from the visible spectrum bands of WV3 and the NIR. The
authors were able to achieve an accuracy of 92% in the segmentation of urban trees. The
aforementioned study by Hartling et al. [37] also used eight SWIR bands (short-wave
infrared) of WV3 as complementary information to WV2 and LiDAR, improving model
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accuracy by at least 2%. Choudhury et al. [88] used spectral and textural attributes derived
from WV3 and photogrammetry techniques to map five dominant urban trees in Sassuolo,
Italy, and study their carbon sequestration capacity, achieving an accuracy of 78% on tree
identification.

Satellites, such as Pleiades [92] and QuickBird [90], offer a limited number of bands
(RGB and NIR). However, two studies—[38,54]—produced urban tree segmentation and
identification with an accuracy above 90%. The level of OA achieved was also related
to the methodology followed by the authors. For example, Louarn et al. [54] used a bi-
temporal analysis for tree classification covering their analysis in two seasons (spring
and summer), which allowed them to find phenological patterns between coniferous and
deciduous species, thus improving the classification of individual species with satellite
images. Meanwhile, Timilsina et al. [38] used the satellite imagery combined with LiDAR
data to segment tree canopies.

Passive remote sensing systems, such as high-resolution satellite imagery, today
represent rich data sources, allowing the delineation of tree crowns in urban landscapes [5].
However, although the spectral range proves to be an advantage for detecting tree crowns
and species (through spectral signatures or textural properties [7]), the limitations of these
types of input data in complex urban environments, which need to rely on ancillary data
sources, such as LiDAR information, are evident [5,93]. Moreover, it is noteworthy that
open satellite imagery has enabled the creation of ready-to-use urban forest and landscape
characterization products and models, for example, NDVI images produced from Landsat
imagery, which remains an important input for landscape-level analysis, with higher
temporal resolution available for understanding urban forest dynamics [68,81].

3.2.3. Aerial Imagery

Aerial imagery is one of the most used data sources in recent research on urban tree
characterization (36% of previous studies; Figure 3). In all of the studies analyzed, aerial
images had sufficient resolution for urban tree identification, i.e., less than 3 m (Table 4).
Aerial images can primarily come from two different platforms: aircraft and drones or
UAVs. Aircrafts can cover larger areas than UAVs, however, they are costly, especially
when monitoring based on periodic time-series is desired [94], and, similar to satellite
data, are more exposed to cloud interferences [95]. To overcome some of these drawbacks,
drone flights have gained popularity in vegetation and land cover analysis as they are
less expensive, easy to obtain and transport, and can be used in shorter time overpasses
compared to aircraft [11,95].
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Table 4. Summary of the characteristics of the aerial images used in the studies analyzed for the characterization of urban
trees. UAV: unmanned aerial vehicle; DMC: digital mapping camera; NAIP: the National Agriculture Imagery Program.

Type Spatial Resolution (m) Bands Spectrum (nm) References

Aircraft
Intergraph/ZI DMC 0.09 4 400–800 Pibre et al., (2018) [58].

Unspecified
Airborne platform 0.1 3 400–580 Azeez et al., (2019) [8].

Aircraft UltraCam Xp 0.2 5 410–1000 Barbierato et al., (2020) [77].

Unspecified 0.2 4 400–800 Haas et al., (2020) [96].

Aircraft UltraCam X 0.3 4 410–1000 Ozkan et al., (2019) [7].

Aircraft
G-LiHT 1 114 418–918 Marrs and Ni-Meister (2019) [43].

Aircraft
AVIRIS sensor 3.17 224 364–2500 Alonzo et al., (2016) [21].

UAV
HySpex

HYPXIM

2
8 192 410–960

960–2500 Brabant et al., (2018) [49].

Unspecified
Airborne Sensors - 4 400–800 Timilsina et al., (2019) [39].

UAV
HySpex 0.4–0.8 160 400–1000 Aval et al., (2018) [97].

Aircraft
Trimble Harrier 68i 0.4–0.8 3 400–580 Sun et al., (2019) [76].

Nearmap 0.7 3 400–580 Katz et al., (2020) [11].

Aircraft
NAIP 1 4 400–800 Gage et al., (2017) [72].

LandMap UK - 4 400–800 Grafius et al., (2019) [42].

Google Aerial Image - 3 400–580 Wegner et al., (2016) [45].

Unspecified - 3 400–580 Lin et al., (2019) [98].

UAV
eBee 0.064 - - Birdal et al. [99].

UAV
Minařík et al., (2020) [100].DJI Matrice 210 RTK 0.06 - -

MicaSense RedEdge-M 0.1 4 475–840

Indeed, some UAVs can reach sizes of less than 70 cm and one kilogram [95,99]. These
devices can collect RGB imagery, stereo imagery that allows for generating photogram-
metric point clouds (PPCs), and LiDAR data simultaneously, covering up to 12 km2 in
50 min [99]. Although, these data are geographically limited, they are of high quality,
leading to their widespread use in the characterization of individual urban trees [94,95].

In half of the analyzed studies using aerial imagery, the authors not only addressed the
characterization and segmentation of urban trees, but also achieved species identification.
Regarding the studies where the main objective was tree segmentation, all of them used
the visible and NIR regions of the spectrum and calculated the NDVI. When analyzing the
differences in accuracy between the studies, we observed that OA was more dependent on
the segmentation techniques rather than on the data sources. For instance, Sun et al. [76]
and Haas et al. [96] achieved an accuracy of 89% and 97%, respectively, both using DL
in their analysis, whereas Grafius et al. [42], and Sun et al. [76], achieved an accuracy in
tree segmentation of 66% and 68%, respectively, based on digital image processing (DIP)
algorithms.
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Regarding tree species identification, Alonzo et al. [21], relied on an airborne visi-
ble/infrared imaging spectrometer for the identification of species using NIR wavelengths
to evaluate foliage abundance and structure, and utilized SWIR to assess cellulose, water,
and lignin contents, creating a spectral signature for each tree species analyzed. In the
same vein, Marrs and Ni-Meister [43] used 44 vegetation indices calculated from 144 bands
ranging from the visible (400–650 nm) to the SWIR (1300–2500 nm) spectrum for charac-
terization of 24 tree species. Achieving an accuracy around 59% showed the potential
of spectral and structural information to classify species. However, the incorporation of
LiDAR data improved the classification based on hyperspectral indices by at least 4%.

Brabant et al. [49] used vegetation indices for each of the hyperspectral sensors used
in their study, i.e., 19 for Hypex, 19 for HYPXIM, and 17 for HYPXIM achieving an OA
of 78.4%. Each of those sensors also had a different spatial resolution, of two, four, and
eight meters, respectively. Based on such a combination of sensors and indexes, they were
able to accurately classify 14 urban tree species. Katz et al. [11] also used hyperspectral
aerial imagery (Nearmap) for the identification of 19 tree species in Detroit, USA, using
vegetation and texture indices, achieving an accuracy of 60% when only hyperspectral
imagery was used.

PCCs are products derived from aerial images from which, through image match-
ing techniques of the overlapping stereo images, a 3D image or point cloud can be ob-
tained [101]. As with LiDAR data, some metrics such as tree height can be obtained from
a digital elevation model (DEM) or a canopy height model (CHM) [88]. PPCs were used
in two studies. Minařík et al. [100] used PPCs collected through a UAV to identify and
delineate canopies in an urban mixed forest. They analyzed the effect of point density on
individual tree delineation and found an OA of 82% in crown detection from a PPC. On
the other hand, Birdal et al. [99] used a PPC generated by image matching for mapping
and height detection of trees in an urban park, achieving a correlation of 94% with field
tree height measurements.

Thus, aerial imagery (hyperspectral, RGB or PPC) may play an important role in
tree mapping, both in the characterization and delineation of tree crowns and in species
identification, since these data have enough spectral and spatial resolution [29,81,102].
However, Katz et al. [11] reported that one of the main limitations of aircraft aerial imagery
is the reduced availability of these images over time, given that images are taken at specific
times, making it difficult to analyze vegetation at different phenological stages. Therefore,
UAV represents a solution to this problem, since it can obtain good quality data at any date
at a low cost [41].

Another reported limitation is the impossibility of making 3D models to analyze the
vegetation structure, making it difficult to estimate tree metrics (e.g., height or diameter)
from aerial spectral images, as they do not allow for a ground-level perspective of trees [15].
In this regard, among the analyzed data sources, PPCs represent an alternative to overcome
this problem. Through PPCs generated from UAV flights, metrics, such as tree height
and crown data, can be analyzed [99]. Minařík et al. [100] found that, when processing
PPCs, point density is more important than the selection of a given processing method,
recommending a range between 10 and 85 points/m2 for tree canopy identification and
delineation in urban environments, while Birdal et al. [99] suggested at least 40 points/m2

for proper height characterization.
Meanwhile, although hyperspectral information from aerial images represent a valu-

able resource for species identification through spectral signatures and shape study, several
studies showed that two individuals of the same species may have different spectral and
structural characteristics due to the growth form and phenology [93,102]. Another lim-
itation regarding the use of aerial images in the identification of trees in the city is the
heterogeneity of the landscape where elements, such as facades, roofs, and others can be
mistaken for trees or partly hide them [5], in addition to objects adjacent to the trees that
can lead to misclassifications when using PPCs [100,103].
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3.2.4. Ground-Level Images and Videos

Ground-level data from remote sensors such as LiDAR (TLS and MLS) are usually
costly. Although ground-level PPC data can represent a more affordable alternative com-
pared with LiDAR data, the latter can provide a broader perspective (360 degrees), while
PPCs are more limited in terms of the field of view of the camera [102]. In addition, digital
ground-level imagery (DGI) has grown in popularity in recent years as a source of infor-
mation in cities [65]. DGI is mostly available online, easy to acquire, and has contributed
to further enhancing the analysis of the urban landscape [16]. This type of image can
become an approximation to the human visual perception of the urban space, as it reflects
its complexity from a panoramic perspective [45,104]. Recent studies demonstrated the
potential of DGI to characterize objects, including trees, in urban lands [91,98]. The most
popular sources of DGI include Google Street View (GSV) [52] images and Tencent [53]
images (for China).

GSV data ease object recognition and constitute reliable tools for measuring elements
in urban lands (cities, roads, industries, etc.) [45,104]. In recent years, GSV images have been
increasingly used in urban forestry research. We found a total of 19 scientific papers that
used GLI (2 PPC, 16 DGI, and 1 video) to perform urban greenery and tree characterization
(Table 5).

Table 5. Summary of distance points in ground-level imagery (GLI) used to characterize urban trees. DSLR: digital
single-lens reflex; SLR: single-lens reflex; PPC: photogrammetry point cloud.

Source GLI Range Distance (m) References

Google Street-view

Standard images

10 Stubbings et al., (2019) [15],
Richards and Edwards (2017) [104].

15
Wegner et al., (2016) [45],

Seiferling et al., (2017) [47],
Laumer et al., (2020) [105].

50 Lu et al., (2018) [106],
Ye et al., (2019) [107].

Panoramic images

20 Li et al., (2018) [66].

30 Gong et al., (2018) [91].

100 Li et al., (2018) [40].

ND

Jiang et al., (2016) [46],
Barbierato et al., (2020) [77],

Wang et al., (2018) [108],
Branson et al., (2018) [45].

Tencent Street-view Standard images
20 Dong et al., (2018) [109].

88 Long and Lu (2017) [65].

DSLR camera PPC 30 Roberts et al. [102].

SLR camera PPC static Choudhury et al. [88].

Tree segmentation in ground-level data is affected by the size of the tree and the
distance of the tree from the camera lens. Therefore, to complete a vegetation analysis with
GLI, the images must be captured along sections that allow for analyzing the whole scene
in order to detect and characterize urban trees [109]. Thus, for tree characterization and
species identification, shorter section distances between consecutive images, e.g., 10–15 m
with DGI [15,45,47,104,105] or 30 m with PPC or MLS are required [102] (Table 5).

Roberts et al. [102] used mobile PPCs for mapping and measuring the diameter of
88 roadside trees, achieving a R2 of 0.95, and found that the accuracy increased by 8%
compared to static PPCs. Choudhury et al. [88] used static PPCs at ground level to measure
tree heights in 22 plots (100 m2), and required a total of 150 photos per plot to properly map
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and reconstruct each plot. The mean height error was 0.3 cm for the largest trees (25 m),
indicating high model accuracy.

Although the use of PPCs at ground-level have been little studied in the character-
ization of urban trees, they represent a source of data with potential for mapping and
measuring structural characteristics of urban trees, such as diameter and height [100].
Research efforts are required, especially in the development of processing and modeling
techniques, which allow exploiting all potentialities of this data source [110].

Regarding DGI, a study conducted by Stubbings et al. [15] used a street tree vegetation
index, calculated from GSV imagery, to quantify urban trees at the street level in cities,
achieving an accuracy of 97%. This study highlights the importance of data sources such
as GSV and OpenStreetCam for updating information on urban forests and their ability
to offer ES. On the other hand, studies, such as the one developed by Laumer et al. [105],
advanced not only in tree recognition (91% of accuracy), but also in tree positioning,
achieving 56% accuracy in the assignment of geographic coordinates’ through GSV images
and the Geocoding API from Google. Moreover, Branson et al. [45] focused on tree species
identification, in addition to the detection of individual trees, from GLI and achieved an
accuracy of 70% in tree segmentation and an accuracy of 80% in species identification of
urban trees of Pasadena, California.

Moreover, a few other studies [1,40,106,107,109] analyzed the vegetation cover in cities
based on the sky view factor, assessing how much of the sky is obscured by vegetation [40].
This measure has been widely used as a measure of shading capacity of street trees in
cities [66]. They employed panoramic images of the streets, which allowed them to use
fewer photographs, by downloading images more distantly from each other. On the
other hand, a study developed by Wang et al. [108] describes the potential of GSV in
obtaining information on three dimensions, which is necessary when estimating other
ES such as carbon sequestration. They were able to estimate the diameter, height, and
crown dimension of street line trees with an accuracy of 92%, 87%, and 80%, respectively.
Among the articles reviewed, Hong et al. [111] presented a novel approach to quantify a
greenness index as a measure of urban tree cover in the streets of Vancouver, Canada, from
video (29.97 frames per second for 3 h). The second objective of that study was to correlate
temperature with street greenness, where a 61% correlation between the two measures was
obtained. The authors found significant limitations related to the extraction of vegetation
from the videos, highlighting the poor ability to recognize trees in dark (low saturation
greenery) areas from the classification of pixel by (HSI) color that was confused with some
shadows, suggesting that these limitations could be addressed using more refined and
robust methods such as DL.

Currently, all the new sources of structured and unstructured open data (e.g., data
from social networks, places reviews, etc.) available online represent a mine of information
on urban and city trees [16]. These sources, notwithstanding their proliferation, have not
been sufficiently explored to date, and represent a largely uncharted resource for urban
landscape analysis. In fact, these data may represent new sources of information useful
in urban tree management, especially for updating inventories and/or monitoring, but
they also represent a challenge in terms of processing, as their complexity requires more
powerful models and high computational capabilities [106]. However, as suggested by
Stubbings et al. [15], it is necessary that data owners, such as Google [52] or Tencent [53],
improve their geographical coverage in some regions.

3.2.5. Combining Multiple Data Sources

In general, the evolving trend of previous research directs us to combination data
source strategies, to overcome the inherent limitations of LiDAR data sources and spectral
imagery (satellite and aerial). Indeed, in our review, we found that more than 60% of
the studies performed data combination. For instance, Marrs and Ni-Meister [43] used
multiple data sources, including Goddard’s LiDAR, Hyperspectral ad Thermal Imager
(G-LiHT). The latter is a NASA project that provides 3D LiDAR data that allows for the
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reconstruction of the tree canopy through stereoscopic images, and thermal images, all
with a spatial resolution of approximately 1 m. However, this technology is only available
for the United States of America and Mexico [112].

Katz et al. [11] used multispectral imagery (WV2), aerial imagery (Nearmap), and
LiDAR data for the detection and classification of urban trees. They found that using
LiDAR data alone the accuracy reached a maximum of 43%, while combining different
datasets such as WV2 or Nearmap the accuracy increased up to 20%. On the other hand,
when comparing the performance of the images, Nearmap reached an accuracy of 68.2%
while WV2 reached its maximum performance with 57%. When feeding the model with
the three data sources (Nearmap, WV2 and LiDAR), an OA of 74% was achieved.

Hartling et al. [37] analyzed the performance of different data sources including WV2,
WV3, and LiDAR. Initially, their model achieved an OA of 75% using only WV2 VNIR
data. By merging WV2 VNIR bands and resampling WV3 SWIR bands from 7.5 m to
0.5 m, and LiDAR return intensity image, and WV2 Panchromatic the OA reached up to
82% in the classification of eight dominant tree species in St. Louis, USA. In some other
cases, the performance of models for urban vegetation characterization improved with
data integration. For instance, Alonzo et al. [21], who used hyperspectral imagery and
LiDAR data, achieved the same OA (82%) in the identification of 10 urban species.

It is also worth highlighting that 80% of the studies based on GSV images did not use
any other remote sensing data as complementary or ancillary information. This reflects the
potential of new data sources, such as DGI in urban tree research.

3.3. Data Processing and Analytical Methods

The increasing amount of data and data sources described above has underscored
the need for developing complex data processing and analytical methods. For the ease
of description of the different approaches, in this manuscript we have classified them as
follows: (i) traditional parametric methods describing statistical methods such as linear
and logistic regression, and others; (ii) DIP methods based on algorithms already available
in GIS software; (iii) AI methods based on more conventional ML algorithms, such as RF
and SVM; and iv) ML algorithms based on DL methods.

The most commonly used algorithms are those related to DIP and DL; 19 papers
were found to use convolutional neural networks (CNN) architectures for urban tree
detection, and 20 papers used algorithms related to digital image processing, and 14 used
ML algorithms.

3.3.1. Traditional Parametric Methods

These parametric methods refer to statistical approaches traditionally used for clas-
sification purposes. These classifiers are rarely used in urban tree classification as the
main processing method, due to the heterogeneity of the landscape and the complexity
of the data [35,67]. However, some authors found great accuracy in urban cover classifi-
cation [44,97], stem measurement [102], object detection [78], and tree identification [108]
using this approach. Among the 48 papers focused on urban tree characterization, only
10% of the studies evaluated used analytical approaches such as linear regression, variable
correlation, logistic regression, and continuous-time Markov-chain. Roberts et al. [102]
analyzed the accuracy of their lineal regression model comparing field measurements and
predictions derived from PPC. Wang et al. [108] used ANOVA and Pearson correlation to
relate tree dimensions from a GSV image and information taken from field inventory. Like-
wise, Aval et al. [97] used data processing and marked point process, which is a stochastic
method derived from the Continuous-time Markov chain. These algorithms have shown
good performance in small and homogenous study areas under controlled conditions, not
representative of the heterogeneity of urban landscapes.

Although pure parametric methods have been relegated to more sophisticated meth-
ods (ML algorithms), they have now become a fundamental part of DIP algorithms and
ML methods. For example, several authors [7,44,47,78] have used DIP methods with linear
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regressions, correlations, logistic regressions, and others. This is the case in the study
conducted by Alonzo et al. [21] who used a marker-controlled watershed algorithm to
segment tree crowns, used t, separate objects in an image, and the i-Tree Eco [113] software
application to measure the cumulative canopy cover distributions in the city.

3.3.2. Digital Image Processing

DIP represents the algorithms used and integrated in software such as GIS, spreading
to many areas, including remote sensing. These methods are easily replicable since they
are embedded in well-designed DIP software and the processing is almost automatic [59].
These methods allow the user to know the information contained in a pixel and have
allowed the development of complex methodologies for the processing of satellite data,
LiDAR, hyperspectral images, and others [55], enabling more accurate object classifications
and segmentations. For instance, clustering based on an unsupervised K-Means classifica-
tion algorithm, which calculates the mean values of the defined classes and then groups
them into the nearest class [114], is widely used in land change detection models or in the
generation of digital terrain models [115]. Table 6 summarizes the DIP algorithms used in
the reviewed papers.

Table 6. DIP algorithm summary used to characterize urban trees; HSI: hue, saturation, and intensity,
TM: template matching; GIS: geographic information system, SfM: structure from motion.

Digital Image Processing Algorithms References

Neighbor weight Seiferling et al., (2017) [47].

Mean shift
Li et al., (2017) [40],

Li y Ratti (2018) [66],
Louarn et al., (2017) [54].

HSI

Dong et al., (2018) [109],
Richards and Edwards (2017) [104],

Hong et al., (2019) [111],
Chi et al., (2020) [70].

Nearest neighbor Choudhury et al. [88].

K-nearest Marrs and Ni-Meister (2019) [43],
Minařík et al. [100].

Spectral difference segmentation
LBP Azeez et al., (2019) [8].

Compact watershed Matasci et al., (2018) [75],
Minařík et al. [100].

Grey level co-occurrence matrix
Ozkan et al., (2016) [44],
Azeez et al., (2019) [8],
Choudhury et al. [88].

Dalponte individual tree segmentation Minařík et al. [100].

Li2012 Minařík et al. [100].

TM Vahidi et al., (2018) [86].

3D graph cuts algorithm Wu et al., (2018) [78].

Segmentation GIS
Bayat et al., (2019) [41],
Jiang et al., (2017) [46],

Long and Liu (2017) [65].

SfM

Minařík et al. [100],
Roberts et al. [102],

Choudhury et al. [88],
Birdal et al. [99].
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Moreover, we could observe that typical data processing methods, such as clustering or
segmentation algorithms, incorporated in prominent geographic information system (GIS)
software or with libraries available in R or Python are still widely used in the identification
and characterization of individual urban trees [100,116,117]. For example, with LiDAR
data, clustering methods were necessary for the construction of CHM, DSM, and DCM,
thus delineating and segmenting trees [76,118,119]. For instance, Azeez et al. [8] used CHM
to classify LiDAR point clouds, defining the difference between ground surface and forest.

Nevertheless, these algorithms are not only used for point clouds. For example,
Lin et al. [98] used K-means clustering to group tree crown pixels in aerial photography
based on color intensity. Another clustering algorithm found in some of the reviewed
papers was mean shift segmentation [114,115]. Li et al. [40] developed a model based on
an automatic extraction and measurement of the sky view factor from GSV images using a
mean shift image segmentation algorithm to section the fisheye photos, achieving more
precision when compared to spectral-based rules.

Certain software and processing resources, however, are more developed for some
data sources than for others. Although photogrammetry is an old technique, its di-
rect application to the measurement of objects in cities is starting to gain popularity in
forestry research recently due to its potential for 3D tree reconstruction and canopy delin-
eation [102,120]. This has motivated the development of some software, such as Agisoft
Metashape [121], which was used by Minařík et al. [100] and Pix4D [122], which was used
by Birdal et al. [99], enabling the use of photogrammetry in forestry with relatively little
technical expertise [120].

Moreover, some R packages, such as LidR [116], designed for LiDAR data modeling,
allow for the processing of information from PPC [116]. For instance, Minařík et al. [100]
tested four algorithms for modeling UAV-derived PPCs with LidR (Table 4).

While some authors claim that image processing methods have been displaced by more
complex algorithms [123], in our research, we found that they are still robust algorithms in
force. However, these methods are mainly used as part of data preprocessing since, with
the evolution of object-centered analysis, contextual information is required, which image
processing methods are not able to capture.

3.3.3. Machine Learning Algorithms

ML is defined as a subset of AI; its use has increase in urban tree research, gradually re-
placing more traditional parametric methods in the last five years (Section 3.2.1). In the last
decade, some ML algorithms, such as SVM and RF, also called ensemble methods [57,124],
and DL, have been increasingly used in urban forest research.

Among the 12 studies that used ML algorithms, 3 only used RF for urban forest
modeling; 7 used RF in combination with other algorithms, while SVM was used in
5 studies (2 of them also used RF) (Table 7).

RF was used by Baines et al. [74] to quantify urban forest structure through some
variables such as canopy cover, canopy height, and tree density. It was also used by
Haase et al. [36] to identify urban greenery with an R2 of 0.92 and an accuracy of 96%.
Moreover, RF showed high accuracy to identify and classify urban trees, as proved by
Katz et al. [11] in their multi-dataset tree characterization study, achieving an overall model
accuracy of 74%. In general, RF [125] is characterized by great accuracy for three reasons:
it is robust, easy to parameterize, and simple to use [57]. However, the aforementioned
studies found that the segmentation of urban trees with RF was inaccurate, given the
heterogeneity of the landscape, especially in those cases where canopies were intermixed.
Another difficulty reported by the authors who used RF to detect and classify urban trees is
related to the training data, since it requires many data to ensure the feasibility of models.
In addition, they found that RF models, based on a single datum source, are often not very
scalable or generalizable [15,37].
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Table 7. Summary of machine learning (ML) algorithms. RF: random forest. SVM: support vector
machine; CNN: convolutional neural network; HIS: hue, saturation, and intensity; SDS: spectral
difference segmentation.

Algorithm References

RF

Only RF
Baines et al. [74],
Haase et al. [36],
Katz et al. [11].

CNN Stubbings et al., (2019) [15],
Hartling et al., (2019) [37].

SVM
Hartling et al., (2019) [37],
Brabant et al., (2019) [49],
Louarn et al., (2017) [54].

HSI Chi et al., (2020) [70].

Compact Watershed Matasci et al., (2018) [75].

SVM
CNN Ye et al., (2018) [107].

SDS Azeez et al., (2019) [8].

Stubbings et al. [15] reported lower tree segmentation performance with an RF-based
approach (67%) compared to a deep neural network (pyramid scene parsing network
(PSPNet) which achieved 90% accuracy), but superior performance to the “green pixel
threshold” segmentation algorithm (a digital image processing algorithm). The latter
consists of choosing pixels by color, assuming that all trees are green in summer.

The second ML algorithm mostly used in five studies was SVM due to its versatility
in performing classifications [59]. This algorithm works very well with heterogeneous and
complex environments [57] and performs well with limited training samples, which is an
advantage because preparing these data is a time-consuming task [59].

Azeez et al. [8] initially used DIP specifically for spectral difference segmentation and
textural analysis on aerial images. The authors extracted the most important features for
individual tree identification employing an SVM model achieving an accuracy over 90%.
Brabant et al. [49] combined SVM with the minimum noise fraction dimension reduction
method, achieving an OA of 78.4%.

Louarn et al. [54] and Hartling et al. [37] obtained similar results when comparing RF
and SVM. When comparing these two ML algorithms, RF slightly outperformed SVM in
tree classification. However, the authors highlight that, despite RF’s higher OA, it produced
lower kappa coefficients, measure of model accuracy, due to its inability to adequately
classify some species within the model, resulting in a decrease in reliability measures.

3.3.4. Deep Learning Methods

DL is a branch of ML based on the training of deep neural networks [55,123]. Neural
networks (NN) can deal with enough complexity to solve problems with high dimen-
sions, several variables, and predictors, and multiple data sources [55,118]. According to
Ma et al. [59], until 2014 most DL studies focused on image processing were focused on
applications in medicine. Nevertheless, in the last five years, the application in geoscience
has increased (Table 8). The trend we found in the articles reviewed is toward using more
powerful methods that can be scaled and adjusted quickly, while supporting large amounts
of information [118]. We found that CNN are increasingly used within the field of remote
sensing and DIP [37,39,76,96].
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Table 8. Summary of the main deep learning architectures used to characterize urban trees. PSPNet:
pyramid scene parsing network, ResNet: residual neural network, VGG: visual geometry group,
YOLO: You Only Look Once, DCNN: deep convolutional neural network.

CNN Architecture References

PSPNet Stubbings et al., (2019) [15],
Gong et al., (2018) [91].

Faster R-CNN Wegner et al., (2016) [45],
Laumer et al., (2020) [105].

ResNet Sun et al., (2019) [76],
Torii et al., (2019) [126].

SegNet Ye et al., (2019) [107].

VGG16 Branson et al., (2018) ) [45].

YOLO Lin et al., (2019) [98].

DCNN Hartling et al., (2019) [37],
He et al., (2020) [87].

PointNet Wang et al., (2020) [73].

Bayesian Network Grafius et al., (2019) [42].

Other

Timilsina et al., (2020) [38],
Timilsina et al., (2019) [39],

Pibre et al., (2018) [58],
Haas et al., (2020) [96].

New data sources, such as LiDAR or GSV images, have motivated the design of
novel, more robust, scalable, and replicable algorithms, increasing the use of DL and ML in
forestry research [46,104]. A DL model by Wang et al. [73] utilized an optimized version of
the PointNet network [127] with the k-nearest neighbor algorithm, achieving a semantic
segmentation of LiDAR data for tree detection and recognition with an accuracy of 86%.
This is the only study we could find to combine DL with LiDAR data only.

Branson et al. [45] used GSV images to detect and identify tree species with a Siamese
CNN, allowing for the comparison of these results with the historical field inventory,
achieving an accuracy of over 70% in tree detection and 80% in species recognition. A
more complex model was presented by Barbierato et al. [77], who assessed urban ES by
quantifying tree cover and its effect on urban ground temperature, through the integration
of LiDAR data, aerial multispectral frames, and Google Street View images in Viareggio,
Italy. Their segmentation was based on pre-training a CNN, ResNet-18 Network, and
clustering algorithms. Moreover, this approach has been used by Sun et al. [76], who
compared it with a deeper CNN version, ResNet-50 and DenseNet121, to identify tree
species in a tropical wetland in China. They found that ResNet-50 provided the best
accuracy in the classification process. Both studies reached around 89% accuracy on tree
species classification. However, the highest accuracies were achieved by CNN architectures
created by the authors and SegNet [128]. Timilsina et al. [38,39], with a single hidden layer
CNN, achieved an accuracy of 96% and 92% in the detection of individual urban trees,
respectively. In contrast, Haas et al. [96] tested two CNN architectures, with two hidden
layers specialized in urban tree crowns detection, achieving an accuracy of 99% in crown
detection and 72% in tree species classification. SegNet [128], used by Ye et al. [107] to
evaluate wooded areas in cities, is a deep CNN (DCNN) for pixel multi-classification in
images. It achieved an OA higher than 95%.

The DL models used in these studies [15,75,129] were designed for purposes other
than tree characterization. PSPNet [129] used by Gong et al. [91] and Stubbings et al. [15], is
a NN that uses a specific structure that allows the NN to abstract context information, very
useful in the identification of objects in cities. Another architecture capable of extracting
context information in pixel segmentation is DCNN, with a high level of accuracy in 2D
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models. Regarding tree characterization, DCNN was able to work with multiple predictor
variables, which significantly improved the classification model over other classifiers [37].

Additionally, the importance of data quality in the performance of models and Arti-
ficial Intelligence engines must be considered. Lin et al. [98] used transfer learning from
a deep network called You Only Look Once (YOLO) version 3. They achieved only an
accuracy of 49%, even though YOLO is a deep, robust, and fast NN [130]. The authors used
low-resolution aerial images and trained with low data augmentation for tree classification.
This is a clear example that both data and models are important for the optimal application
of these engines.

CNNs have shown great potential for tree classification in cities, by means of individ-
ual tree detection, with YOLO or Faster R-CNN, for example, or in image segmentation
for coverage index extraction, with PSPNet or DCNN, or point-cloud segmentation with
PointNet for LiDAR data. However, the use of these engines requires sufficiently large and
diverse training data allowing for the NN to learn and be generalized efficiently [11,37].
Obtaining such data is often costly and time-consuming. However, recently, many projects
have been working on open-source and available databases for training of this type of
architecture [131,132]. LiDAR data have great potential to overcome the lack of training
data, as for instance Weinstein et al. [133] have demonstrated the application of LiDAR to
label high-resolution imagery for performing canopy segmentation; unsupervised labeling
of more than 30 million images served as training in the DL model.

Other branches of ML that could help to overcome the limitations concerning training
data are unsupervised methods, such as Reinforcement learning (RL) [134]. Recent research
in the field of ML has found in RL an alternative to solve learning problems applied to
remote sensing [135]. RL bases its learning on a system of hits and misses given by the data
itself, without the need for an additional training dataset [57].

A significant advantage of these NNs is that their architecture is also open source and
can be easily used by the scientific community. Finally, it should be noted the computational
capacity required is high for the use of this type of model, especially in the training
phase. The memory consumption is very large and high computer capabilities may be
required [37,55].

4. Challenges and Further Research

The current scientific literature on urban vegetation detection and tree characterization
suggests that there is a serious concern, regarding filling the gaps in knowledge on the
characteristics of forests around the world.

Other recent research have focused on the comparison of data sources and/or algo-
rithms that allow for better characterization of urban trees, rather than on the development
of scalable models. In relation to data sources, the studies exposed the potentialities of new
data sources such as DGI. These images are openly and massively available worldwide.
As described above, these images allow the assessment of vegetation through different
temporal overpasses and can help to estimate/analyze urban tree dynamics and changes
in biodiversity and ES at different scales. Another source of data to be used, which has
increased in popularity worldwide, comes from UAVs. These devices, increasingly com-
mon not only in the framework of environmental management but also in citizen science,
can represent important input data for updating urban forest information, significantly
reducing the costs of quality data acquisition, with high spatial resolutions suitable for tree
characterization. UAV data could provide more information (LiDAR and aerial images) on
research activities limited by phenology and seasonality within cities, thus expanding the
knowledge of urban forest dynamics and allowing more accurate characterization of the
individual urban tree. In addition, through the use of LiDAR-UAV and DL models we can
obtain valuable tree recognition and detection data, as stated by Wang et al. [73].

In addition to the potential of new data sources, traditional data sources, such as
satellite imagery also require further research in urban forests. The extension of spectral
signatures of tree species in cities to assess forest biodiversity and ES should be a central
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issue in urban forest management. However, only a few of the reviewed studies focused
on this important issue. It is worthwhile to investigate and promote open access data, often
not accessible to the public, with the aim of building more accurate models and estimates
on urban trees and forest ecosystems.

The fusion of several data sources has been investigated in depth in previous research.
Many studies used LiDAR data as an auxiliary and complementary source to optical data,
such as satellite and aerial imagery, showing the disadvantages of different temporal,
spectral, and spatial resolutions among input data sources for the characterization of
individual urban trees. However, this amount of information requires more powerful
models for processing. For example, traditional parametric methods may perform well, but
their tuning and parameterization make them fall short in terms of scalability. Likewise,
some ML algorithms, as mentioned by several authors [29,37,59,76], are not able to perform
classifications as accurately as some more specialized ones in DIP, and DL.

CNNs are an important tool in the image processing area, and they represent a
robust option for data processing in the forestry sector, especially in tasks aiming at
the segmentation and identification of trees and urban forest, making it much faster
and scalable. However, much more recent branches such as RL could contribute to the
automation of urban forest inventory. However, the need for open training data, which
facilitates the training of ML and DL models, should be emphasized, as it is one of the most
time-consuming tasks when using these models.

In summary, our analysis of the state-of-the-art has found that although the increasing
trend in the automation of urban trees and urban forest characterization, further research is
needed especially in order to take advantage of all data sources available. The real challenge
for the scientific community is undoubtedly the creation of generalizable, replicable, and
powerful models that allow the use of multiple data sources for urban forest inventory
automation [5,136], taking advantage of the most salient features of each, e.g., LiDAR for
crown identification, aerial and satellite imagery for species identification and ground-level
photography, and TLS for structural characterization of trees [45]. In addition, it is crucial
to solve the problems of accessibility and spatial and temporal resolution of the different
data sources [59]. It is equally important to improve these models, to take advantage of
the knowledge in areas with limited information, and allow governments to have accurate
reports on urban forest systems and their services in their territories.

5. Conclusions

Natural ecosystems that surround cities across the world are becoming more vul-
nerable due to the rate of migration to urban areas; the sustainability of forests and the
well-being of growing populations are impacted as a result [14]. These dynamics, more
consolidated in developed countries, have made research on urban ES a relevant and
important topic today [67]. This review presents state-of-the-art urban tree characterization
based on remote sensing techniques. First, we note that most of the studies conducted in
the last five years have been carried out in the Northern Hemisphere. A gap exists related
to urban tree characterization in tropical and low-income countries. There is a need to
increase research in these areas and to create scalable models that allow information on
urban trees worldwide to be obtained quickly, easily, and affordably.

Second, considering the data sources used in the analyzed studies, we found that the
tendency and recommendations from previous research were toward combining multiple
data sources and, thus, overcoming the inherent disadvantages of individual sensors. Some
of the problems pointed out included the limited spatial and spectral resolution of open
source and free satellite images or the associated excessive costs of satellite images from
private companies. The main limitations associated with aerial imagery are temporality,
free access to data, and the associated costs of quality data. LiDAR data, which are
used as complementary information, in most cases, for the description, positioning, and
segmentation of urban trees, are difficult to handle, especially in areas such as cities,
where the elements adjacent to the trees generate noise in the detections. However, we
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found that by using optimized DL techniques, it is possible to use these data directly
from the source with good segmentation results. Finally, we find that ground-level data,
such as photographs and videos, which provide vertical perspectives that could only be
alternatively obtained from field visits or with TLS (which has a high associated cost and a
reduced geographic scale), have very high computational costs in their treatments. Those
studies where two or more data sources were combined had high accuracies and generally
represented geographic scales larger than local.

In addition to the data, the complexities of cities make it difficult to detect and extract
objects from the images, which leads to the third challenge: the need for enough compu-
tational and processing power. In the studies analyzed, the use of multiple traditional
and even conventional ML methods was not sufficient for the characterization of urban
trees. Although statistical models proved useful for describing specific tree characteristics,
we observed that they did not prove to be scalable and generalizable models. On the
other hand, in studies comparing conventional ML and DL algorithms, we found that DL
was more accurate for urban vegetation segmentation, achieving higher accuracy, but was
highly demanding computationally. Techniques, such as segmentation, object detection,
and classification with CNN based on DL proved to be helpful in urban forest studies on a
larger scale, as they are scalable models. In particular, they have encouraged venturing
into the use of other data sources, such as ground-level imagery for the characterization of
individual trees.
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