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Abstract: The exploitation of the unprecedented capacity of Sentinel-1 (S1) and Sentinel-2 (S2) data
offers new opportunities for crop mapping. In the framework of the SenSAgri project, this work
studies the synergy of very high-resolution Sentinel time series to produce accurate early seasonal
binary cropland mask and crop type map products. A crop classification processing chain is proposed
to address the following: (1) high dimensionality challenges arising from the explosive growth in
available satellite observations and (2) the scarcity of training data. The two-fold methodology
is based on an S1-S2 classification system combining the so-called soft output predictions of two
individually trained classifiers. The performances of the SenSAgri processing chain were assessed
over three European test sites characterized by different agricultural systems. A large number of
highly diverse and independent data sets were used for validation experiments. The agreement
between independent classification algorithms of the Sentinel data was confirmed through different
experiments. The presented results assess the interest of decision-level fusion strategies, such as the
product of experts. Accurate crop map products were obtained over different countries in the early
season with limited training data. The results highlight the benefit of fusion for early crop mapping
and the interest of detecting cropland areas before the identification of crop types.

Keywords: sentinel image time series; early crop mapping; classification; high-dimensional data
fusion

1. Introduction

Cropland and crop type maps at global and regional scales provide critical information
for agricultural monitoring systems. Satellite-derived remotely sensed data are proven
to be an effective tool for crop type identification and spatial mapping. Nevertheless, the
operational production of upscaling and delivering reliable and timely crop map products
is challenging. Agricultural areas are complex landscapes characterized by many wide-
ranging cropping systems, crop species and varieties. Another source of difficulty is
the high diversity of existing agricultural practices (e.g., multiple within-year cropping),
pedoclimatic conditions and geographical environments.

Crop mapping methods based on remote sensing exploit the spatiotemporal informa-
tion of satellite image time series. The accurate recognition of crops requires high-quality
spatial and temporal data [1–3]. In practice, the resolutions of satellite imagery will limit the
accuracy of crop map products and their corresponding class legends [4]. Cropland extent
knowledge is usually obtained from global maps, such as Moderate Resolution Imaging
Spectroradiometer (MODIS) land cover [5], the Globland 30 m [6] or the GlobCover [7].
Unfortunately, these products do not always provide reliable information given the large
disagreements and uncertainties existing among them [8–10]. In addition, their quality is
far from satisfactory for applications requiring up-to-date accurate knowledge about food
production or environmental issues. Therefore, accurate and timely crop information is
still required for government decision making and agricultural management. Ideally, the
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user community has expressed the need for near-real-time high spatial resolution crop type
maps from the early season [11].

In recent years, new high-resolution image time series have been acquired by the
Sentinel mission under the EU’s Copernicus environmental monitoring program. SAR
and optical data with high revisit frequency and large spatial coverage have become
freely available thanks to the launch of the European Space Agency (ESA)’s Sentinel-1 and
Sentinel-2 satellites. The high resolutions of these complementary satellite data present
unprecedented opportunities for regional and global agriculture monitoring.

Although Sentinel-2 offers many opportunities for characterizing the spectral re-
flectance properties of crops [12], its temporal resolution can be limited. Cloud coverage
can strongly affect important key data during the agricultural season or create consistent
cloud-covered areas. Under this situation, Sentinel-1 images that are not affected by cloudy
weather conditions can provide valuable complementary information. In addition, SAR im-
ages can help to discriminate between different crop types having similar spectro-temporal
profiles [13]. The benefits of Sentinel-1 images can be reduced due to the presence of speckle
noise. The high radar sensitivity to soil moisture may also complicate the interpretation of
information from vegetation. Fluctuations induced by speckle or moisture changes (e.g.,
rain or snow) can then be confused with vegetation growth changes.

Operational large-scale crop monitoring methods need to satisfy some well-known
requirements, such as cost-effectiveness, a high degree of automation, transferability and
genericity. In this framework, the European H2020 Sentinels Synergy for Agriculture
(SenSAgri) projet [14] has been proposed to demonstrate the benefit of the combined
Sentinel -1 and -2 missions to develop an innovative portfolio of prototype agricultural
monitoring services. In this project, the synergy of optical and radar monitoring was
exploited to develop three prototype services capable of near-real-time operations: (1)
surface soil moisture (SSM), (2) green and brown leaf area index (LAI) and (3) in-season
crop mapping. Different European test sites covering different areas and agricultural
practices have been used for method development, prototyping and validation.

The work presented here describes the research conducted in the SenSAgri project
to develop a new processing chain for in-season crop mapping. From the early season,
the innovative crop mapping chain exploits Sentinel-1 and -2 data to produce seasonal
binary cropland masks and crop type maps. The two crop products are generated with
a spatial resolution of 10 meters, and they follow the product specifications proposed
by the Sen2-Agri system [15]. The proposed methodology aims to face the challenges of
high-dimensional Sentinel data classification. Different experiments are presented in this
work to assess (1) the crop mapping performances of the SenSAgri processing chain and (2)
the synergy and complementarity of Sentinel’s data, showing the interest of fusing both
data types. The main contributions of this study are as follows:

• It presents a robust and largely validated crop classification system to produce accurate
crop map products in the early season with limited training data;

• It highlights the benefit of postdecision fusion strategies to exploit the synergy and
complementarity among classifiers trained with Sentinel-1 (S1) and Sentinel-2 (S2)
time series. This demonstrates the limitations of the early fusion method for classifying
multimodal high-dimensional Sentinel time series;

• It confirms the interest of detecting cropland areas before the identification of crop
types. A strategy for binary cropland area detection is proposed to reduce the impact
of land cover legend definition on crop classification results.

This paper is organized as follows: Section 2 reviews the state-of-the-art classification
strategies for crop mapping. Section 3 details the SenSagri methodology and, more precisely,
the S1-S2 classification scheme and input features; Section 4 describes the satellite and
reference data; Sections 5 and 6 are devoted to the results and discussions; and finally,
Section 7 draws the conclusions.
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2. Related Work

The classification of multitemporal data by algorithms trained on user knowledge has
been commonly proposed in the crop mapping literature. The classification results of these
methods are noticeably impacted by the choice of the supervised classifier, the input data,
the legend (details and number of classes) and the reference data [16]. Ideally, the quantity
and quality of reference data need to ensure the diversity of the classification problem to
ensure the generalization of the learned models.

Despite the large family of existing crop classification methods, most of them are not
scalable. In practice, they have been tested on tiny test sites over restricted geographical
areas. In addition, most of the existing classification methodologies have not considered
natural vegetation classes such as grassland or shrubland, which are mostly confused
with crop classes. In the same direction, classical land cover classification methodolo-
gies (see [17] for a review) do not generally satisfy the needs of operational agricultural
monitoring requirements [18].

Traditionally, optical data with low and moderate resolutions have been exploited for
large-scale crop mapping. The high temporal resolution of MODIS has shown an obvious
benefit for the characterization of vegetation surfaces. Numerous crop mapping works
have thus highlighted the usefulness of the normalized difference vegetation index (NDVI)
derived from MODIS. Several works, such as [19–21], have proposed applying the decision
tree (DT) classifier to MODIS data. These low-resolution multitemporal data have also been
classified by other strategies based on the Jeffries–Matusita distance [22] or k mean [23].
Unfortunately, median resolution satellite data, such as MODIS, are too coarse to capture
detailed crop information due to mixed land covers or land uses.

Several works have proposed combining the temporal information of MODIS with
high-spatial resolution data. For instance, a DT methodology was proposed in [24] to
reach 30 m crop maps by combining cropland MODIS 250 m products with LANDSAT
data. The combination of MODIS and LANDSAT data has also been proposed by the
US Cropland Data Layer [25,26], which is produced by the United States Department of
Agriculture (USDA) and the National Agricultural Statistics Service (NASS). The accurate
performances of this last DT methodology can be explained by the extensive use of parcel-
level information provided by farmers’ declarations. SPOT data have also been combined
with MODIS in [27], where an SVM joint classifier is applied to temporal NDVI features.
The interest of incorporating ancillary data with multiple input satellite datasets in the
classification process has also been highlighted in [28]. In this last work, crop maps with low
spatial resolution were obtained by applying a spectral correlation classification strategy.
The combination of Landsat and Sentinel-2 has been recently proposed in [15,29]. In this
last work, the use of NDVI phenological metrics derived from high-spatial resolution
datasets was investigated.

Some works have proposed combining the prediction of several DT classifiers, which
are trained on different sets of satellite-derived features [20,30]. The high performances
of classifier ensemble strategies have been confirmed in recent decades by the use of
random forest (RF) classifiers. The robustness of RF to classify multitemporal satellite
data over large geographical areas has been proposed in several studies [31–33]. The
short training time, easy parameterization and high robustness to high-dimensional input
features explain why RF has witnessed a growing interest in crop classification. Some
works have applied RF to Landsat multiyear time series composites [34] and satellite-
derived EVI time series [35]. More recently, pixel-wise [36] and object-based crop mapping
methods [37] have also been proposed to classify Sentinel-2 data.

In recent years, deep learning (DL) classification strategies have been proposed for
crop classification. Different deep architectures have been evaluated on very restricted geo-
graphical areas by some promising works. Some interesting examples of deep architectures
are LSTM [38,39], transformers [40] and 3D-CNN [41]. Model transferability, the handling
of spatial context with complex semantic models and the high semantic (categorial) res-
olution of mapping applications are some advantages highlighted by the use of CNN.
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However, these architectures do not exploit the spatiotemporal features of the data. The
design of architectures capturing spatiotemporal information involves multiple options
that are nontrivial and expensive to evaluate. Despite the unreasonable effectiveness of DL
methodologies, they still involve important challenges for operational global crop mapping
systems [42], including the requirement of a large amount of field data. Unfortunately,
the scarcity of reference data is a well-known challenge for operational remote sensing
applications. The obtention of crop and non-crop reference data over large-scale areas
can be tedious. In addition, such data is not available in a timely fashion during the
agricultural season and can contain class label noise. On the other hand, DL methods are
also computationally expensive, and they require large computational operations in terms
of memory. Last, these methods are usually patch-based approaches, and the patch size
definition has negative impacts on object classification results.

From an operational point of view, the use of RF for classifying Sentinel-2 data has
been assessed by the Sen2Agri project [15,43,44]. This operational processing chain has
proposed an accurate two-fold methodology for producing binary cropland masks and crop
type maps. Despite the satisfactory accuracies obtained by the Sen2Agri system, the crop
mapping methodology has some limitations. First, the phenological metrics proposed for
binary cropland masking can lead to a performance decrease for large-scale mapping [32].
Second, the proposed binary classification methodology requires the construction of a
non-crop reference dataset, which can be very challenging. Last, Sen2Agri products are
strongly dependent on the availability of Sentinel-2 acquisitions. Therefore, less accurate
results are obtained in cloudy areas.

As previously mentioned, the integration of weather-independent synthetic aperture
radar (SAR) imagery into crop classification methodologies may be a solution to address
the lack of optical data. The use of multitemporal SAR data has gained increasing attention
in crop monitoring [45,46]. Recently, the multisite crop classification experiment described
in [47] proved the good performance of the RF classifier on multitemporal SAR data.

In the context of land use mapping and monitoring, the fusion of optical and radar
data has been reviewed by different studies [48–50]. Despite the large number of such
studies, most of the existing approaches do not consider the temporal dimension, and only
a few images are fused. The most widely used strategy for exploiting multimodal time
series is early fusion, which combines multisource information at the pixel or feature level.
This strategy consists of placing all the raw data (or features) from multiple sensors in a
single dataset, which is then classified.

The early fusion of multitemporal optical and SAR data has been proposed by some
land cover classification studies. For instance, the combination of multitemporal Sentinel-1
and Landsat data is presented in [51]. This study has demonstrated how the incorporation
of SAR data can increase the classification results when the number of optical and radar
images is low. With the arrival of Sentinel satellites, more studies have confirmed the
benefits of exploiting optical and SAR image time series by an early fusion strategy at the
pixel [52,53] or feature levels [54,55].

In the literature, only a few studies have jointly exploited Sentinel’s time series to
produce high spatial resolution maps describing the precise location and extent of major
crop types. This can be explained by the large data volume that needs to be processed and
the lack of reference data over large geographical areas. The most relevant crop mapping
work has proposed training a hierarchical RF classifier after the early fusion stage [56].
Unfortunately, such a fusion approach can have some noticeable limitations due to the very
high dimensional feature space of the multi-sensor data stack [57]. Specifically, it could
lead to the Hughes phenomenon, which is caused by the large number of features and the
limited availability of training samples [58].

In addition to early fusion, other strategies not applied to high-resolution multitempo-
ral datasets have been proposed in the remote sensing literature to fuse single optical and
radar images. For instance, decision-level methods have been proposed to individually
classify optical and SAR data and to treat the classifier outputs to yield a final classification
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decision [59–62]. Working radar and optical sensors on two different principles allows two
complementary classifiers to be trained using two different representations of the input
data. Therefore, the combination of two of them will help to improve the classification
results obtained by using just one of them. In addition, postdecision classification systems
require less training data to overcome the curse of dimensionality issues. Therefore, this
work aims to propose a crop mapping processing chain where the synergy of Sentinel’s
data is exploited by a decision-level fusion strategy.

3. Methodology
3.1. Random Forest Classifier

Random forest (RF) is a popular ensemble classifier that builds multiple decision
trees and merges them to obtain more accurate results [63]. Ensemble prediction uses
majority voting to assign a class of unlabeled samples. To construct the ensemble of trees,
the concepts of bootstrap aggregating and random selection of features are combined. Both
concepts are applied to reduce the correlation between trees, thus creating an expected
reduction in the variance of the prediction error. The bootstrap strategy consists of building
each tree by a subset of samples (i.e., bootstrapped) that are randomly selected with
replacements from the complete training data. Traditionally, two-thirds of samples from
the training data set are selected as bootstrapped data.

Each bootstrapped dataset is used to build a single tree by a recursive partitioning
algorithm. This iterative algorithm splits the data into two smaller subsets at each node on
the tree. At each step, the best split is found by searching through a subset of m features
that are randomly selected from the set of all variables. The feature resulting in the largest
decrease in impurity is chosen to separate the samples. The grown phase is finished when
the terminal nodes or leaves contain very similar samples or when the splitting no longer
adds value to the predictions. For implementation purposes, tree building can be stopped
when a maximum depth (max depth) is reached or when the number of samples at the
node is below a min samples threshold. Assuming a classification problem with N different
classes and an unlabeled sample x, the ensemble of the predictions in the forest can be
used to estimate the posterior class probabilities p(x) = {pC1(x), · · · , and pCN (x)}. A
natural way is to use the average vote, i.e., calculating the proportion of trees voting for
each class [63,64].

3.2. Joint S1-S2 Classification System

By working Sentinel-1 (S1) and Sentinel-2 (S2) on different principles, two complemen-
tary, rather than competitive, RF classifiers can be independently trained. The combination
of classifiers allows us to reduce the dimensionality of the feature space, which could yield
more accurate results. Figure 1 shows how predictions obtained by two independent S1
and S2 classifiers can be combined at the decision-level stage.

In addition to the raw satellite data, some additional features were also included in
the optical and radar input data stack. The S1-S2 classification system proposes to apply
two independent RF classifiers (reviewed in Section 3.1) on optical and radar data. For each
pixel, each classifier i computes its corresponding conditional class probabilities pSi (x).
Finally, a decision-level fusion strategy was proposed to combine the class probability
vectors pS1(x) and pS2(x). In this work, the following combination rules [65] were studied:

• Product of experts (PoE): Considering pS1(x) and pS2(x) as individual expert opinions,
PoE combines them as a product of experts by multiplying individual probabilities
and renormalizing. This can be expressed by:

Cp(x) = arg max
Ci

pS1
Ci
(x)pS2

Ci
(x)

N

∑
l=1

pS1
Ci
(x)pS2

Ci
(x)

; (1)
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• Maximum confidence: The classifier that is most confident in itself gives the predicted
class.

Cp(x) = arg max
Ci

(pS1(x), pS2(x)); (2)

• Mean confidence: This combination rule predicts the class reaching the highest average
posterior probability value.

Cp(x) = arg max
Ci

1
2

2

∑
j=1

p
Sj
Ci
(x); (3)

• Fusion using the Dempster–Shafer theory: Dempster–Shafer theory can be used to
combine multiple classifiers seen as independent information sources. The idea is to
consider posterior probability as joint mass values that can be directly used to compute
joint beliefs. This strategy assigns the class label for which the belief is maximal.

Figure 1. Supervised S1-S2 classifier system combining the predictions of two independent Sentinel-1
and Sentinel-2 classifiers. The individual class probability distributions obtained by each classifier
are fused at the decision-level stage.

3.3. SenSAgri Crop Mapping Processing Chain

A binary cropland mask and a crop type map are the two products generated by the
SenSAgri processing chain. Figure 2 describes the two-fold methodology, which is mainly
based on the supervised S1-S2 classification system of Figure 1. In addition to satellite
data, reference data are needed as an input requirement. The level of the land cover and
thematic details of the legend must be chosen by the user.

Instead of considering crop mapping as a classification problem with a detailed
agricultural legend, the SenSAgri processing chain proposes a specific two-fold strategy.
The crop mapping goal is divided into two steps to reduce the influence of the level of
details of land cover classes on crop classification results; an example of this is imaging a
classification problem where the straw cereals class is divided into very similar wheat and
barley classes. As high confusion exists between these two classes, the use of a legend with
this high-level detail can lead to incorrect classification results (see Appendix C).

As shown in Figure 2, the first step is the binary detection of the cropland areas. This
task is carried out by an S1-S2 classifier system whose training stage considers a legend
containing all the land cover classes of the landscape. These results are then used to decide
if the pixel can be classified as a crop by the cropland detection strategy described in
Section 3.4. This step allowed us to reduce the confusion between agricultural and similar
non-crop agricultural land. Finally, the crop type map is obtained by applying a second
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S1-S2 classifier system on the areas detected by the binary cropland mask. In this case, the
reference dataset only contains crop type classes.

Reference data
(Complete nomenclature)

Binary cropland mask

Supervised S1-S2 classifier
system

pS1,S2
Cropland
detection

Supervised S1-S2 classifier
system

Crop type map

Reference data

(Crop type nomenclature)
Sentinel’s satellite data

arg max
ci

pS1,S2
ci

(x)

Figure 1: Seasonal crop mapping prototypeFigure 2. Crop mapping processing chain.

3.4. Extraction of Cropland Extent Areas

Given a classification problem of N classes and a pixel x, the ensemble of class
probability values obtained by the S1-S2 classification system can be expressed by:

Ω = {pS1,S2
ci (x) | i ∈ [1 · · ·N]} (4)

Considering the binary cropland detection aim, Ω can be divided into two subsets,
ΩCrop and ΩNon−Crop. This split can be easily performed by knowing whether ci belongs
to a crop or a non-crop class. Under this assumption, the probability that a pixel x belongs
to a crop class can be denoted as:

PCrop(x) = ∑
∀ci∈ΩCrop

pS1,S2
ci (x) (5)

Thus, the binary cropland mask can be easily obtained by assigning the following to
each image pixel x: {

1 if PCrop(x) > 0.5
0 otherwise

(6)

4. Study Areas, Satellite Data and Experimental Design

The three European test sites of Figure 3 were studied. The French test site is located
in the southwestern France near Toulouse, and the area covers three Sentinel tiles (T30TYP,
T31TCJ, T31TCH). Each Sentinel tile covers an extension of 110 × 110 km. The other two
test sites cover geographical areas contained on two Sentinel tiles. The Spanish test site is
located in the the north of Spain near Valladolid (T30TUL, T30TUM). The Italian test site
is located in the south of Italy near Bari (T33TWF, T33TWG). For the French test site, two
annual agricultural seasons from October to November were studied. For the rest of the
test sites, only one agricultural season was studied. The three test sites involve different
crop legends and satellite image coverages.
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Figure 3. Satellite footprints for the three European test sites.

4.1. Reference Data

Reference data sets describing the study areas were created by considering (i) artificial
classes such as buildings, (ii) natural classes such as forests or water bodies and (iii)
agricultural classes (see Appendix A). French and Spanish data sets were generated by
merging governmental databases and data collected from field campaigns. Reference data
were collected during fieldwork campaigns for the Italian test site.

Information from the Land Parcel Information System (LPIS) database was used for
agricultural classes for the French and Spanish test sites. For each parcel, this database
describes the main cultivated crops according to its farmers’ declarations. The LPIS is
obtained under the framework of the Common Agricultural Policy, and it also provides
information about temporary/permanent grasslands. Concerning artificial and natural
categories, the French National Land Cover database, produced by the French mapping
agency (Institut National de l’Information Géographique et Forestière in French), was considered
for the French area. A description of governmental databases considered for the Spanish test
site can be found in [66]. The resulting reference datasets reflect the spatial heterogeneity
of the whole study areas.

4.2. Sentinel-1 Data

Sentinel-1 is an imaging radar mission based on a constellation of two satellites
equipped with a C-band SAR sensor. Interferometric Wideswath (IW) mode with VH and
VV polarizations and the Level-1 Ground Range detected (GRD) product were used. The
spatial resolution was 10 m, and the images were downloaded from the Sentinel Product
Exploitation Platform (PEPS). S1tiling processing chain [67] was applied for clipping the
Sentinel-1 to the Sentinel-2 tiles. The chain was applied to perform orthorectification and
multitemporal filtering to reduce the speckle noise.

Images from ascending and descending orbits acquired at night and day were con-
sidered. The French test site was covered by four orbits (8, 30, 110, 132). For this test area,
the number of SAR images was equal to 133 and 247 for the 2016 and 2017 agricultural
years, respectively. Three orbits (44, 124, 146) were considered for the Italian site, and
five orbits (1, 52, 74, 91, 154) were used for the Spanish area. Given the large number of
SAR images available from the different orbits, the test sites were covered by a temporal
resolution ranging from 12 h up to 3.5 days. To make the irregular temporal sampling
resulting from the use of different orbits uniform, images were resampled to a common
temporal grid by applying weighted linear interpolation. In addition to the VV and VH
polarizations, the VH/VV ratio providing information about vegetation volume was also
considered. The incorporation of VH/VV reduces errors associated with the acquisition
system or environmental factors (e.g., due to variations in soil moisture). The temporal
radar backscatter profiles of the main crop types studied at the French test site are shown
in Figure 4.
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We could argue that these peaks might be caused by differences in soil moisture after rain 246 
events, but at the beginning and end of December 2016 there is no rain events and the 247 
profile is peaky as well (and all along the temporal axis). The peaky behavior and 248 
backscatter jumps are caused by the different acquisition geometry from the different 249 
orbits: the fields are seen by different incidence angles (IA) from the different orbits and 250 
the radar backscatter highly depends on the IA (decreasing with higher IA) (Ulaby, 1986).  251 

In conclusion, for temporal monitoring it is recommended to follow a given orbit and 252 
not mix images from different orbits. Figure 3 shows the radar profiles taking into account 253 
only the orbit 132 (6 P.M.) and also the NDVI and NDWI temporal profiles from S2.  254 

Figure 4. Temporal radar backscatter profiles of the main French crop types. Time series are averaged
at parcel level.

4.3. Optical Data

Sentinel-2 L2A images and their corresponding cloud masks were obtained from the
THEIA web portal. The L2A images were obtained by applying the MAJA (Maccs-Atcor
Joint Algorithm) processing chain citeMAJAon Sentinel-2 L1C products. Images were
acquired by a single multispectral instrument operating at 13 different spectral bands.
In this study, only 10 m and 20 m spatial resolution bands were considered. The 20 m
resolution bands were downscaled to 10 meters. Images were resampled to a common
temporal grid by applying weighted linear interpolation. This step was necessary (i) to
recover missing information resulting from clouds (cloud shadows) and (ii) to uniformly
correct the irregular temporal sampling resulting from the use of different Sentinel tiles.

The description of the number of Sentinel-2 acquisitions considered for each test site
is described in Appendix B. The number of acquisitions increased in 2017 due to the launch
of Sentinel-2B. In addition to the raw optical data, the spectral indices detailed in Table 1
were computed for each studied pixel:

Table 1. Optical features computed from Sentinel-2 data.

Spectral Index Equation

Normalized Difference Vegetation Index NDVI = NIR−R
NIR+R

Normalized Difference Water Index NDWI = G−NIR
G+NIR

Brightness The norm of the spectral vector

NDVI and NDWI profiles of the main crop types studied at the French test site are
shown in Figure 5. The figure shows how winter crops (straw and rapeseed) emerge in
winter; they are at full growth in spring, and finally, they are harvested in July.



Remote Sens. 2021, 13, 4891 10 of 32

8 
 

Figure 2: Temporal radar backscatter profiles mixing orbits 110, 132, 30 and 8, and daily 242 
precipitations (2017).  243 

We observe that the radar backscatter profile is rather peaky, with sometimes 244 
differences up to 2dB from one acquisition in the morning and the next one in the evening. 245 
We could argue that these peaks might be caused by differences in soil moisture after rain 246 
events, but at the beginning and end of December 2016 there is no rain events and the 247 
profile is peaky as well (and all along the temporal axis). The peaky behavior and 248 
backscatter jumps are caused by the different acquisition geometry from the different 249 
orbits: the fields are seen by different incidence angles (IA) from the different orbits and 250 
the radar backscatter highly depends on the IA (decreasing with higher IA) (Ulaby, 1986).  251 

In conclusion, for temporal monitoring it is recommended to follow a given orbit and 252 
not mix images from different orbits. Figure 3 shows the radar profiles taking into account 253 
only the orbit 132 (6 P.M.) and also the NDVI and NDWI temporal profiles from S2.  254 

Figure 5. Temporal NDVI and NDWI profiles of the main French crop types. Time series are averaged
at the parcel level.

4.4. Experimental Design

From the reference data sets, training and validation subsets not containing overlap-
ping polygons were generated. The random sampling procedure was used to generate
the spatially disjointed training and validation subsets. This split was carried out in ten
random trials, which allowed us to statistically evaluate the results with 95% confidence
intervals. For the different test sites, a complete description of the reference data set is
found in Appendix A. For the different experiments, balanced training sample datasets are
created by randomly selecting 2000 samples per class from training polygons. In contrast,
imbalanced validation data sets are used in all the experiments by considering all the
validation polygon samples.

The hyperparameters of the RF classifier were set by considering the results in [32].
The number of trees was set to 100, and the maximum depth of the tree and the minimum
sample leaf size were set to 25. The number of randomly selected features considered for a
split in each tree node was set to

√
p, where p is the number of input variables. In addition,

all the experiments consider 3 radar and 13 optical features (see Table 1) for the different
image acquisitions.

Different evaluation measures were used to evaluate the classification performances.
The overall accuracy (OA) was calculated as the total number of correctly-classified pixels
divided by the total number of validation pixels, which are described in Appendix A. The
F-score for the class was computed as the harmonic mean of the precision and recall and
reached its maximum value at 1 and minimum score at 0. The recall was considered as the
number of true positives divided by the number of true positives plus the number of false
negatives. In contrast, the precision was computed as the number of true positives divided
by the number of true positives plus the number of false positives.

The first three experiments were performed to study the complementarity among S2
and S1 classifiers (i.e., whether they were complementary in terms of errors). For these
experiments, the 2016 and 2017 agricultural seasons of the French test site were studied.
Theoretically, prediction accuracies must improve if both classifiers are accurate and diverse.
The agreements and disagreements among RF classifiers trained with S1 and S2 time
series were studied. Each input data set was composed of all the available preprocessed
optical/radar satellite images. For each year, two optical and radar RF classifiers are
independently trained and validated using the data described in Appendix A.

The performances of decision-level fusion strategies described in Section 3.2 were
tested and compared on the two French data sets (2016 and 2017). For each pixel x,
probabilities pS1(x) and pS2(x) are estimated by counting the fraction of trees in the forest
that vote for each class. In addition to the four postdecision strategies, an early fusion
approach was also investigated. This classical strategy consists of training the RF classifier
with the stack of all the Sentinel’s images. In our case, the resulting 2016 dataset contains
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252 radar and 494 optical features. For the 2017 data set, the total number of features
was 1400.

The benefit of fusion was studied for the early classification of Sentinel’s data, where
the class of the time series was predicted before it was observed in its entirety. Instead
of working with an annual time series, this study has evaluated the benefit of Sentinel’s
fusion in an online classification scenario. To perform this task, the French agricultural
data sets were divided into three different time periods (see Appendix B). The in-season
performances of the S1-S2 classification system were then studied. Each time period
was classified by using as input data the stack of its past and current Sentinel’s image
acquisitions. The following strategies were tested and compared: (i) individual S1 and S2
classifiers, and (ii) the early and (iii) PoE fusion strategies. In-season classification results are
evaluated by annual class labels described in Appendix A. This experiment also investigates
the relationship between the dimension of input data and classification results. In addition,
some classification results are shown in Appendix E. This last experiment investigates
whether increasing the number of training samples could improve the performance of the
S12 strategy.

A second family of experiments was performed to extensively evaluate the SenSAgri
crop mapping processing chain (Figure 2). Seasonal crop map accuracies are assessed
by several experiments during the agricultural year. For this experiment, the PoE fusion
strategy was used on the two supervised S1-S2 classification systems. The proposed
crop mapping methodology was evaluated on the three European test sites described in
Section 4 on three different dates during the agricultural year (Appendix B). Binary crop
map results were evaluated and compared with the recent Sen2Agri strategy proposed in
the state of the art. The accuracies of crop type maps were also discussed.

5. Results
5.1. Synergy between S1 and S2 Classifiers

The level of agreement between independently trained S1 and S2 classifiers is eval-
uated here. The obtained results are shown in Tables 2 and 3, where values indicate the
averaged F-scores obtained by individual classifiers.

Table 2. Classification results obtained by RF classifiers independently trained on Sentinel-1 (S1)
and Sentinel-1 (S2) data. F-score values, overall accuracies (OA) and confidence intervals (CI) are
computed for the complete French 2016 data set.

France-2016 S1 S2

Wine 87.5 90.8
Straw Cereals 88.5 88.5

Maize 82.9 85.7
Sorghum 31.2 40.7

Soyabeans 58.4 59.5
Sunflowers 86.6 83.0

Alfalfa 52.7 57.3
Grassland 61.7 71.9

Fallow 41.3 49.8
Shrubland 49.8 48.5
Rapeseed 76.3 70.1

Broadleaved Forest 82.1 85.5
Build-up 87.4 89.1

Water 95.6 98.8
Orchard 20.4 38.8

OA 72.6 77.4

CI (10−2) ±0.39 ±0.29
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Table 3. Classification results obtained by RF classifiers independently trained on Sentinel-1 (S1)
and Sentinel-1 (S2) data. F-score values, overall accuracies (OA) and confidence intervals (CI) are
computed for the complete French 2017 data sets.

France-2017 S1 S2

Orchard 56.0 65.2
Straw Cereal 91.4 89.6

Maize 91.6 94.8
Sorghum 67.2 78.5

Wine 69.4 82.2
Soyabeans 57.8 69.3

Peas 85.5 82.7
Rapeseed 96.2 91.0
Sunflower 92.7 92.0

Temp. grassland 31.7 32.5
Grassland 49.4 63.9

Fallow 30.6 41.8
Schrubland 25.4 31.1

Broadleaved Forest 78.9 88.0
Coniferous Forest 61.7 85.8

Build-up 84.7 89.1
Water 96.8 98.5

Alfafa/clover 39.5 52.2

OA 61.4 70.6

CI (10−2) ±1.16 ±0.78

It can be observed that both classifiers reach high accuracies for an important number
of classes. As expected, the worst accuracies were obtained by classes describing semi-
natural vegetation areas (fallow, shrubland, temporal grassland or alfalfa). The strong
confusion of these herbaceous classes is explained by their similar temporal patterns and
their high intraclass variabilities. For instance, perennial fodder crops such as alfalfa and
temporal grassland are highly confused.

Comparing the results of Tables 2 and 3, it can be observed that the highest accuracies
are reached by the S2 classifier for both datasets. In addition, it reaches the narrowest 95%
confidence interval. Important differences can be observed for some classes by comparing
both classifier results. For instance, the difference between S2 and S1 F-score values is
equal to 24% for coniferous forests in 2017. The important confusion existing between
coniferous and broadleaved forests explains the decrease in accuracy. These confusions can
be observed by looking at the 2017 confusion matrix shown in Appendix D.

The S1 classifier is also less accurate for orchard results, which is especially remarkable
in 2016. In this case, the orchard class is strongly confused with forest and wine classes.
The similar tree structure characterizing forests and orchards has important effects on the
discrimination of these classes. The accuracy difference between the two years is mainly due
to the different numbers of orchard and wine validation samples described in Appendix A.

Comparing winter and summer crop accuracies, some differences are also observed
between the optical and radar results. The S1 classifier reaches the highest accuracies
for crop winter classes (rapeseed and straw cereals). The radar classifier achieves better
discrimination since high scattering diffusion is captured by radar acquisitions due to the
structure and volume of rapeseed plants. The accuracy decrease of the S2 classifier is due
to the low number of non-cloudy Sentinel-2 images acquired in the winter season.

In contrast, the S2 classifier reached most of the highest accuracies for summer crop
classes (sunflower, maize, sorghum and soybean). Only the sunflower class was well
recognized by the S1 classifier, which was mainly due to the presence of the spike at the
back of the flower. In general, important confusion exists between sorghum and maize
for the S1 classifier. Unfortunately, these classes are only different at the beginning and
end of their vegetation phenological cycle. As expected, summer crop minority classes
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(sorghum and soybean) obtained the lowest accuracies, which was especially remarkable
in 2016. More information about the confusion observed by both classifiers for both years
is detailed in Appendix D.

Comparing the results obtained in both years, it can be observed that the 2017 dataset
obtains more accurate results. One possible reason for this accuracy improvement is the
high number of Sentinel images acquired in 2017. However, the F-score values cannot be
directly compared for both years since the number of validation samples and the class
legends are slightly different for both data sets (Appendix A). For instance, a high difference
exists between the number of validation samples for the grassland class.

The complementarity of S1 and S2 classifiers (Tables 2 and 3) is analyzed by studying
their agreements and disagreements. For each validation pixel, the classes predicted by S1
and S2 classifiers (CS1

p ,CS2
p ) are compared with its reference class Cr. Five different metrics are

computed: (i) the percentage of correctly classified pixels for both classifiers, (ii) the percentage
of correctly classified pixels only for the Sentinel-2 classifier, (iii) the percentage of correctly
classified pixels only for the Sentinel-1 classifier, (iv) the percentage of incorrectly classified
pixels for both classifiers where the predicted label is the same and (v) the percentage of
incorrectly classified pixels for both classifiers where the predicted label is different.

Figure 6 shows the obtained metrics. Agreements among S1 and S2 classifiers are
observed by the green bars. The yellow and dark red bars show classifier disagreements.
In the case of the yellow bars, they illustrate when one of the two classifiers obtains the
correct prediction. In contrast, dark red bars show when both classifiers predict different
incorrect classes. Finally, light red bars show when the two classifiers made the same
incorrect prediction.
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(b)Figure 6. The complementarity of both classifiers is analyzed by studying their agreements and disagreements. The classes
predicted by S1 (CS1

p ) and S2 (CS2
p ) classifiers are compared with reference classes (Cr). (a) Agreements and disagreements

obtained from the French 2016 data set. (b) Agreements and disagreements obtained from the French 2017 data set.
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Different behaviors are observed on the different land cover classes. Well-classified
classes such as straw cereals or water (see Tables 2 and 3) obtain a high level of agreement.
In contrast, important disagreements are reached by classes obtaining low F-score values.
As expected, the highest disagreements were reached by seminatural vegetation classes.

The existence of disagreements confirms the complementarity in terms of errors for
both classifiers. The results also show the presence of light red bars, which illustrates that
both classifiers can fail in the same way. For instance, both classifiers confuse the orchard
class with alfalfa and wine classes. Unfortunately, the agreement on the wrong label for
both classifiers can lead to incorrect classification results.

The deep analysis of the results also shows that the confusions of both classifiers are
different for some classes. For instance, S2 classifier has problems discriminating between
maize and sunflower classes, whereas maize is mainly confused with sorghum by the S1
classifier. The confusions of straw cereal and temporal grassland are also different for both
classifiers, which are much less important for the S1 classifier. These conclusions are similar
for the two years studied.

5.1.1. Comparison of Decision-Level Fusion Strategies

The average F-score results obtained by different fusion strategies are discussed here.
Tables 4 and 5 confirm that postdecision strategies improve the performances obtained by the
individual S1 and S2 classifiers. As expected, the classes that are well classified by individual
S1 and S2 classifiers have a low fusion benefit. In contrast, high accuracy gain (approximately
10%) can be observed by some classes, such as alfalfa or orchard, in both data sets.

Table 4. Classification results obtained for the French 2016 data set. Independent S1 and S2 classifiers,
early fusion (S12) and postdecision-level strategies are evaluated. F-score values, overall accuracies
(OA) and confidence intervals (CI) are computed.

France-2016 S1 S2 S12 PoE Max Mean DS

Wine 87.5 90.8 90.3 94.3 89.9 94.0 92.8
Straw Cereals 88.5 88.5 88.9 90.4 89.0 90.1 89.4

Maize 82.9 85.7 83.7 88.2 82.1 87.9 86.9
Sorghum 31.2 40.7 34.1 45.1 35.9 44.7 42.6

Soyabeans 58.4 59.5 58.3 67.4 56.6 67.5 65.5
Sunflowers 86.6 83.0 83.8 87.0 84.5 86.5 85.7

Alfalfa 52.7 57.3 56.1 64.2 56.8 63.6 60.9
Grass 61.7 71.9 68.2 73.6 63.7 73.5 71.9

Fallow 41.3 49.8 48.3 54.6 45.4 54.4 51.9
Shrubland 49.8 48.5 51.2 58.5 43.7 58.4 55.0
Rapeseed 76.3 70.1 74.1 76.5 70.7 75.9 74.6

Broadleaved Forest 82.1 85.5 86.6 88.0 82.9 87.5 86.1
Build-up 87.4 89.1 92.4 96.1 89.3 94.8 92.2

Water 95.6 98.8 98.4 98.3 97.3 98.4 97.8
Orchard 20.4 38.8 28.9 42.5 28.3 43.9 40.3

OA 72.6 77.4 75.9 81.0 73.4 80.8 79.3

CI (10−2) 0.394 0.294 0.95 0.537 0.499 0.426 0.292

The results show that the accuracy gain of the early fusion strategy (S12) is low.
Even the S12 accuracies are lower than S2 for a considerable number of classes, such as
grassland, alfalfa and orchards. In addition, the largest confidence interval is obtained by
this fusion strategy. The high dimension of the optical-SAR feature stack (i.e., the curse of
dimensionality) could explain the low fusion benefit of early fusion. The product rule (PoE)
strategy obtains the highest accuracies when compared to the other postdecision fusion
methods. The class accuracies have been considerably improved by this fusion strategy.
The accuracy gain is remarkable for some classes, such as orchards or alfalfa. In fact, the
fusion benefit is high for classes having long yellow bars (see Figure 6), which are well
classified for at least one classifier. In this situation, postdecision fusion strategies correctly
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remove the disagreements among the classifiers. The Dempster–Shafter (DS) strategy
obtains the lowest accuracies. Classes with uncertainty, such as seminatural vegetation, are
strongly penalized by DS fusion. The problem is that DS gives priority to classes reaching
high confidence values, which are most of the time well classified.

Table 5. Classification results obtained for the French 2017 data set. Independent S1 and S2 classifiers,
early fusion (S12) and postdecision-level strategies are evaluated. F-scores values, overall accuracies
(OA) and confidence intervals (CI) are computed.

France-2017 S1 S2 S12 PoE Max Mean DS

Orchard 56.0 65.2 62.4 71.5 72.1 71.0 67.6
Straw Cereal 91.4 89.6 88.8 91.5 92.1 90.9 90.1

Maize 91.6 94.8 93.7 94.7 94.0 94.6 94.4
Sorghum 67.2 78.5 71.8 79.8 71.6 79.8 78.5

Wine 69.4 82.2 81.0 86.5 84.7 82.6 79.6
Soyabeans 57.8 69.3 62.0 69.5 63.8 69.2 67.7

Peas 85.5 82.7 82.2 87.7 84.8 86.3 84.6
Rapeseed 96.2 91.0 94.9 96.3 93.3 96.2 94.6
Sunflower 92.7 92.0 90.9 92.7 92.7 92.5 92.0

Temporary grassland 31.7 32.5 23.4 35.8 25.5 34.9 32.2
Grassland 49.4 63.9 58.6 63.7 58.6 63.8 63.0

Fallow 30.6 41.8 36.9 46.9 32.2 45.6 41.8
Schrubland 25.4 31.1 26.8 33.3 26.9 34.0 33.4

Broadleaved forests 78.9 88.0 86.8 88.3 87.4 88.5 88.3
Coniferous forests 61.7 85.8 83.8 86.8 71.9 85.9 81.6

Build-up 84.7 89.1 90.6 95.8 88.8 94.2 91.1
Water 96.8 98.5 98.3 98.4 97.3 98.3 96.9

Alfafa/clover 39.5 52.2 42.2 56.6 44.1 56.1 52.6

OA 61.4 70.5 67.0 72.0 67.4 71.8 70.6

CI (10−2) 1.16 0.78 1.24 0.43 0.32 0.35 0.26

Figure 7 shows a visual evaluation of the results obtained from the 2017 French dataset.
Figure 7a shows the reference polygons used for validation. Land cover maps obtained by
individual S1 and S2 classifiers are shown in Figure 7b,c. The classification results of PoE
are illustrated in Figure 7d. Comparing the resulting maps, some differences are observed.

(a) (b)
Figure 7. Cont.
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(c) (d)

Figure 7. Land cover maps obtained at the end of the agricultural season for the French 2017 dataset. The map obtained by
the PoE fusion strategy is compared with the maps obtained by the individual S1 and S2 classifiers. The three red boxes of
Figure 7a highlight the interest of combining both classifier results. (a) Reference polygons. (b) S1 classifier. (c) S2 classifier.
(d) PoE.

The three red boxes of Figure 7a highlight the interest of combining both classifier
results. In the case of the top left polygon, it is well classified by PoE thanks to the S1
prediction. In contrast, the alfalfa polygon (on the right) is well classified by PoE thanks to
the S2 decision. An interesting visual result is also observed by comparing Figure 7b and
Figure 7c. The results show that some edges are lost on the land cover map obtained by
the S1 classifier. This loss, which is less remarkable in the PoE results (Figure 7d), can be
explained by the perceptual quality of the SAR images.

5.1.2. Interest in Fusion for Early Classification

Finally, the benefit of postfusion strategies for in-season land cover mapping is in-
vestigated. Tables 6 and 7 show seasonal classification accuracies. These results can be
compared with classification performances obtained at the end of the agricultural seasons
(Tables 4 and 5). As expected, better and more accurate models are obtained by increasing
the number of Sentinel acquisitions. In the same direction, confidence intervals decrease
throughout the year. The lowest values are reached at the end of the season. As in the
previous experiments, the 2017 dataset obtains more accurate results. The low accuracies
of the summer crop classes (soybean or sorghum) in the early season are explained by the
fact that crops start growing at the beginning of July (i.e., summer crop plots were all in
bare soil in February).
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Table 6. Classification results obtained in 2016 at the French test site during the early and mid-
agricultural seasons. Independent S1 and S2 classifiers, early fusion (S12) and post-decision level
strategies are evaluated. F-score values, overall accuracies (OA) and confidence intervals (CI) are
computed.

28-February 28-June
France-2016 S1 S2 S12 PoE S1 S2 S12 PoE

Wine 77.9 79.2 84.3 88.3 84.9 87.3 88.0 92.3
Straw Cereals 74.9 84.0 83.9 85.6 87.9 88.3 88.5 90.0

Maize 51.7 60.1 59.7 63.9 72.2 75.3 74.0 78.9
Sorghum 8.7 8.9 9.2 11.8 24.6 19.2 22.8 30.6

Soyabeans 16.4 17.6 18.0 20.8 27.9 27.8 27.1 33.0
Sunflowers 43.3 48.9 50.7 52.3 71.7 70.0 73.5 75.9

Alfalfa 41.5 45.0 49.5 52.6 45.9 51.2 53.1 58.9
Grass 53.2 63.5 66.4 67.1 56.3 69.2 67.3 70.3

Fallow 34.1 41.2 46.3 48.5 38.2 48.1 48.1 52.2
Shrubland 42.6 37.3 46.2 52.8 47.1 44.8 51.1 56.3
Rapeseed 50.6 64.2 64.6 69.2 75.8 70.9 73.7 76.1

Broadleaved Forest 73.6 77.6 81.5 84.2 80.8 82.6 84.8 86.8
Build-up 81.4 84.5 87.7 92.9 85.7 88.9 91.4 95.3

Water 93.9 96.6 97.7 97.9 95.6 98.5 98.4 98.3
Orchard 10.9 16.3 20.5 26.6 16.5 32.1 27.9 39.4

OA 57.8 64.5 67.2 70.7 67.3 72.8 72.7 77.0
CI (10−2) 0.636 0.495 0.575 0.458 0.686 0.534 0.867 0.655

Table 7. Classification results obtained in 2017 at the French test site during the early and mid-
agricultural seasons. Independent S1 and S2 classifiers, early fusion (S12) and postdecision level
strategies are evaluated. F-score values, overall accuracies (OA) and confidence intervals (CI) are
computed.

1-March 5-July
France-2017 S1 S2 S12 PoE S1 S2 S12 PoE

Orchard 37.9 43.9 52.1 58.7 54.1 55.4 56.1 67.9
Straw Cereal 67.9 73.6 73.1 77.2 90.4 89.0 88.5 91.2

Maize 71.3 72.2 73.3 78.2 81.2 81.9 80.9 85.1
Sorghum 15.7 9.1 9.7 13.7 18.0 14.1 11.4 16.2

Wine 58.8 60.0 65.3 72.8 65.2 79.0 78.9 84.4
Soyabeans 6.4 6.5 8.0 9.3 11.8 5.6 6.7 10.0

Peas 22.2 19.1 23.3 25.6 83.6 70.0 77.6 83.1
Rapeseed 42.8 51.1 52.5 62.5 87.3 83.6 88.3 93.9
Sunflower 38.8 55.1 55.2 57.8 69.7 69.8 69.0 73.7

Temp. grassland 27.0 24.9 25.7 29.6 30.2 30.2 26.8 34.1
Grassland 43.6 53.3 54.1 57.6 47.8 60.0 55.3 61.2

Fallow 26.4 30.0 34.2 37.9 29.8 39.6 37.0 44.8
Schrubland 18.8 24.5 27.0 29.6 20.9 28.8 27.0 31.3

Broadleaved Forest 73.9 80.0 81.6 84.6 79.8 85.4 84.9 87.3
Coniferous 54.2 74.5 78.4 83.0 54.6 84.8 82.0 85.1
Build-up 79.5 76.5 85.0 92.9 85.3 85.3 88.9 95.4

Water 90.9 92.9 93.8 95.4 95.6 97.7 97.7 97.9
Alfafa/clover 26.8 29.8 33.0 37.9 36.2 47.9 41.3 53.1

OA 49.3 55.5 57.4 61.5 58.0 65.2 62.9 68.3
CI (10−2) 0.825 0.979 1.185 0.558 0.392 0.976 1.835 0.585

The results show that the gain obtained by fusion strategies is most significant in
the early season. The greatest benefits of fusion are obtained when the number of optical
images of the time series is low. This confirms previous studies [51] highlighting the interest
of incorporating SAR information during the winter period.

Seasonal classification results confirm that the best gain is obtained by the PoE method.
The good performance of PoE is remarkable for winter crop classes at the beginning of
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March. At this time, the F-score of the rapeseed class increases almost 20%. Early results
show a significant improvement in build-up class for both years. The presence of trees in
some validation build-up reference polygons has some impact on the S1 classifier early
results, which confuses build-up and orchards. As this confusion does not exist for the S2
classifier, the PoE exploits this information to improve the results.

As previously observed, the early fusion S12 strategy cannot fully benefit from the
complementarity of optical and radar information. Although the curse of dimensionality is
less important in the early and middle seasons (by reducing the input optical-SAR feature
stack size), the F-score difference between PoE and S12 is still important for some classes.
F-score values obtained on the rapessed and maize classes in the early season are two
clear examples. In addition, a wider confidence interval of S12 means greater uncertainty
predictions. Even if there is a significant accuracy difference between S12 and PoE, it must
be noted that the difference is less remarkable in the early season. The reduction in the
number of input features, which has significantly decreased by using fewer images, could
explain this result.

5.2. Validation of the Seasonal Crop Map Products
5.2.1. Validation of Seasonal Binary Crop Masks

Precision and recall evaluation metrics are used to assess the quality of seasonal binary
cropland maps. These measures are computed on three different dates of the agricultural
year. For each studied period, all the available Sentinel images from the starting season are
used in the classification process. Table 8 reports crop mask averaged metrics computed
over the ten random trials for the different test sites.

Table 8. Binary cropland mask results: average recall and precision metrics over 10 runs. The results
obtained from the French test site for the different years are reported on tables Fr-2016 and Fr-2017.
The other two tables show the results obtained from the Spanish and Italian data sets.

Fr-2016 Recall Precision
Class 28-February 28-June 14-October 28-February 28-June 14-October

Non-Crop 97.80 98.69 99.04 95.15 96.04 96.63
Crop 89.06 91.07 92.34 94.84 96.92 97.74

Fr-2017 Recall Precision
Class 1-March 5-July 2-November 1-March 5-July 2-November

Non-Crop 99.18 99.58 99.69 97.34 97.66 97.65
Crop 90.28 91.47 91.49 96.86 98.39 98.80
Spain Recall Precision
Class 4-March 3-July 6-November 4-March 3-July 6-November

Non-Crop 73.07 83.05 84.06 75.10 86.02 88.02
Crop 93.01 96.06 96.62 92.27 95.10 95.34
Italy Recall Precision
Class 2-March 1-July 3-November 2-March 1-July 3-November

Non-Crop 78.32 89.36 89.70 85.13 93.90 92.64
Crop 95.26 98.07 97.69 92.66 96.54 96.70

The results show that highly accurate binary maps can be obtained for all the test
sites. As expected, precision and recall measures improve when the number of satellite
acquisitions increases throughout the year. Although the most accurate results were
obtained at the end of the agricultural season, the majority of cropland areas were well
detected in early summer. The low accuracy of the early season is explained by the absence
of summer crops during the winter period.

The most accurate precision values are reached by crop class. In general, crop samples
are rarely incorrectly labeled, and the obtained binary masks contain most of the cropland
surfaces. Some differences are observed when comparing the French results with the other
results. The difference between the different test sites can be explained by the unbalanced
number of crop/non-crop reference samples.

Similar and satisfactory results are obtained in the two French agricultural seasons.
There is only a slight accuracy difference, which can be explained by the higher number
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of images acquired during 2017. The French test site obtains high precision but low recall
measures for the crop class. Low recall is obtained because some vegetation samples be-
longing to classes such as grassland and alfalfa are classified as crops. Unfortunately, these
errors increase the false positive rate of the crop class. This limitation is less pronounced in
the Spanish and Italian datasets, which contain fewer non-crop vegetation samples. In fact,
Spanish and Italian reference data sets are mainly composed of crop polygons.

The performances of the binary cropland strategy proposed in Section 3.4 is compared
with the Sen2Agri methodology described in [44]. As the S2Agri method only considers
Sentinel-2 data, the experiment here is performed by only using optical data. The evaluation
is only performed on the 2017 agricultural season of the French test site. The results
obtained by the SenSAgri cropland detection strategy can be compared with the Sen2Agri
results by looking at Table 9.

Table 9. Precision and recall measures obtained by SenSagri and Sen2Agri methodologies on the
2017 French data set. The binary detection of cropland areas is performed only by using optical data.

France 2017 Precision Recall
Crops 1-March 5-July 2-November 1-March 5-July 2-November

SenSAgri 90.28 91.47 91.49 96.86 98.39 98.80
Sen2Agri 84.59 87.39 87.67 91.86 92.25 95.97

France 2017 Precision Recall
Non crops 1-March 5-July 2-November 1-March 5-July 2-November
SenSAgri 99.18 99.58 99.69 97.34 97.66 97.65
Sen2Agri 97.88 98.76 98.94 95.72 96.49 96.55

As expected, the results of Table 9 are lower than Table 8 since radar information is
not considered in this experiment. Comparing the Sen2AGri and SenSAgri results, it can
be noticed that the proposed SenSAgri strategy considerably improves the classification
accuracies. A visual evaluation of the Sen2AGri and SenSAgri results is shown in Figure 8.
This last figure illustrates the important accuracy gain of the SenSAgri strategy.

(a) (b)

(c) (d)
Figure 8. Comparison between binary crop mask products obtained by only using optical data for the
2017 French agricultural season. Figure 8a,c shows crop masks obtained by the proposed SenSAgri
method. Figure 8b,d show crop masks obtained by the Sen2Agri processing chain. (a) SenSAgri crop
mask. (b) Sen2Agri crop mask. (c) SenSAgri crop mask. (d) Sen2Agri crop mask.
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5.2.2. Validation of Seasonal Crop Type Maps

The accuracies of crop type maps generated by the SenSAgri processing chain are
assessed here. For the experiment, the cropland areas detected in Section 5.2.1 are classified
by an S1-S2 classification system trained with a crop class legend. The PoE fusion strategy is
also considered to merge optical and radar classifier decisions. The same reference samples
(training and validation), RF hyperparameters and input satellite data of Section 5.2.1 are
used. Validation samples belonging to non-crop classes are merged into a single class.
Overall accuracies, F-score measures and confidence intervals are computed on three dates
of the year.

Tables 10–13 report the classification results, which demonstrate the capabilities of the
SenSAgri chain to map crops over large areas. The resulting overall accuracies are greater
than 80% on the different dates for all the test sites. The highest accuracies are obtained for
the French test site for both years studied. The results prove the satisfactory identification
of major crop types at the early beginning of summer seasons. As expected, accuracies
increase throughout the year, and low F-score values are obtained for summer crop classes
in March. The results also show that minority classes reach the lowest accuracies. This is
the case for sorghum and soybean classes at the French test site. The effect of unbalanced
validation sorghum data was more significant in 2016. This explains why different results
are obtained for the two French seasons studied. The problem of minority classes is also
observed in vegetable classes for the Italian test site.

Crop accuracies reported on Tables 10 and 11 can be compared with the results
obtained in Sections 5.1.1 and 5.1.2, where crop identification is considered a classical land
cover classification problem. The results in Tables 10 and 11 prove the benefit of removing
non-crop areas before the identification of crop types. The gain is particularly noticeable in
the early season classification results obtained from the 2017 French dataset (see Table 7).
For instance, F-score values obtained by the sunflower class increase more than 10% in the
early season. This is explained by the fact that most of the alfalfa and grassland samples
are removed by the binary cropland mask. The accuracy gain of the SenSAgri results is less
noticeable for the 2016 French dataset, which has fewer non-crop vegetation samples.

Spanish and Italian results show low accuracies for some specific crop classes, includ-
ing the cases of vetch for Spain and leguminous vegetables for Italy. Some of these classes
are poorly represented in the areas of study, which explains their low accuracies. For the
Italian test site, only a few reference polygons are available for the broccoli or asparagus
classes.

Table 10. Seasonal crop type map accuracies obtained from the French 2016 test site. F-score values,
overall accuracies and confidence intervals are computed over 10 runs.

France-2016 28-February 28-June 14-October
Winter crops
Straw cereals 85.82 90.26 90.57

Raspseed 69.48 76.87 77.39
Summer crops

Maize 63.70 78.91 88.27
Sorghum 10.97 30.70 45.64
Soybean 21.07 33.01 67.45

Sunflower 51.98 76.02 87.08
Non-Crop 94.98 96.25 96.75

OA 85.46 90.30 92.89
CI 0.24 0.22 0.20
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Table 11. Seasonal crop type map accuracies obtained from the French 2017 test site. F-score values,
overall accuracies and confidence intervals are computed over 10 runs.

France-2017 1-March 5-July 2-November
Winter Crops
Straw Cereal 83.66 91.12 91.38

Rapeseed 76.91 96.09 96.22
Peas 37.47 87.98 89.27

Summer Crops
Maize 79.23 93.00 94.44

Sorghum 15.71 68.90 78.98
Soya beans 9.85 37.11 68.49
Sunflower 69.11 91.33 92.85
Non-Crop 98.25 98.61 98.66

OA 93.08 96.81 97.24
CI 0.36 0.24 0.22

Table 12. Seasonal crop type map accuracies obtained from the Spanish test site. F-score values,
overall accuracies and confidence intervals are computed over 10 runs.

Spain 4-March 3-July 6-November
Winter crops

Cereals 82.98 89.46 90.48
Rapeseed 48.98 73.01 73.56

Summer crops
Maize 50.52 79.41 90.96
Vetch 38.24 48.60 52.04

Grain leguminous 41.84 63.09 65.08
Beet 24.67 76.70 91.67

Potatoes 30.52 73.53 78.15
Sunflower 59.37 79.78 86.36
NoCrop 74.04 84.49 85.97

OA 72.71 83.51 85.51
CI 0.39 0.34 0.31

Table 13. Seasonal crop type map accuracies obtained from the Italian test site. F-score values, overall
accuracies and confidence intervals are computed over 10 runs.

Italy 2-March 30-June 3-November
Winter crops
Straw cereal 87.38 93.90 94.15

Oat 55.96 64.56 62.77
Leguminous
Horse bean 45.07 71.84 71.16
Chickpea 61.29 84.44 82.41

Vegetables
Asperagus 51.13 59.87 57.30

Brocoli 29.19 44.90 50.69
NoCrop 81.53 91.58 91.13

OA 79.12 89.28 89.11
CI 0.96 0.55 0.58

A visual evaluation of the results obtained at the end of the 2017 French agricultural
season is shown in Figure 9. The reference polygons describing the validation data set are
shown in Figure 9a. The color legend used in Figure 7 is considered.

Figure 9a shows the crop type map obtained by applying a parcel-based majority
voting regularization on the SenSAgri pixel-level results. To perform it, polygon boundaries
defined by the French Land Parcel Information System (LPIS) database are used. Figure 9
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assesses the satisfactory performances of the proposed SenSAgri methodology. Only a few
polygons disappear on the left of the image. Unfortunately, some missing crop parcels are
not well identified in the binary crop mask because they are classified as no crop polygons.
The problem of minority classes can also be observed in Figure 9b (some red polygons
belonging to sorghum are not correctly classified). Note that the regularization task used
here is only a possible solution to reduce the classification pixel-level noise observed in
Figure 7.

(a) (b)
Figure 9. Land cover maps obtained at the end of the agricultural season for the French 2017 dataset.
The same legend used in Figure 7 is considered. (a) Reference polygons. (b) SenSAgri crop map
product.

6. Discussion
6.1. Joint Exploitation of Sentinel’s Data

The research presented here has confirmed the interest of using joint multitemporal
optical and SAR data for early crop mapping. The first experiments assessed the per-
formances and complementarity of independent RF classifiers trained on Sentinel’s data.
Comparing the individual results, it has been observed that more accurate land cover
maps are derived from Sentinel-2 images. A loss of accuracy up to 5% was obtained by
models trained on the Sentinel-1 time series. In addition, optical results have achieved
better performances in terms of fine detail preservation.

The results show that RF classifiers trained on optical and SAR data obtain different
confusions and predictions. Independent errors were observed by the analysis of the
posterior probabilities obtained by each classifier. The complementarity has been especially
noticeable for complex land cover classification classes such as grassland, fallows or
orchards. To exploit this synergy, an S1-S2 classifier system based on a postdecision fusion
strategy has been proposed and evaluated.

Postdecision fusion results have proven that the combination of classifier strengths
leads to more accurate predictions. The obtained results have highlighted the limitations
of the early fusion strategy, which is the most commonly used method for classifying
multimodal time series. The early fusion scheme has learned less accurate models because
of the huge dimensional dataset resulting from stacking Sentinel’s optical and SAR images.
For this fusion strategy, the empty space phenomenon and the curse of dimensionality have
complicated the extraction of useful information. The low performances of early fusion
have been confirmed by several experiments performed with different numbers of training
samples and satellite images. The results have also shown that early fusion accuracies
considerably decrease by reducing the number of training samples. As early fusion models
are trained with more image features, this strategy needs much more training data to avoid
the Hughes phenomenon. As the availability of reference data can be scarce, it confirms
that early fusion is not the most appropriate strategy for large-scale crop mapping.
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Among the probabilistic fusion strategies, product of experts (PoE) has achieved the
best performance over all combination rules. The product rule solved classifier disagree-
ments by systematically removing confusions appearing in French agricultural seasons.
The fusion benefit has been mainly observed in the early season, where averaged overall
accuracies have risen more than 6%. This gain has confirmed that the incorporation of SAR
data into the joint classifier system can handle the lack of optical images due to winter
cloud coverage.

Despite the satisfactory performances of PoE, more efforts could be conducted to
increase the performances of the classifier fusion system. For instance, information about
the class accuracies reached by the individual optical and radar classifiers could be in-
corporated in the fusion process. Specific rules could also be proposed to exploit when
both classifiers provide incorrect and very uncertain predictions. The combination of the
RF probabilistic outputs by using a high-level classifier may be another possible fusion
strategy to improve the results. Middle fusion strategies could also be investigated to
address the high dimensionality of Sentinel’s data. The exploration of dimensionality
reduction techniques to extract useful features from Sentinel will be an interesting research
field to propose intermediate fusion strategies.

6.2. Seasonal Crop Maps

Accurate binary cropland masks and crop type maps were obtained by the proposed
SenSAgri methodology. These results have been assessed over large validation data sets
covering different geographical areas. The classification performances were evaluated
in the early, middle and end of different annual agricultural seasons. The results show
that classification accuracies rise throughout the year when the number of image features
increases. The best results were reached at the end of the season, where crop phenological
cycles were well captured by satellite data. The results confirmed that accurate crop map
products can be delivered early (middle of July) during the summer crop growing season.

Cropland areas have been correctly identified by binary masks, whose precision and
recall values were higher than 90%. The different European test sites obtained similar and
satisfactory performances. Binary classification results have shown that crops were rarely
confused with non-crop classes. Most of the errors were found in vegetation classes such
as alfalfa, fallows or temporary grassland. These classes have not been considered here as
cropland areas according to the user crop map product specification. The results also show
that confusion between crops and surrounding natural/seminatural vegetation classes
can reveal important classification challenges. More efforts could be made in the future to
improve the classification of natural/seminatural vegetation areas. It must be remarked that
most of the existing crop classification studies have not considered seminatural vegetation
classes in their reduced validation datasets.

The results have shown how posterior probabilities obtained by independent RF
classifiers can be exploited for the binary detection of agricultural areas. For each pixel,
the proposed approach allowed us to estimate the joint probability of belonging to the
crop class. The obtained maps recognized cropland areas incorrectly categorized by a
classical classification strategy using a complete class legend. The resulting binary cropland
masks were compared with those obtained by the Sen2AGri methodology [44], which
considers cropland mapping as a binary imbalanced classification problem. Quantitative
and visual results have proven that more accurate crop masks are obtained by the SenSAgri
methodology. The highest accuracy improvements were achieved by crop class, whose
precision and recall measures increased by approximately 5%. In addition, the SenSAgri
methodology avoided the definition of the non-crop class data set, which can be challenging
given the high variability of non-crop land cover classes describing landscapes. The quality
of binary cropland maps could also be improved by optimizing the choice of the binary
decision threshold. A strategy to select a threshold depending on an accuracy metric could
be proposed.
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The different experiments have confirmed the interest of detecting cropland areas
before classifying the types of crops. The proposed two-fold methodology has reduced the
impact of land cover legend definitions on crop classification results. The use of specific
classifiers using only crop legends have led to more accurate performances. High-quality
crop type maps were obtained with averaged overall accuracies higher than 90%. Most
of the classes reached satisfactory F-score values, which increased during the season. The
lowest F-score values were obtained by minority classes (validation data sets were imbal-
anced). The different European test sites obtained similar satisfactory results, achieving
accurate crop maps at the beginning of the summer season. It must be noted that the early
detection of summer crops before the irrigation period could provide essential information
to anticipate irrigation water needs.

The quality of crop type maps obtained at the end of the season was also confirmed
by a visual evaluation. The results showed how pixel-level classification results can be
filtered by a majority vote strategy considering LPIS boundaries. Other filtering strategies
could be proposed in the future by considering the classification decisions of the spatial
neighborhoods.

Although accurate crop type maps have been produced by the joint use of optical and
SAR data, the French test site showed that more accurate maps can be produced by increas-
ing the number of Sentinel-2 images. Accordingly, the incorporation of complementary
optical sensors such as Landsat sensors could be investigated to improve the performance
of the proposed methodology.

The quality of the resulting crop map products was assessed on large validation
datasets, which has rarely been performed in the crop classification literature. Despite the
volume of testing data, satisfactory results were obtained with limited training data. Some
experiments also confirmed that accuracies could be slightly improved by increasing the
number of training samples.

Although the experiments confirmed that the SenSAgri processing chain could be
deployed for in-season crop classification, an important consideration needs to be taken
into account. The presented results were obtained by in situ data collected from the
agricultural season that is to be classified. Consequently, the availability and quality
of the in-season reference data have impacted the classification results. Reference data
describing non-cropland classes can be obtained from previous years assuming that these
classes do not change in consecutive years. In contrast, obtaining crop reference samples
describing the agricultural season to be classified can be challenging. According to the
recent literature [68,69], one solution could be the exploitation of historical time series and
reference data obtained during previous years.

7. Conclusions

In the framework of the H2020 SenSAgri project, this work has proposed a crop
mapping processing chain combining both S1 radar and S2 optical data. The proposed
two-fold methodology obtained accurate crop map products over three European areas
with different cropping systems in the early season. Cropland surfaces and dominant crop
types were well recognized in the early, middle and late seasons with limited training
data. The results show how postdecision fusion strategies allow the joint exploitation of
Sentinel’s time series facing the high dimensionality data challenge. The proposed fusion
scheme reduced the amount of training data required by early fusion strategies. Different
experiments demonstrated the complementarity of SAR and optical satellite image time
series. In particular, the interest in data fusion for early in-season crop mapping has been
confirmed. Further experiments will be performed to exploit the several years of Sentinel’s
acquisitions. Past reference data sets, Sentinel’s data and crop map predictions will be
exploited to improve early in-season crop mapping.
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Appendix A. Description of Reference Data

The next tables show the description of the reference data sets throughout the ex-
perimental section. They correspond to averaged results since the training-testing split is
performed on ten different trials.

Table A1. France 2016.

Training Polygons Validation Polygons Validation Samples

Build-up 1021 1061 624,965
Shrubland 1715 1883 264,853
Grassland 8987 9678 956,307

Water 578 754 173,462
Straw 1269 1384 538,789
Maize 524 569 272,912

Sunflower 801 875 337,019
Rapeseed 144 168 59,064
Soybean 181 197 62,792

Deciduous forest 409 455 133,921
Fallow 6852 7311 396,243
Alfalfa 1773 1981 380,906

Orchard 582 577 72,828
Wine and grapes 3710 4048 362,379

Sorghum 85 91 32,164

Table A2. France 2017.

Training Polygons Validation Polygons Validation Samples

Straw cereal 943 981 451,636
Rapeseed 125 132 49,807

Peas 64 68 40,897
Maize 1268 1255 514,596

Sorghum 87 79 31,696
Soyabeans 92 87 32,125
Sunflower 514 530 267,282
Grassland 5454 5801 2,222,941

Alfalfa or clover 495 524 230,402
Peas 64 68 40,897

Broadleaved forests 3066 3288 1,297,888
Coniferous forests 673 715 270,321

Shrubland 419 470 175,507
Water bodies 197 193 164,423

Build-up 424 425 284,601
Fallow 593 640 236,762

Orchard 302 336 158,093
Temporary grassland 1541 1667 665,218

Wine and grapes 627 658 295,789

http://sensagri.eu
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Table A3. Spain 2017.

Training Polygons Validation Polygons Validation Samples

Broadleaved forests 3698 4166 70,868
Shrubland 162 165 20,841
Evergreen 5471 6072 86,827

Water 89 105 35,976
Grassland 117 127 31,059
Build-up 30 32 40,664

Straw cereal 8103 8822 2,228,750
Rapeseed 183 198 71,086

Rye 290 316 73,749
Oat 313 312 71,657

Other forage crops 153 144 51,914
Vetch 721 812 218,361

Other cereals 97 118 39,135
Fallow 1321 1431 280,373

Sunflower 909 1003 288,135
Alfalfa 701 783 230,868

Beet 149 168 29,940
Leguminous grains 239 256 97,882

Wine and grapes 275 316 48,771
Potato 106 114 21,336
Maize 94 115 26,110

Orchard 54 54 10,858

Table A4. Italy 2017.

Training Polygons Validation Polygons Validation Samples

Bare soil 121 120 84,985
Straw cereal 398 431 408,191
Horse bean 76 85 49,961

Natural vegetation 27 31 19,751
Chickpea 45 48 36,480

Oat 34 32 32,614
Broccoli 16 14 6948

Asparagus 7 5 3713
Photovoltaic 97 95 41,478

Broadleaved forest 10 10 10,295
Water 11 9 26993

Evergreen 9 11 6274
Build-up 10 10 7202

Appendix B. Description of Sentinel-2 Data

Figure A1 shows the temporal distribution of Sentinel-2 acquisitions for the different
European test sites. The three different colors characterize the three different time periods
of the agricultural season (early, middle and late).
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(a)

(b)

(c)

(d)
Figure A1. Temporal distribution of Sentinel-2 acquisitions for the different study areas. The colored boxes indicate
the studied seasonal agricultural periods. TC31TJ(2016, 35), TC30TYP(2016, 30), TC31TCH(2016, 38), TC31TJ(2017, 70),
TC30TYP(2017, 64), TC31TCH(2017, 74), TC30TUL(2017, 77), TC30TUM(2017, 77), TC33TWG(2017, 89), TC33TWF(2017,
81). (a) Sentinel-2 acquisitions from the French test site 2016. (b) Sentinel-2 acquisitions from the French test site 2017. (c)
Sentinel-2 acquisitions from the Spanish test site 2016. (d) Sentinel-2 acquisitions from the Italian test site 2017.

Next, Table A5 reports the number of acquisitions considered for the seasonal classifi-
cation experiments. The table plots the number of Sentinel images considered for the early,
middle and late agricultural seasons for the two French agricultural years.
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Table A5. Number of acquisitions considered for seasonal mapping.

2016 28-February 28-June 14-October

S1 acquisitions 20 38 84
S2 acquisitions 12 21 26

2017 1-Mar 5-Jul 2-Nov

S1 acquisitions 49 90 152
S2 acquisitions 25 40 52

Appendix C. Interest of the Binary Detection Strategy

To better understand the interest of the strategy described in Section 3.4, Figure A2
shows an example of the posterior class distribution predicted by the S1-S2 classifier system.
The example corresponds to a maize sample that has obtained its highest probability for
the wine class. Accordingly, this sample will be considered a non-crop for a classical land
cover classification strategy. The problem of this sample is that the probability of belonging
to a crop class is divided into two similar agricultural summer crop classes (maize and
sorghum). Therefore, the pixel will be wrongly classified as a non-crop.
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Figure A2. Example of a posterior class distribution predicted by the S1-S2 classifier system for a
maize sample.

Appendix D. Synergy between Independent S1 and S2 Classifiers

To better understand the agreement results described in Section 5.1, Figure A3 shows
the difference between S1 and S2 confusion matrices obtained for both agricultural years.
The light yellow values in the diagonal highlight classes have high S2 accuracies. In
contrast, dark green values in the diagonal can be associated with high S1 accuracies.
Yellow values outside the diagonal show a high level of confusion of S2, whereas the dark
green values show S1 confusions.
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(a) 2016 (b) 2017
Figure A3. Difference between S1 and S2 confusion matrices obtained for both agricultural years.

Appendix E. Impact of Training Data Size

The quantity of training data plays a trivial role in the classifier learning process.
The experiment aims to evaluate whether classification performances could improve by
increasing the number of training samples. The classification experiments described in
Tables 5 and 7 for the France 2017 dataset were repeated by using 4000 training samples
for each class. Table A6 reports the difference in the results obtained for 2000 and 4000
training samples. The results show a very slight improvement. However, they prove that
PoE obtains the best results and also prove the low gain of the early fusion strategy.

Table A6. Classification results obtained for the 2017 French test site at the early, middle and end stages of the agricultural
season by using 4000 training samples. Independent S1 and S2 classifiers, early fusion (S12) and postdecision level strategies
are evaluated. The F-score gains with respect to Tables 5 and 7 are reported.

1-March 5-July 2-November
Class S1 S2 S12 PoE S1 S2 S12 PoE S1 S2 S12 PoE

Orchard 0.02 0.04 0.03 0.03 0.02 0.04 0.06 0.04 0.02 0.03 0.05 0.02
Straw cereal 0.01 0.01 −0.02 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.01

Maize 0.01 0.01 −0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.01
Sorghum 0.00 0.01 0.01 0.00 0.02 0.03 0.02 0.02 0.03 0.02 0.02 0.02

Wine and grapes 0.02 0.03 0.03 0.01 0.01 0.01 −0.02 0.01 0.01 0.01 −0.01 0.01
Soyabeans 0.00 0.00 −0.01 −0.01 0.01 0.01 −0.02 0.01 0.03 0.01 0.01 0.02

Peas 0.00 0.00 −0.03 0.01 0.00 0.03 0.03 0.01 0.00 0.01 0.02 0.01
Rapeseed 0.02 0.02 0.02 0.02 0.01 0.02 0.01 0.00 0.00 0.01 0.01 0.00
Sunflower 0.01 0.01 0.00 0.01 0.00 0.00 −0.01 0.00 0.00 0.00 0.00 0.00

Temporary grassland 0.01 0.00 −0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Grassland 0.01 0.03 0.05 0.02 0.01 0.03 −0.01 0.02 0.01 0.03 −0.01 0.02

Fallow 0.02 0.01 −0.03 0.01 0.02 0.01 −0.01 0.01 0.01 0.01 −0.01 0.01
Shrubland and moor 0.01 0.02 −0.02 0.01 0.01 0.01 −0.01 0.01 0.01 0.01 0.00 0.01
Broadleaved forests 0.01 0.01 0.02 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.01
Coniferous forests 0.02 0.00 0.02 0.00 0.02 0.00 0.01 0.00 0.02 0.01 0.01 0.01
Build-up surfaces 0.01 0.01 0.01 0.01 0.02 0.00 0.00 0.00 0.01 0.01 0.00 0.00

Water bodies 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00
Alfalfa or clover 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.01 0.02 0.02 0.02 0.01
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